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Abstract

We develop a local correlation method in the framework of Kohn-Sham density

functional theory (KS-DFT). The method is termed �embedded cluster density approx-

imation� (ECDA) and is a logical extension of the local density approximation. In

ECDA, an embedded cluster is de�ned for each atom based on the �nite-temperature

density functional embedding theory. The clusters' XC energy densities are calcu-

lated using high-level XC functionals. The system's XC energy is then constructed by

patching these locally computed, high-level XC energy densities over the system in an

atom-by-atom manner. We derive the relationship between the embedding potential

and system's KS potential. We show how to e�ciently compute the system's XC po-

tential which is the functional derivative of the patched XC energy with respect to the

system's electron density. The accuracy of ECDA is examined by patching the exact

exchange (EXX) and the random phase approximation (RPA) correlation energy densi-

ties in a one-dimensional hydrogen chain, as well as by patching EXX energy densities

in several molecules. The agreement between ECDA and KS-DFT on total energies,
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dipole moments, XC potentials, and KS eigenvalues is good in general as the clusters

are made larger. Based on these encouraging results, we expect ECDA to be a simple,

yet e�ective method to scale up high-level KS-DFT simulations in large systems.
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1 Introduction

Kohn-Sham density functional theory (KS-DFT)1,2 is widely used for electronic structure

simulations. Its accuracy is determined by the approximation for the exchange-correlation

(XC) functional, and can be improved by developing high-level XC functionals.3 High-level

XC functionals, such as the random phase approximation (RPA) correlation functional based

on the adiabatic-connection �uctuation and dissipation theorem (ACFDT)4�12 and the ab

initio XC functionals built based on correlated wave function methods,13,14 were actively de-

veloped in the past. A recent ACFDT functional with a �tted XC kernel reached the accuracy

of the couple cluster theory for predicting reaction energies of molecules.15 Unfortunately,

high-level XC functionals often have high computational cost and steep computational scal-

ing, which hinders their application to large systems.

To scale up high-level KS-DFT calculations, we often exploit the idea of the nearsighted-

ness of electronic matter (NEM), which states that the electron correlation at a spatial point

~r is mainly determined by its local information, such as, the electron density and density ma-

trix surrounding ~r, with the system's chemical potential kept �xed.16,17 NEM does not hold

in general, however was shown to be valid in various metallic and insulating model systems.18

NEM has long been used to develop low-scaling correlated wave-function methods.19�23 The

idea of NEM has also been used to develop many other local correlation methods. In Yang's

divide-and-conquer method,24 a system's KS band energy was constructed based on locally

calculated KS band energies. In the charge-patching method,25 a system's electron density

is obtained by patching locally computed electron densities. For the subsystem functional

method, a region is treated by an XC functional tailored for that region.26�28 For the many-

electron expansion method,29 a system's energy is systemically improved by computing the

energies of n-electron densities based on the energies of (n − 1)-electron densities. In the

density matrix embedding theory,23 the active space of impurity+bath is de�ned using the

Schmidt decomposition, which yields an active space of a size that is twice of the size of

the impurity. The local correlation energy was then calculated and patched over the sys-
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tem.30 In the framework of the reduced density matrix functional theory, a local correlation

method based on inverting local reduced density matrices was also developed.31 The idea of

local correlation was also exploited to develop linear scaling algorithms for computing exact

exchange (EXX) energy32 and RPA correlation energy.33�35

In this work, we develop a local correlation method in the framework of KS-DFT to

directly calculate the XC energy of a large system with an atom-by-atom patching scheme.

The method is termed �embedded cluster density approximation� (ECDA) which can be con-

sidered as a natural extension of the local density approximation2 (LDA). Local embedding

methods have been actively developed to investigate the region of interest in large systems

with high-level methods, with the rest of the system treated by appropriate, low-cost meth-

ods. The region of interest can be de�ned by partitioning the system's electron density36�49

and density matrix.23,50�53 With ECDA, we aim to obtain accurate electronic structures in

the entire system by performing embedding calculations on all the atoms and stitching the

embedding results over the system seamlessly. In our recent XC potential patching method

(XCPP),54 a system's XC energy was also obtained by patching atomic XC energy densities.

The main di�erence between ECDA and XCPP is how to compute the system's XC poten-

tial. In XCPP, the XC potential of a cluster is calculated and is then truncated to only keep

the part (called atomic XC potential) on the cluster's central atom. The obtained atomic

XC potentials were stitched together to obtain the system's XC potential. One drawback

with that approach is that the accuracy of these atomic XC potentials is a�ected by the

clusters' boundaries. That drawback is completely avoided by ECDA in which the system's

XC potential is computed by directly taking the functional derivative of the system's patched

XC energy with respect to the system's electron density.

Some features of ECDA are listed below. The clusters are embedded in the system using

the �nite-temperature density functional embedding theory (FT-DFET),55 which ensures

that the partitioning of the system's electron density among a cluster and its environment is

unique42,45,55 and does not require the use of locally supported basis functions, such as Gaus-
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sian functions. Therefore, ECDA can work with delocalized basis functions, such as plane-

wave basis functions. ECDA is applicable to non-metallic, metallic, and �nite-temperature

quantum systems, as long as NEM holds in these systems. To calculate a cluster's XC energy

density, its electron density is required to be v-representable. This is guaranteed in ECDA

in which a cluster's electron density, de�ned with FT-DFET, is always v-representable by

construction.

The paper is organized as follows. We discuss how to de�ne embedded clusters based on

FT-DFET. We then construct the system's XC energy by patching these locally computed,

high-level XC energy densities in an atom-by-atom manner. We derive the relationship be-

tween the embedding potentials and the system's KS potential, based on which we show how

to e�ciently compute the system's XC potential using the �rst-order perturbation theory.

The steps of performing ECDA calculations are then given. The accuracy of ECDA is in-

vestigated by patching EXX+RPA energy densities in a one-dimensional H20 chain and by

patching EXX energy densities in three molecules (ester, Cl-tetracene, and tripeptide).

2 Theoretical Methods

2.1 De�ne embedded clusters

The �rst step in ECDA is to group atoms to de�ne clusters for each atom. Taking the atom

j for example, we select its neighbors up to Nb bonds away to de�ne its cluster, termed

�cluster j�. The rest atoms are grouped to de�ne the environment j. The atom j is called

the central atom.

For each atom, we calculate its Becke weight.56 The weight of the atom j is de�ned as

wj(r) =
Pj(r)∑Natom

i=1 Pi(r)
. (1)

with the cell function Pi(r) =
∏

j 6=i sij(r). sij is the switching function de�ned based on
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hij(r) that measures the relative position of a point r to two atoms i and j

hij(r) =
|Ri − r| − |Rj − r|
|Ri −Rj|

, (2)

where Ri and Rj are the coordinates of atoms i and j, respectively. Becke de�ned sij(r) =

(1 − f3(hij(r)))/2 recursively with f1(x) = x(3 − x2)/2 and fk(x) = f1(fk−1(x)). To obtain

softer weights that are easier to be represented on a uniform grid, we set sij(r) = (1 −

f1(hij(r)))/2.

