978-1-5386-4128-6/18/$31.00 ©2018 |EEE

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Shortest Path and Maximum Flow Problems Under
Service Function Chaining Constraints

Gamal Sallam, Gagan R. Gupta, Bin Li, and Bo Ji

Abstract—With the advent of Network Function Virtualization
(NFV), Physical Network Functions (PNFs) are gradually being
replaced by Virtual Network Functions (VNFs) that are hosted on
general purpose servers. Depending on the call flows for specific
services, the packets need to pass through an ordered set of
network functions (physical or virtual) called Service Function
Chains (SFC) before reaching the destination. Conceivably for
the next few years during this transition, these networks would
have a mix of PNFs and VNFs, which brings an interesting mix of
network problems that are studied in this paper: (1) How to find
an SFC-constrained shortest path between any pair of nodes? (2)
What is the achievable SFC-constrained maximum flow? (3) How
to place the VNFs such that the cost (the number of nodes to be
virtualized) is minimized, while the maximum flow of the original
network can still be achieved even under the SFC constraint? In
this work, we will try to address such emerging questions. First,
for the SFC-constrained shortest path problem, we propose a
transformation of the network graph to minimize the computa-
tional complexity of subsequent applications of any shortest path
algorithm. Second, we formulate the SFC-constrained maximum
flow problem as a fractional multicommodity flow problem, and
develop a combinatorial algorithm for a special case of practical
interest. Third, we prove that the VNFs placement problem is
NP-hard and present an alternative Integer Linear Programming
(ILP) formulation. Finally, we conduct simulations to elucidate
our theoretical results.

I. INTRODUCTION

Major service providers in the communications industry
across the globe are transforming their technology, operations
and business models to harness the benefits of Network
Function Virtualization (NFV). Stated simply, NFV involves
replacing the Physical Network Functions (PNFs) running on
commodity hardware with software modules called Virtual
Network Functions (VNFs) that are hosted on general pur-
pose servers [7]. Each server can host multiple VNFs, while
each network function can have multiple instances running at
different physical locations. Hybrid networks comprising the
VNFs and legacy PNFs will be the norm for the next decade
[18], [1]. Even in a hybrid network, a lot of benefits can be
harnessed. For instance, flows can be processed by different
functions at one node and functions can be flexibly added
and removed. This opens up an interesting mix of network
problems that are studied in this paper.

This work was supported in part by the NSF under Grants CNS-1651947
and CNS-1717108.

Gamal Sallam (tug43066@temple.edu) and Bo Ji (boji@temple.edu) are
with the Department of Computer and Information Sciences, Temple Univer-
sity, Philadelphia, PA, Gagan R. Gupta (gagan.gupta@iitdalumni.com) is with
AT&T Labs, and Bin Li (binli@uri.edu) is with the Department of Electrical,
Computer and Biomedical Engineering, University of Rhode Island, Kingston,
Rhode Island.

FW: Firewall
DPI: Deep packet inspection
WAN: Wide area network

E—®
%
oG -

{FW, WAN optimizer}

{FW, DPI}

{Proxy, WAN optimizer}

Fig. 1: A network with network functions at different locations.

Service function chaining (SFC) is the ability to specify
a set of network functions as well as their execution order
for each flow [3]. An example is provided in Fig. 1 in which
different network functions are supported at different locations.
Assume that we have a flow from vy to vg, with the following
SFC constraint: (vq, Firewall (FW), wide area network (WAN)
optimizer, vg). Different paths that satisfy the SFC constraint
are available for this flow such as (v1,ve,v4,vs,v6), OF
(v1,v4, v5,v6). Which of these paths to choose depends on
the load at each instance and the total congestion along each
path. Moreover, satisfying the SFC constraint may reduce
the maximum flow that can be sent from v; to wvg, because
some paths (e.g., path (v1,va,v3,v6)) do not satisfy the SFC
constraint. To achieve the original maximum flow, the decision
of where to place the network functions should be made
carefully to ensure that any fraction of the maximum flow
passes through the required network functions.

The first problem we consider in this work is, how to
efficiently compute a shortest path that satisfies a given SFC
constraint? Clearly, classic shortest path algorithms, such as
Dijkstra’s algorithm, may give a path that no longer satisfies
the SFC constraint. To that end, we propose an algorithm
for computing an SFC-constrained shortest path based on
transforming the network graph G into a new graph G. Then,
any shortest path found for the new graph G can be mapped
to an SFC-constrained shortest path over the original graph
G. Further, we develop a pruning algorithm that can greatly
reduce the size of Gi. As long as the network topology and
SFCs remain the same, (i can be repeatedly used to compute
SFC-constrained shortest paths as the network costs change
during the course of time. In some cases, the order of some
of the network functions can be transposed, and we model

2132

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

that by allowing a set of valid SFCs. Moreover, it is worth
noting that our proposed shortest path algorithm can also be
integrated into a unified throughput-optimal routing framework
[19] to achieve throughput optimality for unicast flows with
SFC constraints.

Then, we consider another classic problem, the maximum
flow problem, again under the SFC constraint. We call this
problem the SFC-constrained maximum flow (SFC-MF) prob-
lem. The objective is to find the maximum feasible flow
from a source to a destination that satisfies a given SFC
constraint. We formulate the SFC-MF problem as a fractional
multicommodity flow problem, which can be solved using a
Linear Programming (LP) solver or approximation algorithms
[5]. An interesting use case is when a service provider needs to
virtualize a particular network function in its network during
an early stage of NFV deployment. We consider the problem
of computing the maximum flow with the constraint that all
packets must pass through this new VNF. We propose an
elegant combinatorial algorithm for this case based on the
Ford-Fulkerson algorithm [12].

