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ABSTRACT

Fast power system state estimation (SE) solution is indis-
pensable to achieve real-time decision making in power grid
management. Semidefinite programming (SDP) reformula-
tion has shown powerful to approach the global optimum of
the nonlinear SE problem, while suffering from high compu-
tational complexity. Thus, we leverage the recent advances
in nonconvex SDP reformulation that can allow first-order
updates to potentially solve the original SDP problem. We
further adopt the accelerated gradient descent (AGD) method
for the resultant unconstrained problem for improved conver-
gence speed. Numerical tests have demonstrated that AGD
can achieve comparable SE performance as the globally opti-
mal SDP solution at improved computational efficiency.

Index Terms— Power system state estimation, semidefi-
nite programming, nonconvex reformulation, accelerated gra-
dient descent.

1. INTRODUCTION

Power system state estimation (SE) aims to obtain the oper-
ating condition of the grid, namely nodal complex voltages,
from noisy measurements taken at buses and branches. The
SE problem is of paramount importance for reliable control
and economic operation of power systems; see e.g., [1,2].
Due to a nonlinear measurement model, SE is tradition-
ally formulated as a nonlinear least-squares (LS) problem and
solved by Gauss-Newton (GN) iterations [3, Ch. 2]. The GN
method iteratively updates the variables by minimizing an ap-
proximate objective through linearization. Albeit computa-
tionally efficient per iteration, convergence of GN to global
optimum is generally not guaranteed. To tackle the nonlinear-
ity, recent work [4] has proposed a semidefinite programming
(SDP) reformulation of the SE problem using rank relaxation.
To promote low-rank solutions, [5] suggested a nuclear norm
based penalization. General penalization terms are designed
in [6, 7] for guaranteed exact recovery and quantifiable esti-
mation error of the SDP-SE formulation. Although the global
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optimum to SDP-SE can be obtained by generic algorithms
such as the interior-point method based SeDuMi solver [8],
the high-order polynomial complexity therein could be a com-
putational burden for large-scale power systems [9]. There-
fore, recent work has focused on using conic relaxation or
composite optimization techniques for the SE problem [6,
10]. A parallelizable SDP solution was developed in [11] us-
ing graph-specific decomposition and alternating projection
schemes. However, it remains open to develop fast solvers
specifically for the SDP-SE formulation.

Recently, a nonconvex approach to solving SDPs by rep-
resenting the solution as matrix factorization has become
popular [12, 13]. The idea is to eliminate the positive semi-
definite (PSD) constraint. The latter can be enforced through
eigen-decomposition, yet at high computational complexity.
Instead, the nonconvex reformulation leads to computational
gains in practice based on gradient descent updates. The
so-termed factored gradient descent (FGD) algorithm was
developed in [14] for the nonconvex SDP formulation. If
the original SDP objective function is convex and smooth,
FGD can converge sublinearly to the optimal SDP solution of
low rank, assuming the initialization is sufficiently accurate.
However, the choice of good initialization as well as the con-
vergence rate for any initialization are unclear for the FGD
updates in general SDP problems.

The goal of our work is to develop a fast solution tech-
nique for the nonconvex SDP-SE formulation. Towards this
end, we first reformulate the SDP-SE problem using the ma-
trix factorization idea. The FGD method is presented to ob-
tain low-rank solution to the nonconvex reformulation. To
tackle the slow convergence speed of FGD, we propose to
adopt the popular accelerated gradient descent (AGD) method
by Nesterov [15] as a heuristic alternative to FGD. AGD has
achieved fast convergence rate for convex problems with ap-
plications to matrix trace norm minimization [16] and binary
classification [17]. Recently, AGD has been shown to po-
tentially provide accelerated performance for even noncon-
vex problems in neural networks [18]. Furthermore, AGD
has been advocated to better avoid saddle points in certain
nonconvex problems [19]. To the best of our knowledge,
AGD has not yet been used for the nonconvex SDP refor-
mulation. Therefore, future work remains to investigate the
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performance guarantees of AGD, especially for our noncon-
vex SDP-SE problem. We use the low-rank solutions from
both FGD and AGD to recover a feasible SE solution, fur-
ther improved by GN iterations to reduce the relaxation gap.
Numerical results have demonstrated that AGD can signifi-
cantly reduce the computational time while achieving better
solutions than FGD. Compared to the globally optimal SDP
solution, the AGD method produces competitive SE perfor-
mance more efficiently.

Notation: Upper (lower) boldface symbols stand for
matrices (vectors); | - | stands for the magnitude; (-)7 de-
notes transposition; (-)* complex-conjugate transposition;
R(-)/3(+) the real/imaginary part; Tr(-) the matrix trace;
rank(-) the matrix rank; || - || the Frobenius norm; || - |2
the spectral norm; and vec(-) the column-wise vectorization
operator for a matrix.