The weights of the cluster j and the environment j are the sum of the weights of the

atoms in the cluster and environment, respectively,

wclu,j(r) =
∑
n

wn(r) (3)

wenv,j(r) =
∑
m

wm(r), (4)

where n and m run over the atoms in the cluster and the environment, respectively.

2.2 Partition the system's electron density among the clusters and

their environments

We now proceed to partition the system's electron density among the cluster j and its

environment. First, we de�ne their regions by partitioning the system's KS potential vKS as

vclu,j(r) = wclu,j(r)vKS(r) + (1− wclu,j(r))(µ+ vb) (5)

venv,j(r) = wenv,j(r)vKS(r) + (1− wenv,j(r))(µ+ vb), (6)

where µ is the system's chemical potential. We note that vclu,j and venv,j reach a potential

plateau of the height of µ + vb at distant. Due to the inclusion of µ in above de�nitions,

this potential plateau is always higher than the system's chemical potential by vb. With a
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relatively large vb (which is set to 0.5 a.u. in this work), vclu,j and venv,j con�ne the cluster

and the environment's electron densities.

We employ FT-DFET55 to partition the system's electron density, such that, the sum of

the cluster and the environment densities matches the system's density ρtot(r)

ρclu,j(r) + ρenv,j(r) = ρtot(r). (7)

This condition is realized by applying an appropriate embedding potential vemb,j to both the

cluster and its environment. The cluster and the environment's KS potentials become

vclu,jKS (r) = vclu,j(r) + vemb,j(r) (8)

venv,jKS (r) = venv,j(r) + vemb,j(r). (9)

ρclu,j(r) and ρenv,j(r) in Eq. 7 are obtained by solving the KS equation with the above KS

potentials vclu,jKS and venv,jKS , respectively. To solve for vemb,j that makes Eq. 7 hold, we extend

the Zhao-Parr method57�59 to two quantum systems by adding a penalty function Cλ

Cλ = λ
1

2

∫∫
drdr′∆ρ(r)∆ρ(r′)

erfc(η|r− r
′|)

|r− r′|
(10)

to the KS Hamiltonians of the cluster and its environment, with

∆ρ(r) = ρclu,j(r) + ρenv,j(r)− ρtot(r). (11)

The Coulomb operator in Eq. 10 is screened by the complementary error function to avoid

the charge sloshing60 that makes the convergence of vemb,j slow. A screening length η of 3 Å

works well in our calculations. The penalty term introduces a penalty potential

vλP (r) = λ

∫
dr′∆ρ(r′)

erfc(η|r− r
′|)

|r− r′|
(12)

7



to the cluster and environment's KS equations

(
− 1

2
∇2 + vclu,j + vλP

)
φclu,jn = εclu,jn φclu,jn (13)(

− 1

2
∇2 + venv,j + vλP

)
φenv,jn = εenv,jn φenv,jn , (14)

where φclu,jn and φenv,jn are the n-th KS orbitals of the cluster j and the environment j,

respectively. εclu,jn and εenv,jn are the KS eigenvalues. Eqs. 13 and 14 are solved with the

numbers of electrons in the cluster and the environment speci�ed as

Nclu,j =

∫
dr′ρtot(r

′)wclu,j(r
′) (15)

Nenv,j =

∫
dr′ρtot(r

′)wenv,j(r
′). (16)

After solving Eqs. 13 and 14, the cluster and the environment's densities are obtained as

ρclu,j(r) = 2
∑
n

f clu,jn (φclu,jn (r))2 (17)

ρenv,j(r) = 2
∑
n

f env,jn (φenv,jn (r))2, (18)

where f clu,jn and f env,jn are the occupation numbers. vλP is obtained by solving the coupled

equations 12, 13, and 14. As λ → ∞, ∆ρ → 0 and vλP (r) becomes the embedding potential

vemb,j(r).

2.3 Construct the system's exchange-correlation energy through an

atom-by-atom patching

After the density partitioning, the cluster j's XC energy density εclu,jxc (r), by integrated which

we obtain the cluster's XC energy, is computed based on its KS orbitals. The atomic XC
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energy of the atom j is obtained as

Eatom,j
xc =

∫
d3r′εclu,jxc (r′)wj(r

′), (19)

based on which the system's XC energy is constructed through an atom-by-atom patching

scheme

Exc =
Natom∑
n=1

Eatom,n
xc (20)

where n runs over all the atoms. In this work, we patch EXX and RPA correlation energy

densities in a 1D hydrogen chain and patch EXX energy density in several molecules.

There are two popular de�nitions for EXX: one is based on the Hartree-Fock (HF) ex-

change and another one is based on ACFDT. The HF EXX is de�ned as

EHF
x = −

∑
ij

fifj

∫∫
d3rd3r′

ψi(r)ψj(r)ψj(r
′)ψi(r

′)

|r− r′|
. (21)

The ACFDT EXX is de�ned as61

EEXX
x = −

∑
ij

ficij

∫∫
d3rd3r′

ψi(r)ψj(r)ψj(r
′)ψi(r

′)

|r− r′|
, (22)

where cij = 1 + sgn(εi − εj) and {εi} are the KS eigenvalues. These two de�nitions are

identical if the occupation numbers {fi} are integers, i.e., either 0 or 1.

In ECDA, we employ ACFDT EXX to calculate the clusters' EXX energy densities, since

the obtained clusters' XC energy densities better approximate the system's EXX energy

density. The reason for not using HF EXX is that a cluster's exchange holes nx(r, r′),

de�ned based on HF EXX, do not obey the sum rule (
∫
d3r′nx(r, r

′) = −1), if the cluster's

KS orbitals are fractionally occupied.62 On the other hand, clusters de�ned with FT-DFET

often have fractionally occupied KS orbitals. The system's exchange holes which satisfy the

sum rule then cannot be well approximated by the clusters' exchange energy densities de�ned
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based on HF EXX. This problem is avoided by computing clusters' EXX energy densities

based on ACFDT EXX, since exchange holes de�ned based on ACFDT EXX always satisfy

the sum rule,63 no matter the occupation numbers are fractional or integral. We de�ne the

energy density of ACFDT EXX as

εEXXx (r) = −
∑
ij

ficijψi(r)ψj(r)

∫
dr2

ψi(r2)ψj(r2)

|r− r2|
. (23)

To de�ne RPA correlation energy density, we start with the RPA correlation energy

ERPA
c =

1

2π

∫ ∞
0

dωTr[ln(1− VcoulX0(iω)) + VcoulX0(iω)], (24)