Note that the value of the SFC-MF is not necessarily
equal to that of the original maximum flow, which apparently
depends on the placement of the network functions. Hence, an
important question is how to place a set of VNF instances such
that the original maximum flow (without the SFC constraints)
can still be achieved, while the placement cost is minimized.
To minimize the total operational expenses of adding com-
modity servers in the network to support VNFs, we aim to
minimize the number of network nodes where these functions
will be placed. We first prove that this problem is NP-hard
based on a reduction from the classic set-cover problem. Then,
we present an alternative Integer Linear Programming (ILP)
formulation that is shown to solve a large instance (e.g., a
network with 100 nodes) in a few minutes. We observe via
simulations that for random graphs, the maximum flow can
be achieved by placing the VNFs on a small number of nodes
even when the graph is large. This indicates that the operators
may be able to introduce VNFs in their networks at a low
starting cost without impacting the capacity, i.e., the amount
of flow that can be sent.

The rest of the paper is organized as follows. In Section II,
we position our paper in comparison to prior art. In Section
III, we introduce the system model. We investigate the SFC-
constrained shortest path problem in Section IV. Then, in
Section V, we describe the SFC-constrained maximum flow
and present a combinatorial solution for a special case of
practical interest. In Section VI, we focus on the problem of
VNFs placement. Finally, we present the simulation results in
Section VII and conclude the paper in Section VIIL.

II. RELATED WORK

SFC-constrained Shortest Path. The problem of SFC-
constrained shortest path has been considered in [8], [5].
Specifically, in [8], a layered graph with r + 1 layers is
constructed where each layer is a replication of the original
graph and r is the number of network functions in a given

SFC constraint. Then, an SFC-constrained shortest path over
the original network graph can be found by applying any
shortest path algorithm over the layered graph. However, the
constructed layered graph has a large size. Specifically, the
number of nodes and edges increases by at least a factor
of r + 1 compared to the original graph. In [5], another
approach is proposed, which requires the computation of
the shortest paths between all node-pairs in order to find a
specific SFC-constrained shortest path. Restricting a path to
be a simple path with multiple must-stop nodes, without any
order requirements, is NP-Complete and in [20], a heuristic is
proposed for that. In our proposed approach, we will construct
a new graph that has a small size, needs to be constructed
only once, and does not require any further changes after each
shortest path computation.

SFC-constrained Maximum Flow. The work of [6] formu-
lates an SFC-constrained Maximum Flow problem as a mul-
ticommodity maximum flow problem. Hence, their problem
is an LP and can be solved using any LP solver or can be
approximated using a multiplicative weight update method [2].
Another approximation algorithm is presented in [5] to decide
if a given set of flows with SFC constraints can be supported.
In contrast, in this paper we are interested in combinatorial
algorithms that give exact solutions.

Placement of VNFs. The problem of VNFs placement
with different objectives has been studied in the past few
years. In [17], the authors focus on the placement of VNF
instances that satisfies the demands of flows with given routes.
A similar problem is investigated in [16] but for gradually
upgrading some nodes to have Software Defined Networking
(SDN) capabilities. Specifically, the authors consider how to
select a set of nodes to upgrade to SDN such that the flow
that passes through at least one SDN node is maximized,
where each flow has a predetermined path. The work of
[10] considers a joint problem of VNFs placement and flow
routing to minimize the total amount of resources used by
the flows, while in [9], the objective is to ensure that the
underlying network is stable. In [4], the authors consider the
problem of VNFs placement for minimizing both the end user
delay and deployment cost. Considering a similar placement
problem, the work of [14] aims to maximize the number of
admitted requests and provides a soft real-time guarantee for
each admitted request. In [15], the authors consider how to
minimize the overall traffic volume for a given flow given
that the traffic volume may change (increase or decrease) after
being processed by some network functions. Different from all
prior works, in the new placement problem we will consider,
the objective is to minimize the number of nodes that need
to be virtualized such that, the original maximum flow can be
achieved under a given SFC constraint.

III. SYSTEM MODEL

We consider a network that is represented by a graph
G = (V, &), where V denotes the set of vertices and € denotes
the set of edges. We will first consider directed graph for
the shortest path problem and placement problem, and then,

2133

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

consider undirected graph for the maximum flow problem. We
use ¢; to denote network function 7, and use ®,,, to denote the
set of network functions supported at node vj. The network
functions are either physical devices attached to network nodes
or virtual network functions at servers or datacenters attached
to network nodes. In the case of dataceners, we assume that
the capacity can be enlarged as needed. The same network
function may have multiple instances at different vertices. We
consider a flow that is required to satisfy an SFC constraint
represented as: (v, @1, ..., Or,), Where vy and vy are the
source and destination, respectively, and (¢1, ..., ¢,) denotes
a sequence of network functions by which all the packets of
the flow need to be processed before reaching v.

A path p is denoted by p = (e1, ..., €|,|), Where e; is the ith
hop edge of path p and |p| is the length of path p. Sometimes,
we refer to a path by the nodes along the path, ie., p =
(v1,v2,...,0,), where ¢; = (v;,v;11). By slightly abusing
the notations, we also use e € p to denote an edge of path
p. A path is called admissible for a flow if it satisfies the
requirements of the flow specified by the SFC constraint. To
ensure the order imposed by an SFC, a packet may need to
visit the same vertex more than once before it reaches the
destination.

