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Abstract—With the advent of Network Function Virtualization
(NFV), Physical Network Functions (PNFs) are gradually being
replaced by Virtual Network Functions (VNFs) that are hosted on
general purpose servers. Depending on the call flows for specific
services, the packets need to pass through an ordered set of
network functions (physical or virtual) called Service Function
Chains (SFC) before reaching the destination. Conceivably for
the next few years during this transition, these networks would
have a mix of PNFs and VNFs, which brings an interesting mix of
network problems that are studied in this paper: (1) How to find
an SFC-constrained shortest path between any pair of nodes? (2)
What is the achievable SFC-constrained maximum flow? (3) How
to place the VNFs such that the cost (the number of nodes to be
virtualized) is minimized, while the maximum flow of the original
network can still be achieved even under the SFC constraint? In
this work, we will try to address such emerging questions. First,
for the SFC-constrained shortest path problem, we propose a
transformation of the network graph to minimize the computa-
tional complexity of subsequent applications of any shortest path
algorithm. Second, we formulate the SFC-constrained maximum
flow problem as a fractional multicommodity flow problem, and
develop a combinatorial algorithm for a special case of practical
interest. Third, we prove that the VNFs placement problem is
NP-hard and present an alternative Integer Linear Programming
(ILP) formulation. Finally, we conduct simulations to elucidate
our theoretical results.

I. INTRODUCTION

Major service providers in the communications industry

across the globe are transforming their technology, operations

and business models to harness the benefits of Network

Function Virtualization (NFV). Stated simply, NFV involves

replacing the Physical Network Functions (PNFs) running on

commodity hardware with software modules called Virtual

Network Functions (VNFs) that are hosted on general pur-

pose servers [7]. Each server can host multiple VNFs, while

each network function can have multiple instances running at

different physical locations. Hybrid networks comprising the

VNFs and legacy PNFs will be the norm for the next decade

[18], [1]. Even in a hybrid network, a lot of benefits can be

harnessed. For instance, flows can be processed by different

functions at one node and functions can be flexibly added

and removed. This opens up an interesting mix of network

problems that are studied in this paper.
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Fig. 1: A network with network functions at different locations.

Service function chaining (SFC) is the ability to specify

a set of network functions as well as their execution order

for each flow [3]. An example is provided in Fig. 1 in which

different network functions are supported at different locations.

Assume that we have a flow from v1 to v6, with the following

SFC constraint: (v1, Firewall (FW), wide area network (WAN)

optimizer, v6). Different paths that satisfy the SFC constraint

are available for this flow such as (v1, v2, v4, v3, v6), or

(v1, v4, v5, v6). Which of these paths to choose depends on

the load at each instance and the total congestion along each

path. Moreover, satisfying the SFC constraint may reduce

the maximum flow that can be sent from v1 to v6, because

some paths (e.g., path (v1, v2, v3, v6)) do not satisfy the SFC

constraint. To achieve the original maximum flow, the decision

of where to place the network functions should be made

carefully to ensure that any fraction of the maximum flow

passes through the required network functions.

The first problem we consider in this work is, how to

efficiently compute a shortest path that satisfies a given SFC

constraint? Clearly, classic shortest path algorithms, such as

Dijkstra’s algorithm, may give a path that no longer satisfies

the SFC constraint. To that end, we propose an algorithm

for computing an SFC-constrained shortest path based on

transforming the network graph G into a new graph Ḡ. Then,

any shortest path found for the new graph Ḡ can be mapped

to an SFC-constrained shortest path over the original graph

G. Further, we develop a pruning algorithm that can greatly

reduce the size of Ḡ. As long as the network topology and

SFCs remain the same, Ḡ can be repeatedly used to compute

SFC-constrained shortest paths as the network costs change

during the course of time. In some cases, the order of some

of the network functions can be transposed, and we model
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that by allowing a set of valid SFCs. Moreover, it is worth

noting that our proposed shortest path algorithm can also be

integrated into a unified throughput-optimal routing framework

[19] to achieve throughput optimality for unicast flows with

SFC constraints.

Then, we consider another classic problem, the maximum

flow problem, again under the SFC constraint. We call this

problem the SFC-constrained maximum flow (SFC-MF) prob-

lem. The objective is to find the maximum feasible flow

from a source to a destination that satisfies a given SFC

constraint. We formulate the SFC-MF problem as a fractional

multicommodity flow problem, which can be solved using a

Linear Programming (LP) solver or approximation algorithms

[5]. An interesting use case is when a service provider needs to

virtualize a particular network function in its network during

an early stage of NFV deployment. We consider the problem

of computing the maximum flow with the constraint that all

packets must pass through this new VNF. We propose an

elegant combinatorial algorithm for this case based on the

Ford-Fulkerson algorithm [12].

Note that the value of the SFC-MF is not necessarily

equal to that of the original maximum flow, which apparently

depends on the placement of the network functions. Hence, an

important question is how to place a set of VNF instances such

that the original maximum flow (without the SFC constraints)

can still be achieved, while the placement cost is minimized.

