
Virtual Network Function Deployment in

Tree-structured Networks

Yang Chen, Jie Wu, and Bo Ji

Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu, boji}@temple.edu

Abstract—Network Function Virtualization (NFV) evolves the
implementation of network functions from expensive hardwares
to software middleboxes. These software middleboxes, also called
Virtual Network Functions (VNFs), are executed on switch-
connected servers. Efficiently deploying such VNFs is challenging,
because VNFs must fully process all flows with their traffic
rates before they reach their destinations while VNF locations
are restricted by the constraint of vertex capacity. In addition,
each network function offers heterogeneous VNF types with
different configurations of processing volumes and costs. This
paper focuses on minimizing the total cost of deploying VNF
instances for providing a specific network function to all flows
in tree-structured networks. First we prove the NP-hardness of
heterogeneous VNF deployment in a tree topology and propose a
dynamic programming based solution with a pseudo-polynomial
time complexity. Then we narrow down to three simplified cases
by focusing on homogeneous VNFs or the linear line topology.
Specifically, three algorithms are introduced: an improved dy-
namic programming based algorithm for deploying homogeneous
VNFs in a tree topology, a performance-guaranteed algorithm for
deploying heterogeneous VNFs in a linear line topology, and an
optimal greedy algorithm for deploying homogeneous VNFs in
a linear line topology. Extensive simulations are conducted to
evaluate the performance of our algorithms.

Index Terms—Deployment, NFV, SDN, tree-structured net-
works, VNFs.

I. INTRODUCTION

Network Function Virtualization (NFV) addresses the prob-

lems of traditional purpose-built hardware appliances [1] by

leveraging virtualization technologies to implement network

functions in software [2] such as firewalls, network ad-

dress translator, proxies, and deep packet inspection. Software

middleboxes, also called Virtual Network Functions (VNFs)

[3], are provisioned most commonly in modern networks

to demonstrate their increasing importance [4]. With the

emergence of Software Defined Networking (SDN), there

is a tendency to incorporate SDN and NFV in concerted

ecosystems [5]. SDN maneuvres traffic through appropriate

VNFs and allows VNFs to pick service locations from multiple

available servers; on the other hand, traditional hardwares

leave no choice for allocations [6]. This results in a flexible

architecture and has the potential to significantly reduce capital

and operating expenses, shorten product release cycle, and

improve service agility.

This paper studies the VNF deployment problem with a

given set of flows in tree-structured networks, whose switch-

connected servers have limited capacities (the maximum num-

ber of deployed VNF instances). Tree-structured topologies

f1 f2

f3
f4

v1

v2

v4 v5

f4

(a) Unlimited vertex capacity.

f1 f2

f3
f4

v1

v2 v3

v4 v5

f4

(b) Limited vertex capacity
of one instance.

Fig. 1: A motivating example.

are quite common in streaming services and Content Delivery

Networks (CDNs) [7]. Additionally, it is proven NP-hard to

minimize the total number of VNF instances even to deploy

one service function in a general topology [8]. Thus, we

narrow down to tree-structured networks and provide stronger

algorithmic results in this paper. We assume that all flows are

upstream (destination is closer to the root than source) and re-

quire an identical network function, which has heterogeneous

VNF types with different configurations of processing volumes

and costs [9]. The processing volume of a VNF instance can be

shared by multiple flows. A flow can be fractionally processed

by several instances before its destination [8]. Our objective is

to minimize the total deployment cost when all flows are fully

processed with their traffic rates before reaching destinations.

However, most existing works assume that the vertex capac-

ity is unlimited or the number of instances is much smaller

than the vertex capacity. We use an example in Fig. 1 to illus-

trate the complexity of the VNF deployment problem without

and with the limited server capacity constraint. The topology

of the toy example is a binary tree with five vertices. There are

four flows, f1, f2, f3, and f4, whose sources, destinations, and

paths are shown in Fig. 1. Their traffic rates are 3, 3, 4, and 2,

respectively. We are given a single type of VNF instance m
(grey square box) with a processing volume 4 and a cost 1.

We aim at minimizing the total cost of deploying m when the

traffic rates of all flows are fully processed before destinations.

Fig. 1(a) shows the optimal deployment with unlimited vertex

capacities by applying the algorithm in [8]. The full traffic rate

of f1 and 1 traffic rate of f2 are processed by the deployed

instances on v2, while the rest rates are processed by the

two instances deployed on v1. The total cost is 3 because of

deploying 3 instances. As for the limited server capacity case,

if each server can place at most one instance, one optimal

deployment with a minimum cost of 4 is shown in Fig. 1(b).

Compared to Fig. 1(a), one more instance is deployed since

132

2018 IEEE 26th International Conference on Network Protocols

978-1-5386-6043-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICNP.2018.00023

v1 can deploy only one instance. In order to fully process all

flows before destinations, both instances on v1 and v4 waste

1 processing volume while the one on v3 wastes 2. The waste

is unavoidable because of the vertex capacity limitation and

the service requirement.

The main challenges of our deployment problem lie in

the selection of VNF locations and the allocation of each

deployed VNF processing volume. The vertex capacity con-

straint complicates the deployment, since flows have to be

fully processed before reaching their destinations. Intuitively,

if we deploy the instances too close to the root of the tree, the

processing volume is more likely to be used up, while flows

with destinations far from the root may not be processed; if

too far from the root, the opportunity of sharing the processing

volume of an instance is scarce so that some will be wasted

and more VNFs are needed. Additionally, heterogeneous VNF

types of configurations for a network function, which have

not been studied in the deployment problem, offer more

deployment options and make the problem more complex.

In this paper, we first solve the heterogeneous VNF deploy-

ment problem in a tree topology with a dynamic programming

based method. Because of NP-hardness of the problem, the

solution is pseudo-polynomial and its time complexity is not

easily tractable. Then we study a special case of homogeneous

VNF deployment and improve the dynamic programming

solution with an acceptable time complexity. Additionally,

the heterogeneous VNF deployment problem in a linear line

topology can be transformed to the classic submodular set

cover problem so that we introduce a performance-guaranteed

greedy strategy. An optimal greedy algorithm is designed for

the simple case: homogeneous VNF deployment in a linear

line topology.

Our main contributions are summarized as follows:

• We prove the NP-hardness of the heterogeneous VNF

deployment problem in the tree-structured network.

• We propose four pseudo-polynomial algorithms in dif-

ferent settings of topologies and VNF types of con-

figurations, shown in Tab. I with properties and time

complexities1. Since |M | (total number of VNF types

of configurations) and cmax (largest vertex capacity) are

small and integer-valued, while wmax (largest single VNF

instance setup cost) is in an arbitrary precision and order

of magnitude, the first algorithm is computationally hard,

and the complexities of the rest of the three algorithms

are dramatically improved.

• Extensive simulations are conducted to evaluate the effi-

ciency of our proposed algorithms.

The remainder of this paper is organized as follows. Section

II surveys related works. Section III describes the model,

formulates the problem, and shows hardness. Section IV intro-

duces our deployment algorithms in tree-structured topologies.

1An algorithm has pseudo-polynomial time if its running time is a polyno-
mial in the numeric value of the input (the largest integer present in the input)
(e.g., cmax in Tab. I), instead of the length of the input (the number of bits
required to represent it) (e.g., V in Tab. I), which is the case for polynomial
time algorithms.