IV. SFC-CONSTRAINED SHORTEST PATH

In this section, we focus on the shortest path problem with
a given SFC constraint. Specifically, among all the admissible
paths we want to find the one that has the minimum cost,
which could be the least congestion level (i.e., smallest delay).
Note that the classic shortest path algorithms cannot be directly
applied to produce a shortest path, because the generated
path may not satisfy the given SFC constraint. For instance,
consider the network presented in Fig. 2. We have two network
functions, ¢, at nodes vy and w4, and ¢- at nodes v, and
vs. Consider an SFC = (v1,¢1, ¢2,v5). Any conventional
shortest path algorithm will return a path (v, vs,vs), which
does not satisfy the imposed SFC constraint, i.e., the flow
needs to be processed by ¢; first before it is processed by ¢o.
Another solution is to find a shortest path from the source v
to the first network function ¢, which is (vy,vs), then from
ve we find the shortest path to ¢o, which is wvo itself, then
from vy to the destination. This solution results in a path of
(v1,v2,v5), which has a cost of 8. However, it can be verified
that path (vy,v3,v4,v3,v5) satisfies the SFC constraint and
has the minimum cost of 6. From this simple example, we
can observe that it is non-trivial to find a path with minimum
cost while satisfying the given SFC constraint.

We propose a novel solution by cleverly transforming the
network graph, G, to a new graph, G, in which the shortest
path will be computed and mapped to a path in G. We describe
this algorithm in Algorithm 1 and explain its operations in
detail as follows.

A. Constructing G

1) Initial G: Given a network represented by a graph G =
(V,€) and and SFC = (v, ¢1, ..., ¢r, vq), We will construct a

Fig. 2: Graph representation of the network, where each node
has zero or more network functions, shown below each node.

Algorithm 1 SFC-constrained shortest path algorithm
1: Require: G = (V, &), and SFC = (vg, ¢1, ..., Pr, Va).
2: Output: A shortest path from vy to vy that satisfies the

SFC constraint. - o
3: // Initial Construction of G = (V,§)

4: for each v in)V do

5. Create r + 1 virtual vertices v, ...,v% and add
them to V.

6: end for

7: for each edge (v;,vx) in £ do

8 for each v} in V,, do

o: Pick v in V,, such that

]*:max{]{¢z+laa¢]}g(bvk7.]zl} (1)

10: Add edge (v}, v]) to & .
11: end for
12: end for

13: // Pruning G

14: while there is a vertex v in V with no incoming edge(s)
or outgoing edge(s), except the source and destination do

15: remove v and the edges that connect to v.

16: end while

17: // Computing a shortest path

18: Define ¢ as the first network functions of the SFC that are
available at the source

19: Map the source v, € V to vl € V

20: Map the destination vy € V to v} € V

21: Use any shortest path algorithm (e.g., Dijkstra’s algorithm)
to compute a shortest path p from v} to v/; in G.

2:Map p = (vf,...,0lt . 0) to path p =
(Vgyvey Uk, ...,0q) in G.

new graph G = (V, £). The vertices V are as follows. For each
v in V, we create r+ 1 virtual vertices vf; (some of which will
be removed later), where ¢ = 0, ..., r. The idea is to ensure that
each virtual vertex v has the following reachability property:
it is reachable from the source only if the path from the source
to vi satisfies the partial service function chain (¢1, ..., ¢;). To
do that, the edges in £ are established as follows. First, we
use V,, to denote the set of vertices in G that corresponds
to vertex vy, in G. We construct edges in G as follows. For
each edge (v, v) in G, an edge is established between each

2134

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

pair of v € V,, and vi* € V,,, where j* > i is the highest
index for which the set (¢;y1,...,¢;+) is a subset of ®,,,
as in Eq. (1). That means the selected vertex vi* is either a
vertex that represents the same network functions as v}, i.e.,
7% =1, or vi* represents more network functions than vli, but
this difference in the network functions is supported by node
vy, For instance, vj can be connected to v} if the network
function ¢, is supported by node vy, otherwise, we connect
it to vertex v}. The cost of edge (v}, v]) is set to the same
cost of edge (vy, vg).

2) Pruned G: Note that some vertices in G only have
outgoing edges and do not have any incoming edges. Such
vertices, except for the source, can be removed from G
because they will not contribute to any path from the source.
For a similar reason, we remove all the vertices that only
have incoming edges and do not have any outgoing edges.
This procedure will create new vertices that do not have any
incoming edges or that do not have any outgoing edges. Hence,

we repeat this procedure until no such vertices exist.

3) Computing a Shortest Path: After constructing graph
G, we find the shortest path from a source v, in V to a
destination vg in V with an SFC constraint of length r as
follows. Assume that the first ¢ network functions of the SFC
constraint are available at the source. We run any shortest path
algorithm to find a path from v to v7; in G. The obtained path
is mapped to a path in G by replacing each vertex with its
corresponding vertex in GG. In some cases, the SFC constraint
has some flexibility, which means that some functions can be
implemented in any order. So, we utilize that by constructing
a set of valid SFCs and for each SFC, we construct a graph
G. Then, we find the shortest path in each constructed graph
G and pick the shortest path among all of them. However, if
we have a fully flexible SFC constraint, then the number of
valid SFCs for r functions will be r!.

B. Detailed Example

In the following, we present a detailed example of construct-
ing G for the network in Fig. 2. In order to find a path from v;
to vs with an SFC = (vq, ¢1, ¢2, vs), we start by transforming
the graph G into a new graph G as in Fig. (3a). For each
vertex vy, in Fig. 2, we create three virtual vertices v{), v}, and
v because the number of network functions specified by the
SFC is two. The edges in G are constructed as follows. For
vY, we connect it to v3 € V,, as all the functions are available
in vo. However, we connect v{ to v} as only function ¢; is
available at node v,. The edge cost of (v9,v3) and (v}, v}) is
set to that of edge (v, v2) and (v1,v4) in G, respectively. We
repeat the same procedure for each vertex and obtain initial
G. Then, we obtain pruned G by repeatedly removing the
vertices that do not have any incoming edges (except for the
source) or that do not have any outgoing edges (except for the
destination). The final graph is shown in Fig. (3b). The shortest
path from v; to vs is (09,09, vi,v3,v2) (see Fig. (3b)). This
path is mapped to (vy,v3,v4,v3,v5) in the original graph G.