To minimize the total operational expenses of adding com-

modity servers in the network to support VNFs, we aim to

minimize the number of network nodes where these functions

will be placed. We first prove that this problem is NP-hard

based on a reduction from the classic set-cover problem. Then,

we present an alternative Integer Linear Programming (ILP)

formulation that is shown to solve a large instance (e.g., a

network with 100 nodes) in a few minutes. We observe via

simulations that for random graphs, the maximum flow can

be achieved by placing the VNFs on a small number of nodes

even when the graph is large. This indicates that the operators

may be able to introduce VNFs in their networks at a low

starting cost without impacting the capacity, i.e., the amount

of flow that can be sent.

The rest of the paper is organized as follows. In Section II,

we position our paper in comparison to prior art. In Section

III, we introduce the system model. We investigate the SFC-

constrained shortest path problem in Section IV. Then, in

Section V, we describe the SFC-constrained maximum flow

and present a combinatorial solution for a special case of

practical interest. In Section VI, we focus on the problem of

VNFs placement. Finally, we present the simulation results in

Section VII and conclude the paper in Section VIII.

II. RELATED WORK

SFC-constrained Shortest Path. The problem of SFC-

constrained shortest path has been considered in [8], [5].

Specifically, in [8], a layered graph with r + 1 layers is

constructed where each layer is a replication of the original

graph and r is the number of network functions in a given

SFC constraint. Then, an SFC-constrained shortest path over

the original network graph can be found by applying any

shortest path algorithm over the layered graph. However, the

constructed layered graph has a large size. Specifically, the

number of nodes and edges increases by at least a factor

of r + 1 compared to the original graph. In [5], another

approach is proposed, which requires the computation of

the shortest paths between all node-pairs in order to find a

specific SFC-constrained shortest path. Restricting a path to

be a simple path with multiple must-stop nodes, without any

order requirements, is NP-Complete and in [20], a heuristic is

proposed for that. In our proposed approach, we will construct

a new graph that has a small size, needs to be constructed

only once, and does not require any further changes after each

shortest path computation.

SFC-constrained Maximum Flow. The work of [6] formu-

lates an SFC-constrained Maximum Flow problem as a mul-

ticommodity maximum flow problem. Hence, their problem

is an LP and can be solved using any LP solver or can be

approximated using a multiplicative weight update method [2].

Another approximation algorithm is presented in [5] to decide

if a given set of flows with SFC constraints can be supported.

In contrast, in this paper we are interested in combinatorial

algorithms that give exact solutions.

Placement of VNFs. The problem of VNFs placement

with different objectives has been studied in the past few

years. In [17], the authors focus on the placement of VNF

instances that satisfies the demands of flows with given routes.

A similar problem is investigated in [16] but for gradually

upgrading some nodes to have Software Defined Networking

(SDN) capabilities. Specifically, the authors consider how to

select a set of nodes to upgrade to SDN such that the flow

that passes through at least one SDN node is maximized,

where each flow has a predetermined path. The work of

[10] considers a joint problem of VNFs placement and flow

routing to minimize the total amount of resources used by

the flows, while in [9], the objective is to ensure that the

underlying network is stable. In [4], the authors consider the

problem of VNFs placement for minimizing both the end user

delay and deployment cost. Considering a similar placement

problem, the work of [14] aims to maximize the number of

admitted requests and provides a soft real-time guarantee for

each admitted request. In [15], the authors consider how to

minimize the overall traffic volume for a given flow given

that the traffic volume may change (increase or decrease) after

being processed by some network functions. Different from all

prior works, in the new placement problem we will consider,

the objective is to minimize the number of nodes that need

to be virtualized such that, the original maximum flow can be

achieved under a given SFC constraint.

III. SYSTEM MODEL

We consider a network that is represented by a graph

G = (V, E), where V denotes the set of vertices and E denotes

the set of edges. We will first consider directed graph for

the shortest path problem and placement problem, and then,
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consider undirected graph for the maximum flow problem. We

use φi to denote network function i, and use Φvk
to denote the

set of network functions supported at node vk. The network

functions are either physical devices attached to network nodes

or virtual network functions at servers or datacenters attached

to network nodes. In the case of dataceners, we assume that

the capacity can be enlarged as needed. The same network

function may have multiple instances at different vertices. We

consider a flow that is required to satisfy an SFC constraint

represented as: (vs, φ1, ..., φr, vd), where vs and vd are the

source and destination, respectively, and (φ1, ..., φr) denotes

a sequence of network functions by which all the packets of

the flow need to be processed before reaching vd.

A path p is denoted by p = (e1, ..., e|p|), where ei is the ith

hop edge of path p and |p| is the length of path p. Sometimes,

we refer to a path by the nodes along the path, i.e., p =
(v1, v2, . . . , vn), where ei = (vi, vi+1). By slightly abusing

the notations, we also use e ∈ p to denote an edge of path

p. A path is called admissible for a flow if it satisfies the

requirements of the flow specified by the SFC constraint. To

ensure the order imposed by an SFC, a packet may need to

visit the same vertex more than once before it reaches the

destination.

IV. SFC-CONSTRAINED SHORTEST PATH

In this section, we focus on the shortest path problem with

a given SFC constraint. Specifically, among all the admissible

paths we want to find the one that has the minimum cost,

which could be the least congestion level (i.e., smallest delay).

