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A microfluidic technique recently proposed in the literature to measure the interfacial tension be-

tween a liquid droplet and an immiscible suspending liquid [Hudson et al., Applied Physics Letters,

2005, 87, 081905], [Cabral and Hudson Lab on a Chip, 2006, 6, 427] is suitably adapted to the

characterization of the elastic modulus of soft particles in a continuous-flow process. A microflu-

idic device consisting in a cylindrical pipe with a reduction in cross-section is designed, and the

deformation and velocity of incompressible elastic particles suspended in a Newtonian liquid are

tracked as they move along the centerline through the constriction and such. Kinematic and shape

information is exploited to calculate the particle’s elastic modulus by means of the theory of elas-

tic particle deformation in extensional flow. [Roscoe, Journal of Fluid Mechanics, 1967, 28, 273]

Such an approach is validated for different orders of magnitude of the elastic capillary number

through experiments and numerical simulations.

1 Introduction

Suspensions carrying soft inclusions occur frequently both in na-

ture and scientific/industrial applications: biological cell suspen-

sions,1 suspensions of microgel beads or starch granules,2 and

filled polymers3 are common examples.

Of course, the flow properties of such multiphase systems are

strongly influenced by the mechanical properties of the suspended

particles. Hence, being able to measure material properties can

be crucial in order to understand and control the behavior of the

above mentioned suspensions. In addition, biological particles,

like cells, can suffer modifications of their deformability and func-

tion depending on their health state,4,5 thus measuring their me-

chanical properties can be a powerful tool to discriminate whether

they are healthy or diseased.

In the last twenty years, several methods have been proposed

in the literature for the measurement of the mechanical proper-

ties of elastic particles and biological cells, such as atomic force

microscopy-based techniques,6–10 micropipette aspiration,11 com-

pression between parallel plates,12–15 osmotic compression,16–22

and capillary micromechanics.23–27 However, all the aforemen-

tioned techniques are intrinsically discontinuous, thus quite time-
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consuming. Some of them are also quite ‘invasive’ for the investi-

gated particles, so the measured values of the mechanical proper-

ties can be influenced by the contact with the probe of the measur-

ing instrument.

About a decade ago, Hudson and co-workers developed a

continuous-flow non-invasive microfluidic technique providing al-

most real-time measurement of the interfacial tension between

a liquid droplet and an immiscible suspending liquid.28,29 Com-

pared to other approaches, their method offers considerable ad-

vantages in terms of device fabrication and operation ease, low

costs, and high throughput. In this paper, we design a microflu-

idic device, based on an adaptation of such a technique, for the

measurement of the elastic modulus of deformable particles, and

we validate it through numerical simulations and experiments on

homogeneous synthetic particles with sizes and elasticities in the

range of interest for biological cells.5

2 Device design

In his early theoretical paper studying an initially spherical incom-

pressible elastic particle suspended in a Newtonian fluid undergo-

ing uniaxial extensional flow in the Stokes regime, i.e., with neg-

ligible inertia, Roscoe30 found that the particle deforms until at-

taining a steady-state prolate spheroidal shape with the major axis

oriented along the extensional axis of the flow. The steady-state

deviation of the particle shape from the initial spherical shape can

be quantified by means of the (Taylor) steady-state deformation

parameter
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3 NUMERICAL VALIDATION

3 Numerical validation

3.1 Mathematical model and numerical technique

As we want to verify the validity of the approach described in the

previous section by means of numerical simulations, we need to

provide an adequate mathematical model for the system. Both the

suspended particle and the suspending medium are assumed to be

incompressible, and we also assume that inertia can be neglected

in both phases. Such an assumption is commonly fulfilled in mi-

crofluidic flows due to the characteristic flow velocities and length

scales involved.34 Hence, the mass and momentum balance for the

bead and the fluid read

∇ ·u = 0, (11a)

∇ ·T = 0, (11b)

where u is the velocity vector and T is the stress tensor. The latter,

in turn, can be expressed as T =−pI +σ , with p the pressure and

σ the deviatoric contribution to the stress tensor, for which a con-

stitutive equation has to be chosen. For a Newtonian liquid (l), we

write

σ
l
= 2ηE, (12)

with η the liquid viscosity and E = (∇u+∇uT)/2 the symmetric

part of the velocity gradient tensor ∇u. For the elastic particle (p),

we choose the neo-Hookean constitutive equation, whose velocity-

based formulation is35

▽

σ
p
= 2GE, (13)

where the symbol
▽

σ
p
≡ ∂σ

p
/∂ t +u ·∇σ

p
−∇uT ·σ

p
−σ

p
·∇u indi-

cates the upper-convected time derivative of σ
p

and G the shear

elastic modulus of the incompressible solid.