% v3)

(b) Simplified G

Fig. 3: Constructing G' by utilizing a set of virtual vertices

C. Algorithm Analysis

We start by proving the correctness of the proposed algo-
rithm in Theorem 1. Then, we show the performance of the
pruning step in Lemma 2.

Theorem 1. A shortest path to the destination vertex v} in
G is a shortest path to the destination vertex vq in G that
satisfies the given SFC constraint.

We first establish the following Lemma , which will be used
in the proof of Theorem 1.

Lemma 1. A path to any vertex v,i in G is also a path to
vy in G that guarantees satisfying the partial service function

chain (¢17 ey (]51)

Proof. We will prove Lemma 1 by induction.
Let denote a path to vertex v} as (v2,...,v],v}). The base
case is the trivial case, which is that a path to vg satisfies
zero netwok functions. The induction hypothesis is that a path
to vj is a path to v; in G that satisfies the partial service
function chain (¢1,...,¢;). We want to show that a path to
vl is also a path to vy, in G that satisfies the partial service
function chain (¢1,...,¢;). Based on our construction of G,
the edge (v], v},) can be established if the set {¢;41, ..., ¢;} is
a subset of ®,,, . Moreover, by the induction hypothesis, a path
to v; satisfies network functions in (¢1,...,¢;). As a result,
a path to vy includes the network functions supported by v,
which is (¢1,...,¢;), and the network functions supported
by wvg, which is {¢;41,...,¢;}. That would be the chain
(¢1,-..,¢;). This completes the induction step.

O

Proof of Theorem 1. Let P denote the set of possible paths
from v to v% in G. Based on Lemma 1, all the paths in P

2135

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

satisfies the 7 network functions. The set of paths P can be
mapped to a set of paths P in G. We can use any shortest path
algorithm to select the shortest path p € P, and its mapping
in P will be the shortest path in G. O

Next, in Lemma 2, we show that the pruning step will
reduce the size of the new constructed graph G, which leads to
an efficient computation of an SFC-constrained shortest path.

Lemma 2. [f the probability of availability of each network
Junction at any node is z, then the pruning step will remove
at least 0.5z|V| nodes and 0.5z|E| edges of the initial G.

Proof. For any pair of nodes (v, vy), if the probability that
function ¢; is available at node vy, is z, then virtual vertex vli_l
will be connected to vj, with probability z. Similarly, for any
other pairs of the form (v, vx). In such cases, virtual vertex
U}:l will have no incoming edges and will be removed in
the pruning step. So, for any pair of vertices, we can remove
one vertex with probability z, i.e., reducing the number of
vertices by a half. So, the overall number of removed vertices
is at least 0.5z|V|. If we assume that the edges are uniformly
distributed in the graph, then for a certain percentage of the
removed nodes, we will remove their corresponding edges,
which results in a similar reduction in the number of edges. A
special case is when z = 1, then the number of vertices and
edges will be the same of the original graph, G. O

D. Algorithm Complexity

For the initial G, the number of vertices will be at most
V| = (r + 1)|V|, and the edges |E| = (r + 1)|€|. The
complexity of constructing G is O(|V|?). Then, after the
pruning step, the number of vertices (resp., edges) will be
at most |V'| = 0.5z|V| (resp., |€'| = 0.5z|&|), where z is the
probability of availability of network functions at any vertex.
We construct G only once for a given SFC constraint. Then, if
we use Dijkstra’s algorithm to find an SFC-constrained short-
est path on the pruned G, the complexity is O(|€’| log [V']).

E. Throughput-Optimal Routing with SFC Constraints

A general framework for throughput-optimal routing, called
Universal Max-Weight (UMW) policy, has been proposed in
[19]. In the UMW policy, each source maintains a virtual
queue for each physical queue in the network. When a packet
arrives, it computes the shortest path based on the length of
the virtual queues. UMW policy considers different types of
traffic. In the case of unicast traffic, we are able to extend
the UMW policy for traffic with SFC constraints. We do that
by integrating our SFC-constrained shortest path algorithm
with the UMW policy. The UMW policy with our shortest
path algorithm remains throughput optimal. The proof of
throughput optimality is omitted here since it is exactly the
same as that of [19]. We provide some numerical results and
interested readers can refer to [19] for further details about the
UMW policy.

V. SFC-CONSTRAINED MAXIMUM FLOW (SFC-MF)

The maximum flow problem is a classic problem, where the
maximum possible flow from a source node to a destination
node needs to be computed. Classic maximum flow algorithms
ensure that the flow on each edge does not exceed its capacity,
and the flow conservation constraint is satisfied. Service func-
tion chains constraints, which require each flow to traverse
a set of network functions in a pre-specified order before
reaching its destination, make this problem more challenging.
In this paper, this new SFC-constrained Maximum Flow
problem is referred to as the SFC-MF problem. Note that the
classic maximum flow algorithms (e.g., Ford-Fulkerson) are
not directly applicable to SFC-MF due to the new constraints.
We consider an undirected graph in which edges can be used
to send flow in either direction, but the total flow in both
directions cannot exceed the edge capacity. Also, we consider
that each function has only one instance in the network. For an
SFC constraint defined as SFC = (s, ¢1, ..., ¢, d), we define
a commodity «; for each segment of the SFC, i.e., commodity
a1 has a source s and destination ¢, while commodity o1
has a source ¢, and destination d. We use P,, to denote the
set of all possible paths for commodity «;. The capacity of
edge e is denoted by c.. Also, we let =, denote the amount
of flow sent over path p. We formulate the SFC-MF problem
as follows.

max N\, 2
subject to
Z Tp >N, Vo, (3)
PEPq,
Z Z zp <, Veck, ()
a; p:e€p,pEPa;
xp >0, Vp€E Py, ()

where Eq. (3) is the total flow for commodity «; over all of
its possible paths. Eq. (4) ensures that the amount of flow for
all commodities over an edge does not exceed its capacity.

