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Abstract

We develop a local correlation method in the framework of Kohn-Sham density
functional theory (KS-DFT). The method is termed “embedded cluster density approx-
imation” (ECDA) and is a logical extension of the local density approximation. In
ECDA, an embedded cluster is defined for each atom based on the finite-temperature
density functional embedding theory. The clusters’ XC energy densities are calcu-
lated using high-level XC functionals. The system’s XC energy is then constructed by
patching these locally computed, high-level XC energy densities over the system in an
atom-by-atom manner. We derive the relationship between the embedding potential
and system’s KS potential. We show how to efficiently compute the system’s XC po-
tential which is the functional derivative of the patched XC energy with respect to the
system’s electron density. The accuracy of ECDA is examined by patching the exact
exchange (EXX) and the random phase approximation (RPA) correlation energy densi-
ties in a one-dimensional hydrogen chain, as well as by patching EXX energy densities

in several molecules. The agreement between ECDA and KS-DFT on total energies,



dipole moments, XC potentials, and KS eigenvalues is good in general as the clusters
are made larger. Based on these encouraging results, we expect ECDA to be a simple,

yet effective method to scale up high-level KS-DF'T simulations in large systems.



1 Introduction

Kohn-Sham density functional theory (KS-DFT)? is widely used for electronic structure
simulations. Its accuracy is determined by the approximation for the exchange-correlation
(XC) functional, and can be improved by developing high-level XC functionals.® High-level
XC functionals, such as the random phase approximation (RPA) correlation functional based
on the adiabatic-connection fluctuation and dissipation theorem (ACFDT)*'? and the ab

13,14 were actively de-

initio XC functionals built based on correlated wave function methods,
veloped in the past. A recent ACFDT functional with a fitted XC kernel reached the accuracy
of the couple cluster theory for predicting reaction energies of molecules.® Unfortunately,
high-level XC functionals often have high computational cost and steep computational scal-
ing, which hinders their application to large systems.

To scale up high-level KS-DFT calculations, we often exploit the idea of the nearsighted-
ness of electronic matter (NEM), which states that the electron correlation at a spatial point
7 is mainly determined by its local information, such as, the electron density and density ma-
trix surrounding 7, with the system’s chemical potential kept fixed. 6! NEM does not hold
in general, however was shown to be valid in various metallic and insulating model systems. '8
NEM has long been used to develop low-scaling correlated wave-function methods.® 2 The
idea of NEM has also been used to develop many other local correlation methods. In Yang’s
divide-and-conquer method,?! a system’s KS band energy was constructed based on locally
calculated KS band energies. In the charge-patching method,?® a system’s electron density
is obtained by patching locally computed electron densities. For the subsystem functional
method, a region is treated by an XC functional tailored for that region.?%?® For the many-
electron expansion method,? a system’s energy is systemically improved by computing the
energies of n-electron densities based on the energies of (n — 1)-electron densities. In the
density matrix embedding theory,?® the active space of impurity+bath is defined using the

Schmidt decomposition, which yields an active space of a size that is twice of the size of

the impurity. The local correlation energy was then calculated and patched over the sys-



tem.?Y In the framework of the reduced density matrix functional theory, a local correlation
method based on inverting local reduced density matrices was also developed.?' The idea of
local correlation was also exploited to develop linear scaling algorithms for computing exact
exchange (EXX) energy®? and RPA correlation energy. 3?3

In this work, we develop a local correlation method in the framework of KS-DFT to
directly calculate the XC energy of a large system with an atom-by-atom patching scheme.
The method is termed “embedded cluster density approximation” (ECDA) which can be con-
sidered as a natural extension of the local density approximation? (LDA). Local embedding
methods have been actively developed to investigate the region of interest in large systems
with high-level methods, with the rest of the system treated by appropriate, low-cost meth-
ods. The region of interest can be defined by partitioning the system’s electron density 3649
and density matrix.?*%Y% With ECDA, we aim to obtain accurate electronic structures in
the entire system by performing embedding calculations on all the atoms and stitching the
embedding results over the system seamlessly. In our recent XC potential patching method
(XCPP),* a system’s XC energy was also obtained by patching atomic XC energy densities.
The main difference between ECDA and XCPP is how to compute the system’s XC poten-
tial. In XCPP, the XC potential of a cluster is calculated and is then truncated to only keep
the part (called atomic XC potential) on the cluster’s central atom. The obtained atomic
XC potentials were stitched together to obtain the system’s XC potential. One drawback
with that approach is that the accuracy of these atomic XC potentials is affected by the
clusters’ boundaries. That drawback is completely avoided by ECDA in which the system’s
XC potential is computed by directly taking the functional derivative of the system’s patched
XC energy with respect to the system’s electron density.

Some features of ECDA are listed below. The clusters are embedded in the system using
the finite-temperature density functional embedding theory (FT-DFET),% which ensures
that the partitioning of the system’s electron density among a cluster and its environment is

42,45,55

unique and does not require the use of locally supported basis functions, such as Gaus-



sian functions. Therefore, ECDA can work with delocalized basis functions, such as plane-
wave basis functions. ECDA is applicable to non-metallic, metallic, and finite-temperature
quantum systems, as long as NEM holds in these systems. To calculate a cluster’s XC energy
density, its electron density is required to be v-representable. This is guaranteed in ECDA
in which a cluster’s electron density, defined with FT-DFET, is always v-representable by
construction.

The paper is organized as follows. We discuss how to define embedded clusters based on
FT-DFET. We then construct the system’s XC energy by patching these locally computed,
high-level XC energy densities in an atom-by-atom manner. We derive the relationship be-
tween the embedding potentials and the system’s KS potential, based on which we show how
to efficiently compute the system’s XC potential using the first-order perturbation theory.
The steps of performing ECDA calculations are then given. The accuracy of ECDA is in-
vestigated by patching EXX+4RPA energy densities in a one-dimensional Hyy chain and by

patching EXX energy densities in three molecules (ester, Cl-tetracene, and tripeptide).

2 Theoretical Methods

2.1 Define embedded clusters

The first step in ECDA is to group atoms to define clusters for each atom. Taking the atom
j for example, we select its neighbors up to IV, bonds away to define its cluster, termed
“cluster 7. The rest atoms are grouped to define the environment j. The atom j is called
the central atom.