Note that the classic shortest path algorithms cannot be directly

applied to produce a shortest path, because the generated

path may not satisfy the given SFC constraint. For instance,

consider the network presented in Fig. 2. We have two network

functions, φ1 at nodes v2 and v4, and φ2 at nodes v2 and

v3. Consider an SFC = (v1, φ1, φ2, v5). Any conventional

shortest path algorithm will return a path (v1, v3, v5), which

does not satisfy the imposed SFC constraint, i.e., the flow

needs to be processed by φ1 first before it is processed by φ2.

Another solution is to find a shortest path from the source v1
to the first network function φ1, which is (v1, v2), then from

v2 we find the shortest path to φ2, which is v2 itself, then

from v2 to the destination. This solution results in a path of

(v1, v2, v5), which has a cost of 8. However, it can be verified

that path (v1, v3, v4, v3, v5) satisfies the SFC constraint and

has the minimum cost of 6. From this simple example, we

can observe that it is non-trivial to find a path with minimum

cost while satisfying the given SFC constraint.

We propose a novel solution by cleverly transforming the

network graph, G, to a new graph, Ḡ, in which the shortest

path will be computed and mapped to a path in G. We describe

this algorithm in Algorithm 1 and explain its operations in

detail as follows.

A. Constructing Ḡ

1) Initial Ḡ: Given a network represented by a graph G =
(V, E) and and SFC = (vs, φ1, ..., φr, vd), we will construct a

v1 v2

Φv2 = {φ1, φ2}

v3

Φv3 = {φ2}

v4

Φv4
= {φ1}

v5

3

15

5

1

1

3

Fig. 2: Graph representation of the network, where each node

has zero or more network functions, shown below each node.

Algorithm 1 SFC-constrained shortest path algorithm

1: Require: G = (V, E), and SFC = (vs, φ1, . . . , φr, vd).
2: Output: A shortest path from vs to vd that satisfies the

SFC constraint.

3: // Initial Construction of Ḡ = (V̄, Ē)
4: for each vk in V do

5: Create r + 1 virtual vertices v0k, ..., v
r
k and add

them to V̄ .
6: end for

7: for each edge (vl, vk) in E do

8: for each vil in V̄vl do

9: Pick vj
∗

k in V̄vk
such that

j∗ = max{j : {φi+1, . . . , φj} ⊆ Φvk
, j ≥ i} (1)

10: Add edge (vil , v
j∗

k ) to Ē .

11: end for

12: end for

13: // Pruning Ḡ
14: while there is a vertex v in V̄ with no incoming edge(s)

or outgoing edge(s), except the source and destination do

15: remove v and the edges that connect to v.

16: end while

17: // Computing a shortest path

18: Define t as the first network functions of the SFC that are

available at the source

19: Map the source vs ∈ V to vts ∈ V̄
20: Map the destination vd ∈ V to vrd ∈ V̄
21: Use any shortest path algorithm (e.g., Dijkstra’s algorithm)

to compute a shortest path p̄ from vts to vrd in Ḡ.

22: Map p̄ = (vts, . . . , v
t+1

k , . . . , vrd) to path p =
(vs, . . . , vk, . . . , vd) in G.

new graph Ḡ = (V̄, Ē). The vertices V̄ are as follows. For each

vk in V , we create r+1 virtual vertices vik (some of which will

be removed later), where i = 0, ..., r. The idea is to ensure that

each virtual vertex vik has the following reachability property:

it is reachable from the source only if the path from the source

to vik satisfies the partial service function chain (φ1, ..., φi). To

do that, the edges in Ē are established as follows. First, we

use V̄vk
to denote the set of vertices in Ḡ that corresponds

to vertex vk in G. We construct edges in Ḡ as follows. For

each edge (vl, vk) in G, an edge is established between each
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pair of vil ∈ V̄vl
and vj

∗

k ∈ V̄vk
, where j∗ ≥ i is the highest

index for which the set (φi+1, . . . , φj∗) is a subset of Φvk
,

as in Eq. (1). That means the selected vertex vj
∗

k is either a

vertex that represents the same network functions as vil , i.e.,

j∗ = i, or vj
∗

k represents more network functions than vil , but

this difference in the network functions is supported by node

vk. For instance, v1l can be connected to v2k if the network

function φ2 is supported by node vk, otherwise, we connect

it to vertex v1k. The cost of edge (vil , v
j∗

k ) is set to the same

cost of edge (vl, vk).

2) Pruned Ḡ: Note that some vertices in Ḡ only have

outgoing edges and do not have any incoming edges. Such

vertices, except for the source, can be removed from Ḡ
because they will not contribute to any path from the source.

For a similar reason, we remove all the vertices that only

have incoming edges and do not have any outgoing edges.

This procedure will create new vertices that do not have any

incoming edges or that do not have any outgoing edges. Hence,

we repeat this procedure until no such vertices exist.

3) Computing a Shortest Path: After constructing graph

Ḡ, we find the shortest path from a source vs in V to a

destination vd in V with an SFC constraint of length r as

follows. Assume that the first t network functions of the SFC

constraint are available at the source. We run any shortest path

algorithm to find a path from vts to vrd in Ḡ. The obtained path

is mapped to a path in G by replacing each vertex with its

corresponding vertex in G. In some cases, the SFC constraint

has some flexibility, which means that some functions can be

implemented in any order. So, we utilize that by constructing

a set of valid SFCs and for each SFC, we construct a graph

Ḡ. Then, we find the shortest path in each constructed graph

Ḡ and pick the shortest path among all of them. However, if

we have a fully flexible SFC constraint, then the number of

valid SFCs for r functions will be r!.