Problem (2) is a special case of the fractional multi-
commodity flow (FMCF) problem when the demand of all
commodities is one. It can be solved using any LP algorithm,
or approximation algorithm [13], [11]. An interesting use case
is when a service provider needs to virtualize a particular
network function in its network during an early stage of NFV
deployment. So, we consider the problem of computing the
maximum flow with the constraint that all packets must pass
through this new VNF. For instance, suppose that we have an
SFC constraint as in Fig. 4(a), and we want to virtualize only
function ¢;. For the network shown in Fig. 4(b), most of the
nodes support some PNFs. So, we can pick a node, say node
vs, to become a virtualized node and host the VNF ¢;. Then,
we may need to compute the maximum flow from any PNF
to another PNF through node v5. For this case, we propose an
elegant combinatorial algorithm based on the Ford-Fulkerson
algorithm in the following subsection.

2136

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

(v2)

O OnOa OO

(a) An SFC constraint. All func-
tion are PNFs except ¢;, which is
VNE.

&/
(b) A network, where all PNFs
are supported at different nodes,
while a VNF is supported at
node vs.

Fig. 4: Example of an SFC constraint where only one function,
¢1, will be virtualized at node vs.

O OnnOnrO

Fig. 5: A network with must-stop node ¢ and an added virtual
node 7.

A. Maximum Flow with One Must-stop Node Algorithm

We denote the maximum flow with one must-stop node ¢
as Fst,d. Let Py (resp., Piq) be the set of all paths between
node s and ¢ (resp., t and d). Then, F ; can be defined as the
maximum feasible flow that can be sent simultaneously from
s to t, over Py, and from ¢ to d, over Pyq. We use F ; (resp.,
F} 4) to denote the maximum feasible flow that can be sent
over Py, (resp., P.q). To compute I ;d, we start by adding a
virtual node 7' to the graph and connect it to the source, s,
and destination, d, with infinite capacity. Then, we compute
the standard maximum flow for the following cases: (1) The
maximum flow from ¢ to 7', divided by 2, denoted by F} 1/2;
(2) Fs.4; (3) Fy 4. Then, Ff 4 18 the minimum among the above
three quantities. We can define I} 7 as the maximum feasible
flow that can be sent from ¢ to 1" over both P; and P;,. Since
we consider undirected graphs, then, the maximum flow from s
to t and from ¢ to s will be the same. In the following, we show
an example of how to compute the maximum flow through
node t for the network shown in Fig. 5. First, we connect a
virtual node 7" to nodes s and d with infinite capacity. Then, we
compute these three quantities, Fy r/2, Fy, and F} 4, which
will be 1.5, 2, and 2, respectively. It can be verified that the
minimum of them is 1.5, which is equal to the maximum flow
from node s to d through node t¢.

We prove this result in Lemma 3.

Lemma 3. F! ; = min{F; /2, F, 1, F; q}.

Proof. We start by showing that F, 1/2, F, ;, F; 4 are upper
bounds for F! ;. Then, we show that the minimum of these

three values is also a lower bound of F!, We state the
following upper bounds.

o Fst’d < F;1/2 as we cannot send more than half of F}

simultaneously over Py and Pyq.

e F!, < F, because all flow from node s should reach

node t before reaching node d.
. F; 4 < Fy g because all flow reaching node d should pass
by node ¢ first.
Then, we prove that the minimum of these upper bounds is also
a lower bound. We present three cases: each case corresponds
to when one of the upper bounds is the minimum as follows.

Case I when F p/2 is the minimum, we will show that
we can always send F; r/2 simultaneously over Py, and Pyg.
First, let F; 7 = N1+ Na, where N (resp., N) is the amount
of flow that is sent over Pg; (resp., Pyq) paths in the current
realization. We have three subcases: A) N; = Ny, B) N1 >
Ny, and C) N1 < N,, which are discussed in the following.

Case I-A: when N7 = Ns. This is a trivial case. It is easy
to see that we can send Fj p/2 simultaneously over Py, and
Pra.

Case I-B: when Ny > Ny, ie., Ny = Fy /24 cand Ny =
F, /2 — ¢, for a positive c. We will show that we can always
remove ¢ units of flow from P, paths and send the same
amount over Py, paths, where this reallocation of flows will
make N; = Ny. We use x, to denote the current flow over
path p. Also, for one realization of the maximum flow over
paths in Py, we use x;, to denote the amount of flow sent over
every path p in P;4. Due to the intersection of edges of paths
in Py and P4, the capacity of these edges is shared by such
paths. So, a flow over a path in P, may affect the amount of
flow over some paths in Pq, i.e., making x,, less than :v; for
such paths. Since >_ p = ;, = Fiq, which is greater than
F, /2, then, it is feasible to reallocate ¢ units of flow to over
‘P:q paths; the details are provided in the following.