For each atom, we calculate its Becke weight.?® The weight of the atom j is defined as

Py(r)

. 1
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wj(r) =

with the cell function Pi(r) = [, si;(r). si; is the switching function defined based on



h;j(r) that measures the relative position of a point r to two atoms i and j

R, —r|- R, —r
htr) = PRl =R, o)
i j

where R; and R, are the coordinates of atoms ¢ and j, respectively. Becke defined s;;(r) =
(1 = f3(hij(r)))/2 recursively with fi(z) = z(3 — 2%)/2 and fi(z) = fi(fe—1(x)). To obtain
softer weights that are easier to be represented on a uniform grid, we set s;;(r) = (1 —

fi(hij(x)))/2.
The weights of the cluster j and the environment j are the sum of the weights of the

atoms in the cluster and environment, respectively,

() = 3 (1) 3)
wenv,j(r) = Z wm<r)7 (4)

where n and m run over the atoms in the cluster and the environment, respectively.

2.2 Partition the system’s electron density among the clusters and

their environments

We now proceed to partition the system’s electron density among the cluster j and its

environment. First, we define their regions by partitioning the system’s KS potential vig as

Vet (T) = Wepnj (T) Vs (1) + (1 — Wt (1)) (10 + i) (5)

Venw.j (1) = Weno,j (£)0rcs (1) + (1 = Weno (1)) (12 + v3), (6)

where p is the system’s chemical potential. We note that v, ; and v, ; reach a potential
plateau of the height of y + v, at distant. Due to the inclusion of p in above definitions,

this potential plateau is always higher than the system’s chemical potential by v,. With a



relatively large v, (which is set to 0.5 a.u. in this work), ve,, ; and ven, ; confine the cluster
and the environment’s electron densities.
We employ FT-DFET? to partition the system’s electron density, such that, the sum of

the cluster and the environment densities matches the system’s density p;.;(r)

pclu,j(r) + Penv,j (I‘) = ptot(r>~ (7)

This condition is realized by applying an appropriate embedding potential ve,, ; to both the

cluster and its environment. The cluster and the environment’s KS potentials become

Vi (1) = Vet (¥) + Vemb,j(r) (8)
Vs (1) = Venu (1) + Ve (). (9)

Pein,; () and peny ;(r) in Eq. 7 are obtained by solving the KS equation with the above KS
clu,j env,j

potentials vy ¢’ and vy ¢, respectively. To solve for v, ; that makes Eq. 7 hold, we extend

the Zhao-Parr method®? to two quantum systems by adding a penalty function Cy

erfe(n|r —r'|)

1
Cy = /\5 // drdr’ Ap(r)Ap(r') Ey— (10)
to the KS Hamiltonians of the cluster and its environment, with
Ap(r) = pclu,j (I‘) + penv,j(r) - ptot(r)- (11)

The Coulomb operator in Eq. 10 is screened by the complementary error function to avoid
the charge sloshing® that makes the convergence of vey ; slow. A screening length 7 of 3 A

works well in our calculations. The penalty term introduces a penalty potential

oA(r) = A / ' A p(r) el = 1) (12)

v — |



to the cluster and environment’s KS equations

1 , o

( =5V Vo + Ué) g = eIy (13)
1 . 4 4

( = 5V o Ve + v?a) o = e e (14)

where ¢¢/%J and ¢¢"*J are the n-th KS orbitals of the cluster j and the environment j,

ENV

clu
n n

7 are the KS eigenvalues. Eqgs. 13 and 14 are solved with the

respectively. %I and e

numbers of electrons in the cluster and the environment specified as

N — / 0 prog (£ )t () (15)

Nenv,j :/dr/ptot(r/)wenv,j(r,)- (16)

After solving Eqs. 13 and 14, the cluster and the environment’s densities are obtained as

pclu,j (I‘) = 2 Z f?ile (¢$Llu,j (I‘))Z (17)
Penv(T) = 2)  fE (05 (v))?, (18)

where f%J and f¢"J are the occupation numbers. v} is obtained by solving the coupled

equations 12, 13, and 14. As X — oo, Ap — 0 and vp(r) becomes the embedding potential

Uemb,j (I') .

2.3 Construct the system’s exchange-correlation energy through an
atom-by-atom patching

After the density partitioning, the cluster j’s XC energy density £ (r), by integrated which

we obtain the cluster’s XC energy, is computed based on its KS orbitals. The atomic XC



energy of the atom j is obtained as
gt = [ aredto ), (19)

based on which the system’s XC energy is constructed through an atom-by-atom patching

scheme
Na.tom

By = Z Egéomm (20)

n=1

where n runs over all the atoms. In this work, we patch EXX and RPA correlation energy
densities in a 1D hydrogen chain and patch EXX energy density in several molecules.

There are two popular definitions for EXX: one is based on the Hartree-Fock (HF) ex-
change and another one is based on ACFDT. The HF EXX is defined as

B = - Z fifj // d?’rd:sr'wi(r)%(r)%<r/)¢i(r/). (21)

v — |

The ACFDT EXX is defined as®!

BN = - Zfz’cz’j // dgrd3r’¢i(r)wj(r>¢j (r’)%(r’)j (22)

v — /|

where ¢;; = 1 + sgn(e; — €;) and {¢;} are the KS eigenvalues. These two definitions are
identical if the occupation numbers {f;} are integers, i.e., either 0 or 1.

In ECDA, we employ ACFDT EXX to calculate the clusters’ EXX energy densities, since
the obtained clusters’ XC energy densities better approximate the system’s EXX energy
density. The reason for not using HF EXX is that a cluster’s exchange holes n,(r,r’),
defined based on HF EXX, do not obey the sum rule ([ d*r'n,(r,r’) = —1), if the cluster’s
KS orbitals are fractionally occupied.®? On the other hand, clusters defined with FT-DFET
often have fractionally occupied KS orbitals. The system’s exchange holes which satisfy the

sum rule then cannot be well approximated by the clusters’ exchange energy densities defined



based on HF EXX. This problem is avoided by computing clusters’” EXX energy densities
based on ACFDT EXX, since exchange holes defined based on ACFDT EXX always satisfy
the sum rule,% no matter the occupation numbers are fractional or integral. We define the

energy density of ACFDT EXX as

dr, LiT2)Y5(r2)

|r — o

55XX(I') == Z ficijhi(r);(r) (23)

To define RPA correlation energy density, we start with the RPA correlation energy
1 o0
ERPA — 2—/ dwTr[In(1 — Vg Xo(iw)) + Voo Xo(iw)], (24)
T Jo

Veow 18 the matrix representation of the Coulomb potential vey(r,r’) = 1/|r — r/| in the
basis of grid points. Xj(iw) is the KS linear response function yo(r,r’;iw) (at an imaginary
frequency iw) represented in the basis of grid points. We define RPA correlation energy

density at the grid point j

1 o .
<) = g | M) (25)

where AV is the volume element and M ; denotes the (j, j)-th element of the matrix M

M (iw) = In(I — V2 X, (iw)V2) + V2 X (iw) V2 (26)

coul coul coul coul”

2.4 Calculate the system’s exchange-correlation potential

The system’s XC potential v,.(r) is calculated by solving the optimized effective potential

(OEP) equation 467

5ptot(r/>

52?(1) - / dr/”“(r/)avm(r)
/

dr' v (r") xo(r, '), (27)



where xo(r,1’) is the system’s KS linear response function.