Vcoul is the matrix representation of the Coulomb potential vcoul(r, r′) = 1/|r − r′| in the

basis of grid points. X0(iω) is the KS linear response function χ0(r, r
′; iω) (at an imaginary

frequency iω) represented in the basis of grid points. We de�ne RPA correlation energy

density at the grid point j

εRPAc (rj) =
1

2π∆V

∫ ∞
0

dωMj,j(iω) (25)

where ∆V is the volume element and Mj,j denotes the (j, j)-th element of the matrix M

M(iω) = ln(I − V 1/2
coulX0(iω)V

1/2
coul) + V

1/2
coulX0(iω)V

1/2
coul. (26)

2.4 Calculate the system's exchange-correlation potential

The system's XC potential vxc(r) is calculated by solving the optimized e�ective potential

(OEP) equation64�67

δExc
δvKS(r)

=

∫
dr′vxc(r

′)
δρtot(r

′)

δvKS(r)

=

∫
dr′vxc(r

′)χ0(r, r
′), (27)
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where χ0(r, r
′) is the system's KS linear response function.

To solve for vxc(r), we need δExc/δvKS(r). First, we show that this derivative exists. The

proof is based on our recent proof that, for a KS system at �nite temperature, the mapping

between its KS potential and the embedding potential is one-to-one.55 Therefore, vemb,j is a

functional of vKS. On the other hand, the cluster j's electron density ρclu,j is a functional

of vKS and vemb,j, and therefore ρclu,j is a functional of vKS only. Exc is a functional of the

electron densities of all clusters; therefore, Exc is a functional of vKS. This proves that the

derivative δExc/δvKS(r) exists.

We then have
δExc

δvKS(r)
=

Natom∑
j=1

∫
dr′wj(r

′)
δεclu,jxc (r′)

δvKS(r)
. (28)

To compute δεclu,jxc (r′)/δvKS(r), we �x the number of electrons (Nclu,j) in the cluster j and

also �x the system's chemical potential µ in the de�nition of vclu,j(r) (Eq. 5). If we do not

�x µ, the interaction between the system's KS potential vKS(r) and εclu,jxc (r′) will be of long

range, which violates NEM. To explain this, we note that any change in vKS at distant will

cause a change in µ which in turn will cause a change in vclu,j(r). vclu,j(r) will then cause a

change in the cluster j's XC energy density.

By �xing Nclu,j and µ, εclu,jxc is a functional of vclu,jKS , and we have, by the chain rule,

δεclu,jxc (r′)

δvKS(r)
=

∫
dr1

δεclu,jxc (r′)

δvclu,jKS (r1)

δvclu,jKS (r1)

δvKS(r)
, (29)

With vclu,jKS de�ned in Eq. 8, we have (with µ kept �xed)

δvclu,jKS (r1)

δvKS(r)
= wclu,j(r)δ(r− r1) +

δvemb,j(r1)

δvKS(r)
(30)

Combining equations 29, 30, and 28, we have

δExc
δvKS(r)

= p1(r) + p2(r), (31)

11



with

p1(r) =
Natom∑
j=1

yj(r)wclu,j(r) (32)

p2(r) =
Natom∑
j=1

∫
dr1yj(r1)

δvemb,j(r1)

δvKS(r)
, (33)

where yj is de�ned

yj(r) =

∫
dr′wj(r

′)
δεclu,jxc (r′)

δvclu,jKS (r)
. (34)

p1(r) accounts for the change of the clusters' XC energy densities due to the change of the

system's KS potential with the embedding potentials �xed. p2(r) accounts for the change

of the clusters' XC energy densities due to the change of the embedding potentials with the

system's KS potential �xed. To compute yi, we need to compute δεclu,jxc /δvclu,jKS . The analytical

expression of yj for ACFDT EXX is given in Appendix A. For RPA correlation energy,

δεclu,jc,RPA(r)/δvclu,jKS (r′) is calculated using the central �nite di�erence in the MATLAB code

by perturbing vclu,jKS (r) at each grid point by ±0.001 a.u.. εclu,jc,RPA(r) is the RPA correlation

energy density of cluster j.

Now, the task is to e�ciently calculate p2(r) without explicitly computing δvemb,j/δvKS.

We �rst derive the connection between vemb,j and vKS. By perturbing vKS, the system's

density ρtot changes as

δρtot(r) =

∫
dr′χ0(r, r

′)δvKS(r′). (35)

The embedding potential vemb,j is adjusted such that the sum of the cluster and environment's

electron densities still matches the system's density

δρtot(r) = δρclu,j(r) + δρenv,j(r)

=

∫
dr′χclu,j0 (r, r′)δvclu,jKS (r′) +

∫
dr′χenv,j0 (r, r′)δvenv,jKS (r′) (36)

12



with

δvclu,jKS (r) = δvemb,j(r) + wclu,j(r)δvKS(r) (37)

δvenv,jKS (r) = δvemb,j(r) + wenv,j(r)δvKS(r). (38)

Same to the derivation of Eq. 28, above variations are performed with cluster j's electron

number and chemical potential kept �xed. Combining equations 35, 36, 37, and 38, we

obtain

δvemb,j(r)

δvKS(r′)
=

∫
dr′′(χclu,j0 + χenv,j0 )−1(r, r′′)

×[χ0(r
′′, r′)− χclu,j0 (r′′, r′)wclu,j(r

′)− χenv,j0 (r′′, r′)wenv,j(r
′)] (39)

Inserting Eq. 39 to Eq. 33 and de�ning

zj(r) =

∫
d3r′yj(r

′)(χclu,j0 + χenv,j0 )−1(r′, r), (40)

p2(r) becomes

p2(r) =
Natom∑
j=1

∫
d3r′zj(r

′)[χ0(r
′, r)− χclu,j0 (r′, r)wclu,j(r)− χenv,j0 (r′, r)wenv,j(r)]. (41)

To avoid inverting the KS linear responses in Eq. 40, zj is obtained by solving the linear

system ∫
d3r′[χclu,j0 (r, r′) + χenv,j0 (r, r′)]zj(r

′) = yj(r) (42)

using conjugate gradient method. The product between a KS linear response function and

a vector is calculated by solving the Sternheimer equation derived for KS systems with

fractionally occupied KS orbitals.68 This is necessary for ECDA, because clusters' KS orbitals

are often fractionally occupied. After obtaining zj, p2 is also calculated by solving the

Sternheimer equation without explicitly constructing these KS linear response functions in
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Eq. 41.

To summarize, the steps of performing ECDA calculations are:

Step 1: Solve the system's KS equation with a KS potential vKS(r). For the initial guess,

we set vKS to the KS potential from a converged KS-DFT-LDA calculation. Obtain

the system's electron density ρtot(r). Update the numbers of electrons in clusters

and environments based on Eqs. 15 and 16. Update {vclu,j(r)} and {venv,j(r)} with

vKS(r) and the system's chemical potential µ.