Since F} g4 is greater that N, then, we can find a set of
paths in P4 that satisfy x, < J];, so, we pick one of them
and denote it as p;. Then, for the set of paths in P, that
intersect with some edges of path p;, we select a path p; that
has positive x;,, and intersects with path p; at an edge that is
the nearest to node d. Let p; = (e1,...,ef,€541,...,€,), and
pj = (€1,...,€,€41,...,6y), With ey € p; is the closest
edge to node d that intersects with e; € p;, i.e., ef = €.
Since e is the closest edge to node d that intersects with a
path in Py, then, edges (ef41,...,e,) can support x;i —xp,
units of flow. Next, we define i = min(z},, — x,, 2, c) and
cancel this amount of flow over path p;. As a result, edges
(€1, €141, - - -, €m), Which are part of p;, will be able to support
an additional A units of flow. Finally, we construct a path p.
by taking edges (€, €41, ...,&y) from p; in reverse order,
ie., (Em,...,€+1,€), and edges (ef41,...,e,) from p;, and
forming a new path p. = (€, ..., 141,81, €441, ..,€n). We
can see that over path p. we can send additional h units of
flow from node ¢ to d.

We subtract h from c and repeat the same process until the
value of ¢ becomes zero. This is feasible because as long as the
amount of flow sent over Pyq is less than F /2, then, we can

2137

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

find a path p in Py with 2, < 27,. Also, we assume integral
capacity of edges, so, by using Ford-Fulkerson algorithm, the
value of Ny, No,), x;, and I} 7 are integral. In addition, the
value of ¢ is a multiple of 0.5 because ¢ = Ny th,T/Z. From
this, we conclude that the value of A is a multiple of 0.5. So,
in at most 2 x I, iterations, we can make N; = N by the
above procedure.

Case I-C: this is a symmetric case of Case I-B.

Case II: when Fj ; is the minimum, we will show that F ;
can be sent simultaneously over Py, and P4 paths. Since F ;
is the maximum flow that can be sent over paths in P, and
we have that F, /2 > F,,, then Fy p > 2F; ;. That means
the amount of flow sent over P;q should be at least F ;.

Case III: when F; 4 is the minimum. The proof of this case
follows the same argument as that of Case II. O]

After we find the value of the maximum flow, it remains
to find the actual flow on each edge and the direction of the
flow. To do that, we again use a virtual node 7" and connect it
to the source s and destination d, but with a capacity of Fst a
Then, we compute the maximum flow in this new graph from
t to T. When a path includes edge (s,T'), then the flow on
the links along this path is reversed. That would give us the
amount of flow and direction on each edge.

VI. VIRTUAL NETWORK FUNCTIONS PLACEMENT

In this section, we are interested in the question of how
to place VNFs such that the value of the maximum flow
with SFC constraints is equal to the value of the original
maximum flow without SFC constraints. The maximum flow
under SFC constraint is not expected to remain as the original
maximum flow, depending on the placement of the required
network functions specified by the SFC constraint. Moreover,
in order to minimize the total operational expenses of adding
commodity servers in the network to support VNFs, we aim to
minimize the number of network nodes where these functions
will be placed. We assume that all VNFs can be hosted at
any node. We start by formulating the problem and proving
its NP-hardness.

We let P44 denote the set of admissible paths from node s
to d for a given SFC constraint. We want to select a minimum
number of nodes such that the total flow over the admissible
paths P’ is the original maximum flow (without any SFC
constraint). Define k; as a binary variable to denote whether
node ¢ hosts the required VNFs (i.e., node 7 is a virtualized
node). Also, x;,, denotes the amount of flow over path p. We
use I 4 to denote the original maximum flow. The problem
can be formulated as follows.

min Z ki, (6)

i€V\{s,d}
subject to
Z Tp = L's.ds (7)
PEP! saq
Z xp, <., Ve€ek, (8)
p:e€Ep

2y >0, Vpe P, ©)
ki €{0,1}, Vi, (10)

where the objective is to minimize the number of virtualized
nodes, described by (6). Eq. (7) ensures that flow over all
admissible paths equals the original maximum flow, while Eq.
(8) ensures that the total flow over an edge does not exceed
its capacity.

Next, we will show in Lemma 4 that this problem is NP-
hard based on a reduction from the classic set-cover problem.

Lemma 4. The minimum placement of VNFs to achieve the
original maximum flow is NP-hard.

Proof. We prove that by a reduction from the minimum set-
cover problem. In the set-cover problem, we are given a set
M of n elements, M = {my, ms,..., my}, and a collection
of subsets S = {s1, s2,...,5s }, where each s; is a subset of
M and the union of all subsets in S is M. The minimum set-
cover problem is to find the minimum number of subsets in S
such that their union is M. So, given an instance of the set-
cover problem (S, M), we will reduce it to our problem. We
construct a graph G = (V,). Each vertex in V' corresponds
to a subset in S, plus one vertex as a source and one vertex
as a destination. For each element m; € M, we construct a
path that connects the subsets containing element m; in any
order and connect the first node in this path to the source and
the last node to the destination. The capacity of each edge
along the constructed path is set to one; if an edge has been
established before, its capacity is increased by one. So, each
constructed path will contribute a unit flow to the maximum
flow. If we can solve the minimum set-cover problem, then
the corresponding vertices in G will cover all possible flow
because each element in the set corresponds to a unit of flow.
Similarly, if we can find the minimum number of vertices to
achieve the maximum flow, then, each unit of flow will pass
by one of these vertices, so the corresponding subsets will
cover all elements in M. 0

The hardness of the problem comes from two parts. First,
the maximum flow can be achieved through a different set
of paths, which are hard to list, and each set of paths may
yield a different placement. Moreover, finding the minimum
number of nodes to cover a set of paths is also NP-hard [17].
Also, it is worth noting that if we consider service function
chains where functions cannot be hosted at one node, then the
problem becomes harder.