To solve for v,.(r), we need 0 E,./dvks(r). First, we show that this derivative exists. The
proof is based on our recent proof that, for a KS system at finite temperature, the mapping
between its KS potential and the embedding potential is one-to-one.® Therefore, vemp.; 1 a
functional of vigg. On the other hand, the cluster j’s electron density pgs ; is a functional
of Vs and Vemp j, and therefore pg, ; is a functional of vig only. F,. is a functional of the
electron densities of all clusters; therefore, F,. is a functional of vig. This proves that the
derivative 0 E,./d0vks(r) exists.

We then have

Nafom

OF,. g dectud (')
- = dr’w< I'/ xc—. 28
(5’0[(5(1‘) ; / ]< ) (SUK5<I') ( )

To compute 6% (r') /dvks(r), we fix the number of electrons (N, ;) in the cluster j and
also fix the system’s chemical potential x in the definition of vy, ;(r) (Eq. 5). If we do not
fix y, the interaction between the system’s KS potential vgg(r) and €7 (r’) will be of long
range, which violates NEM. To explain this, we note that any change in vgg at distant will
cause a change in p which in turn will cause a change in vy, j(r). Ve ;(r) will then cause a
change in the cluster j’s XC energy density.

By fixing Ny, ; and p, %7 is a functional of v}%’j , and we have, by the chain rule,

clu,j (/! clu,j (! clu,j
6€xc (I' ) _ /d L 5€zlc '<I' ) 6UKS (rl>7 (29)
Svics(r) dvshed (ry) dvks(r)

With v%’j defined in Eq. 8, we have (with u kept fixed)

0vjes’ (r1) Ve, (r1)
= Welu,j o(r — . 30
e A T o
Combining equations 29, 30, and 28, we have
0.
e 31
oy = P2 (E) £ ). (31)
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with

Natom
pi(r) = Y y(r)wa(r) (32)
j=1
N,
B atom 5U8mb j ( )
pg(I‘) = Z /drly] 1'1 (SUKS< ) (33)
where y; is defined
580lu,j (I‘/)
(r) = [ dr'w;(r)) e, 34
) = [ a0 S 34

p1(r) accounts for the change of the clusters’ XC energy densities due to the change of the
system’s KS potential with the embedding potentials fixed. po(r) accounts for the change
of the clusters” XC energy densities due to the change of the embedding potentials with the

clu

system’s KS potential fixed. To compute y;, we need to compute <27 /§u ’] The analytical
expression of y; for ACFDT EXX is given in Appendix A. For RPA correlation energy,
552{}%A( )/6v5d (v') s calculated using the central finite difference in the MATLAB code
by perturbing v<%(r) at each grid point by £0.001 a.u.. eifﬂ’{g 4(r) is the RPA correlation
energy density of cluster ;.

Now, the task is to efficiently calculate py(r) without explicitly computing 0vems ;/dvis.

We first derive the connection between ven;; and vkg. By perturbing vgg, the system’s

density p;,; changes as

dpior(r) = /dr'XO(r,r’)(SvKS(r’). (35)

The embedding potential vey,; ; is adjusted such that the sum of the cluster and environment’s

electron densities still matches the system’s density

5ptot (I‘) = 6pclu,j (I‘) + 6penv,j (I‘)

= /dr’ ol (e, ) ouSd (v + /dr’ oI (v, 1) St (1) (36)

12



with

0ULs (1) = Oemp (1) + Wern j (r)dvics (r) (37)
OV (¥) = S0ermnj (1) + Wi (1)0urcs (). (38)

Same to the derivation of Eq. 28, above variations are performed with cluster j’s electron
number and chemical potential kept fixed. Combining equations 35, 36, 37, and 38, we

obtain

67] bj(r) lw.q i\ —
emao, _ d i clu,j env,) 1 "
Svrcs(r) / r(xo Y +xo ) (rr")

env,j

X [o(r”, 1) = xg " (1" ¥ ) weau (1) = X5 (2 ¥ Ve s ()] (39)

Inserting Eq. 39 to Eq. 33 and defining

S = [ @06 ) ), (10
pa(r) becomes
Natom . .
pae) = Y [ o) = G D) D) (4D
j=1

To avoid inverting the KS linear responses in Eq. 40, z; is obtained by solving the linear

system

l/ffw?ﬂnﬂ+w?m@ﬁﬂ4@3=w@> (42)

using conjugate gradient method. The product between a KS linear response function and
a vector is calculated by solving the Sternheimer equation derived for KS systems with
fractionally occupied KS orbitals.%® This is necessary for ECDA, because clusters’ KS orbitals
are often fractionally occupied. After obtaining z;, p, is also calculated by solving the

Sternheimer equation without explicitly constructing these KS linear response functions in

13



Eq. 41.

To summarize, the steps of performing ECDA calculations are:

Step 1:

Step 2:

Step 3:

Step 4:

2.5

Solve the system’s KS equation with a KS potential vgg(r). For the initial guess,
we set vig to the KS potential from a converged KS-DFT-LDA calculation. Obtain
the system’s electron density pi(r). Update the numbers of electrons in clusters
and environments based on Eqs. 15 and 16. Update {vg, ;(r)} and {ven, ;(r)} with

vis(r) and the system’s chemical potential .

Select an atom j. Partition the system’s electron density among its cluster and the
environment based on FT-DFET.5® Calculate the cluster’s XC energy density using

a high-level XC functional.
Repeat Step 2 for all the atoms.