Step 2: Select an atom j. Partition the system's electron density among its cluster and the

environment based on FT-DFET.55 Calculate the cluster's XC energy density using

a high-level XC functional.

Step 3: Repeat Step 2 for all the atoms.

Step 4: Calculate the system's XC energy via the atom-by-atom patching (Eqs. 20 and 19).

Compute δExc/δvKS based on which we calculate the system's XC potential vxc(r)

by solving the OEP equation 27. Update vKS(r). If vKS(r) is not converged, go back

to Step 1. In practice, the convergence of vKS is accelerated by Pulay mixing.69

2.5 Extend the application scope of ECDA by treating the Kohn-

Sham systems of the system, clusters, and environments at �-

nite temperature

In ECDA, the system's KS orbitals are fractionally occupied according to the Fermi-Dirac

(F-D) statistics at temperature T . This is important for ECDA to be applicable to a wide

range of materials. The reason is that the electron density of a quantum system having static

correlation cannot be represented by a pure-state density (formed by KS orbitals with integral

occupation numbers) without violating the Aufbau principle.70�73 A system's electron density

is called non-interacting ensemble v-representable (EVR), if its KS orbitals are occupied
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following F-D statistics.74 It was hypothesized that the mapping between interacting EVR

densities and non-interacting EVR densities is one-to-one.74 This hypothesis was, at least,

true for lattice quantum systems.75 If this hypothesis is true in general, by treating the

system's KS system at �nite temperature, ECDA is applicable to a wide range of interacting

electronic systems. In addition, in ECDA we also treat clusters' and environments' KS

systems at the same temperature T .

We point out that the temperature T is only used to generate non-interacting EVR

densities. The clusters' XC energy densities are still computed using the XC functionals

constructed for zero-temperature electron systems. Therefore, in practice we need to set T

low enough to make it valid to employ these zero-temperature XC functionals. Note that

ECDA is also applicable to systems at �nite temperature. We just need to set T to that

temperature and employ �nite-temperature XC functionals76�78 to compute clusters' XC

energy densities.

3 Numerical details

In all ECDA calculations, KS orbitals of the systems, clusters, and environments are occupied

according to the Fermi-Dirac statistics, with a smearing temperature of 0.05 eV unless spec-

i�ed. ECDA is implemented in a 1D KS-DFT program implemented in MATLAB.79 Details

of this 1D KS-DFT program was given in Ref.80. The performance of ECDA is investigated

on a bond-alternating H20 chain. The lengths of the short and long bonds are 1.8 bohr and

2.644 bohr, respectively, and therefore covalent bonds are formed in an alternating manner.

LDA XC functional for one-dimensional systems are taken from Ref.81 and Ref.82. A soft

Coulomb potential vcoul(x, x′) = 1/
√
a+ (x− x′)2 with a = 1.0 bohr is used to describe the

electron-electron and ion-electron interactions. The nuclear charge of the pseudo H atom is

1.2. A grid spacing of 0.33 bohr is used in all calculations, which converges KS-DFT-LDA

energies to better than 0.1 mHa/atom. To compute the RPA correlation energy, the integral
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over frequency is evaluated with Gauss-Legendre quadrature with 15 nodes. The maximum

frequency is set to 10 a.u.. To partition the system's electron density among a cluster and

its environment, we use the extended Wu-Yang method developed in our previous work.55,83

We also implement ECDA in the ABINIT program.84 We perform ECDA-EXX calcu-

lations on several molecules. Their geometries are relaxed by ABINIT using the Perdew-

Burke-Ernzerhof XC functional.85 ECDA calculations are performed with a relatively small

kinetic energy cuto� of 600 eV to reduce the computational cost of solving the Sternheimer

equation68 and EXX calculations. For the calculations of bond energies and bond rotation

energies, a 400 eV kinetic energy cuto� is used to further reduce the computational cost of

ECDA. EXX energy and its potential are calculated in real space by computing the integral∫
dr′3φi(r

′)φj(r
′)/|r− r′| using the Poisson solver implemented in ABINIT.86,87 To partition

a system's electron density among a cluster and its environment, we employ the modi�ed

Zhao-Parr method discussed in Section 2.2. Eq. 12 is e�ciently calculated with plane wave

basis functions.88 vλP is obtained by solving the coupled equations 12, 13, and 14, and the

convergence is accelerated by using Pulay mixing.69 The contour plots of EXX potentials

are produced using VESTA.89 The details of solving the OEP equation 27 and Eq. 42 are

given in the Supporting Information.

4 Results and discussions

4.1 ECDA-RPA calculations of a bond-alternating, one-dimensional

hydrogen chain

In ECDA, it is required that the system's electron density matches the cluster's electron

density inside a cluster, that is, ρclu(r) → ρtot(r) for r deep inside the cluster. This is

observed in Fig. 1(a) which shows the partitioning of the electron density of H20 among

a cluster and its environment. The cluster is de�ned for the atom #10 by including its

neighboring atoms up to the second nearest neighbors to de�ne the cluster. We �nd that
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the cluster's electron density matches the system's density inside the cluster. Furthermore,

the cluster's and the environment's densities are well localized in their regions due to the

potential plateau (µ + vb) from vclu,j and venv,j (Eqs. 5 and 6). The embedding potential

for this partitioning is given in Fig. 1(b). It �uctuates mostly at the interfaces between the

cluster and the environment. The reason is that the density matching condition (Eq. 7)

can hold inside the cluster and the environment without much help from the embedding

potential. This is due to the fact that vclu,j and venv,j match the system's KS potential inside

the cluster and the environment, respectively.

Figure 1: (a) Partitioning of H20's electron density among the cluster (larger red dots) and
its environment (smaller black dots). The cluster is de�ned for the atom #10 (marked by
the green dashed circle). (b) The embedding potential for this density partitioning.

The accuracy of ECDA is assessed by performing ECDA-RPA calculations on this 1D

H chain: The EXX and RPA correlation energy densities are patched over the chain to

construct the system's EXX+RPA energy. Fig. 2 gives the energies for stretching the H19-

H bond. The benchmark is from self-consistent KS-DFT-RPA calculations. ECDA-RPA

calculations are performed self-consistently using di�erent cluster sizes. With Nb = 2, the

errors per atom are below 6 mHa for all bond lengths. As we increase the cluster sizes, the
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errors decrease quickly, however in a zigzag way (Fig. 3). We believe that this zigzag behavior

of convergence is an intrinsic property of density partitioning. This zigzag convergence was

also observed in Ref.90 in which Yang's divide-and-conquer method was used to patch the

Hartree-Fock energy in molecules.