The formulation in (6) has an exponential number of con-
straints as it requires to list all admissible paths in Eq. (7),
which could be exponential. So, we provide an equivalent
formulation for the problem that can be solved using any
Integer Linear Programming (ILP) solver.

A. ILP Formulation of VNFs Placement
0

First, we introduce the following notations. We use f;;
(resp., llj) to denote the amount of unprocessed (resp., pro-
cessed) flow on link (i, j) by the VNFs of the SFC constraint.
Also, we use 6Z-+ (resp., 0;) to denote the set of incoming

2138

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

(resp., outgoing) edges of node i. Finally, we use c; ; to denote
the capacity of edge (7,). The problem becomes:

min Y ki, (11)
i€V\{s,d}

subject to
S =3 S e a2
jest jest kes kes;
Dofh=ki > I f (13)
kes; jesf jest
> % =Faa, (14)
keds
> fla=TFua, (15)
JjEst
b Ll < V(0,J) €E, (16)
ki € {0,1}, (17)
L >0, Vi,jeVte{o1}, (18)

where, when not specified, i € V\{s,d}. Eq. (12) is the
standard flow conservation constraint, while Eq. (13) is to
ensure that the amount of processed flow leaving node i is
either an unprocessed flow that is processed by node ¢ or a
flow that has been processed by other nodes before entering
node ¢. Eq. (14) and (15) ensure that the unprocessed flow
from the source will reach the destination as a processed flow,
and the amount of this flow equals the original maximum
flow. Eq. (16) ensures that the amount of both processed and
unprocessed flow over each edge does not exceed its capacity.
A node is either an intermediate node or virtualized node (i.e.,
hosts all the VNFs), which is considered by the binary variable
k; in Eq. (17).

The formulation in (11) can be solved by any ILP solver,
which we were able to solve for large instances (e.g., for
network with 100 nodes) in a few minutes. Moreover, we
show by simulations that the maximum flow can be achieved
by placing the VNFs at a small number of nodes even when
the graph is large. This indicates that the operators may be
able to introduce VNFs in their networks at a low starting
cost without impacting the amount of flow that can be sent.

VII. NUMERICAL RESULTS
A. SFC-Constrained Shortest Path Results

In this subsection, we evaluate the proposed SFC-
constrained shortest path algorithm, and compare its perfor-
mance with the layered graph that was proposed in [8], [5].
The layered graph is constructed by replicating the original
graph r + 1 times, where each replication is a layer. Each
layer ¢ < r is connected to layer ¢+ 1 by connecting the nodes
that host the i-th network function in layer 7 to the same set
of nodes in layer ¢ + 1. Then, a shortest path is computed
from the source in layer one to the destination in layer r + 1.
We consider an SFC represented as (s, ¢1, ¢2, ¢3,d), and each
function, ¢;, is available at each node with a probability of 0.5.

4x10° 4x10°

-—Layered graph -Layered graph
—-Proposed algorithm —+Proposed algorithm

S2 N2

2] 2]

. 5

o o

51 5 1\\

20 40 60 80 100

0.6 0.7 0.8
Number of nodes Virtual functions availability

(a) Graph size with different num-(b) Graph size with different func-
ber of nodes. tions availability probability.

Fig. 6: Graph size of our approach compared to the layered
approach.

o]
o

—+Optimal-routing

)

1

{d2, 43}

D
o

N
o

The average queue lengths
ey
o

{2}

C)O

{¢1. 03} Loadol'gvel P
(a) Graph representation of the net- (p) The average queue

work used for estimating the average lengths with different arrival
queue size for flows from v1 to ve, and jptensities.
from v7 to vs.

Fig. 7: Throughput-optimal routing with SFC constraints.

We compare the results in term of the constructed graph size,
which is the number of nodes plus the number of edges. We
should note that the smaller the size of the constructed graph,
the lower the complexity of any shortest path algorithm. We
repeat each experiment for 10 times, and report the average
result. In Fig. 6(a), we can see that the size of the layered
graph is larger than the graph constructed by our approach.
Moreover, as the probability of availability of functions in
each node increases, our approach has a very small graph size
compared to the layered graph, as shown in Fig. 6(b).
Moreover, we integrate our SFC-constrained shortest path
with the throughput-optimal routing proposed in [19] to have
an SFC-constrained throughput-optimal routing algorithm. We
conduct simulations for the network shown in Fig. 7(a), where
multiple instances of different network functions are available
at some vertices. We have two flows: flow fi; from vy to vg
with an SFC = (vy,¢1,da,v6) and flow fo from v; to vy
with an SFC = (v7, 01, ¢3,v5). We assume a unit capacity
for each link, i.e., one packet can be sent over each link at
each time slot. It can be verified that the max flow rate that
can be supported is 2 and 1 for flows f; and fs, respectively,
which is a point at the boundary of the optimal throughput
region. We run experiments with Poisson arrivals for flows f;
and fo with rates \; = 2p and Ao = p, respectively, where
0 < p < 1. We run experiments for 10° slots, the first 10*
slots are excluded to consider the average queue lengths in the
steady state. From the result in Fig. 7(b), we can see that as

2139

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

N

=—ILP placement

o

source estination

of virtualized nodes

o
o

5]
o8
5]
o

20 40 60 80 100
Number of nodes

(a) A network to study the VNFs
placement to achieve the original max- (b) VNFs placement based
imum flow. on the ILP solution.