The balance and constitutive equations given above for the liq-

uid medium and the elastic particle are supplied with the following

boundary conditions on the inlet Γin, outlet Γout, walls Γw, and the

solid-liquid interface Γi:

uz(r) = 2ū

[

1−

(

r

R1

)2
]

on Γin, (14a)

T ·nout =−p̂nout on Γout, (14b)

u = 0 on Γw, (14c)

um = up on Γi, (14d)

T
l
·n = T

p
·n on Γi. (14e)

Equation (14a), with ū the average velocity of the suspending liq-

uid in the wide entry tube, expresses the parabolic velocity profile

arising from the Poiseuille law36 at the inlet Γin; Eq. (14b), with

p̂ the outlet pressure and nout the outwardly directed unit vector

normal to Γout, is the outflow condition at the device outlet; Eq.

(14c) gives the no-slip condition on the ambient fluid velocity at

the device wall Γw; finally, Eqs. (14d)-(14e), with the subscript ‘l’

denoting the liquid, ‘p’ denoting the particle, and n the unit vector

normal to the solid-liquid interface and directed towards the liq-

uid, express the velocity and stress continuity across the interface

Γi, respectively.

Since both the particle and the suspending medium are inertia-

less, no initial condition on the velocity is required, whereas an

initial condition is needed on the tensor σp in the elastic phase.

We assume that the particle is initially stress-free, which means

σ
p
|t=0 = 0 (15)

The above equations are solved using the arbitrary Lagrangian-

Eulerian finite-element method using well-known stabilization

techniques, namely, SUPG and log-conformation. A detailed de-

scription of our numerical approach for suspensions with de-

formable inclusions is given in Villone et al..37

Given the axial symmetry of the system, the actual computa-

tional domain is two-dimensional. Both the fluid and the solid

particle domains are discretized by a mesh of quadratic triangles.

Mesh elements align on the particle-liquid interface (conforming

geometry). During the simulations, the elements of the mesh pro-

gressively deform because of particle deformation and displace-

ment along the flow direction. In particular, the elements ‘up-

stream’ of the particle are stretched, whereas the elements ‘down-

stream’ of the particle are compressed by its advancement in the

z-direction. Any time the quality of the surface elements in the do-

main becomes unacceptable in terms of a threshold, a remeshing

is performed, and the solution is projected from the old mesh to

the new one, as detailed in Hu et al..38

Convergence tests have been performed in space and time, i.e.,

mesh resolution and time-step have been chosen so as to ensure

invariance of the numerical solution of the equations presented

in this section upon further refinements. Finally, given the model

proposed above, we have verified that the distance between the

wide tube entrance at z = 0 and the initial axial position of the

particle’s geometrical center zp,0 is such that the presence of the

particle does not perturb the suspending liquid velocity profile for

at least a length equal to 2R1 after Γin. In other words, our geom-

etry is suitable to simulate devices whose wide tube’s entrance is

arbitrarily far upstream of the particle. Moreover, we have checked

that the distance between the initial axial position of the particle

zp,0 and the tube contraction is such that the particle can attain its

steady state deformed shape in the wide tube before ‘feeling’ the

effect of the contraction.

3.2 Numerical results

In order to numerically validate the effectiveness of the device pro-

posed above, we choose the wide tube 1500 µm long and 350 µm in

radius, the narrow tube 600 µm long and 117 µm in radius, and

the junction 60 µm long. Hence, the contraction ratio of the device

R2/R1 is equal to 1/3. It can be verified that, until Lc is within 10%

of 2R1, the contraction can be considered to all effects ‘abrupt’,

thus Eq. (10) holds. Concerning the particle, we consider a bead

with a radius of 35 µm and an elastic modulus G = 1 kPa. Fi-

nally, the suspending fluid has a viscosity of 0.6 Pa·s, and enters
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the device with an average velocity ū = 220 µm/s. Given such

information, the shear elastic capillary number in the wide tube

is Ca = η ū/(2R1G)∼ 1.9×10−4, whereas the confinement ratio of

the particle is β = Rp/R1 = 0.1. Under those conditions, the steady-

state deformed shape of the bead before the contraction does not

depart perceptibly from the initial spherical shape.33

𝐿
𝐵

𝑧$ − 𝑧$,' = 300µm

𝑧$ − 𝑧$,' = 550µm

z

Fig. 2 Sequence of shapes attained by an elastic particle while traveling

along the device axis and travelling through the constriction.