TABLE I: Our proposed solutions and time complexities.

�
�
�
�

Topo
Type

Heterogeneous Homogeneous

Tree DP Optimal DP Optimal

O(|V |4×(cmax×wmax)3) O(|V |4×(cmax)3)

Line Greedy Approximate Greedy Optimal

O(|V |2×|M |×cmax) O(|V |×cmax)

In Section V, we handle cases in line topologies. Section VI

includes the experiments, and Section VII concludes the paper.

II. RELATED WORK

NFV frameworks have drawn a lot of attention, especially

in the area of VNF deployment problem. Various objectives

with different backgrounds are conduced in recent years. In

this section, we give a brief review of state-of-art works.

Casado et al. [10] propose a model for deploying a single

type of VNFs and present a heuristic algorithm to solve

the deployment problem. [8] studies the joint deployment

and allocation of a single type of VNFs, where flows can

be split and fractionally served by several VNF instances.

They propose several performance-guaranteed algorithms to

minimize the number of VNF instances. However, they treat

all servers with unlimited capacities such that they are able

to hold an arbitrary number of VNF instances, which is

not practical. [11] is the first to study the VNF deployment

problems taking the effects of changing traffic volume into

consideration. It also studies the multiple VNF deployment of

different dependency relationships. They target load balancing

through VNF deployment and flow-routing path selection.

However, this work only processes a single flow and takes

no consideration of the limited VNF processing volume. It

results in exclusive instances for each flow, which is wasteful

of server resources.

There are other types of service coverage for each flow,

such as service chain where each flow has to be covered by a

sequence of services with or without particular order, instead

of single service used in our model. Rost et al. [12] prove the

NP-completeness and inapproximability of the service chain

deployment under different constraint settings, extended from

the virtual network embedding problem. They initiate the

study of approximation algorithms and propose a performance-

guaranteed solution under the offline setting (given multiple

flows), based on randomized rounding of Linear Programming,

to maximize the total profit of satisfied flows in [13]. Since our

model is special with one service in a service chain, the results

obtained in this paper are more specific. In tree-structured

networks, we propose optimal DP-based solutions of the VNF

deployment.

III. MODEL AND FORMULATION

A. Network Model

We first present our model of the directed tree-structured

network, T = (V,E), where V = {v} is a set of vertices (i.e.,

switches), and E = {e} is a set of directed edges (i.e., links).

We use v to denote a single vertex and vertices are labeled of

133

1, 2, ..., |V | by the Breadth-First-Search (BFS). (We use | · | to

denote the cardinality of a set.) Each vertex vi is connected to

a capacity-limited server. The vertex capacity, denoted as ci,
represents the maximum number of VNF instances that can

be deployed on vi. For each location on vi, we can deploy

one VNF instance with any type of configuration. We use two

definitions of tree data structure to simplify our discussion.

Definition 1 (height, subtree): The height of a vertex is 1
plus the difference between the depth of the tree and the depth

of the vertex. A subtree Ti of a vertex vi in a tree T is a tree

consisting of vi and all its descendants in T .

Take the tree in Fig. 1(a) as an example. The height of v1
is 3 and the heights of v3 and v4 are 2 and 1, respectively.

The subtree T2 consists of v2, v4 and v5.

We are given a set of flows F = {f} and all flows request

to be processed by an identical network function (service).

All flows are upstream flows, i.e. the source of a flow is a

descendant of its destination. We use f to denote a flow with

a source of srcf , a destination of dstf , and an initial traffic

rate of rf . We say that a flow is satisfied when its initial traffic

rate is fully processed before reaching its destination.

M = {m} is the set of VNF types with different config-

urations for the requested network function (service). Each

VNF type m has a processing volume, αm, which is the

maximum total traffic rate that one m instance can process, and

a setup cost wm for setting up one VNF instance of type m.

Different VNF types of configurations for a network function

provide the same network service, but have various processing

volumes and setup costs. We simplify the types of different

configurations as different types in the following.

Definition 2 (heterogeneous, homogeneous): VNFs are

called heterogeneous if the number of VNF types is more than

one; otherwise, they are called homogeneous.

We assume each flow can be fractionally processed by

several VNF instances of any type deployed on vertices along

its path. We introduce the definition of the deployment plan

and its feasibility.

Definition 3 (deployment plan, feasibility): A deployment

plan of v, denoted as Ωv , is a set of VNF instances with

different types deployed on v. These instances are labeled by

1, 2, ..., |Ωv|. A deployment plan of the tree T , denoted as Ω,

is the union set of Ωv, ∀v ∈ V , i.e. Ω = {Ωv|v ∈ V }. We call

a deployment plan feasible when all flows are fully processed

before destinations.

Note that we can check the existence of a feasible de-

ployment plan by deploying all the VNF instances with the

maximum processing volume in all available locations of

servers. If this deployment plan is still not feasible, then no

feasible deployment exists.

We use m(v, j)∈ Ωv to record the jth placed VNF instance

on v after the labeling. The processing volume and setup cost

of m(v, j) are expressed as α(v, j), and w(v, j), respectively.

Let λf

m(v,j) denote the amount of f ’s traffic rate processed

by the jth VNF instance deployed on v. Here each packet

of flows should only be processed by instances once, because

being processed by any instance will add an extra transmission

TABLE II: Symbols and Definitions.

Symbols Definitions

V,E, F,M the set of vertices, edges, flows, and VNF types

v, f,Ω a vertex, a flow, and a deployment plan

Ωv , cv the deployment plan and vertex capacity of v

srcf , dstf , rf source, destination, initial traffic rate of f

m(v, j) the jth placed instance on v

t(v, j),α(v, j),w(v, j) type, volume and cost of jth instance on v

λ
f

m(v,j)
traffic rate of f processed by m(v, j)

delay, which should be avoided. In the following, we use the

superscript max to denote the maximum value in a set such

as wmax = maxm∈M wm and cmax = maxv∈V cv . For the

ease of reference, we summarize notations in Tab. II.

B. Problem Formulation

In this paper, we study the VNF deployment problem: given

a set of flows F in a tree-structured network T , we deploy

heterogeneous VNFs with the minimum total cost to satisfy

all requests of flows.

Definition 4 (total cost): The total cost of a deploy-

ment plan Ω is the summed-up cost of setting up all VNF

instances, denoted by cost(Ω), which satisfies cost(Ω) =∑
v∈V

∑
m(v,j)∈Ωv

w(v, j).
Our problem can be formulated as:

min cost(Ω) (1)

s.t. |Ωv| ≤ cv ∀v ∈ V (2)
∑

v∈V

∑

j

λf

m(v,j) ≥ rf ∀f ∈ F (3)

∑

f∈F

λf

m(v,j) ≤ α(v, j) ∀m(v, j) ∈ Ωv, v ∈ V (4)

Our objective is to minimize the total cost of deployed VNF

instances in Eq. (1). Eq. (2) states that the total number of

deployed instances of each vertex is within its capacity. Eq.

(3) guarantees each flow being fully processed by its initial

traffic rate. Eq. (4) requires that the sum of processed traffic

rate by each VNF instance is no more than its processing

volume on all vertices.