B. Detailed Example

In the following, we present a detailed example of construct-

ing Ḡ for the network in Fig. 2. In order to find a path from v1
to v5 with an SFC = (v1, φ1, φ2, v5), we start by transforming

the graph G into a new graph Ḡ as in Fig. (3a). For each

vertex vk in Fig. 2, we create three virtual vertices v0k, v
1
k, and

v2k because the number of network functions specified by the

SFC is two. The edges in Ḡ are constructed as follows. For

v01 , we connect it to v22 ∈ V̄v2 as all the functions are available

in v2. However, we connect v01 to v14 as only function φ1 is

available at node v4. The edge cost of (v01 , v
2
2) and (v01 , v

1
4) is

set to that of edge (v1, v2) and (v1, v4) in G, respectively. We

repeat the same procedure for each vertex and obtain initial

Ḡ. Then, we obtain pruned Ḡ by repeatedly removing the

vertices that do not have any incoming edges (except for the

source) or that do not have any outgoing edges (except for the

destination). The final graph is shown in Fig. (3b). The shortest

path from v1 to v5 is (v01 , v
0
3 , v

1
4 , v

2
3 , v

2
5) (see Fig. (3b)). This

path is mapped to (v1, v3, v4, v3, v5) in the original graph G.

v01 v11 v21 v02 v12 v22

v04 v14 v24 v03 v13 v23

v05 v15 v25

5 5 5

3 3 3

1

1
1

1

1 1

1 1 1

55 5

3 3 3

(a) Initial Ḡ

v01 v22

v14

v24

v03

v23

v255 1

3

3

1

1

11

5

(b) Simplified Ḡ

Fig. 3: Constructing Ḡ by utilizing a set of virtual vertices

C. Algorithm Analysis

We start by proving the correctness of the proposed algo-

rithm in Theorem 1. Then, we show the performance of the

pruning step in Lemma 2.

Theorem 1. A shortest path to the destination vertex vrd in

Ḡ is a shortest path to the destination vertex vd in G that

satisfies the given SFC constraint.

We first establish the following Lemma , which will be used

in the proof of Theorem 1.

Lemma 1. A path to any vertex vik in Ḡ is also a path to

vk in G that guarantees satisfying the partial service function

chain (φ1, . . . , φi).

Proof. We will prove Lemma 1 by induction.

Let denote a path to vertex vik as (v0s , . . . , v
j
l , v

i
k). The base

case is the trivial case, which is that a path to v0s satisfies

zero netwok functions. The induction hypothesis is that a path

to vjl is a path to vl in G that satisfies the partial service

function chain (φ1, . . . , φj). We want to show that a path to

vik is also a path to vk in G that satisfies the partial service

function chain (φ1, . . . , φi). Based on our construction of Ḡ,

the edge (vjl , v
i
k) can be established if the set {φj+1, . . . , φi} is

a subset of Φvk
. Moreover, by the induction hypothesis, a path

to vj satisfies network functions in (φ1, . . . , φj). As a result,

a path to vk includes the network functions supported by vl,
which is (φ1, . . . , φj), and the network functions supported

by vk, which is {φj+1, . . . , φi}. That would be the chain

(φ1, . . . , φi). This completes the induction step.

Proof of Theorem 1. Let P̄ denote the set of possible paths

from vts to vrd in Ḡ. Based on Lemma 1, all the paths in P̄
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satisfies the r network functions. The set of paths P̄ can be

mapped to a set of paths P in G. We can use any shortest path

algorithm to select the shortest path p̄ ∈ P̄ , and its mapping

in P will be the shortest path in G.

Next, in Lemma 2, we show that the pruning step will

reduce the size of the new constructed graph Ḡ, which leads to

an efficient computation of an SFC-constrained shortest path.

Lemma 2. If the probability of availability of each network

function at any node is z, then the pruning step will remove

at least 0.5z|V̄ | nodes and 0.5z|Ē| edges of the initial Ḡ.

Proof. For any pair of nodes (vl, vk), if the probability that

function φi is available at node vk is z, then virtual vertex vi−1

l

will be connected to vik with probability z. Similarly, for any

other pairs of the form (vm, vk). In such cases, virtual vertex

vi−1

k will have no incoming edges and will be removed in

the pruning step. So, for any pair of vertices, we can remove

one vertex with probability z, i.e., reducing the number of

vertices by a half. So, the overall number of removed vertices

is at least 0.5z|V̄ |. If we assume that the edges are uniformly

distributed in the graph, then for a certain percentage of the

removed nodes, we will remove their corresponding edges,

which results in a similar reduction in the number of edges. A

special case is when z = 1, then the number of vertices and

edges will be the same of the original graph, G.

D. Algorithm Complexity

For the initial Ḡ, the number of vertices will be at most

|V̄| = (r + 1)|V|, and the edges |Ē| = (r + 1)|E|. The

complexity of constructing Ḡ is O(|V̄|2). Then, after the

pruning step, the number of vertices (resp., edges) will be

at most |V ′| = 0.5z|V̄| (resp., |E ′| = 0.5z|Ē |), where z is the

probability of availability of network functions at any vertex.