We release the undeformed elastic bead at zp,0 = 1000 µm, then

we monitor in ‘real-time’ how it translates and deforms. In Fig. 2,

we report a sequence of four front-views of the shape attained by

the particle while it travels along the device axis and goes through

the constriction. The first snapshot is taken when the particle is lo-

cated at zp − zp,0 = 300 µm: at that axial position, the deformed

shape is hardly distinguishable from the undeformed spherical

shape, thus the lengths of the semi-axes L and B are very close to

each other. As the bead is displaced along the tube axis, it feels the

increasingly intense extensional flow induced by the pipe’s cross-

sectional reduction, which induces a progressively ‘more prolate’

spheroidal shape, with the major semi-axis L oriented along the

device axis. The last snapshot shown in Fig. 2 is taken at zp − zp,0

= 550 µm.

In Fig. 3a, the deformation parameter D is plotted as a function

of the axial displacement of the particle with respect to the initial

position zp − zp,0. It is evident that, until the particle is far enough

from the tube contraction (zp − zp,0 . 200 µm), its deformation is

negligible, then, as it experiences the extensional flow induced by

the channel cross-sectional reduction, D increases. In the inset in

Fig. 3b, the time needed by the particle to reach an axial position

is reported versus its axial position: t first increases linearly with

zp − zp,0, then, as the particle is affected by the extensional flow,

it accelerates (t increases less than linearly with z). From the data

displayed in Fig. 3a and in the box in Fig. 3b, the axial profile of

the deformation parameter time derivative dD/dt can be obtained

(Fig. 3b). In the box in Fig. 3c, the particle’s axial velocity uz,p is

plotted versus zp − zp,0: ‘far’ from the contraction, uz,p is constant,

then, as the bead feels the extensional field, uz,p increases. The

particle’s axial velocity is used to obtain the axial profile of the

extensional rate ε̇ ≃ duz,p/dz to which the particle is subjected,

shown in the main Fig. 3c. Of course, until the particle does not

feel the extensional field generated by the pipe contraction, ε̇ is

null, then, as the bead approaches the contraction, an increase in

ε̇ is detected. Notice that we have equated the local extensional

rate of the fluid ε̇ with the derivative of the particle’s axial velocity

in the axial direction duz,p/dz. Strictly speaking, this would be

correct only if the particle was a tracer, while a slip velocity exists

for a particle of finite dimensions, with the particle lagging the

fluid. However, since the Reynolds number tends to zero and the

particle is on the tube axis, such slip velocity can be neglected.28,29

Taking data at the same zp − zp,0 from Fig. 3, a graph of the

quantity η(15/8ε̇ − dD/dt) as a function of the deformation pa-

rameter D can be established. If the theory enunciated in Sec. 2

holds, the points displayed on such a diagram, known as the ‘Tay-

lor’ plot,28,29 must fall along a straight line with a slope equal to

the particle’s elastic modulus G. Indeed, the ‘central’ data set ap-

pearing in Fig. 4a can be suitably fitted through a linear function

with null intercept and slope equal to 1009.5 Pa (coefficient of de-

termination R2 = 0.9998), represented by the red dashed line. The

approach proposed in Sec. 2, then, yields a value of the bead elas-

tic modulus less than 1% different from the ‘true’ value of 1 kPa

(namely, the actual input of the simulation). As a further proof,

in Fig. 4a, two other series of η(15/8ε̇ −dD/dt)-versus-D data are

displayed: the white diamonds are the outputs of a numerical sim-

ulation with a bead having a modulus of 0.1 kPa and the gray tri-

angles come from a simulation where the particle has G = 10 kPa

(the device geometry and all the operating parameters being the

same). These data sets appearing in Fig. 4 can be fitted through

linear functions with null intercept and slopes equal to 100.71 Pa

(coefficient of determination R2 = 0.997, see the green dashed line)

and 9998 Pa (R2 = 0.998, cyan dashed line), respectively. Hence,

also for particles with an elastic modulus of one order of magni-

tude lower or higher than the one considered above, our method

returns a ‘measured’ value less than 1% different from the ‘true’

one. In Fig. 4b, the sets of numerical results appearing in Fig. 4a

are plotted each one scaled by the corresponding estimated value

of the elastic modulus Ĝ. As expected, the three series of data all

collapse on the bisector of the first quadrant of the Cartesian plane.