2. PROBLEM FORMULATION

A power network can be modeled as a graph G = (VN €),
with the set of buses (nodes) in A := {1, ..., N} and the set
of lines (edges) in £ := {(n, m)}. The complex voltage pha-
sor V,, per bus n € N can be expressed in the rectangular co-
ordinate as V,, = ®(V,,) + j(V4,). All nodal voltages form
the full system state vector v := [Vi,...,Vy]7 € CV. To
estimate nodal voltages in v, a subset of the following system
variables are measured:

e P,(Q,): the active (reactive) power injection at bus n;

® Pn(Qmn): the active (reactive) power line flow from
bus m to bus n;

e |V,|: the voltage magnitude at bus n.

Based on the well-known AC power flow model [1, Ch.
4], the power variables are nonlinearly (quadratically) related
to the system state v. Collecting the noisy measurements in
vector z € R”, where L denotes the total number of measure-
ments, one can write the /-th measurements

Zg:hg(v)+€g, Vi=1,...,L (D)
where hy(-) stands for the nonlinear transformation from v,
while €, accounts for the additive measurement error. Assum-
ing zero-mean random noise ¢, of variance Ul?, we can cast the
state estimation (SE) problem with the weigthed least-squares
(WLS) error objective, given by

@)

V= arg mip e we[ze — he(v)]?
where parameters {w;} scale inverse proportionally with o7.
The Gauss-Newton method has been the workhorse solution
for the nonlinear WLS-SE formulation; see e.g., [20]. It it-
eratively approximates the objective by linearizing (1) at the
latest solution. This iterative linearization procedure, though
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computationally efficient if convergent, can be potentially di-
vergent or stuck at saddle-points.

To tackle the nonlinearity in (2), one approach is to in-
troduce the outer-product matrix V := vv’* € CV*¥  con-
sisting of all quadratic terms involving v. This way, each
measurement is linearly related to V, as given by

ze=Tr(H,V) 4+ €, V4=1,...,L 3)

where matrix H, € CV*¥ is Hermitian matrix, which is de-
fined in [4] based on the network topology and line parame-
ters. Note that the voltage magnitude can be easily converted
to its squared |V,,|? which also admits to (3). Reformulating
the WLS objective in (2) using (3) leads to the following SDP
problem:

V = arg wy [ze - Tr(HgV)]2 (4a)

min
VG(CN XN

st. V=0 (4b)

where the positive semi-definite (PSD) constraint in (4b) to-
gether with rank(V) = 1 can guarantee the existence of v
that satisfies V = vv*. Due to the nonconvexity of rank con-
straint, it is dropped through a well-appreciated semidefinite
relaxation (SDR) procedure that leads to a convex SDP-SE
formulation (4). The latter can achieve a near-optimal per-
formance for the SE problem as (4) typically admits to very
low-rank solutions; see the tutorial overview in [9]. Further-
more, there exist a variety of general convex solvers that can
obtain the optimal V in polynomial time, such as the popular
interior-point method based solver SeDuMi [8]. Nonetheless,
these solution methods can scale unfavorably as the number
of buses or measurements increases [9], with worst-case com-
plexity at O(N*5). Thus, it is necessary to develop acceler-
ated algorithms for solving large-scale SDP-SE in real-time.

Motivated by recent work on nonconvex SDP solvers [14],
we consider an equivalent formulation of (4) under low-rank
conditions. The main challenge in SDP solution lies in the
complexity of the PSD conic constraint (4b). Assuming
rank(V) = r with » < N, one can express it as V = UUH
with U € CV*" and reformulate (4) as an unconstrained one
involving U, namely,

U= arg min
Ue(CN Xr

Note that the case of » = 1 boils down to the original WLS
problem (2). The advantage of using U for a general rank-r
solution is two-fold: i) the relaxed SDP problem (4) is likely
to attain a low-rank solution, motivating to search over the
lower-dimensional space with small r; ii) by using a fixed
r, the number of optimization variables would scale linearly
with the problem dimension N, achieving computational
gains. Note that nonconvexity is introduced to the objective
function of (5) to bypass the complex PSD conic constraint.
Thus, its solution techniques need more discussions as com-
pared to general convex problems.

g(U) := f(UUHM). (5)



3. FACTORED GRADIENT DESCENT FOR SDP-SE

Leveraging the unconstrained structure and convenient gra-
dient computation of the nonconvex reformulation, the so-
termed FGD method has been proposed based on first-order
updates for general SDP problems [14]. Under standard con-
vexity and smoothness assumptions on f, it has been shown
that FGD could converge sublinearly to the optimum with
sufficiently accurate initialization. This convergence rate re-
sult is similar to that of regular gradient descent method for
smooth convex functions [21, Ch. 1].