C. Problem Hardness Analysis

In a general topology with homogeneous VNF instances,

[8] proves that it is NP-hard to minimize the total deployed

instance number, which is equivalent to minimizing the total

cost of the deployment. Here we study the hardness of

deploying the heterogeneous VNFs and we have:

Theorem 1: The heterogeneous VNF deployment with the

minimum cost is NP-hard even in a line topology.

The proof can be found in Appendix A. It is worth mention-

ing that we can apply the PTAS solutions in [14] if all flows

have the same paths, i.e., the topology is a line. However,

whether there exist PTAS solutions for the case with general

topologies remains an open question.

IV. VNF DEPLOYMENT IN A TREE TOPOLOGY

This section studies the deployments of heterogeneous and

homogeneous VNFs in tree-structured topologies.

134

A. Heterogeneous VNF deployment in a tree topology

First we handle the most general case. We propose a dy-

namic programming based solution of the heterogeneous VNF

deployment problem in a tree topology, called Heterogeneous

Dynamic Programming algorithm (HeteDP).

Before the recurrence, we define some notations. Let

OPT (i, w) denote the minimum total unprocessed rate going

out of node vi by deploying VNFs with a total cost w in the

subtree of vi. If we are unable to fully process flows having

dstf ∈ Ti by a total cost w, we have OPT (i, w) = ∞. This

is because the destination is the last chance of a flow to be

processed. We prioritize processing flows with smaller-height

destinations since their opportunities of being processed are

less. We use w(l) and w(r) to denote the allocated costs of

vi’s left and right subtrees, respectively. Deploy(i, w) denotes

the maximum total processing volume by deploying instances

with a total cost w on vi. The relation of the minimum total

unprocessed traffic rates out of vi and its children can be

formulated as:

OPT (i, w) = max{0, min
w(l)+w(r)≤w

w(l),w(r)≥0

{
∑

srcf=vi

rf +OPT (2i, w(l))+

OPT (2i+ 1, w(r))−Deploy(i, w − w(l)− w(r))}} (5)

Eq. (5) states that OPT (i, w) equals 0 if there is a deploy-

ment plan able to process all unprocessed rates by deploying

instances with a total cost w in the subtree of vi; otherwise, it

equals the minimum total unprocessed traffic rate out of node

vi. We combine all possible allocations of the total cost w
among vi’s children and itself by changing w(l) and w(r).

To prove its optimality, let’s consider one of the optimal

deployments as Ω∗ when given a VNF deployment problem.

Here are some observations of Ω∗: (i) If Ω∗ deploys instances

with a fixed total cost w in the subtree of a vertex v, it should

process as much traffic rate as possible. In other words, the

total unprocessed traffic rate going out of v (upwards to its

parent) should be minimized with the allocated cost w. This

is because the more unprocessed traffic rate is out of v, the

larger cost the deployment of v’s ancestors is likely to have.

(ii) The unprocessed traffic rate passing through v comes from

two kinds of flows: flows with srcf = v (flows start at v) and

flows with some unprocessed traffic rate and srcf ∈ Tv\ v
(not-fully-processed flows coming up from its subtrees). (iii)

The total deployment costs of all subtrees of v’s children must

be no more than w. Suppose each child vertex vi deploys

instances with a total cost wi in the optimal deployment Ω∗,

then instances with a total cost w −
∑

vi∈Tv
wi ≥ 0 will

be deployed on vertex v. (iv) With a fixed value of wi for

the subtree of vi, its deployment plan should also have the

minimum total unprocessed traffic rate going upwards out of

vi in order to lower the potential cost of deployed instances of

vi’s ancestors. (v) As the optimal deployment should have the

minimized unprocessed traffic rate going out of v, the deployed

instances on v with a total cost w −
∑

vi∈Tv
wi should have

the maximum total processing volume.

Algorithm 1 Heterogeneous DP (HeteDP)

In: Sets of vertices V , edges E, flows F , VNFs M ;

Out: The minimum total cost of deployed VNFs and the

deployment plan Ω;

1: Initiate the array of OPT ;

2: Generate the array of Deploy;

3: for each node vi from bottom-up do

4: for w ∈ [0,
∑

v∈Ti
cv × wmax] do

5: Use the recurrence Eq. (5) to compute OPT (i, w);
6: if OPT (i, w) = 0 then break;

7: Find Ω with the minimum w making OPT (1, w) = 0;

8: return The deployment plan Ω.

With the insights above, our objective of the deployment

problem is equivalent to finding the minimum cost of making

the unprocessed traffic rate out of v1 as low as 0. Moreover,

the optimal deployment of a tree T with the root v1 is able to

be separated into a polynomial number of subproblems in its

children. The optimal solutions of its children with different

allocated cost combinations yield an optimal deployment to

v1, and we can build up solutions to these subproblems using

a recurrence. It is worth mentioning that there are exponential

combinations of the costs that are allocated to the vertex itself

and all subtrees of its children when the total cost is fixed. In

order to generate the optimal deployment plan, we need to list

all such combinations, which is exponential of the number

of v’s children and w. In this paper, we only discuss the

binary tree topology to reduce the number of combinations

to polynomial of w. As a result, we can generate an optimal

solution with an acceptable time complexity.

As for the item Deploy(i, w−w(l)−w(r)) in Eq. (5), we

should maximize it in order to minimize the total unprocessed

traffic rate out of vi. It means to process the maximum total

traffic rate by deploying VNF instances on vi with a cost of

(w − w(l)− w(r)), which can be formulated as following:

max
∑

m(i,j)∈Ωi

α(i, j) (6)

s.t.
∑

m(i,j)∈Ωi

wi(j) ≤ w − w(l)− w(r) (7)

|Ωi| ≤ ci (8)

The formulation is the same as the classic knapsack problem

[15] except the second constraint. In the knapsack problem,

we are given a set of items, each of which has a non-negative

weight and a distinct benefit. We need to find a subset with the

maximum total benefit subject to the constraints that the total

weight of the subset should not exceed specific values. The

processing volume αm and the setup cost wm correspond to

the benefit and weight in the knapsack problem, respectively.

We slightly modify the dynamic programming solution of the

knapsack problem proposed in [16]. We use vol(w) to denote

the maximum total processing volume that can be attained

with a total deployment cost no more than w. The value of

135

vol(w−w(l)−w(r)) is the solution to our problem. Suppose

vol(0) = 0, then the recurrence can be justified as vol(w) =
maxm∈M{αm+vol(w−wm)}. When the number of selected

items reaches cv , the total processing volume vol(w) keeps

unchanged by not adding more items even when the weight

w is not used up. This is because we need to control not only

the total cost less than w−w(l)−w(r), but also the number

of selected items less than the vertex capacity. Thus, we list

all combinations of possible deployments on vi and find the

feasible one with the largest processing volume as Ωv .

Lemma 1: The worst time complexity of generating the

Deploy array is O((cmax)
2 × wmax).

Proof: The modified knapsack problem can be solved in

O(cv × (w−w(l)−w(r))) time complexity. We find that the

solution of our modified knapsack problem is independent of

the deployment plan. In order to lower the time complexity

of HeteDP, we can calculate the Deploy array in advance and

refer to its values when applying the HeteDP algorithm. The

worst time complexity of the modified knapsack problem is

O(cmax × (cmax × wmax)) = O((cmax)
2 × wmax). This is

because the maximum deployment on a vertex is to deploy

the most expensive VNF on all available locations. �

We propose the HeteDP algorithm in Alg. 1. We initiate

all value of OPT (i, w) as 0 in line 1. We calculate the

recurrence in Eq. (5) for each vertex from bottom-up in lines

3-5. Whenever OPT (i, w) = 0, we break the current loop and

continue to do the next loop in line 6. We find the minimum w
making OPT (1, w) = 0 in line 7 and return the corresponding

deployment plan Ω by tracing back in line 8. We analyze the

time complexity of our algorithm as follows.