4 Experimental validation

4.1 Materials and methods

We produced hydrogel microparticles using a droplet microflu-

idic method (Fig. 5). Using standard photolithography and soft

lithography method,39 polydimethylsiloxane (PDMS, Sylgard 184,

Dow Corning) devices were fabricated containing two focusing

junctions. The inner aqueous phase was a photocrosslinkable

solution composed of 54 vol% poly(ethylene glycol) diacrylate

(PEG-DA, Mn 575 g/mol), 20 vol% 2-dimethylaminoethyl acry-

late (DMAEA), 18 vol% deionized water, 8 vol% 2-hydroxy-2-

methylpropiophenone (PI) and 5 mg/ml fluorescein o-acrylate.

Both oil phases were composed of light mineral oil with 0.5 wt%

Span 80 surfactant.

The flow rates of the inner aqueous phase Q1, the middle oil

phase Q2 and the outer oil phase Q3 were all controlled indepen-

dently by syringe pumps (Harvard Apparatus). The inner phase

formed droplets in the oil phase at the first focusing junction,

which had a concentric geometry to facilitate droplet generation.

The size of the droplets was controlled by adjusting Q1/Q2; the
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4 EXPERIMENTAL VALIDATION 4.1 Materials and methods

Fig. 3 (a) Axial trend of the deformation parameter D of the elastic particle for the simulation outlined in Fig. 1b. (b) Axial variation of the deformation

parameter time derivative dD/dt; inset: time needed by the particle to reach the axial positions reported on the horizontal axis. (c) Axial trend of the

extensional rate ε̇ experienced by the particle; inset: axial trend of the particle axial velocity uz,p. The constriction goes from zp−zp,0 = 500 µm to 560 µm.

Fig. 4 (a) Green diamonds, red circles, cyan triangles: Taylor plot of η(15/8ε̇ − dD/dt) versus D for three different G-values. Green, red, cyan lines:

linear fits of the three series of symbols (the slopes are equal to 100.71, 1009.5, 9998 Pa, respectively).(b) Taylor plot of (η/Ĝ)(15/8ε̇ −dD/dt) versus

D, with Ĝ the estimated value of the particle shear modulus, for the same data sets as in panel (a).

droplet size was maintained at approximately 100 µm. After the

second junction, the droplets flowed along the main channel and

were exposed to a UV light spot approximately 1.4 mm in diameter

using a 20X objective on an inverted fluorescence microscope (Le-

ica DMI4000B). The UV intensity ranged between 21 - 29 mWcm−2

for all experiments. The exposure time of the droplets, ranging

from 150 - 500 ms, was controlled primarily by Q3, where a higher

Q3 resulted in a shorter exposure time of the droplets, and there-

fore, a softer particle.

The particles were collected off-chip and washed multiple times

in 1 wt% aqueous Tween 80 solution in a series of centrifugation

and resuspension steps to remove the oil and unreacted monomer

solution. The particles were then washed and resuspended in 0.1

wt% aqueous Tween 80. The particles were stored in 0.1 wt%

aqueous Tween 80 for at least 30 hours before testing. Final par-

ticle radii, after swelling, ranged from 50 - 125 µm. Immediately

before testing, glycerol suspensions were prepared by mixing a 1

- 4 wt% aqueous particle suspension in glycerol (BDH), where the

final viscosities of the suspending medium ranged from 0.4 - 0.9

Pa·s. Glycerol solutions were chosen as the suspending media be-

cause of the high viscosity required to achieve the range of elastic

capillary numbers needed for these measurements, and because

the refractive index closely matched that of the PMMA walls of

the device. All reagents were obtained from Sigma-Aldrich unless

otherwise stated.