To invoke the FGD updates for SDP-SE, recall that (V)
is a quadratic function, and thus the gradient

Vg(U) =2V f(UUH) x U
=30 4w [Tr(UMHU) — 2 ]H, U (©6)
For given step-size 1, the iterative FGD updates is
Ui = Up —nVg(Uyg), VE=0,1,.... 7

To select the n value, let M denote the smoothness parameter
of f(-) such that |[Vf(V) =V (V)|lr < M- ||V-V|p
holds for any two PSD matrices V and V'. As f is quadratic,
the lower bound of M is given by

M > HZLl 2wy [vec(Hy)vec(H,)" ] Hz ®)

As given in [14], the step-size can be set according to the
initialization Vo = UyU}t, as

1
16(M|[Voll2 + [V (Vo)ll2)

For the FGD algorithm as tabulated in Algorithm 1, its lo-
cal convergence property can be established using the results
in [14] for smooth functions.

Proposition 1. Let the choice of rank v = = rank(V) with
V = UU* for the M-smooth f in (4). Suppose the ini-
tialization Uy satisfies Dist(Ug, U) < po,.(U), where Dist
denotes the minimum Frobenious error between the two ma-
trices up to any rotational transformation and o, the r-th
largest singular value, while p is a constant inversely scaling
with the condition number of V. Under this constant relative
error condition, the objective function sequence f (UkUzi)
V) at the rate of O(1/k).

The success of FGD critically depends on the choice of
rank 7 and initialization Uy. For functions that are only
smooth, the condition for Uy is rather restrictive, and thus
its choice is less well understood as compared to the case
of strongly convex functions in [14]. There exist general
initialization methods for SE, as detailed in the next section.
Nonetheless, our numerical tests suggest that they fail to hold
for Proposition 1. As a result, the empirical convergence
speed for FGD would gradually decrease for (5). To tackle
this, we will develop an acceleration scheme in the ensuring
section for our SDP-SE problem.

n= ®

converges sublinearly to f(
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Algorithm 1 Factored Gradient Descent (FGD)
Input: Function f, rank r, maximum iteration number K.
Output: Uand V = UUH
. Initialize Uy € C™*" and set Vo =
Set the step-size 7 as in (9).
for k =0to K do
U1 = Up, —nVg(Uyg)
end for
return U = Uy and V = UU*

U, UM,

A A T o

4. ACCELERATED GRADIENT DESCENT METHOD

To tackle the slow convergence issue of FGD, we propose
to adopt the popular acceleration scheme by Nesterov [15]
to develop the AGD method as a heuristic alternative for the
nonconvex SDP-SE problem (5).

Different from only using the instantaneous gradient in-
formation in FGD, AGD leverages the data from the past two
iterations to accelerate the updates. Per iteration k, a time-
varying interpolation is first performed to obtain

k—2
Ut Uk+< )(Uk_U“) (10)

k+1

which is used to compute the next iterate U, as the gra-
dient descent update at Ut. For Uj at & = 0, the iterate
U, is simply computed using the FGD update (7). The AGD
method is tabulated in Algorithm 2.

Remark 1. (AGD for nonconvex g.) The acceleration
achieved by AGD for a convex g is guaranteed at the rate
of O(1/k?), as established in the classical work [15]. If g is
nonconvex, the accelerate of AGD is less understood. There
exist some recent results on the convergence rate guarantees
for generally accelerated schemes under nonconvex objective
functions. For example, under certain Lipschitz continuous
conditions for the gradient and Hessian, [18] has developed
an accelerated scheme that can find a stationary point with
gradient norm less than ¢ in O(¢~("/4)) number of iterations.
In addition, [19] has advocated AGD can better escape saddle
points of nonconvex functions than gradient descent updates.
It is challenging to establish the convergence guarantees for
AGD in the SDP-SE problem. Instead, numerical studies have
been used to demonstrate AGD outperforms FGD in terms of
convergence time and also the optimality performance.

To implement the FGD and AGD updates, we set the same
values for rank r, initial point Uy, and step-size 1 using (9).
As the rank relaxation is nearly optimal for (4), we set r =
2 to encourage rank-1 solutions while having low computa-
tional order. Based on our emipirical experience, the solution
obtained with r = 2 exhibits better performance compared to
the case of » = 1. The first column of Uy can follow from
the initialization of classical GN methods. Specifically, the
voltage magnitude is initialized as the corresponding meter



Algorithm 2 Accelerated Gradient Descent (AGD)
Input: Function f, rank r, iterations K.
Output: Uand V = UUH
Initialize Uy € C™*" and set V, = U U}
Set the step-size 7 as in (9).
Compute U; = Uy — nVg(Uy).
for k =1to K do
Update U™ as (10) and Uy = Ut —nVg(UT)
end for
return U and V = UU*

AN O o

measurement, if available, while voltage phase angles are ini-
tialized as the solution to the linear DC flow model [20, Ch.
2]. As for the second column, it is randomly generated to be
of unit Euclidean norm and orthogonal to vy.