We construct Ḡ only once for a given SFC constraint. Then, if

we use Dijkstra’s algorithm to find an SFC-constrained short-

est path on the pruned Ḡ, the complexity is O(|E ′| log |V ′|).

E. Throughput-Optimal Routing with SFC Constraints

A general framework for throughput-optimal routing, called

Universal Max-Weight (UMW) policy, has been proposed in

[19]. In the UMW policy, each source maintains a virtual

queue for each physical queue in the network. When a packet

arrives, it computes the shortest path based on the length of

the virtual queues. UMW policy considers different types of

traffic. In the case of unicast traffic, we are able to extend

the UMW policy for traffic with SFC constraints. We do that

by integrating our SFC-constrained shortest path algorithm

with the UMW policy. The UMW policy with our shortest

path algorithm remains throughput optimal. The proof of

throughput optimality is omitted here since it is exactly the

same as that of [19]. We provide some numerical results and

interested readers can refer to [19] for further details about the

UMW policy.

V. SFC-CONSTRAINED MAXIMUM FLOW (SFC-MF)

The maximum flow problem is a classic problem, where the

maximum possible flow from a source node to a destination

node needs to be computed. Classic maximum flow algorithms

ensure that the flow on each edge does not exceed its capacity,

and the flow conservation constraint is satisfied. Service func-

tion chains constraints, which require each flow to traverse

a set of network functions in a pre-specified order before

reaching its destination, make this problem more challenging.

In this paper, this new SFC-constrained Maximum Flow

problem is referred to as the SFC-MF problem. Note that the

classic maximum flow algorithms (e.g., Ford-Fulkerson) are

not directly applicable to SFC-MF due to the new constraints.

We consider an undirected graph in which edges can be used

to send flow in either direction, but the total flow in both

directions cannot exceed the edge capacity. Also, we consider

that each function has only one instance in the network. For an

SFC constraint defined as SFC = (s, φ1, . . . , φr, d), we define

a commodity αi for each segment of the SFC, i.e., commodity

α1 has a source s and destination φ1, while commodity αr+1

has a source φr and destination d. We use Pαi
to denote the

set of all possible paths for commodity αi. The capacity of

edge e is denoted by ce. Also, we let xp denote the amount

of flow sent over path p. We formulate the SFC-MF problem

as follows.

max λ, (2)

subject to
∑

p∈Pαi

xp ≥ λ, ∀αi, (3)

∑

αi

∑

p:e∈p,p∈Pαi

xp ≤ ce, ∀e ∈ E , (4)

xp ≥ 0, ∀p ∈ Pαi
, (5)

where Eq. (3) is the total flow for commodity αi over all of

its possible paths. Eq. (4) ensures that the amount of flow for

all commodities over an edge does not exceed its capacity.

Problem (2) is a special case of the fractional multi-

commodity flow (FMCF) problem when the demand of all

commodities is one. It can be solved using any LP algorithm,

or approximation algorithm [13], [11]. An interesting use case

is when a service provider needs to virtualize a particular

network function in its network during an early stage of NFV

deployment. So, we consider the problem of computing the

maximum flow with the constraint that all packets must pass

through this new VNF. For instance, suppose that we have an

SFC constraint as in Fig. 4(a), and we want to virtualize only

function φl. For the network shown in Fig. 4(b), most of the

nodes support some PNFs. So, we can pick a node, say node

v5, to become a virtualized node and host the VNF φl. Then,

we may need to compute the maximum flow from any PNF

to another PNF through node v5. For this case, we propose an

elegant combinatorial algorithm based on the Ford-Fulkerson

algorithm in the following subsection.
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Fig. 4: Example of an SFC constraint where only one function,

φl, will be virtualized at node v5.
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Fig. 5: A network with must-stop node t and an added virtual

node T .

A. Maximum Flow with One Must-stop Node Algorithm

We denote the maximum flow with one must-stop node t
as F t

s,d. Let Pst (resp., Ptd) be the set of all paths between

node s and t (resp., t and d). Then, F t
s,d can be defined as the

maximum feasible flow that can be sent simultaneously from

s to t, over Pst, and from t to d, over Ptd. We use Fs,t (resp.,

Ft,d) to denote the maximum feasible flow that can be sent

over Pst (resp., Ptd). To compute F t
s,d, we start by adding a

virtual node T to the graph and connect it to the source, s,

and destination, d, with infinite capacity. Then, we compute

the standard maximum flow for the following cases: (1) The

maximum flow from t to T , divided by 2, denoted by Ft,T /2;

(2) Fs,t; (3) Ft,d. Then, F t
s,d is the minimum among the above

three quantities. We can define Ft,T as the maximum feasible

flow that can be sent from t to T over both Pst and Ptd. Since

we consider undirected graphs, then, the maximum flow from s
to t and from t to s will be the same. In the following, we show

an example of how to compute the maximum flow through

node t for the network shown in Fig. 5. First, we connect a

virtual node T to nodes s and d with infinite capacity. Then, we

compute these three quantities, Ft,T /2, Fs,t, and Ft,d, which

will be 1.5, 2, and 2, respectively. It can be verified that the

minimum of them is 1.5, which is equal to the maximum flow

from node s to d through node t.
We prove this result in Lemma 3.