Theorem 2: The worst time complexity of HeteDP algo-

rithm is O(|V |4 × (cmax × wmax)
3).

Proof: HeteDP algorithm is a pseudo-polynomial time al-

gorithm using dynamic programming method. First, all |V |
vertices need to be traversed so that the algorithm has |V |
iterations. Second, in each iteration of a vertex from bottom-

up, we try all possibilities of the cost value w. The maximum

cost value is O(
∑

v∈V cv ×wmax) = O(|V |× cmax×wmax).
Next for a fixed cost value w for the subtree of a vertex v, we

need to list all combinations of allocating the cost w to itself

and its two children while ensuring w(l) + w(r) ≤ w. There

are at most O((|V |×cmax×wmax)
2) combinations. Then for

each combination, we need a constant time to calculate the

value of
∑

srcf=vi
rf+OPT (2i, w(l))+OPT (2i+1, w(r))−

Deploy(i, w − w(l) − w(r)) by referring to the OPT array

as well as the Deploy array. As discussed in Lemma 1, the

generation of all values in the Deploy array takes at most

O((cmax)
2×wmax) time and we only need to calculate it once.

We determine the minimum value by traversing the values of

all combinations in a O((|V | × cmax × wmax)
2) time and

calculate the value of OPT (i, w). Finally, the worst time com-

plexity is the number of iterations, times the maximum number

of cost value, times the maximum number of combinations of

a fixed cost value, which is O(|V | × (|V | × cmax ×wmax)×
(|V | × cmax × wmax)

2) = O(|V |4 × (cmax × wmax)
3). �

Note that we can also lower the time complexity by stopping

increasing w of OPT (i, w) in two cases: the first case is when

the smallest w for the vertex vi appears making OPT (i, w) =
0; the second case is when w reaches

∑
v∈Ti

cv×wmax. This is

because OPT (i, w) = 0 means that there is no unprocessed

traffic rate out of vi, meaning that instances with a cost w
can process all flows in the subtree of vi. A larger w is

unable to process any more flows, since no unprocessed flow

exists. In addition, finding the minimum value of w making

OPT (1, w) = 0 is our objective. The second case states the

natural upper bound of w that all available locations in the

subtree of Ti are deployed by the most expensive instance.

Theorem 3: HeteDP is optimal for heterogeneous VNF

deployment in a tree topology.

The detailed proof is omitted due to the optimal property

of the dynamic programming method.

B. Homogeneous VNF deployment in a tree topology

First we present a lemma to transform our objective into a

simpler equivalent form when there is only one type of VNFs.

Theorem 4: Minimizing the total cost of deployed instances

with homogeneous VNFs is equivalent to deploying the min-

imum number of instances.

Proof: As there is only a single type of VNF m, our cost

function can be converted to cost(Ω) =
∑

v∈V |Ωv| × wm =
|Ω|×wm. Since wm is a constant, it is the same as minimizing

|Ω|, which is the total number of deployed instances. �

Our objective is transformed to minimizing the total number

of deployed VNF instances when there is only a single type

of VNF m. Inspired by HeteDP, we also propose a dy-

namic programming based algorithm, called HomoDP, which

is simpler and more tractable than HeteDP. We replace the

total cost w by the total number of deployed instances n in

each subtree of vertices. We use OPT (i, n) to denote the

minimum total unprocessed traffic rate going out of node

vi by deploying n VNF instances altogether in the subtree

of node vi. Our target is to find the minimum n making

OPT (1, n) = 0. If flows with destinations within the subtree

of vi are unable to be fully processed by deploying n instances,

we have OPT (i, n) = ∞. We also prioritize processing flows

with smaller-height destinations. We use n(l) and n(r) to

denote the deployed instances in vi’s left and right subtrees,

respectively. There are n − n(l) − n(r) VNF instances to be

deployed on vi. We replace the Deploy(i, w − w(l) − w(r))
by (n − n(l) − n(r)) × αm. HomoDP’s similar recursive

formulation is omitted because of limited space.

Here we use the topology in Fig. 1(b) with the same

setting as an example to show the deployment procedure.

The tree has five nodes with capacities cv = 1, ∀v ∈ V .

There are four flows f1, f2, f3 and f4 with initial traffic rates

as r1 = 3, r2 = 3, r3 = 4, and r4 = 2. There is only

one type of VNF m with αm = 4. We aim to find the

smallest n such that OPT (1, n) = 0. For ease of reference,

we list the values of OPT (i, j) in Table III. We traverse

vertices from bottom-up by first calculating OPT (5, 0) =
r2 − 0 = 4. We have OPT (5, 1) = max{0, r2 − 1 × αm} =
max{0, 3 − 4} = 0. As c5 = 1, more than one instance are

136

TABLE III: The values of OPT (i, n).

�
�
�
�
��i
n

0 1 2 3 4

1 ∞ ∞ ∞ ∞ 0

2 ∞ 6 2 0 0
3 2 0 0 0 0
4 3 0 0 0 0
5 3 0 0 0 0

unable to be deployed resulting in OPT (5, n) = 0, ∀n≥2.

Similarly, we can calculate OPT (3, n) and OPT (4, n), ∀0≤
n≤ 4. Since f2 with dst2 = v2 is not processed by not

deploying any VNF in the subtree of v2 (n = 0), we

have OPT (2, 0) = ∞ indicating the infeasibility of the

deployment. The detailed calculation of OPT (2, 1) is that

OPT (2, 1) = max{0,min{r3+OPT (4, 1)+OPT (5, 0)−0×
αm, r3+OPT (4, 0)+OPT (5, 1)−0×αm, r3+OPT (4, 0)+
OPT (5, 0)− 1×αm}} = max{0,min{4+3+0− 0, 4+3+
0−0, 4+3+3−4} = 6. Similarly, we calculate other values of

OPT array in Tab. III. The smallest n making OPT (1, n) = 0
is 4. By tracing back the table, the optimal deployment Ω is

as shown in Fig. 1(b).

Theorem 5: The worst time complexity of the HomoDP

algorithm is O(|V |4 × (cmax)
3).

Proof: As HomoDP is simplified from HeteDP when wmax

is a constant, then the complexity in Theorem 2 is reduced to

O(|V |4 × (cmax)
3). �

Theorem 6: HomoDP is optimal for homogeneous VNF

deployment in a tree topology.

The detailed proof is omitted due to the optimal property

of the dynamic programming method.

V. VNF DEPLOYMENT IN A LINE TOPOLOGY

In this section, we simplify the tree-structured topologies

into lines in order to generate more efficient algorithms.