For the ‘modulometer’ device, concentric cylinders were fab-

ricated in polymethylmethacrylate (PMMA) using CNC micro-

milling. Each device consisted of three main regions (see Fig. 6).
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Table 1 Comparison of the moduli of particles produced from different UV

exposure times tUV, measured using the ’modulometer’ and nanoinden-

tation. *Soft particles did not remain spherical during indentation, so EY

could not be determined by this method.

tUV (ms) G (kPa) EY/3 (kPa)

‘modulometer’ nanoindentation

202 0.5 ± 0.1 *

205 1.6 ± 0.3 *

217 2.5 ± 0.2 3.2 ± 0.3

272 6.4 ± 0.6 7.0 ± 1.3

297 9 ± 2 23 ± 2

filled, while the shear elastic capillary number in the wide tube is

Ca = η ū/(2R1G) ∼ 7× 10−4, which is comparable with the values

considered in the previous section. As a further validation, we re-

port in Fig. 8k also the results of a numerical simulation where

the inputted value of the particle modulus is 580 Pa and the other

parameters are chosen as to mimic the experiment (see the green

diamonds). A fair quantitative agreement is found and the slope

of the regression line referring to numerical data is 578.8 Pa.

We produced particles with different crosslink densities by ad-

justing the UV exposure time tUV of the monomer solution droplets.

The Taylor plot in Fig. ?? compares particles prepared with dif-

ferent tUV. The moduli of the particles were determined from

the slopes and compared to the Young’s moduli EY measured by

nanoindentation, as displayed in Table 1. The magnitude of the

slopes in Fig. ?? increases with increasing tUV, which is consistent

with the production of a more highly crosslinked particle when

exposed to UV light for longer times. The more crosslinked the

particle, the smaller the deformations observed before the parti-

cles entered the narrow region of the device. The maximum D

measured for particles produced at tUV = 297 ms was 0.03; for this

batch of particles, the large difference between the ‘modulometer’

and nanoindentation results may be the result of an insufficient

range of D leading to an imprecise determination of G. For parti-

cles produced with tUV > 297 ms, the total observable change in

L and B before entering the narrow region was ≤ 2 pixels, so G

could not be precisely determined. Larger extensional rates than

those that were achievable with our setup would be required to

deform the more highly crosslinked particles. On the other hand,

our method is very effective when dealing with ‘softer’ particles ,

i.e., those produced with tUV = 217 and 297 ms. Further softer

particles (tUV = 202 and 205 ms) did not remain spherical dur-

ing indentation, so EY could not be determined for them by this

method.

5 Conclusions

In this paper, we explain how to adapt a microfluidic technique re-

cently proposed in the literature28,29 for the measurement of the

interfacial tension between a liquid droplet and an immiscible sus-

pending liquid to the determination of the elastic modulus of soft

particles. We design a microfluidic device consisting of a cylindri-

cal pipe with a radial contraction and, by tracking the deformation

and velocity of particles suspended in a Newtonian fluid as they

go through the constriction, we perform a measurement of their

elastic modulus. We validate our approach for different orders of

magnitude of the bead elastic modulus through finite-element nu-

merical simulations and experiments. The microfluidic technique

proposed in this paper has numerous advantageous aspects, as it

is non-invasive, easy to implement, and provides continuous and

almost real-time measurements of a particle’s mechanical proper-

ties. Since experimental testing of the technique is provided for

synthetic elastic particles with size- and elasticity-values in the

range of interest for biological cells, the application of the mod-

ulometer could be extended to biomechanical measurements. On

the other hand, it has to be considered that in the mathematical

model underlying the device operation it is assumed that the par-

ticle is made of an incompressible homogeneous elastic material,

which could not always be the case for biological cells.
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Fig. 8 Example of a typical experimental result. (a-g) Time sequence of a translating hydrogel particle (see also corresponding video S1 online),

showing the deformed shape as the particle approaches the contraction, where the extensional rate ε̇ ranges from 16.7− 118 s−1. Flow is from top to

bottom. Scale bars represent 100 µm. (h-j) Corresponding axial trends for the hydrogel particle in each frame (a-g) where (h) is ε̇, with an inset showing

the axial flow velocity u, (i) is the deformation parameter D, with an inset showing the relationship between D and ε̇, and (j) is dD/dt, with an inset

showing the time taken by the particle to reach the corresponding axial position. The constriction starts at z = 340 µm. (k) Taylor plot of the deformation;

dashed line is the linear fit with a slope G = 580 Pa. Green diamonds are the outcomes of a numerical simulation with G = 580 Pa and the same

parameters as the experiment as inputs. The slope of the green line is 578.8 Pa.
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