In general, the solution V achieved by the SDP problem is
not exactly of rank 1, neither is that by FGD or AGD. Hence,
it is necessary to recover the estimator v from V. Follow-
ing from earlier work [4], we use the eigen-decomposition
V = 37, Awult, where A; > --- > ), denote the pos-
itive ordered eigenvalues and u; is the corresponding eigen-
vector of )\;. The state estimator is set as v = v/ A\juy, cor-
responding to the best rank-one approximation of V. To re-
duce the optimality gap due to convex relaxation, the recov-
ered vector Vv is further used to initialize the Gauss-Newton
updates for the nonlinear WLS formulation (2).

5. NUMERICAL RESULTS

The FGD and AGD methods have been tested on an Intel®
CPU @ 2.2GHz (8GB RAM) computer using MATLAB®
R2017a. They are compared with the SDP solution to (4)
using the MATLAB-based optimization modeling package
CVX [22] together with SeDuMi [8]. Two power transmission
system test cases, the IEEE 118-bus and 300-bus systems, are
used with the pertinent power flow solver and Gauss-Newton
based SE iterations implemented by the MATLAB-based
toolbox MATPOWER [23]. To generate the measurements,
random Gaussian noise is added to the power flow output,
with oy 0.02 at power meters and 0.01 at voltage me-
ters. Empirical estimation error ||v — v||2 is computed by
averaging over 300 Monte-Carlo realizations. For each re-
alization, the actual bus voltage voltage magnitude follows
from the Gaussian distribution A(0,0.01), with the phase
angle uniformly distributed over [—0.357, 0.357].

The IEEE 118-bus case is first tested, with active/reactive
power flows measured at all 186 lines and voltage magnitudes
at 118 buses. The stop criteria for FGD/AGD iterations are
the same, based on the consecutive change of the iterate and
its objective value. The average run time for FGD is 77.64s,
and that for AGD is 0.90s. Clearly, AGD has significantly
reduced the number of iterations, as the per-iteration time is
very close for the two. With the rank » = 2, we can compare
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Fig. 1. The ratio (A2/A1) in 300 experiments for the IEEE
118-bus case.

Table 1. SE Error and GN Convergence Rate

SE Error DC-GN SDP-GN AGD-GN
118-bus  0.288 (58.7%) 0.004 (100%) 0.019 (100%)
300-bus  1.46 (40.8%) 0.019 (100%) 0.086 (100%)

Table 2. Average Run Time of SDP and AGD

Time SDP  AGD (per iteration)
118-bus  6.36s 0.90s (0.21ms)
300-bus  60.32s 15.02s (1.1ms)

the ratio between the second largest eigenvalue to the largest
one (A2/A1) for the output solution V, as plotted in Fig. 1.
This ratio for AGD is smaller than that of FGD in almost all
experiments, while the SDP solution is always the smallest.
A smaller (Ay/\1) ratio indicates the solution is more nearly
rank-1, preferred for recovering the estimated v. This result
suggests that AGD is better at approximating the SDP solu-
tion. Similar observations based on the achieved objective
value and gradient norm corroborate that AGD has improved
the performance of FGD while requiring less computational
time. Thus, we have chosen the AGD method only for further
comparisons of the SE performance to the SDP solution.

We compare the SE performance achieved by the AGD
method to that by DC-SE and SDP solutions with each of
the three as initialization for GN iterations. The average es-
timation error ||v — ¥||2 is listed in Table 1, along with the
percentage of convergence for the respective GN iterations.
The AGD-GN is very competitive to the benchmark SDP-GN
performance, with slightly higher estimation error probably
due to numerical accuracy. Both can effectively address the
divergence issue of GN iterations encountered by the DC-
SE initialization. Moreover, the corresponding average run
time as shown in Table 2 has corroborated the computational
time improvement of AGD over with SDP solver. Note the
per-iteration time in parenthesis shows good scalability of the
AGD updates. These results demonstrate that AGD can effi-
ciently solve the SDP-SE problem with good approximation
accuracy. In future, we plan to investigate the analytical guar-
antee for the AGD method, while improve its computational
efficiency by further leveraging the sparse problem structure.
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