A. Heterogeneous VNF deployment in a line topology

In this subsection, we simplify the tree topology into a line

and propose a performance-guaranteed algorithm of deploying

heterogeneous VNFs. We are given a line topology L = (V,E)
with |V | nodes (vertices), which are labeled 1, 2, ..., |V | by a

line coordinate axis. For simplicity, we say that one vertex is

smaller (larger) than another vertex if its coordinate is smaller

(larger) and vice versa. Assume the source of each flow is

smaller than its destination no matter where its source and

destination reside in the line. This means that flows transfer

from left to right. When deploying one new instance of type m
on v, we omit the sequence number of the jth instance m(v, j)
by denoting the instance as m(v). The new deployment plan

is expressed as Ω ∪m(v). Before proposing our solution, we

introduce two definitions.

Definition 5 (benefit function): The benefit func-

tion, denoted as b(Ω), indicates the total processed traf-

fic rate of a deployment plan Ω, which satisfies b(Ω) =∑
v∈V

∑
m(v,j)∈Ωv

∑
f∈F λf

m(v,j).

Definition 6 (marginal benefit): The marginal benefit,

denoted as bΩ(m(v)) = b(Ω ∪ m(v)) − b(Ω), indicates the

Algorithm 2 Heterogeneous VNF deployment in Line

In: Sets of vertices V , edges E, flows F and VNFs M ;

Out: The deployment plan Ω (initialized to ∅);

1: while not all flows are fully processed do

2: Select m(v) with minm∈M
v∈V

cost(m(v))/bΩ(m(v)) to

handle superior flows;

3: Ω = Ω+m(v);
4: return The deployment plan Ω.

marginal contribution of processing flows by deploying a new

instance of type m on v beyond the current deployment Ω.

We analyze the property of the benefit function b(Ω). A

function f is submodular if and only if ∀S ⊆ T ⊆ N, ∀e ∈
N \ T , fT (e) ≤ fS(e). Then we prove that ∀m(v) /∈ Ω′, if

Ω ⊆ Ω′, the submodular property holds, i.e., b(Ω ∪m(v)) −
b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′).

Theorem 7: b(Ω) is a submodular function.

Proof: b(Ω) is an non-decreasing function, which is mono-

tone. Suppose two deployment Ω and Ω′ with Ω ⊆ Ω′.

It is intuitive that the more instances are selected, the less

unprocessed traffic rates remain, since the newly added m can

only process the unprocessed rate. The maximum marginal

benefit of a VNF instance m is αm because of its processing

volume limitation. If the newly added instance processes no

traffic rate in both Ω and Ω′, then b(Ω ∪ m(v)) − b(Ω) =
b(Ω′ ∪m(v))− b(Ω′) = 0. As long as m process some flows

in Ω′, it will process no less traffic rate in Ω. Then we have

b(Ω∪m(v))− b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′). Thus, b(Ω) is a

submodular function. �

Here we explain that our problem formulation in Section

III(B) can be transformed to the classic submodular set cover

problem [17]. Our objective cost(Ω) in Eq. (1) is an non-

decreasing function. The two constraints in Eqs. (2) and (4)

are included in the definition of our b(Ω) function. Specifi-

cally, the ground set of the benefit function b(Ω) limits the

available deploying locations within each vertex’s capacity,

and the marginal benefit limits the largest contribution of an

instance no more than its processing volume. b(Ω) is the non-

decreasing, submodular set function proved in Theorem 7. The

constraint in Eq. (3) corresponds to the covering requirement

of the set cover problem that each flow needs to be fully

processed. Then our problem can be transformed as:

min cost(Ω) (9)

s.t. b(Ω) ≥
∑

f∈F

rf (10)

Before introducing the solution, we sort flows in an alpha-

betical order of a tuple < dstf , srcf > (the ascending order

of destination and the descending order of source). We include

two new definitions.

Definition 7: (prior, superior) A flow f is prior to a flow

f ′ if: (1) dstf < dstf ′ ; (2) dstf = dstf ′ and srcf > srcf ′ .
A flow f is superior if no flow is prior to f .

137

TABLE IV: The values of cost(m)/bΩ(m(v)).

�
�
�
�

Ω
m(v)

m(1)m(2)m(3)m(4)m(5)m′(1) m′(2) m′(3) m′(4) m′(5)m′′(1) m′′(2)m′′(3) m′′(4) m′′(5)

∅ 2 2 2 2 2 3 1.5 1.5 1.5 1.5 4 1 1 2 2

{m′′(2)} 2 ∞ 2 2 2 3 ∞ 1.5 1.5 1.5 4 ∞ 2 2 2

{m(3),m′′(2)} ∞ ∞ ∞ 2 2 ∞ ∞ ∞ 3 3 ∞ ∞ ∞ 4 4

v1 v2 v3 v4 v5
f2

f1
f3 f4

m'' m' m

Fig. 2: Illustration of the HVPL algorithm.

The priority of flows indicates their order to achieve the

processing volume of an instance, and superior flows should

be processed first because of their small destinations or shorter

path lengths. We propose a greedy algorithm in Alg. 2, called

Heterogeneous VNF deployment in Line algorithm (HVPL)

to solve the deployment problem. We initiate the deployment

plan as an empty set in line 1. In lines 2-3, we iteratively

select m(v) with the minimum value of wm/bΩ(m(v)) to

handle superior flows. Then we add the deployment of the

new instance to the current plan Ω until all flows are fully

served. The deployment plan Ω returns in line 4.

Theorem 8: The worst time complexity of HVPL algorithm

is O(|V |2 × |M | × cmax).

Proof: In each round, we have at most |V | vertices and

|M | types of VNFs. The maximum number of rounds is to

place VNF instances in every available location in servers,

which is
∑

v∈V cv = O(cmax × |V |). Thus, the worst time

complexity of HVPL is the maximum number of rounds times

the choices in each round, which is O(|V | × |M | × (cmax ×
|V |) = O(|V |2 × |M | × cmax). �

To better understand Alg. 2, we use an example shown in

Fig. 2 to illustrate the deployment procedure. In this example,

the line topology has 5 vertices with cv = 1, ∀v ∈ V . We

are given a set of heterogeneous VNFs, M = {m,m′,m′′}.

Their processing capacities are α = 1, α′ = 2 and α′′ = 4,

and setup costs are w = 2, w′ = 3, and w′′ = 4, respectively.

There are four flows f1, f2, f3 and f4, whose paths are shown

in Fig. 2 and initial traffic rates are r1 = 1, r2 = 4, r3 = 1
and r4 = 1, respectively. The alphabetical order of flows

is f2 > f1 > f4 > f3. For each round, we calculate

wm/bΩ(m(v)), ∀v ∈ V,m ∈ M . For example, the algorithm

is then conducted as: (1) we list all possible deployments over

the current empty deployment plan Ω = ∅ in the second

row of Tab. IV. The smallest one is w′′/b(m′′(2)) = 1.

As a result, we deploy a m′′ instance on v2. We prioritize

processing the superior flowf2. (2) referring to the second row

of Tab. IV, the smallest one is w′/b{m′′(2)}(m
′(3)) = 1.5. As

a result, we deploy a m′ instance on v3 to process f1 and

f4. (3) referring to the third row of Tab. IV, the smallest is

w/b{m′′(2),m′(3)}(m(4)) = 2. Thus, we deploy a m instance

on v4 and so all flows are satisfied. We return the feasible

deployment plan Ω = {m′′(2),m′(3),m(4)}.

Theorem 9: The proposed Alg. 2, HVPL, can achieve a

deployment with at most H(maxm(v) b∅(m(v))) times of the

minimum cost, where H(d) =
∑d

i=1
1
i
.