Lemma 3. F t
s,d = min{Ft,T /2, Fs,t, Ft,d}.

Proof. We start by showing that Ft,T /2, Fs,t, Ft,d are upper

bounds for F t
s,d. Then, we show that the minimum of these

three values is also a lower bound of F t
s,d. We state the

following upper bounds.

• F t
s,d ≤ Ft,T /2 as we cannot send more than half of Ft,T

simultaneously over Pst and Ptd.

• F t
s,d ≤ Fs,t because all flow from node s should reach

node t before reaching node d.

• F t
s,d ≤ Ft,d because all flow reaching node d should pass

by node t first.

Then, we prove that the minimum of these upper bounds is also

a lower bound. We present three cases: each case corresponds

to when one of the upper bounds is the minimum as follows.

Case I: when Ft,T /2 is the minimum, we will show that

we can always send Ft,T /2 simultaneously over Pst and Ptd.

First, let Ft,T = N1+N2, where N1 (resp., N2) is the amount

of flow that is sent over Pst (resp., Ptd) paths in the current

realization. We have three subcases: A) N1 = N2, B) N1 >
N2, and C) N1 < N2, which are discussed in the following.

Case I-A: when N1 = N2. This is a trivial case. It is easy

to see that we can send Ft,T /2 simultaneously over Pst and

Ptd.

Case I-B: when N1 > N2, i.e., N1 = Ft,T /2+ c and N2 =
Ft,T /2− c, for a positive c. We will show that we can always

remove c units of flow from Pst paths and send the same

amount over Ptd paths, where this reallocation of flows will

make N1 = N2. We use xp to denote the current flow over

path p. Also, for one realization of the maximum flow over

paths in Ptd, we use x′
p to denote the amount of flow sent over

every path p in Ptd. Due to the intersection of edges of paths

in Pst and Ptd, the capacity of these edges is shared by such

paths. So, a flow over a path in Pst may affect the amount of

flow over some paths in Ptd, i.e., making xp less than x′
p for

such paths. Since
∑

p∈Ptd
x′
p = Ft,d, which is greater than

Ft,T /2, then, it is feasible to reallocate c units of flow to over

Ptd paths; the details are provided in the following.

Since Ft,d is greater that N2, then, we can find a set of

paths in Ptd that satisfy xp < x′
p, so, we pick one of them

and denote it as pi. Then, for the set of paths in Pst that

intersect with some edges of path pi, we select a path pj that

has positive xpj
and intersects with path pi at an edge that is

the nearest to node d. Let pi = (e1, . . . , ef , ef+1, . . . , en), and

pj = (ē1, . . . , ēl, ēl+1, . . . , ēm), with ef ∈ pi is the closest

edge to node d that intersects with ēl ∈ pj , i.e., ef = ēl.
Since ef is the closest edge to node d that intersects with a

path in Pst, then, edges (ef+1, . . . , en) can support x′
pi
−xpi

units of flow. Next, we define h = min(x′
pi
− xpi

, xpj
, c) and

cancel this amount of flow over path pj . As a result, edges

(ēl, ēl+1, . . . , ēm), which are part of pj , will be able to support

an additional h units of flow. Finally, we construct a path pc
by taking edges (ēl, ēl+1, . . . , ēm) from pj in reverse order,

i.e., (ēm, . . . , ēl+1, ēl), and edges (ef+1, . . . , en) from pi, and

forming a new path pc = (ēm, . . . , ēl+1, ēl, ef+1, . . . , en). We

can see that over path pc we can send additional h units of

flow from node t to d.

We subtract h from c and repeat the same process until the

value of c becomes zero. This is feasible because as long as the

amount of flow sent over Ptd is less than Ft,T /2, then, we can
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find a path p in Ptd with xp < x′
p. Also, we assume integral

capacity of edges, so, by using Ford-Fulkerson algorithm, the

value of N1, N2, xp, x
′
p, and Ft,T are integral. In addition, the

value of c is a multiple of 0.5 because c = N1−Ft,T /2. From

this, we conclude that the value of h is a multiple of 0.5. So,

in at most 2× F t
s,d iterations, we can make N1 = N2 by the

above procedure.

Case I-C: this is a symmetric case of Case I-B.

Case II: when Fs,t is the minimum, we will show that Fs,t

can be sent simultaneously over Pst and Ptd paths. Since Fs,t

is the maximum flow that can be sent over paths in Pst and

we have that Ft,T /2 ≥ Fs,t, then Ft,T ≥ 2Fs,t. That means

the amount of flow sent over Ptd should be at least Fs,t.

Case III: when Ft,d is the minimum. The proof of this case

follows the same argument as that of Case II.

After we find the value of the maximum flow, it remains

to find the actual flow on each edge and the direction of the

flow. To do that, we again use a virtual node T and connect it

to the source s and destination d, but with a capacity of F t
s,d.

Then, we compute the maximum flow in this new graph from

t to T . When a path includes edge (s, T ), then the flow on

the links along this path is reversed. That would give us the

amount of flow and direction on each edge.