Figure 2: Energy curves for stretching the H19-H bond from self-consistent KS-DFT-RPA
and self-consistent ECDA-RPA (with Nb =2, 3, and 4) calculations.

A stringent test of the accuracy of ECDA is to compare the XC potentials from self-

consistent ECDA-RPA and self-consistent KS-DFT-RPA (benchmarks) calculations. The

results are given in Fig. 4. ECDA XC potentials agree reasonably with the benchmarks,

except that the �uctuation of ECDA XC potentials is less. ECDA XC potentials are improved

as we make the clusters larger, however, again in a zigzag manner. We observe an error

cancellation between ECDA's EXX and ECDA's RPA potentials: Wherever ECDA's EXX

potential is higher/lower than the benchmarks, ECDA's RPA potential is lower/higher than

the benchmarks. This error cancellation is due to the fact that the exchange hole is partially

cancelled by the RPA correlation hole as observed in Ref.80. EXX+RPA energy is then more
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Figure 3: Error in total energy per atom, (EECDA
tot − EKS

tot )/Natom, for di�erent cluster sizes.
EECDA
tot and EKS

tot are total energies from self-consistent ECDA-RPA and self-consistent KS-
DFT-RPA calculations, respectively. The bond length of H19-H is set to 1.7 bohr.

nearsighted than either EXX energy or RPA correlation energy. This suggests that the error

in ECDA's EXX+RPA potential is smaller than the error in either ECDA's EXX potential

or ECDA's RPA correlation potential. This is the reason for the observed error cancellation

between ECDA's EXX and RPA correlation potentials.

Next, we examine the importance of including the dependence of the embedding potential

on the system's KS potential in the calculation of the system's XC potential. The system's

XC potential is computed based on δExc/δvKS(r) which contains two components: p1(r) and

p2(r) (Eqs. 32 and 33). Fig. 5 shows p1(r) and p2(r), and compare p1(r) + p2(r) with the

benchmark δEEXX+RPA
xc /δvKS. p1(r), p2(r), and the benchmarks are all computed based on

the KS orbitals from self-consistent ECDA-RPA calculations with Nb = 3. Fig. 5 shows

that both p1 and p2 deviate signi�cantly from the benchmark, however, the sum of them is

close to the benchmark. This indicates that both p1(r) and p2(r) contribute signi�cantly to

δExc/δvKS(r). The large contribution from p2(r) indicates that it is important to consider

the dependence of a cluster's XC energy density on its embedding potential (which depends

on the system's KS potential) in the calculation of δExc/δvKS. Such dependence was ignored

in our previous XCPP method,54 in which a cluster's XC potential was calculated with its
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Figure 4: EXX, RPA, and EXX+RPA potentials from non-self-consistent KS-DFT-RPA and
non-self-consistent ECDA-RPA calculations. Both calculations are based on the KS orbitals
from KS-DFT-LDA calculations. For brevity, only the �rst ten H atoms are shown due to
the symmetry and are marked by the black dots.
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embedding potential kept �xed.

Figure 5: The two components of δExc/δvKS(r): p1(r) and p2(r). Both are calculated with
Nb = 3. The sum of them are compared to the benchmark δEEXX+RPA

xc /δvKS(r). H atoms
are marked by the black dots.

The accuracy of ECDA-RPA calculations is further assessed by comparing the KS eigen-

values from self-consistent KS-DFT-RPA and self-consistent ECDA-RPA calculations. In

Fig. 6, a good agreement between KS-DFT-RPA and ECDA-RPA is observed for both oc-

cupied and several lowest unoccupied states. ECDA-RPA predicts a KS gap of 3.19 eV for

all cases (Nb = 2, 3, and 4), which agree well with the KS gap 3.17 eV from KS-DFT-RPA.

4.2 ECDA-EXX calculations on molecules

The performance of ECDA is also investigated on three molecules by patching their EXX

energy densities. The molecules are (a) ester, (b) Cl-tetracene, and (c) tripeptide, with their

structures given in Fig. 7. The reason for choosing them is that charge is redistributed in

these molecules. For example, in ester, there is a charge transfer between O1 and C1, and

between C1 and O2. In Cl-tetracene, there is a charge transfer between C1 and chlorine. In
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Figure 6: KS eigenvalues from self-consistent KS-DFT-RPA and self-consistent ECDA-RPA
(with Nb = 1, 2, and 3) calculations.

tripeptide, there is a charge transfer along C-O and N-H bonds. In addition, tripeptide has a

large dipole moment along its backbone. Thus, these molecules are good testbeds for inves-

tigating ECDA's accuracy for studying heterogeneous systems where charge redistribution

takes place.

We �rst determine the appropriate penalty coe�cient λ in the Zhao-Parr method. Table

1 shows the convergence of total energies, dipole moments, and KS gaps with respect to λ. In

these ECDA-EXX calculations, the clusters are de�ned by including the neighboring atoms

up to three bonds away (i.e., Nb = 3). We note that a very large λ makes the convergence of

Zhao-Parr method slow, which is a common problem with penalty methods. Thus, we try to

set λ as small as possible. Table 1 shows that for ester and Cl-tetracene λ = 50 converges the

total energies, dipole moments, and KS band gaps within several milliHartrees, 0.1 Debye,

and 0.1 eV, respectively; therefore, λ = 50 is used in their following ECDA-EXX calculations

unless speci�ed. For tripeptide, λ = 20 is used in its later ECDA-EXX calculations.

Table 2 gives the convergence of ECDA-EXX with the cluster sizes. The benchmarks are

from self-consistent KS-DFT-EXX calculations. We observe that ECDA energies converge
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Figure 7: Structures of (a) ester molecule, (b) Cl-tetracene, and (c) tripeptide used for
ECDA-EXX calculations. H, C, N, O, S, and Cl atoms are white, brown, light blue, red,
yellow and green, respectively.

Table 1: Convergence of total energies (in Hartree), dipole moments (in Debye), and KS gaps
(in eV) from self-consistent ECDA-EXX calculations with respect to the penalty coe�cient λ
in Zhao-Parr method. In the ECDA-EXX calculations, the clusters are de�ned by including
atoms up to the third nearest neighbors.

λ = 20 λ = 50 λ = 100
ester energy -91.425 -91.416 -91.415

dipole 1.90 1.90 1.97
KS gap 3.41 3.36 3.40

Cl-tetracene energy -120.538 -120.522 -120.520
dipole 2.37 2.38 2.38
KS gap 1.07 0.94 0.84

tripeptide energy -169.201 -169.196 -169.200
dipole 5.51 5.51 5.52
KS gap 3.04 3.05 3.01
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to the benchmarks as we increase cluster sizes. With Nb = 3, the errors in total energy per

atom are 3 mHa, 1 mHa, and 7 mHa for ester, Cl-tetracene, and tripeptide, respectively.