Proof: Our VNF deployment problem has the same formu-

lation of submodular set cover [17] and the deployment plan

Ω is chosen exactly corresponding to its greedy algorithm in

Section 2 in [17]. Hence, the approximation ratio follows from

Theorem 1 in [17]. maxm(v) b∅(m(v)) is the maximum benefit

of only deploying a specific instance m. (∅: empty set) �

B. Homogeneous VNF deployment in a line topology

Theorem 10: Minimizing the total cost of deployed in-

stances with homogeneous VNFs is also equivalent to mini-

mizing the total amount of wasted processing volume.

Proof: From Theorem 4, |Ω| is minimized. Because∑
f∈F rf is a fixed value and αm is also a constant, |Ω| ×

αm −
∑

f∈F rf , which is the total waste processing volume

of deployed VNFs, is also minimized. �

Here we further simplify the settings by deploying ho-

mogeneous VNF in a line topology. We propose a greedy

algorithm, called Greedy VNF Plan (GVP), and prove its

optimality for minimizing the deployment cost. The algorithm

is shown in Alg. 3. The insight of GVP is to minimize the

total processing volume waste based on Theorem 10 when all

flows are satisfied. Superior flows are the first to be processed,

and GVP only deploys instances when no processing volume

is wasted or the superior flow reaches its destination. In GVP,

we sort flows in an alphabetical order in line 1. In lines 2-

10, we traverse vertices from left to right. When the vertex

v has remaining capacities and the total unprocessed traffic

rate of superior flows passing v can use up a new instance’s

processing volume αm in line 3, we deploy one new instance

on v in line 4. In lines 5-9, we handle the case that the superior

flows can not use up the processing volume of a new instance.

We reallocate the processing volumes of deployed VNFs in

line 10 while the deployment plan Ω is returned in line 11.

Theorem 11: The worst time complexity of GVP algorithm

is O(|V | × cmax).
Proof: We deploy VNFs for |V | vertices, and for each vertex

v, we place at most cv instances. In each loop we place at

least one instance in a constant time. The maximum number

of loops is
∑

v∈V cv = O(|V | × cmax). Thus, the worst time

complexity of Alg. 3 is the maximum number of loops, which

is O(|V | × cmax). �

For a better understanding, we use an example shown in

Fig. 3 to illustrate the deployment procedure. Each vertex

has a capacity of 1, i.e. cv = 1, ∀v ∈ V . There are

four flows f1, f2, f3 and f4, whose initial traffic rates are

r1 = 1, r2 = 4, r3 = 1, and r4 = 1, respectively. There is

only one type of VNF m with a processing volume αm = 2.

The alphabetical order of flows is f2 > f1 > f4 > f3.

138

Algorithm 3 Greedy VNF Placement (GVP)

In: VNF m and sets of vertices V , edges E, flows F ;

Out: the deployment plan Ω;

1: Sort flows in the alphabetical order;

2: for each vertex v from 1 to |V | do

3: while the sum of unprocessed traffic rate of superior

flows passing v is no less than αm and cv > 0 do

4: Allocate one new instance on v;

5: if the superior flow f with dstf ≤ v have some

unprocessed traffic rate then

6: if cv′ ≤ 0, ∀srcf ≤ v′ ≤ v then

7: return Non-existence of a feasible plan;

8: else

9: Allocate one VNF on max v′, ∀cv′ > 0, v′ < v;

10: Reallocate the processing volumes of all deployed

VNFs from left to right for flows in alphabetical order;

11: return The deployment plan Ω.

v1 v2 v3 v4 v5
f2

f1 f3 f4

m m m m

Fig. 3: Illustration of the HTMP algorithm.

First, we deploy one instance on v2 because f2 is the superior

flow and its unprocessed traffic rate is larger than αm. The

same happens to v3 so that we deploy one new instance. f2
is satisfied and f1 becomes the superior flow. Since v2 and

v3 have no remaining capacities, v1 is the largest vertex with

c1 > 0 and one VNF is deployed on v1. After that, f4 and f3
become the superior flows, whose sum of unprocessed traffic

rates is larger than αm on v4. Then we deploy one VNF on

v4. All flows are satisfied, shown in Fig. 3.

Lemma 2: By applying Alg. 3, a VNF instance on v has

some remaining volume only when: suppose f has the lowest

priority among all satisfied flows, then no flow f ′ with srcf ′ ≤
v and dstf ′ ≥ dstf has any unprocessed traffic rate. All flows

prior to f ′ certainly use up the capacity from the next vertex

of v to dstf .

Proof: Alg. 3 deploys a new instance on a vertex v only

when: (1) unprocessed traffic rate of superior flows passing

v is larger than the processing volume of a VNF instance;

(2) one flow f has some unprocessed traffic rate and there

is no capacity left from the next vertex of v to dstf . The

first situation has no processing volume waste. In the second

situation, the last instance with the remaining processing

volume has to be deployed; otherwise, the flow f cannot

be satisfied before it reaches its destination, since no vertex

capacity is available from v to its destination. �

Theorem 12: Alg. 3 is optimal for deploying the homoge-

neous VNF in a line topology.

Proof: We prove the optimality of Alg. 3 by induction. In

Theorem 10, we demonstrate that the objective is equivalent to

minimizing the total waste of deployed instances. We list all

situations that instances have remaining processing volumes.

10 20 30 40 50 60

Vertex number

60

80

100

120

140

160

T
o
ta

l
c
o
s
t

HeteDP

HomoDP

HVPL

GVP

Fig. 4: The impact of topology scale.

Suppose v1 is the smallest vertex with such an instance, then

all the other instances deployed on and before v1 have no

remaining volume. From Lemma 2, the instance has to be

deployed and no more unprocessed traffic rate goes right from

the vertex v1. Thus, there is no deployment that has the waste

less than Ω. Assume it is true for all vertices less than vk,

which indicates that no more superior unprocessed traffic rate

goes right from the vertex vk. Then the situation of the next

vertex, having an instance with some remaining volume, is

the same as the situation of the first vertex v. This is because

there is no unprocessed traffic rate of a flow f with srcf ≤ vk,

making us able to treat the next vertex of vk as the new origin.

Repeatedly, we find the smallest v > vk with an instance

having the remaining capacity. Additionally, we have proven

that it is true for the smallest v. So it is also true for the

vk+1 with an instance having the remaining capacity. To sum

up, Alg. 3 has the least amount of wasted volume, which is

equivalent to deploying the least number of VNFs. �

VI. EVALUATION

Simulations are conducted to evaluate the performances of

our proposed algorithms. After presenting the network and

flow settings, the results are shown from different perspectives.

A. Settings

Topology: We test the impact of the topology scale with

a fixed flow number of 1000 and basic settings as follows,

and the results are shown in Fig. 4. All their total costs

have little variance with the vertex number increment. Thus,

we only conduct our simulations in a line topology and a

random-generated tree topology, both of which empirically

have fixed 20 vertices. Each switch vertex is connected to a

server with an identical capacity of 10, i.e. cv = 10, ∀v ∈ V .

Additionally, traditional data center networks and WAN design

over-provision the network with 30−40% average network

utilization in order to handle traffic demand changes and

failures [18]. As a result, we assume each link has enough

bandwidth to hold all flows. This assumption eliminates link

congestion and ensures that the transmission of all flows is

successful, since routing failure is not the concern in this paper.