VI. VIRTUAL NETWORK FUNCTIONS PLACEMENT

In this section, we are interested in the question of how

to place VNFs such that the value of the maximum flow

with SFC constraints is equal to the value of the original

maximum flow without SFC constraints. The maximum flow

under SFC constraint is not expected to remain as the original

maximum flow, depending on the placement of the required

network functions specified by the SFC constraint. Moreover,

in order to minimize the total operational expenses of adding

commodity servers in the network to support VNFs, we aim to

minimize the number of network nodes where these functions

will be placed. We assume that all VNFs can be hosted at

any node. We start by formulating the problem and proving

its NP-hardness.

We let P ′
sd denote the set of admissible paths from node s

to d for a given SFC constraint. We want to select a minimum

number of nodes such that the total flow over the admissible

paths P ′
sd is the original maximum flow (without any SFC

constraint). Define ki as a binary variable to denote whether

node i hosts the required VNFs (i.e., node i is a virtualized

node). Also, xp denotes the amount of flow over path p. We

use Fs,d to denote the original maximum flow. The problem

can be formulated as follows.

min
∑

i∈V\{s,d}

ki, (6)

subject to
∑

p∈P′
sd

xp = Fs,d, (7)

∑

p:e∈p

xp ≤ ce, ∀e ∈ E , (8)

xp ≥ 0, ∀p ∈ P ′
sd, (9)

ki ∈ {0, 1}, ∀i, (10)

where the objective is to minimize the number of virtualized

nodes, described by (6). Eq. (7) ensures that flow over all

admissible paths equals the original maximum flow, while Eq.

(8) ensures that the total flow over an edge does not exceed

its capacity.

Next, we will show in Lemma 4 that this problem is NP-

hard based on a reduction from the classic set-cover problem.

Lemma 4. The minimum placement of VNFs to achieve the

original maximum flow is NP-hard.

Proof. We prove that by a reduction from the minimum set-

cover problem. In the set-cover problem, we are given a set

M of n elements, M = {m1,m2, . . . ,mn}, and a collection

of subsets S = {s1, s2, . . . , sl}, where each si is a subset of

M and the union of all subsets in S is M. The minimum set-

cover problem is to find the minimum number of subsets in S
such that their union is M. So, given an instance of the set-

cover problem (S,M), we will reduce it to our problem. We

construct a graph G = (V, E). Each vertex in V corresponds

to a subset in S , plus one vertex as a source and one vertex

as a destination. For each element mi ∈ M, we construct a

path that connects the subsets containing element mi in any

order and connect the first node in this path to the source and

the last node to the destination. The capacity of each edge

along the constructed path is set to one; if an edge has been

established before, its capacity is increased by one. So, each

constructed path will contribute a unit flow to the maximum

flow. If we can solve the minimum set-cover problem, then

the corresponding vertices in G will cover all possible flow

because each element in the set corresponds to a unit of flow.

Similarly, if we can find the minimum number of vertices to

achieve the maximum flow, then, each unit of flow will pass

by one of these vertices, so the corresponding subsets will

cover all elements in M.

The hardness of the problem comes from two parts. First,

the maximum flow can be achieved through a different set

of paths, which are hard to list, and each set of paths may

yield a different placement. Moreover, finding the minimum

number of nodes to cover a set of paths is also NP-hard [17].

Also, it is worth noting that if we consider service function

chains where functions cannot be hosted at one node, then the

problem becomes harder.

The formulation in (6) has an exponential number of con-

straints as it requires to list all admissible paths in Eq. (7),

which could be exponential. So, we provide an equivalent

formulation for the problem that can be solved using any

Integer Linear Programming (ILP) solver.

A. ILP Formulation of VNFs Placement

First, we introduce the following notations. We use f0
ij

(resp., f1
ij) to denote the amount of unprocessed (resp., pro-

cessed) flow on link (i, j) by the VNFs of the SFC constraint.

Also, we use δ+i (resp., δ−i ) to denote the set of incoming
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(resp., outgoing) edges of node i. Finally, we use ci,j to denote

the capacity of edge (i, j). The problem becomes:

min
∑

i∈V\{s,d}

ki, (11)

subject to
∑

j∈δ
+

i

f0
ji +

∑

j∈δ
+

i

f1
ji =

∑

k∈δ
−

i

f0
ik +

∑

k∈δ
−

i

f1
ik, (12)

∑

k∈δ
−

i

f1
ik = ki

∑

j∈δ
+

i

f0
ji +

∑

j∈δ
+

i

f1
ji, (13)

∑

k∈δ
−

s

f0
sk = Fs,d, (14)

∑

j∈δ
+

d

f1
jd = Fs,d, (15)

f0
ij + f1

i,j ≤ ci,j , ∀(i, j) ∈ E , (16)

ki ∈ {0, 1}, (17)

f t
ij ≥ 0, ∀i, j ∈ V, t ∈ {0, 1}, (18)

where, when not specified, i ∈ V\{s, d}. Eq. (12) is the

standard flow conservation constraint, while Eq. (13) is to

ensure that the amount of processed flow leaving node i is

either an unprocessed flow that is processed by node i or a

flow that has been processed by other nodes before entering

node i. Eq. (14) and (15) ensure that the unprocessed flow

from the source will reach the destination as a processed flow,

and the amount of this flow equals the original maximum

flow. Eq. (16) ensures that the amount of both processed and

unprocessed flow over each edge does not exceed its capacity.