We now focus on the dipole moments. Table 2 shows that, for ester and Cl-tetracene, their

ECDA dipole moments with Nb = 3 agree well with the benchmarks. This good agreement

can be explained by noting that the clusters de�ned with Nb = 3 are large enough to contain

the atoms that contribute to the dipole moments. For example, the dipole moment of ester

is mainly formed among O1, C1, and O2. With Nb = 3, the cluster of O1, the cluster of

O2, and the cluster of C1 all contain O1, O2, and C1. Thus, the EXX energy density in the

region of O1, C1, and O2 can be accurately patched. This well reproduces the EXX potential

in that region, which in turn well reproduces the dipole moment. For Cl-tetracene, its dipole

moment is mainly formed between Cl and C1. Since C1 participates in the delocalized π

system of tetracene, we need to include, at least, the left-most benzene ring to de�ne C1's

cluster in order to well reproduce the EXX potential in the region of the Cl-C1 bond. With

Nb = 3, C1's cluster contains the entire left-most benzene ring.

However, for tripeptide ECDA with Nb = 3 still predicts a dipole moment that is 0.51 D

less than the benchmark. To explain this, we examine the dipole moment vector ~D. With

KS-DFT-EXX, we have Dx = 5.60 D, Dy = −1.85 D, Dz = −1.24 D. ECDA-EXX with

Nb = 3 gives Dx = 5.05 D, Dy = −1.74 D, and Dz = −1.35 D. We �rst focus on Dy and

Dz which are due to the dipole moments of the peptide bonds. ECDA-EXX gives good

predictions for Dy and Dz, again due to the fact that the clusters de�ned with Nb = 3 are

large enough to cover the atoms that contribute to Dy and Dz. Let's take the peptide bond

O1-C1-N1-H1 for example. With Nb = 3, O1's cluster contains all the atoms (O1, C1, N1,

and H1) belonging to this peptide bond. This is also the case for C1's cluster, N1's cluster,

and H1's cluster. Therefore, the EXX potential in the region of the O1-C1-N1-H1 peptide

bond is well reproduced by ECDA-EXX. As a result, the dipole moment of the peptide bond

is well reproduced by ECDA-EXX. Following the similar argument, we can explain the poor

agreement on Dx between ECDA-EXX and KS-DFT-EXX. Dx measures the dipole moment
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along the backbone, i.e., the x direction. With Nb = 3, no cluster is large enough to cover

the entire backbone. If the patched EXX energy in di�erent sections of the backbone has

di�erent errors, the system's EXX potential will have di�erent errors along the backbone.

Then, ECDA-EXX will give poor prediction to Dx.

Table 2: Compare the total energies (in Hartree) and dipole moments (in Debye) from self-
consistent KS-DFT-EXX and self-consistent ECDA-EXX calculations. For ECDA-EXX, the
energy di�erences (EECDA

tot −EKS
tot ) are given with EECDA

tot and EKS
tot being the total energies

from KS-DFT-EXX and ECDA-EXX calculations, respectively.

ECDA-EXX
Nb = 1 Nb = 2 Nb = 3 KS-DFT-EXX

total energy
ester 0.492 0.236 0.069 -91.485
Cl-tetracene 0.450 0.103 0.032 -120.555
tripeptide 0.477 0.327 0.223 -169.424

dipole moment
ester 1.82 1.93 1.90 1.87
Cl-tetracene 2.55 2.06 2.38 2.56
tripeptide 5.28 5.60 5.51 6.02

We also compute the energies for stretching the C1-Cl bond in Cl-tetracene using ECDA-

EXX. The results are compared to the KS-DFT-EXX results (the benchmarks). Fig. 8(a)

shows that ECDA-EXX energies become closer to the KS-DFT-EXX results quickly as we

increase cluster sizes. The shapes of the energy curves from the two methods are similar.

With Nb = 3, the errors per atom are less than 2 mHa for all bond lengths. By �tting the

lowest three energy points on each curve with a quadratic function, the equilibrium bond

lengths are 1.815 bohr, 1.731 bohr, and 1.751 bohr for ECDA-EXX calculations with Nb = 1,

2, and 3, respectively. They converge to the benchmark of 1.754 bohr.

The performance of ECDA-EXX is also investigated by computing the energies for re-

moving H1, H6, and the CH3 group from ester, as shown in Fig. 7(a). The CH3 group

is removed by cutting the bond denoted by the blue dashed line l. The energies for re-

moving H atoms are de�ned as ∆EH = Erad,H + EH − Eester, where Erad,H is the energy of

the H-removed radical and Eester is the energy of the ester. The energy for removing the
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Figure 8: (a) Total energies for stretching the Cl-C1 bond of Cl-tetracene from self-consistent
KS-DFT-EXX and self-consistent ECDA-EXX calculations (with Nb=1, 2, and 3). (b) Error
in total energy per atom.

CH3 group is de�ned as ∆ECH3 = Erad,CH3 + ECH3 − Eester, where Erad,CH3 is the energy

of the CH3-removed radical. Spin-polarized ECDA-EXX calculations are performed with

a smearing temperature of 0.2 eV to achieve a good convergence of the density partition

in FT-DFET calculations. The penalty coe�cients in the FT-DFET calculations are set

to 200. The ECDA-EXX calculations are self-consistent. The benchmarks are from self-

consistent KS-DFT-EXX calculations. The results are listed in Table 3. By increasing Nb,

both ∆EH and ∆ECH3 convergence to the benchmarks; however the convergence of ∆EH is

much faster than that of ∆ECH3. We note that the convergence of ∆EH depends on the

error cancellation between Eester and Erad,H. For ∆ECH3 , its convergence depends on the

error cancellation between Eester and Erad,CH3 . The faster convergence observed for ∆EH

is then due to a better error cancellation between Eester and Erad,H. This is con�rmed by

examining the spin densities of both H-removed and CH3-removed radicals. The unpaired

electrons in the H-removed radicals are more localized than the unpaired electron in the

26



CH3-removed radical. On the other hand, the electrons of the ester molecule are well lo-

calized, because the molecule is closed shell and the electrons are all paired. Therefore, the

error cancellation between Eester and Erad,H is more e�ective than that between Eester and

Erad,CH3 . This explains why the convergence of ∆EH with Nb is faster than that of ∆ECH3.

To further con�rm this, we also compute the energy for substituting the CH3 group with an

OH group in ester in order to avoid creating a radical. The substitution energies are de�ned

as Esub = Erad−OH + ECH4 − Eester − EH2O and are listed in Table 3. Erad−OH is the energy

of the ester with the CH3 group replaced by an OH group; ECH4 and EH2O are the energies

of methane and water molecules. We expect a good error cancellation between the ECDA

energies of Erad−OH and Eester, since no unpaired electron is in these two systems. As shown

in Table 3, the convergence of the substitution energy with Nb is indeed much faster than

that of ∆ECH3 .