VNFs: We conduct the simulations with two sets of VNFs,

M and M ′. The first set M only includes one type of VNF m,

i.e. M = {m}. Its required server resource is 2, i.e. wm = 2.

The processing volume of one m instance is 8, i.e., αm = 8.

The second set M ′ includes three types of VNFs, i.e. M =
{m,m′,m′′}. Their processing volumes are α = 6, α′ = 8
and α′′ = 10, and costs are w = 1, w′ = 2 and w′′ = 3.

139

500 1000 1500 2000

Number of flows

50

100

150

200

#
 o

f
p
la

c
e
d
 V

N
F

s

GFT

Radom-fit

HeteDP

(a) Total number of deployed VNFs.

500 1000 1500 2000

Number of flows

60

80

100

120

140

160

180

T
o
ta

l
c
o
s
t

GFT

Radom-fit

HeteDP

(b) Total cost.

Fig. 5: Heterogeneous VNF deployment in a tree topology.

500 1000 1500 2000

Number of flows

10

20

30

40

50

60

#
 o

f
p
la

c
e
d
 V

N
F

s

GFT

Radom-fit

HomoDP

(a) Total number of deployed VNFs.

500 1000 1500 2000

Number of flows

4

6

8

10

A
v
e
ra

g
e
 s

e
rv

e
r

re
q
u
ir
e
d
 v

o
lu

m
e

GFT

Radom-fit

HomoDP

(b) Average server required volume.

Fig. 6: Homogeneous VNF deployment in a tree topology.

Traffic: All flows’ paths are fixed and their traffic rates are

also known a prior. Under the tree topology, the source of each

flow is a descendant of its destination. We adopt the flow size

distribution of Facebook data centers, which is collected in

10-minute packet traces of three different node types: a Web-

server rack, a single cache follower, and a Hadoop node [19].

More than 88% flows are less than 7 Mbps. As a result, the

traffic rate ranges from 0.1 to 6 Mbps with a granularity of

0.1 Mbps and is generated randomly in this paper.

B. Comparison algorithm and performance metrics

We include two benchmark schemes in our simulations:

• Sang et al. [8] propose algorithm GFT for deploying only

one type of VNF without the constraint of vertex capacity.

VNFs are not deployed until it is the destination of some

flows that need to be served.

• Random-fit randomly deploys heterogeneous VNFs on

random nodes on the paths until all flows are fully served.

GFT is only designed for deploying the homogeneous VNF

instances. When we need to deploy heterogeneous VNFs,

we randomly select a single type of VNFs each time and

apply GFT to deploy the instances. Additionally, if the vertex

capacity is not enough, we simply deploy the VNFs in its

nearest descendants with enough remaining capacities until all

flows are a hundred percent served.

We use three performance metrics: the total number of de-

ployed instances, the total cost (heterogeneous VNFs), and the

average server utilization (homogeneous VNF) for benchmark

comparisons. The total number of deployed instances is the

sum of deployed VNFs of each type. We also evaluate the total

cost corresponding to our objective function as shown in Eq.

(1). Since all vertex capacity settings are identical, the average

required server volume is equivalent to the total consumed

server volume divided by the total number of servers.

500 1000 1500 2000

Number of flows

50

100

150

200

#
 o

f
p
la

c
e
d
 V

N
F

s

GFT

Radom-fit

HVPL

(a) Total number of deployed VNFs.

500 1000 1500 2000

Number of flows

50

100

150

200

T
o
ta

l
c
o
s
t

GFT

Radom-fit

HVPL

(b) Total cost.

Fig. 7: Heterogeneous VNF deployment in a line topology.

500 1000 1500 2000

Number of flows

0

20

40

60

80

#
 o

f
p
la

c
e
d
 V

N
F

s

GFT

Radom-fit

GVP

(a) Total number of deployed VNFs.

500 1000 1500 2000

Number of flows

4

6

8

10

A
v
e
ra

g
e
 s

e
rv

e
r

re
q
u
ir
e
d
 v

o
lu

m
e

GFT

Radom-fit

GVP

(b) Average server required volume.

Fig. 8: Homogeneous VNF deployment in a line topology.

C. Results of the VNF deployment in a tree topology

Fig. 5 shows the results of the heterogeneous VNF de-

ployment in a tree topology. We have tested the algorithms

with 350 to 2010 flows. All their sources and destinations

are randomly generated. As for the total number of instances,

HeteDP deploys the fewest VNFs and outperforms signifi-

cantly better than the other two as shown in Fig. 5(a). The

numbers of deployed instances by the three methods are

approximately 3 times the numbers when we only need to

deploy a single type of VNFs. In Fig. 5(b), HeteDP has the

smallest average server utilization ratio. When there are 2100

flows, HeteDP uses 19.8% less of the total cost than Random-

fit and 17.8% less than GFT. This is because HeteDP checks

all possible deployment cases and selects the optimal one with

the minimum cost. Note that the execution time of HeteDP is

tens of GFT and Random-fit because of DP’s optimality.

Fig. 6 is the result of homogeneous VNF deployment in

a tree topology. We use the same flow set as the one in

Fig. 5. The results are shown in Fig. 6(a) and Fig. 6(b),

respectively. The number of deployed instances by HomoDP

ranges from 11 to 53, which is always much smaller than

the other two. When there are 2100 flows, HomoDP deploys

18.5% less VNFs than Random-fit and 16.7% less than GFT.

The gap among these three methods becomes larger with more

flows involved in the network. We also notice that GFT has a

much more similar performance to Random-fit in the general

topology. It can be explained that GFT is designed for the

tree topology and requires no constraint of vertex capacity. In

terms of the average server utilization, HomoDP is at least

17.1% less than the other two no matter how many flows are

generated because HomoDP considers the allocation of the

vertex capacity resources.

140

500 1000 1500 2000

Number of flows

50

100

150

200

T
o
ta

l
c
o
s
t

GFT

Radom-fit

HeteDP

(a) Heterogeneous VNFs in a tree.

500 1000 1500 2000

Number of flows

0

20

40

60

80

100

120

T
o
ta

l
c
o
s
t

GFT

Radom-fit

HomoDP

(b) Homogeneous VNFs in a tree.

500 1000 1500 2000

Number of flows

50

100

150

200

T
o
ta

l
c
o
s
t

GFT

Radom-fit

HVPL

(c) Heterogeneous VNFs in a line.

500 1000 1500 2000

Number of flows

0

50

100

150
T

o
ta

l
c
o
s
t

GFT

Radom-fit

GVP

(d) Homogeneous VNFs in a line.

Fig. 9: Total cost.

D. Results of the VNF deployment in a line topolgy

Fig. 7 shows the result of the heterogeneous VNF deploy-

ment in a line topology. Alg. HVPL also performs better

than GFT and Random-fit. We have tested the algorithms

with 350 to 2100 flows. The advantage of our algorithm

becomes sharper when there are more flows in the network.

This is because it is less possible to waste the spare processing

volumes in the deployed VNFs. With more flows, the traffic

load is so heavy that the total cost increases significantly.

This illustrates that the capacities in all servers are almost

used up and more processing volumes of deployed VNFs are

wasted. When there are 2100 flows, the total cost of our HVPL

algorithm is 32.0% less than Random-fit.