Fig. 8: VNFs placement result.

long as the arrival rate vector is strictly within the capacity
region (i.e., p < 1), the average total queue length is kept
finite under the SFC-constrained throughput optimal routing.

B. VNFs Placement Results

In this subsection, we show some simulation results for the
ILP placement. We start by solving the placement for the
network shown in Fig. 8(a). We can see that the maximum
flow from node v; to node vg is 8, which can be through
different set of paths. But, we want to minimize the number
of nodes to place the required function on them and still
achieve the maximum flow of 8. It can be verified that a
placement at node vg only is sufficient, i.e., the maximum
flow from node vy to node vg through node vg is 8. Now, we
provide a result for more general graphs. We consider random
graphs with a different number of nodes from 10 to 100. Each
node has an average degree of |V|/3, and the capacity of
edges are uniformally distributed between 2 and 10. We repeat
each experiment for 20 times and report the average result in
Fig. 8(b). Based on the result, we can see that for different
graph sizes, we need a small number of nodes to achieve
the original maximum flow. That would be an incentive for
network operators to introduce VNFs in their networks with
low cost without impacting the capacity. The running time of
the ILP solution ranges from a few seconds for small graphs
to few minutes for large graphs.

VIII. CONCLUSION

In this paper, we have investigated several issues that
arise from Service Functions Chains (SFC) constraints in
networks with combined PNFs and VNFs. We solved the SFC-
constrained shortest path problem by a transformation of the
network graph to a new graph, which ensures an efficient
computation of an SFC-constrained shortest path. We also
investigated the problem of an SFC-constrained maximum
flow problem. We formulated the problem as a fractional
multicommodity maximum flow problem and presented a
combinatorial solution for a special case. Lastly, we considered
VNFs placement from a maximum flow perspective. Our
objective is to achieve the original maximum flow in the
network while satisfying a given SFC constraint. We showed
that the problem is NP-hard. Then, we provided an equivalent
ILP formulation, which can be solved in a few minutes for
large instances. An interesting problem for future work is to

develop a combinatorial algorithm for computing the SFC
constrained maximum flow in general. It is also important
to find an approximation algorithm for the VNFs placement
problem we formulated in this paper.

REFERENCES

[1] Amdocs. Bringing NFV to Life - Technological and Operational
Challenges in Implementing NFV. White paper, 2016.

[2] S. Arora, E. Hazan, and S. Kale. The Multiplicative Weights Update
Method: A Meta-Algorithm and Applications. Theory of Computing,
8(1):121-164, 2012.

[3] D. Bhamare, R. Jain, M. Samaka, and A. Erbad. A survey on service
function chaining. Journal of Network and Computer Applications,
75:138-155, 2016.

[4] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan. Optimal virtual network function placement in multi-cloud service
function chaining architecture. Computer Communications, 102:1-16,
2017.

[5] Z. Cao, M. Kodialam, and T. Lakshman. Traffic Steering in Software
Defined Networks : Planning and Online Routing. Proceedings of the
2014 ACM SIGCOMM workshop on Distributed cloud computing(DCC
’14), pages 65-70, 2014.

[6] M. Charikar, Y. Naamad, J. Rexford, and X. Zou. Multi-Commodity
Flow with In-Network Processing. DIMACS Networking Workshop, (1),
2015.

[7] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng, D. Telekom, and U. Michel.
Network Functions Virtualisation, An Introduction, Benefits, Enablers,
Challenges & Call for Action. in Proc. SDN OpenFlow World Congr.,
Darmstadt, Germany, (1):1-16, 2012.

[8] A. Dwaraki and T. Wolf. Adaptive Service-Chain Routing for Virtual
Network Functions in Software-Defined Networks. Proceedings of
the 2016 ACM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pages 32-37, 2016.

[9] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch. Optimal

dynamic cloud network control. 2016 IEEE International Conference

on Communications, ICC 2016, pages 0-6, 2016.

H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch. Approx-

imation Algorithms for the NFV Service Distribution Problem. [EEE

INFOCOM 2017, Atlanta, GA, May 2017, pages 1-9.

L. Fleischer. Approximating fractional multicommodity flow inde-

pendent of the number of commodities. 40th Annual Symposium on

Foundations of Computer Science (Cat. No.99CB37039), 13(4):1-16,

1999.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network.

Canadian journal of Mathematics, 8:399-404, 1956.

G. Karakostas. Faster approximation schemes for fractional multi-

commodity flow problems. ACM Transactions on Algorithms (TALG),

4(1):1-17, 2008.

Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtualization

with soft real-time guarantees. Proceedings - IEEE INFOCOM, 2016-

July, 2016.

‘W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou. Traffic Aware

Placement of Interdependent NFV Middleboxes. [EEE INFOCOM,

pages 1-9, 2017.

K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas. One step

at a time: Optimizing sdn upgrades in isp networks. In Proceedings of

IEEE INFOCOM, 2017.

Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably Efficient

Algorithms for Joint Placement and Allocation of Virtual Network

Functions. /[EEE INFOCOM 2017, Atlanta, GA, May 2017.

J. Sherry, S. Ratnasamy, and C. Sciences. A Survey of Enterprise

Middlebox Deployments. (UCB/EECS-2012-24), 2012.

A. Sinha and E. Modiano. Optimal Control for Generalized Network-

Flow Problems. IEEE INFOCOM 2017, Atlanta, GA, May 2017.

H. Vardhan, S. Billenahalli, W. Huang, M. Razo, A. Sivasankaran,

L. Tang, P. Monti, M. Tacca, and A. Fumagalli. Finding a simple path

with multiple must-include nodes. Proceedings - IEEE MASCOTS, pages

607-609, 2009.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

2140