Calculate the system’s XC energy via the atom-by-atom patching (Eqgs. 20 and 19).
Compute JE,./dvks based on which we calculate the system’s XC potential v,.(r)
by solving the OEP equation 27. Update vkg(r). If vgg(r) is not converged, go back

to Step 1. In practice, the convergence of vgg is accelerated by Pulay mixing. %

Extend the application scope of ECDA by treating the Kohn-
Sham systems of the system, clusters, and environments at fi-

nite temperature

In ECDA, the system’s KS orbitals are fractionally occupied according to the Fermi-Dirac

(F-D) statistics at temperature 7. This is important for ECDA to be applicable to a wide

range of materials. The reason is that the electron density of a quantum system having static

correlation cannot be represented by a pure-state density (formed by KS orbitals with integral

occupation numbers) without violating the Aufbau principle. > A system’s electron density

is called non-interacting ensemble v-representable (EVR), if its KS orbitals are occupied

14



following F-D statistics.™ It was hypothesized that the mapping between interacting EVR
densities and non-interacting EVR densities is one-to-one.™ This hypothesis was, at least,
true for lattice quantum systems.” If this hypothesis is true in general, by treating the
system’s KS system at finite temperature, ECDA is applicable to a wide range of interacting
electronic systems. In addition, in ECDA we also treat clusters’ and environments’ KS
systems at the same temperature 7.

We point out that the temperature 7" is only used to generate non-interacting EVR
densities. The clusters’ XC energy densities are still computed using the XC functionals
constructed for zero-temperature electron systems. Therefore, in practice we need to set T
low enough to make it valid to employ these zero-temperature XC functionals. Note that
ECDA is also applicable to systems at finite temperature. We just need to set T to that
temperature and employ finite-temperature XC functionals”® ™ to compute clusters’ XC

energy densities.

3 Numerical details

In all ECDA calculations, KS orbitals of the systems, clusters, and environments are occupied
according to the Fermi-Dirac statistics, with a smearing temperature of 0.05 eV unless spec-
ified. ECDA is implemented in a 1D KS-DFT program implemented in MATLAB.™ Details
of this 1D KS-DFT program was given in Ref.%’. The performance of ECDA is investigated
on a bond-alternating Hyy chain. The lengths of the short and long bonds are 1.8 bohr and
2.644 bohr, respectively, and therefore covalent bonds are formed in an alternating manner.
LDA XC functional for one-dimensional systems are taken from Ref.®! and Ref.%2. A soft
Coulomb potential vep (7, 7) = 1/y/a + (z — 2/)? with a = 1.0 bohr is used to describe the
electron-electron and ion-electron interactions. The nuclear charge of the pseudo H atom is
1.2. A grid spacing of 0.33 bohr is used in all calculations, which converges KS-DFT-LDA

energies to better than 0.1 mHa/atom. To compute the RPA correlation energy, the integral

15



over frequency is evaluated with Gauss-Legendre quadrature with 15 nodes. The maximum
frequency is set to 10 a.u.. To partition the system’s electron density among a cluster and
its environment, we use the extended Wu-Yang method developed in our previous work. %3

We also implement ECDA in the ABINIT program.® We perform ECDA-EXX calcu-
lations on several molecules. Their geometries are relaxed by ABINIT using the Perdew-
Burke-Ernzerhof XC functional.®> ECDA calculations are performed with a relatively small
kinetic energy cutoff of 600 eV to reduce the computational cost of solving the Sternheimer
equation® and EXX calculations. For the calculations of bond energies and bond rotation
energies, a 400 eV kinetic energy cutoff is used to further reduce the computational cost of
ECDA. EXX energy and its potential are calculated in real space by computing the integral
[ dr3¢;(r')¢;(r")/|r — r'| using the Poisson solver implemented in ABINIT.®¢87 To partition
a system’s electron density among a cluster and its environment, we employ the modified
Zhao-Parr method discussed in Section 2.2. Eq. 12 is efficiently calculated with plane wave
basis functions.®® v is obtained by solving the coupled equations 12, 13, and 14, and the
convergence is accelerated by using Pulay mixing.%® The contour plots of EXX potentials
are produced using VESTA.® The details of solving the OEP equation 27 and Eq. 42 are

given in the Supporting Information.

4 Results and discussions

4.1 ECDA-RPA calculations of a bond-alternating, one-dimensional

hydrogen chain

In ECDA, it is required that the system’s electron density matches the cluster’s electron
density inside a cluster, that is, puu(r) — pe(r) for r deep inside the cluster. This is
observed in Fig. 1(a) which shows the partitioning of the electron density of Hsy among
a cluster and its environment. The cluster is defined for the atom #10 by including its

neighboring atoms up to the second nearest neighbors to define the cluster. We find that

16



the cluster’s electron density matches the system’s density inside the cluster. Furthermore,
the cluster’s and the environment’s densities are well localized in their regions due to the
potential plateau (p + vp) from vy, ; and ve,,; (Egs. 5 and 6). The embedding potential
for this partitioning is given in Fig. 1(b). It fluctuates mostly at the interfaces between the
cluster and the environment. The reason is that the density matching condition (Eq. 7)
can hold inside the cluster and the environment without much help from the embedding
potential. This is due to the fact that vy, ; and ve,, ; match the system’s KS potential inside

the cluster and the environment, respectively.
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Figure 1: (a) Partitioning of Hyy’s electron density among the cluster (larger red dots) and
its environment (smaller black dots). The cluster is defined for the atom #10 (marked by
the green dashed circle). (b) The embedding potential for this density partitioning.

The accuracy of ECDA is assessed by performing ECDA-RPA calculations on this 1D
H chain: The EXX and RPA correlation energy densities are patched over the chain to
construct the system’s EXX-+RPA energy. Fig. 2 gives the energies for stretching the Hyo-
H bond. The benchmark is from self-consistent KS-DFT-RPA calculations. ECDA-RPA
calculations are performed self-consistently using different cluster sizes. With N, = 2, the

errors per atom are below 6 mHa for all bond lengths. As we increase the cluster sizes, the
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errors decrease quickly, however in a zigzag way (Fig. 3). We believe that this zigzag behavior
of convergence is an intrinsic property of density partitioning. This zigzag convergence was
also observed in Ref.?® in which Yang’s divide-and-conquer method was used to patch the

Hartree-Fock energy in molecules.
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Figure 2: Energy curves for stretching the Hig-H bond from self-consistent KS-DFT-RPA
and self-consistent ECDA-RPA (with N, =2, 3, and 4) calculations.