A node is either an intermediate node or virtualized node (i.e.,

hosts all the VNFs), which is considered by the binary variable

ki in Eq. (17).

The formulation in (11) can be solved by any ILP solver,

which we were able to solve for large instances (e.g., for

network with 100 nodes) in a few minutes. Moreover, we

show by simulations that the maximum flow can be achieved

by placing the VNFs at a small number of nodes even when

the graph is large. This indicates that the operators may be

able to introduce VNFs in their networks at a low starting

cost without impacting the amount of flow that can be sent.

VII. NUMERICAL RESULTS

A. SFC-Constrained Shortest Path Results

In this subsection, we evaluate the proposed SFC-

constrained shortest path algorithm, and compare its perfor-

mance with the layered graph that was proposed in [8], [5].

The layered graph is constructed by replicating the original

graph r + 1 times, where each replication is a layer. Each

layer i ≤ r is connected to layer i+1 by connecting the nodes

that host the i-th network function in layer i to the same set

of nodes in layer i + 1. Then, a shortest path is computed

from the source in layer one to the destination in layer r+1.

We consider an SFC represented as (s, φ1, φ2, φ3, d), and each

function, φi, is available at each node with a probability of 0.5.
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Fig. 6: Graph size of our approach compared to the layered

approach.
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Fig. 7: Throughput-optimal routing with SFC constraints.

We compare the results in term of the constructed graph size,

which is the number of nodes plus the number of edges. We

should note that the smaller the size of the constructed graph,

the lower the complexity of any shortest path algorithm. We

repeat each experiment for 10 times, and report the average

result. In Fig. 6(a), we can see that the size of the layered

graph is larger than the graph constructed by our approach.

Moreover, as the probability of availability of functions in

each node increases, our approach has a very small graph size

compared to the layered graph, as shown in Fig. 6(b).

Moreover, we integrate our SFC-constrained shortest path

with the throughput-optimal routing proposed in [19] to have

an SFC-constrained throughput-optimal routing algorithm. We

conduct simulations for the network shown in Fig. 7(a), where

multiple instances of different network functions are available

at some vertices. We have two flows: flow f1 from v1 to v6
with an SFC = (v1, φ1, φ2, v6) and flow f2 from v7 to v5
with an SFC = (v7, φ1, φ3, v5). We assume a unit capacity

for each link, i.e., one packet can be sent over each link at

each time slot. It can be verified that the max flow rate that

can be supported is 2 and 1 for flows f1 and f2, respectively,

which is a point at the boundary of the optimal throughput

region. We run experiments with Poisson arrivals for flows f1
and f2 with rates λ1 = 2p and λ2 = p, respectively, where

0 ≤ p ≤ 1. We run experiments for 105 slots, the first 104

slots are excluded to consider the average queue lengths in the

steady state. From the result in Fig. 7(b), we can see that as
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Fig. 8: VNFs placement result.

long as the arrival rate vector is strictly within the capacity

region (i.e., p < 1), the average total queue length is kept

finite under the SFC-constrained throughput optimal routing.

B. VNFs Placement Results

In this subsection, we show some simulation results for the

ILP placement. We start by solving the placement for the

network shown in Fig. 8(a). We can see that the maximum

flow from node v1 to node v8 is 8, which can be through

different set of paths. But, we want to minimize the number

of nodes to place the required function on them and still

achieve the maximum flow of 8. It can be verified that a

placement at node v6 only is sufficient, i.e., the maximum

flow from node v1 to node v8 through node v6 is 8. Now, we

provide a result for more general graphs. We consider random

graphs with a different number of nodes from 10 to 100. Each

node has an average degree of |V|/3, and the capacity of

edges are uniformally distributed between 2 and 10. We repeat

each experiment for 20 times and report the average result in

Fig. 8(b). Based on the result, we can see that for different

graph sizes, we need a small number of nodes to achieve

the original maximum flow. That would be an incentive for

network operators to introduce VNFs in their networks with

low cost without impacting the capacity. The running time of

the ILP solution ranges from a few seconds for small graphs

to few minutes for large graphs.

VIII. CONCLUSION

In this paper, we have investigated several issues that

arise from Service Functions Chains (SFC) constraints in

networks with combined PNFs and VNFs. We solved the SFC-

constrained shortest path problem by a transformation of the

network graph to a new graph, which ensures an efficient

computation of an SFC-constrained shortest path. We also

investigated the problem of an SFC-constrained maximum

flow problem. We formulated the problem as a fractional

multicommodity maximum flow problem and presented a

combinatorial solution for a special case. Lastly, we considered

VNFs placement from a maximum flow perspective. Our

objective is to achieve the original maximum flow in the

network while satisfying a given SFC constraint. We showed

that the problem is NP-hard. Then, we provided an equivalent

ILP formulation, which can be solved in a few minutes for

large instances. An interesting problem for future work is to

develop a combinatorial algorithm for computing the SFC

constrained maximum flow in general. It is also important

to find an approximation algorithm for the VNFs placement

problem we formulated in this paper.
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