Table 3: The energies for removing H1, H6, and CH3 group in the ester molecule as illustrated
in Fig. 7(a). The energy for substituting the CH3 group with an OH group is denoted by
�CH3 → OH�. Energies are in Hartree.

ECDA-EXX
Nb = 1 Nb = 2 Nb = 3 Nb = 4 KS-DFT-EXX

H1 0.099 0.123 0.133 0.133 0.132
H6 0.100 0.131 0.132 0.135 0.133
CH3 0.006 0.040 0.077 0.084 0.092
CH3 → OH -0.087 -0.090 -0.081 -0.078 -0.072

We also compute the energy for rotating the C3-C4 single bond in the ester as denoted in

Fig. 7. The results are given in Fig. 9. The ECDA-EXX calculations are self-consistent. The

benchmarks are from KS-DFT-EXX calculations. Fig. 9(a) shows that ECDA-EXX energies

converge to the benchmark as Nb is increased. In Fig. 9(b), we shift the energies to make

the energies of the unrotated esters to be zero. We obtain quantitative agreement on the

energy pro�les between ECDA-EXX and KS-DFT-EXX for Nb ≥ 4.

For a more stringent test, we compare the EXX potentials from self-consistent KS-DFT-

EXX (benchmarks) and self-consistent ECDA-EXX calculations. Fig. 10 shows the quick
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Figure 9: (a) The total energy of ester as the C3-C4 bond is rotated, from self-consistent
ECDA-EXX calculations with di�erent Nb values. The benchmarks are from self-consistent
KS-DFT-EXX calculations. (b) The energies are shifted to make the total energy of the
unrotated ester to zero.
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convergence of ECDA's EXX potentials to the benchmark as Nb is increased. Fig. 11 com-

pares ECDA's EXX potentials (with Nb = 3) to the benchmarks for the other two molecules

(Cl-tetracene and tripeptide). In general, ECDA's EXX potentials agree well with the bench-

marks.

Figure 10: (a,b,c) Contour plots of ester's EXX potentials from self-consistent ECDA-EXX
calculations with Nb =1, 2, and 3. (d) The EXX potential (benchmark) from self-consistent
KS-DFT-EXX calculation. The atoms are labeled following Fig. 7(a). The contour planes
pass through O1, C1, and O2 atoms. The interval between contour lines is 0.1 a.u. The
ranges of colorbar are in atomic units.

The good agreement on EXX potentials indicates that EXX energy densities from KS-

DFT-EXX calculations are well reproduced by ECDA-EXX. To verify this, we compute the

atomic EXX energies according to Eq. 19, and quantify the errors by de�ning the absolute

and relative errors

eabs,j = Eatom,j
x,ECDA − E

atom,j
x,KS (43)

erel,j = eabs,j/|Eatom,j
x,KS |, (44)
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Figure 11: Contour plots of the EXX potentials of (a) Cl-tetracene and (b) tripeptide from
self-consistent KS-DFT-EXX and self-consistent ECDA-EXX (with Nb = 3) calculations.
The atoms are labeled following Fig. 7(b,c). For Cl-tetracene, the contour plane is the plane
of tetracene. For tripeptide, the contour plane is de�ned by O1, C1, and N1 atoms. The
interval between contour lines is 0.1 a.u.. The ranges of colorbars are in atomic units.

where Eatom,j
x,ECDA and Eatom,j

x,KS are the atomic EXX energies of the atom j from ECDA-EXX

and KS-DFT-EXX calculations, respectively. The results are summarized in Fig. 12.

The upper panels of Fig. 12 (a), (b), and (c) show that in general atomic EXX energies

predicted by ECDA-EXX agree well with the benchmarks. For ester, the errors on all atoms

(except the two oxygen atoms) decrease quickly as we increase Nb to 3. This indicates that

the exchange holes are generally delocalized over three bonds. With Nb = 3, |eabs,j| is smaller

than 20 mHa and |erel,j| is under 2% for all atoms. A similar observation is made for Cl-

tetracene. The errors on all atoms decrease quickly as we increase Nb to 3. With Nb = 3,

|eabs,j| is smaller than 10 mHa and |erel,j| is under 2% for all atoms. For tripeptide, the

errors do not decrease very fast as we increase Nb. The errors on some H atoms (marked by

arrows) are large. Why are these H atoms special? We note that the �ve H atoms marked

by the black arrows are bonded to the nitrogen atoms. The H atom marked by the red

arrow is bonded to an oxygen atom. These marked H atoms have larger errors than the
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unmarked H atoms that are bonded to the carbon atoms. Nevertheless, with Nb = 3, |eabs,j|

is under 41 mHa for all atoms. |erel,j| is below 2% for non-hydrogen atoms (C, N, and O)

and is below 7.5% for all H atoms. To summarize, for all molecules, atomic EXX energies

predicted by ECDA-EXX are close to KS-DFT-EXX results. This explains that why EXX

potentials, which are the derivatives of EXX energies with respect to the electron densities,

are well predicted by ECDA-EXX.

The accuracy of ECDA-EXX is further examined by comparing the system's KS eigen-

values from self-consistent ECDA-EXX and self-consistent KS-DFT-EXX (benchmarks) cal-

culations in Fig. 13. For easy comparison, we have shifted the eigenvalues of all highest

occupied molecular orbitals to zero. For ester and Cl-tetracene, the eigenvalues of the occu-

pied states converge to the benchmarks quickly as we increase cluster sizes. For tripeptide,

the convergence is slower. For the unoccupied states, the convergences of the eigenvalues

are much slower for all molecules. For tripeptide, the prediction with Nb = 3 is even worse

than the predictions from Nb = 1 and Nb = 2. This is in contrast to the case of H20 (Fig. 6),

in which the eigenvalues of both occupied and unoccupied KS orbitals converged quickly

as the clusters were made larger. The reason can be that ECDA-EXX only optimizes the

systems' occupied orbitals. If we include a correlation functional (such as RPA correlation

functional) that depends on both occupied and unoccupied orbitals in ECDA calculations,

we expect the eigenvalues of both occupied and unoccupied KS orbitals to converge quickly

to the benchmarks as we increase cluster sizes. Our expectation is based on the observation

that, by adding correlation functionals to clusters, system's KS potential will also optimize

clusters' correlation energies. The system's correlation energy, obtained from patching clus-

ters' correlation energies, will then get improved as clusters are made larger, which will

improve the system's unoccupied KS orbitals. We are currently implementing RPA correla-

tion functionals for solving clusters in ABINIT and will examine this argument in a future

work.
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Figure 12: Atomic EXX energies of (a) ester, (b) Cl-tetracene, (c) tripeptide from self-
consistent KS-DFT-EXX and self-consistent ECDA-EXX (with Nb = 1, 2, and 3) calcula-
tions. The x-axis denotes the atoms. For ester, the �rst 18 atoms are H, the next 9 atoms
are C, and the last two atoms are O. For Cl-tetracene, the �rst 11 atoms are H, the next 18
atoms are C, and the last atom is Cl. For tripeptide, the �rst 14 atoms are H, the next 8
atoms are C, the following 4 atoms are N, and the last �ve atoms are O. The absolute and
relative errors are de�ned in Eqs. 43 and 44.
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Figure 13: KS eigenvalues of (a) ester, (b) Cl-tetracene, and (c) tripeptide from self-consistent
KS-DFT-EXX and self-consistent ECDA-EXX calculations. For ECDA-EXX calculations,
di�erent cluster sizes are used: Nb = 1, 2, and 3. The occupied and unoccupied KS orbitals
are denoted by solid and dashed lines, respectively.