A stringent test of the accuracy of ECDA is to compare the XC potentials from self-
consistent ECDA-RPA and self-consistent KS-DFT-RPA (benchmarks) calculations. The
results are given in Fig. 4. ECDA XC potentials agree reasonably with the benchmarks,
except that the fluctuation of ECDA XC potentials is less. ECDA XC potentials are improved
as we make the clusters larger, however, again in a zigzag manner. We observe an error
cancellation between ECDA’s EXX and ECDA’s RPA potentials: Wherever ECDA’s EXX
potential is higher /lower than the benchmarks, ECDA’s RPA potential is lower /higher than
the benchmarks. This error cancellation is due to the fact that the exchange hole is partially

cancelled by the RPA correlation hole as observed in Ref.®’. EXX+RPA energy is then more
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Figure 3: Error in total energy per atom, (EESPA — EFES) /N .., for different cluster sizes.

EECPA and EES are total energies from self-consistent ECDA-RPA and self-consistent KS-

DFT-RPA calculations, respectively. The bond length of H19-H is set to 1.7 bohr.
nearsighted than either EXX energy or RPA correlation energy. This suggests that the error
in ECDA’s EXX+RPA potential is smaller than the error in either ECDA’s EXX potential
or ECDA’s RPA correlation potential. This is the reason for the observed error cancellation
between ECDA’s EXX and RPA correlation potentials.

Next, we examine the importance of including the dependence of the embedding potential
on the system’s KS potential in the calculation of the system’s XC potential. The system’s
XC potential is computed based on dF,./dvkg(r) which contains two components: p;(r) and
pa(r) (Eqs. 32 and 33). Fig. 5 shows pi(r) and p(r), and compare p;(r) + po(r) with the
benchmark § EEXX+RPA /5y pi(r), pa(r), and the benchmarks are all computed based on
the KS orbitals from self-consistent ECDA-RPA calculations with N, = 3. Fig. 5 shows
that both p; and p, deviate significantly from the benchmark, however, the sum of them is
close to the benchmark. This indicates that both p;(r) and ps(r) contribute significantly to
dE,./dvks(r). The large contribution from ps(r) indicates that it is important to consider
the dependence of a cluster’s XC energy density on its embedding potential (which depends
on the system’s KS potential) in the calculation of 0 E,./dvks. Such dependence was ignored

in our previous XCPP method,?® in which a cluster’s XC potential was calculated with its
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non-self-consistent ECDA-RPA calculations. Both calculations are based on the KS orbitals

from KS-DFT-LDA calculations. For brevity, only the first ten H atoms are shown due to
the symmetry and are marked by the black dots.

20



embedding potential kept fixed.
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Figure 5: The two components of 0 FE,./0vks(r): pi(r) and ps(r). Both are calculated with
Ny = 3. The sum of them are compared to the benchmark § EEXX+RPA /5y o(r). H atoms
are marked by the black dots.

The accuracy of ECDA-RPA calculations is further assessed by comparing the KS eigen-
values from self-consistent KS-DFT-RPA and self-consistent ECDA-RPA calculations. In
Fig. 6, a good agreement between KS-DFT-RPA and ECDA-RPA is observed for both oc-
cupied and several lowest unoccupied states. ECDA-RPA predicts a KS gap of 3.19 eV for
all cases (N, = 2, 3, and 4), which agree well with the KS gap 3.17 ¢V from KS-DFT-RPA.

4.2 ECDA-EXX calculations on molecules

The performance of ECDA is also investigated on three molecules by patching their EXX
energy densities. The molecules are (a) ester, (b) Cl-tetracene, and (c) tripeptide, with their
structures given in Fig. 7. The reason for choosing them is that charge is redistributed in
these molecules. For example, in ester, there is a charge transfer between O1 and C1, and

between C1 and O2. In Cl-tetracene, there is a charge transfer between C1 and chlorine. In
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Figure 6: KS eigenvalues from self-consistent KS-DFT-RPA and self-consistent ECDA-RPA
(with N, = 1, 2, and 3) calculations.

tripeptide, there is a charge transfer along C-O and N-H bonds. In addition, tripeptide has a
large dipole moment along its backbone. Thus, these molecules are good testbeds for inves-
tigating ECDA’s accuracy for studying heterogeneous systems where charge redistribution
takes place.

We first determine the appropriate penalty coefficient A in the Zhao-Parr method. Table
1 shows the convergence of total energies, dipole moments, and KS gaps with respect to A. In
these ECDA-EXX calculations, the clusters are defined by including the neighboring atoms
up to three bonds away (i.e., N, = 3). We note that a very large A makes the convergence of
Zhao-Parr method slow, which is a common problem with penalty methods. Thus, we try to
set A\ as small as possible. Table 1 shows that for ester and Cl-tetracene A = 50 converges the
total energies, dipole moments, and KS band gaps within several milliHartrees, 0.1 Debye,
and 0.1 eV, respectively; therefore, A = 50 is used in their following ECDA-EXX calculations
unless specified. For tripeptide, A = 20 is used in its later ECDA-EXX calculations.

Table 2 gives the convergence of ECDA-EXX with the cluster sizes. The benchmarks are

from self-consistent KS-DFT-EXX calculations. We observe that ECDA energies converge
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(b) Cl-tetracene
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Figure 7: Structures of (a) ester molecule, (b) Cl-tetracene, and (c) tripeptide used for
ECDA-EXX calculations. H, C, N, O, S, and Cl atoms are white, brown, light blue, red,
yellow and green, respectively.

Table 1: Convergence of total energies (in Hartree), dipole moments (in Debye), and KS gaps
(in eV) from self-consistent ECDA-EXX calculations with respect to the penalty coefficient A
in Zhao-Parr method. In the ECDA-EXX calculations, the clusters are defined by including
atoms up to the third nearest neighbors.

A=20 A=50 A=100

ester energy  -91.425 -91.416 -91.415
dipole 1.90 1.90 1.97
KS gap 3.41 3.36 3.40

Cl-tetracene energy -120.538 -120.522 -120.520
dipole 2.37 2.38 2.38
KS gap 1.07 0.94 0.84

tripeptide energy -169.201 -169.196 -169.200
dipole 5.51 5.01 5.52
KS gap 3.04 3.05 3.01
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to the benchmarks as we increase cluster sizes. With N, = 3, the errors in total energy per
atom are 3 mHa, 1 mHa, and 7 mHa for ester, Cl-tetracene, and tripeptide, respectively.