The results of the homogeneous VNF deployment in a line

topology are shown in Fig. 8(a) and Fig. 8(b). In Fig. 8(a),

the numbers of deployed VNFs by the three methods are

approximately one third of the numbers when we only need to

deploy heterogeneous VNFs. As the capacity in the server is

relatively sufficient, the increasing tendencies of the results are

gentle. Our GVP method has the best performance both in the

number of deployed VNFs and the average server utilization.

The difference is more obvious when the number of flows is

larger. This is because GVP is optimal to deploy a single type

of VNFs with the constraint of vertex capacity while the other

two are not. When there are 2100 flows, GVP deploys 21.6%

fewer VNFs than Random-fit and 14.4% fewer than GFT. In

terms of the server utilization, GVP always has the least ratio.

E. Results with a larger vertex capacity

To evaluate the impacts of vertex capacity, we enlarge each

vertex’s capacity from 10 to 20, i.e., cv = 20, ∀v ∈ V , and

other settings remain unchanged. Due to space limitation, we

only list the results of the total cost in all four cases of topolo-

gies and VNF types of configurations. The basic tendencies of

all curves are similar to the results with cv = 20, ∀v ∈ V . Our

algorithms and GFT improve their performances with a smaller

total cost. It’s worth mentioning that the difference between

GFT and each of our algorithms is reduced. This is because

a larger vertex capacity is closer to the case without the

vertex capacity constraint, where GFT is the optimal solution.

However, we find that Random-fit performs even a little worse

because of more available locations.

In summary, the simulations verify the correctness and

efficiency of our proposed algorithms in the tree and line

topologies. They also show that only considering a single type

of VNF deployment is too one-sided, because all types of

VNFs need to share the limited server resources. It is worth

mentioning that our HVPL and GVP can be used as efficient,

greedy algorithms with significant insights in all kinds of tree

topologies and traffic distributions. Additionally, the general

topologies can also be transformed to the combination of

several trees by grouping flows and then apply our algorithms.

VII. CONCLUSION

We study the joint VNF deployment and flow allocation

problem. We aim at minimizing the total cost of deploying

VNF instances when all flows are fully processed. We assume

that all flows request the same type of network functions. We

study the heterogeneous VNF deployment in tree topologies.

First, we prove the NP-hardness of the deployment and pro-

pose a DP solution. Then we introduce an improved DP solu-

tion for homogeneous VNFs in a tree topology. We reformulate

the deployment of heterogeneous VNFs in a line and propose a

performance-guaranteed strategy. An optimal greedy solution

is designed for homogeneous VNF deployment in a line.

It is worth mentioning that the vertex capacity constraint

in terms of the maximum number of VNF instances can be

extended to a constraint on the total resource capacity. Setting

up each type of VNF instance needs different amounts of the

vertex resource besides different setup costs. Hence, our DP

solution, HeteDP, needs to include one more dimension of

the available resource in the current vertex. In this case, the

Deploy item in the DP formulation becomes a 2-D knapsack

problem. Although the extension can still be addressed in a DP

formulation, we leave detailed treatment to our future work.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS

1629746, CNS-1651947, CNS 1564128, CNS 1449860, CNS

1461932, CNS 1460971, and CNS 1439672.

APPENDIX

PROOF OF THEOREM 1

Here we prove our theorem 1. First, checking the feasibility

of a deployment plan is in a polynomial time, since we can

check in O(|F |) time to make sure that all flows are fully

processed before their destinations.

Second, we show that Unbounded Subset Sum [20] is

reducible to the heterogeneous VNF deployment. Consider

a case of Unbounded Subset Sum with n numbers W =

141

{w1, w2, ..., wn} and a target w. In constructing an equivalent

case of the heterogeneous VNF deployment, we simplify the

deployment problem by having a line topology with unlimited-

capacity vertices. We are given a set of flows F , all of whose

source and destination are the leftmost and rightmost nodes in

the line. Each flow has an initial traffic rate rf and requests

the same network function. We assume the total traffic rate∑
f∈F rf is equal the target w of the Unbounded Subset Sum,

i.e.
∑

f∈F rf = w. We are given a set of VNF types M
with n types for the requested network function. The setup

costs of the VNF types are w1, w2, ..., wn, and their processing

volumes are the same to the setup costs, meaning αi = wi. The

sum of the processing volumes of the deployed VNF instances

should be no less than w since all flows needs to be fully

processed. When there is no processing volume wasted in a

deployment plan, the sum of the processing volumes is exactly

w. The total cost of the deployment is
∑

αj =
∑

wj = w,

which is also the minimum. If we can find such a deployment

of VNFs with the costs of w′
1, w

′
2, ..., w

′
k adding up to the total

cost w, then the corresponding numbers in the Unbounded

Subset Sum instance can also add up to exactly w.

Conversely, if there are numbers w′
1, w

′
2, ..., w

′
k ∈ W adding

up to exactly w in the Unbounded Subset Sum, then we can

deploy the corresponding VNF instances with setup costs

w′
1, w

′
2, ..., w

′
k; this is a feasible deployment plan with the

minimal total cost w. Consequently, since the Unbounded

Subset Sum is an NP-complete problem, our heterogeneous

VNF deployment is NP-hard. The theorem holds.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar, “Making middleboxes someone else’s problem:
Network processing as a cloud service,” in SIGCOMM 2012.

[2] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ra-
makrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice:
Dynamic backpressure and scheduling for NFV service chains,”
in SIGCOMM 2017.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “Opennf: Enabling innovation
in network function control,” in SIGCOMM 2014.

[4] J. Sherry, S. Ratnasamy, and J. S. At, “A survey of enterprise
middlebox deployments,” in Semantic Scholar, 2012.

[5] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic
middlebox actions using flowtags,” in NSDI 2014.

[6] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling
network function parallelism in nfv,” in SIGCOMM 2017.

[7] S. Seyyedi and B. Akbari, “Hybrid cdn-p2p architectures for
live video streaming: Comparative study of connected and
unconnected meshes,” in CNDS 2011.

[8] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably
efficient algorithms for joint placement and allocation of virtual
network functions,” in INFOCOM 2017.

[9] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in ICCCN 2015.

[10] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker,
“Virtualizing the network forwarding plane,” in PRESTO 2010.

[11] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou,
“Traffic aware placement of interdependent nfv middleboxes,”
in INFOCOM 2017.

[12] M. Rost and S. Schmid, “Np-completeness and inapproximabil-
ity of the virtual network embedding problem and its variants,”
Technical Report, Tech. Rep.

[13] ——, “Virtual network embedding approximations: Leveraging
randomized rounding,” arXiv preprint arXiv:1803.03622, 2018.

[14] S. Martello, “Knapsack problems: algorithms and computer
implementations,” Wiley-Interscience series in discrete mathe-
matics and optimization, 1990.

[15] G. B. Mathews, “On the partition of numbers,” Proceedings of
the London Mathematical Society, vol. s1-28, no. 1, pp. 486–
490, 1896.

[16] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

[17] L. A. Wolsey, “An analysis of the greedy algorithm for the
submodular set covering problem,” Combinatorica, vol. 2, no. 4,
pp. 385–393, Dec 1982.

[18] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-
deployed software defined wan,” in SIGCOMM 2013.

[19] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in SIGCOMM 2015.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990.

142