5 Conclusion

In this work, we developed the embedded cluster density approximation (ECDA), which is a

logical extension of the local density approximation. The goal of ECDA is to scale up high-

level KS-DFT simulations in large systems. In ECDA, the system's XC energy is obtained

by patching high-level, locally computed XC energy densities over the system, in an atom-

by-atom manner. The system's XC potential is calculated by directly taking the functional

derivative of the system's XC energy with respect to the system's electron density. Since the

clusters' XC energy densities depend on their embedding potentials, a numerical challenge

is how to e�ciently compute the the derivatives of the embedding potentials with respect

to the system's KS potential. We overcome this obstacle by �rst deriving the relationship

between the embedding potentials and the system's KS potential, and then computing all

the terms that involve KS linear response functions using the �rst-order perturbation theory.

The computational cost of ECDA is dominated by three parts: (a) performing the Zhao-

Parr method to partition the system's electron density, (b) solving Eq. 42 to compute {zj},
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and (c) solving the OEP equation (Eq. 27) to obtain the system's XC potential. Among

them, we �nd the Zhao-Parr method to be the most time consuming part, especially for

large systems for which the environments are large. On the other hand, embedding potentials

decay quickly inside the environments, and therefore we do not need to include the entire

environment in the Zhao-Parr calculations. We will explore this idea in the future work to

reduce the cost of Zhao-Parr method. Analytical atomic forces are necessary for e�cient

geometry relaxation. If clusters' electron numbers are kept �xed, ECDA is a variational

method and analytical forces can be derived. We leave the discussions on the analytical

forces and how well they approximate the true forces in a future work.

To examine the accuracy of ECDA, we patched EXX and RPA correlation energies in

a hydrogen chain. The total energies from ECDA-RPA calculations converge quickly as

we make the clusters larger. ECDA also well reproduced the system's KS eigenvalues and

EXX+RPA potentials. ECDA was then applied to realistic systems: patching EXX energies

in molecules. As the clusters are made larger, the total energies and dipole moments are

reasonably reproduced by ECDA, and ECDA's EXX potentials converge quickly to the

benchmarks. Encouraged by these promising results, we expect ECDA to be a simple, yet

e�ective local correlation method for scaling up high-level KS-DFT calculations in large

systems. This would help us resolve challenging electronic structure problems, such as, the

novel electronic structures at oxides interfaces.91
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Appendices

A Derivation of yj for ACFDT EXX

We derive yj(r) for ACFDT EXX. A variation of the cluster's KS potential vclu,jKS (r) causes

change in the cluster's KS orbitals {φclu,jk } and eigenvalues {εclu,jk }, where k denotes the kth

KS orbital. We then have

yj(r) = Yj,1(r) + Yj,2(r) (45)

with

Yj,1(r) =

∫
dr′wj(r

′)
∑
k

∫
dr2

δεclu,jxc (r′)

δφclu,jk (r2)

δφclu,jk (r2)

δvclu,jKS (r)
(46)

Yj,2(r) =

∫
dr′wj(r

′)
∑
k

δεclu,jxc (r′)

δεclu,jk

δεclu,jk

δvclu,jKS (r)
. (47)

For ACFDT EXX, k runs over all orbitals whose occupation numbers are not negligible.

Note that the cluster's KS orbitals obtained from FD-DFET are often fractionally occupied.

De�ne

Aclu,jk (r2) =

∫
d3r′wj(r

′)
δεclu,jxc (r′)

δφclu,jk (r2)
. (48)

Yj,1(r) becomes

Yj,1(r) =
∑
k

∫
dr2A

clu,j
k (r2)G

clu,j
k (r2, r)φ

clu,j
k (r)

=
∑
k

φclu,jk (r)ψclu,jk (r). (49)
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Gclu,j
k (r2, r) = δφclu,jk (r2)/δv

clu,j
KS (r) is the KS Green's function, and ψclu,jk (r) is the kth orbital

shift

ψclu,jk (r) =

∫
dr2A

clu,j
k (r2)G

clu,j
k (r2, r) (50)

that can be e�ciently calculated by solving92,93

(HKS − εclu,jk )ψclu,jk (r) = −(uclu,jk (r)− ūclu,jk )φclu,jk (r) (51)

whereHKS is the cluster's KS Hamiltonian and u
clu,j
k = Aclu,jk /φclu,jk and ūclu,jk = 〈φclu,jk |uclu,jk |φclu,jk 〉.

It is straightforward to derive Aclu,jk for ACFDT EXX. For brevity, in the following we

drop the superscripts that denote the cluster j.

Ak(r) = −
∫
dr′wj(r

′)× [∑
ab

facabφb(r
′)δakδ(r

′ − r)

∫
dr2

φa(r2)φb(r2)

|r′ − r2|
+

∑
ab

facabφa(r
′)δbkδ(r

′ − r)

∫
dr2

φa(r2)φb(r2)

|r′ − r2|
+

∑
ab

facabφa(r
′)φb(r

′)

∫
dr2

δakδ(r2 − r)φb(r2)

|r′ − r2|
+

∑
ab

facabφa(r
′)φb(r

′)

∫
dr2

δbkδ(r2 − r)φa(r2)

|r′ − r2|
] (52)

where a and b run over all the orbitals that have non-negligible occupation numbers. We only

consider the non-spin polarized case. φa and fa are the ath KS orbital and its occupation

number of the cluster j, and cab = 1 + sgn(εclu,ja − εclu,jb ). Above expression can be simpli�ed

to

Ak(r) = −
∑
b

(fkckb + fbcbk)φb(r)

∫
dr2(wj(r) + wj(r2))

φk(r2)φb(r2)

|r− r2|
. (53)

The calculation of Yj,2(r) is straightforward, since EXX energy density explicitly depends

on the occupation numbers which in turn depend on KS eigenvalues. In addition, we have

36



δεclu,jk /δvclu,jKS (r) = φclu,jk (r)φclu,jk (r) due to the �rst-order perturbation theory.
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