We now focus on the dipole moments. Table 2 shows that, for ester and Cl-tetracene, their
ECDA dipole moments with N, = 3 agree well with the benchmarks. This good agreement
can be explained by noting that the clusters defined with N, = 3 are large enough to contain
the atoms that contribute to the dipole moments. For example, the dipole moment of ester
is mainly formed among O1, C1, and O2. With N, = 3, the cluster of O1, the cluster of
02, and the cluster of C1 all contain O1, O2, and C1. Thus, the EXX energy density in the
region of O1, C1, and O2 can be accurately patched. This well reproduces the EXX potential
in that region, which in turn well reproduces the dipole moment. For Cl-tetracene, its dipole
moment is mainly formed between Cl and C1. Since C1 participates in the delocalized 7
system of tetracene, we need to include, at least, the left-most benzene ring to define C1’s
cluster in order to well reproduce the EXX potential in the region of the CI-C1 bond. With
N, = 3, C1’s cluster contains the entire left-most benzene ring.

However, for tripeptide ECDA with N, = 3 still predicts a dipole moment that is 0.51 D
less than the benchmark. To explain this, we examine the dipole moment vector D. With
KS-DFT-EXX, we have D, = 5.60 D, D, = —1.85 D, D, = —1.24 D. ECDA-EXX with
Ny = 3 gives D, = 5.05 D, D, = —1.74 D, and D, = —1.35 D. We first focus on D, and
D, which are due to the dipole moments of the peptide bonds. ECDA-EXX gives good
predictions for D, and D, again due to the fact that the clusters defined with IV, = 3 are
large enough to cover the atoms that contribute to D, and D,. Let’s take the peptide bond
O1-C1-N1-H1 for example. With N, = 3, O1’s cluster contains all the atoms (O1, C1, N1,
and H1) belonging to this peptide bond. This is also the case for C1’s cluster, N1’s cluster,
and H1’s cluster. Therefore, the EXX potential in the region of the O1-C1-N1-H1 peptide
bond is well reproduced by ECDA-EXX. As a result, the dipole moment of the peptide bond
is well reproduced by ECDA-EXX. Following the similar argument, we can explain the poor
agreement on D, between ECDA-EXX and KS-DFT-EXX. D, measures the dipole moment

24



along the backbone, i.e., the z direction. With N, = 3, no cluster is large enough to cover
the entire backbone. If the patched EXX energy in different sections of the backbone has
different errors, the system’s EXX potential will have different errors along the backbone.

Then, ECDA-EXX will give poor prediction to D,.

Table 2: Compare the total energies (in Hartree) and dipole moments (in Debye) from self-

consistent KS-DFT-EXX and self-consistent ECDA-EXX calculations. For ECDA-EXX, the

energy differences (EECPA — FES) are given with EECPA and EES being the total energies

from KS-DFT-EXX and ECDA-EXX calculations, respectively.

ECDA-EXX
Ny=1 Ny=2 N,=3 KS-DFT-EXX
total energy

ester 0.492 0.236 0.069 -91.485

Cl-tetracene  0.450 0.103 0.032 -120.555

tripeptide 0.477 0.327  0.223 -169.424
dipole moment

ester 1.82 1.93 1.90 1.87

Cl-tetracene  2.55 2.06 2.38 2.56

tripeptide 5.28 5.60 5.51 6.02

We also compute the energies for stretching the C1-Cl bond in Cl-tetracene using ECDA-
EXX. The results are compared to the KS-DFT-EXX results (the benchmarks). Fig. 8(a)
shows that ECDA-EXX energies become closer to the KS-DFT-EXX results quickly as we
increase cluster sizes. The shapes of the energy curves from the two methods are similar.
With N, = 3, the errors per atom are less than 2 mHa for all bond lengths. By fitting the
lowest three energy points on each curve with a quadratic function, the equilibrium bond
lengths are 1.815 bohr, 1.731 bohr, and 1.751 bohr for ECDA-EXX calculations with N, = 1,
2, and 3, respectively. They converge to the benchmark of 1.754 bohr.

The performance of ECDA-EXX is also investigated by computing the energies for re-
moving H1, H6, and the CHjz group from ester, as shown in Fig. 7(a). The CHj group
is removed by cutting the bond denoted by the blue dashed line [. The energies for re-
moving H atoms are defined as AEy = Eraan + By — Eester, Where Epaqy is the energy of

the H-removed radical and Fege, is the energy of the ester. The energy for removing the
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Figure 8: (a) Total energies for stretching the C1-C1 bond of Cl-tetracene from self-consistent
KS-DFT-EXX and self-consistent ECDA-EXX calculations (with Ny=1, 2, and 3). (b) Error
in total energy per atom.

CHjs group is defined as AEch, = Eraa,cras + Eoty — Eester, Where Eiaq cn, is the energy
of the CHs-removed radical. Spin-polarized ECDA-EXX calculations are performed with
a smearing temperature of 0.2 eV to achieve a good convergence of the density partition
in FT-DFET calculations. The penalty coefficients in the FT-DFET calculations are set
to 200. The ECDA-EXX calculations are self-consistent. The benchmarks are from self-
consistent KS-DFT-EXX calculations. The results are listed in Table 3. By increasing N,
both AFy and AEcy, convergence to the benchmarks; however the convergence of AFEy is
much faster than that of AEcy3. We note that the convergence of AFEy depends on the
error cancellation between Eeger and Eragu. For AEcp,, its convergence depends on the
error cancellation between Eeger and Epaqcm,. The faster convergence observed for AEy
is then due to a better error cancellation between Feger and Eraqu. This is confirmed by
examining the spin densities of both H-removed and CHjs-removed radicals. The unpaired

electrons in the H-removed radicals are more localized than the unpaired electron in the
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CHjs-removed radical. On the other hand, the electrons of the ester molecule are well lo-
calized, because the molecule is closed shell and the electrons are all paired. Therefore, the
error cancellation between Eeger and Enqpu is more effective than that between Feger and
Erada.cns- This explains why the convergence of AEy with N, is faster than that of AEcps.
To further confirm this, we also compute the energy for substituting the CH3 group with an
OH group in ester in order to avoid creating a radical. The substitution energies are defined
as Esub = Erad—on + Ecn, — Eester — En,0 and are listed in Table 3. E .q_on is the energy
of the ester with the CHj group replaced by an OH group; Ecy, and Ey,o are the energies
of methane and water molecules. We expect a good error cancellation between the ECDA
energies of E.,q_on and Feger, since no unpaired electron is in these two systems. As shown
in Table 3, the convergence of the substitution energy with N, is indeed much faster than

that of AECH3.

Table 3: The energies for removing H1, H6, and CHj3 group in the ester molecule as illustrated
in Fig. 7(a). The energy for substituting the CH3 group with an OH group is denoted by
“CHs — OH”. Energies are in Hartree.

ECDA-EXX
Ny=1 Ny=2 Ny=3 N,=4 KS-DFT-EXX
H1 0.099 0.123 0.133  0.133 0.132
H6 0.100  0.131  0.132  0.135 0.133
CHs 0.006 0.040 0.077  0.084 0.092
CH; - OH -0.087 -0.090 -0.081 -0.078 -0.072

We also compute the energy for rotating the C3-C4 single bond in the ester as denoted in
Fig. 7. The results are given in Fig. 9. The ECDA-EXX calculations are self-consistent. The
benchmarks are from KS-DFT-EXX calculations. Fig. 9(a) shows that ECDA-EXX energies
converge to the benchmark as NV, is increased. In Fig. 9(b), we shift the energies to make
the energies of the unrotated esters to be zero. We obtain quantitative agreement on the
energy profiles between ECDA-EXX and KS-DFT-EXX for N, > 4.

For a more stringent test, we compare the EXX potentials from self-consistent KS-DFT-

EXX (benchmarks) and self-consistent ECDA-EXX calculations. Fig. 10 shows the quick
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convergence of ECDA’s EXX potentials to the benchmark as N, is increased. Fig. 11 com-
pares ECDA’s EXX potentials (with N, = 3) to the benchmarks for the other two molecules
(Cl-tetracene and tripeptide). In general, ECDA’s EXX potentials agree well with the bench-

marks.

Figure 10: (a,b,c) Contour plots of ester’s EXX potentials from self-consistent ECDA-EXX
calculations with N, =1, 2, and 3. (d) The EXX potential (benchmark) from self-consistent
KS-DFT-EXX calculation. The atoms are labeled following Fig. 7(a). The contour planes
pass through O1, C1, and O2 atoms. The interval between contour lines is 0.1 a.u. The
ranges of colorbar are in atomic units.

The good agreement on EXX potentials indicates that EXX energy densities from KS-
DFT-EXX calculations are well reproduced by ECDA-EXX. To verify this, we compute the
atomic EXX energies according to Eq. 19, and quantify the errors by defining the absolute

and relative errors

Cabs,j = Eopeda — Eope? (43)
€retj = €avs,j/ | Ea s, (44)
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Figure 11: Contour plots of the EXX potentials of (a) Cl-tetracene and (b) tripeptide from
self-consistent KS-DFT-EXX and self-consistent ECDA-EXX (with N, = 3) calculations.
The atoms are labeled following Fig. 7(b,c). For Cl-tetracene, the contour plane is the plane
of tetracene. For tripeptide, the contour plane is defined by O1, C1, and N1 atoms. The
interval between contour lines is 0.1 a.u.. The ranges of colorbars are in atomic units.

where Egtg”gg, , and E;t;’ggﬂ are the atomic EXX energies of the atom j from ECDA-EXX

and KS-DFT-EXX calculations, respectively. The results are summarized in Fig. 12.

The upper panels of Fig. 12 (a), (b), and (c) show that in general atomic EXX energies
predicted by ECDA-EXX agree well with the benchmarks. For ester, the errors on all atoms
(except the two oxygen atoms) decrease quickly as we increase N, to 3. This indicates that
the exchange holes are generally delocalized over three bonds. With IV, = 3, |eqs, ;| is smaller
than 20 mHa and |e,. ;| is under 2% for all atoms. A similar observation is made for Cl-
tetracene. The errors on all atoms decrease quickly as we increase N, to 3. With N, = 3,
|eaps,;| is smaller than 10 mHa and |e,¢ ;| is under 2% for all atoms. For tripeptide, the
errors do not decrease very fast as we increase N,. The errors on some H atoms (marked by
arrows) are large. Why are these H atoms special? We note that the five H atoms marked
by the black arrows are bonded to the nitrogen atoms. The H atom marked by the red

arrow is bonded to an oxygen atom. These marked H atoms have larger errors than the
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unmarked H atoms that are bonded to the carbon atoms. Nevertheless, with N, = 3, |egps
is under 41 mHa for all atoms. |e,¢ ;| is below 2% for non-hydrogen atoms (C, N, and O)
and is below 7.5% for all H atoms. To summarize, for all molecules, atomic EXX energies
predicted by ECDA-EXX are close to KS-DFT-EXX results. This explains that why EXX
potentials, which are the derivatives of EXX energies with respect to the electron densities,
are well predicted by ECDA-EXX.

The accuracy of ECDA-EXX is further examined by comparing the system’s KS eigen-
values from self-consistent ECDA-EXX and self-consistent KS-DFT-EXX (benchmarks) cal-
culations in Fig. 13. For easy comparison, we have shifted the eigenvalues of all highest
occupied molecular orbitals to zero. For ester and Cl-tetracene, the eigenvalues of the occu-
pied states converge to the benchmarks quickly as we increase cluster sizes. For tripeptide,
the convergence is slower. For the unoccupied states, the convergences of the eigenvalues
are much slower for all molecules. For tripeptide, the prediction with N, = 3 is even worse
than the predictions from N, = 1 and N, = 2. This is in contrast to the case of Hyg (Fig. 6),
in which the eigenvalues of both occupied and unoccupied KS orbitals converged quickly
as the clusters were made larger. The reason can be that ECDA-EXX only optimizes the
systems’ occupied orbitals. If we include a correlation functional (such as RPA correlation
functional) that depends on both occupied and unoccupied orbitals in ECDA calculations,
we expect the eigenvalues of both occupied and unoccupied KS orbitals to converge quickly
to the benchmarks as we increase cluster sizes. Our expectation is based on the observation
that, by adding correlation functionals to clusters, system’s KS potential will also optimize
clusters’ correlation energies. The system’s correlation energy, obtained from patching clus-
ters’ correlation energies, will then get improved as clusters are made larger, which will
improve the system’s unoccupied KS orbitals. We are currently implementing RPA correla-
tion functionals for solving clusters in ABINIT and will examine this argument in a future

work.
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Figure 12: Atomic EXX energies of (a) ester, (b) Cl-tetracene, (c) tripeptide from self-
consistent KS-DFT-EXX and self-consistent ECDA-EXX (with N, = 1, 2, and 3) calcula-
tions. The z-axis denotes the atoms. For ester, the first 18 atoms are H, the next 9 atoms
are C, and the last two atoms are O. For Cl-tetracene, the first 11 atoms are H, the next 18
atoms are C, and the last atom is Cl. For tripeptide, the first 14 atoms are H, the next 8
atoms are C, the following 4 atoms are N, and the last five atoms are O. The absolute and
relative errors are defined in Eqgs. 43 and 44.
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Figure 13: KS eigenvalues of (a) ester, (b) Cl-tetracene, and (¢) tripeptide from self-consistent
KS-DFT-EXX and self-consistent ECDA-EXX calculations. For ECDA-EXX calculations,
different cluster sizes are used: N, = 1, 2, and 3. The occupied and unoccupied KS orbitals
are denoted by solid and dashed lines, respectively.

5 Conclusion

In this work, we developed the embedded cluster density approximation (ECDA), which is a
logical extension of the local density approximation. The goal of ECDA is to scale up high-
level KS-DFT simulations in large systems. In ECDA, the system’s XC energy is obtained
by patching high-level, locally computed XC energy densities over the system, in an atom-
by-atom manner. The system’s XC potential is calculated by directly taking the functional
derivative of the system’s XC energy with respect to the system’s electron density. Since the
clusters” XC energy densities depend on their embedding potentials, a numerical challenge
is how to efficiently compute the the derivatives of the embedding potentials with respect
to the system’s KS potential. We overcome this obstacle by first deriving the relationship
between the embedding potentials and the system’s KS potential, and then computing all
the terms that involve KS linear response functions using the first-order perturbation theory.

The computational cost of ECDA is dominated by three parts: (a) performing the Zhao-

Parr method to partition the system’s electron deunsity, (b) solving Eq. 42 to compute {z;},
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and (c) solving the OEP equation (Eq. 27) to obtain the system’s XC potential. Among
them, we find the Zhao-Parr method to be the most time consuming part, especially for
large systems for which the environments are large. On the other hand, embedding potentials
decay quickly inside the environments, and therefore we do not need to include the entire
environment in the Zhao-Parr calculations. We will explore this idea in the future work to
reduce the cost of Zhao-Parr method. Analytical atomic forces are necessary for efficient
geometry relaxation. If clusters’ electron numbers are kept fixed, ECDA is a variational
method and analytical forces can be derived. We leave the discussions on the analytical
forces and how well they approximate the true forces in a future work.

To examine the accuracy of ECDA, we patched EXX and RPA correlation energies in
a hydrogen chain. The total energies from ECDA-RPA calculations converge quickly as
we make the clusters larger. ECDA also well reproduced the system’s KS eigenvalues and
EXX-+RPA potentials. ECDA was then applied to realistic systems: patching EXX energies
in molecules. As the clusters are made larger, the total energies and dipole moments are
reasonably reproduced by ECDA, and ECDA’s EXX potentials converge quickly to the
benchmarks. Encouraged by these promising results, we expect ECDA to be a simple, yet
effective local correlation method for scaling up high-level KS-DF'T calculations in large
systems. This would help us resolve challenging electronic structure problems, such as, the

novel electronic structures at oxides interfaces.?!

Acknowledgement

This work is supported by the Florida State University (start-up fund) and National Science
Foundation under CHE-1752769.

34



Supporting Information Available

The details of solving the OEP equations are given in the Supporting Information. This

material is available free of charge via the Internet at http://pubs.acs.org.

Appendices

A Derivation of y; for ACFDT EXX

We derive y;(r) for ACFDT EXX. A variation of the cluster’s KS potential v5-47(r) causes
change in the cluster’s KS orbitals {¢f "’} and eigenvalues {¢"*’}, where k denotes the k"

KS orbital. We then have

y;(r) = Yju(r) + ¥jo(r) (45)

with

— deckui(r') 5™ (x
/ dr'w;(r') Y / dry du]( r) ’Zlu,j( 2) (46)
k 5¢ (r2) dvig’ (r)
declwi (') Secturd
dr'w;(r") o =
/ )2 Sectd gyl (x)

k

For ACFDT EXX, k runs over all orbitals whose occupation numbers are not negligible.

Note that the cluster’s KS orbitals obtained from FD-DFET are often fractionally occupied.

Define
) 5€cl1L](r/)
AT (1)) = /d3r'w " —xc 48
g (r2) i (r )5¢°l“3( ) (48)

Y;1(r) becomes

}/}_71(1‘) _ Z/dI_?Acluj Gcl ](I‘ I') clu](r)
_ Z¢Clﬂj clug ) (49)
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G (rg, 1) = 605" (1) /6v5H4 (r) is the KS Green’s function, and ¢¢*(r) is the k& orbital
shift

190 = [ dra A ()G e (50)

that can be efficiently calculated by solving %93

(s — €)™ (1) = —(ui™ (v) — @) g™ (r) (51)

where Hicg is the cluster’s KS Hamiltonian and u{ = A%/ /67 and @™ = (77 |ug ™7 | ¢ ).
It is straightforward to derive ASW for ACFDT EXX. For brevity, in the following we

drop the superscripts that denote the cluster j.

Ap(r) = —/dr'wj(r’) X [
Zfacab¢b(r/)(5ak5(r/—r)/d M—i_

r’ — 1o

> a0 ) [ ae IR |

v/ — 1o

3 fucarda(r)dn(r') / e, S0 (2 = E)Ou(r)
ab

Zfacab(,ba(r/)(bb(r/) /dI‘Q 5bk5(r2 - r)¢a(r2)] (52)
ab

[r' — 12

where a and b run over all the orbitals that have non-negligible occupation numbers. We only
consider the non-spin polarized case. ¢, and f, are the a® KS orbital and its occupation
number of the cluster j, and c,, = 1+ sgn(ec™d — gl“’j ). Above expression can be simplified

to

¢k(r2)¢b<r2) _

Ir — 1y

Ap(r) = = " (frews + focor)du(r) /er(wj(r) + w;(r2))

b

(53)

The calculation of Y 5(r) is straightforward, since EXX energy density explicitly depends

on the occupation numbers which in turn depend on KS eigenvalues. In addition, we have
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5e 7 [5uShT (r) = ¢ (r) ™ (r) due to the first-order perturbation theory.
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