

An emergent sea ice floe size distribution in a global coupled ocean–sea ice model

Lettie A. Roach^{1,2}, Christopher Horvat^{*1,3}, Samuel M. Dean¹ and Cecilia M. Bitz⁴

¹National Institute of Water and Atmospheric Research, Wellington, NZ

²Victoria University of Wellington, Wellington, NZ

³Harvard University, Cambridge, MA, USA

⁴University of Washington, WA, USA

Key Points:

- We develop the first global ocean–sea ice model to prognostically simulate a sea ice floe size distribution
- The floe size distribution emerges by resolving processes acting on individual floes
- Floe-size dependent feedbacks have a significant impact on simulated sea ice

^{*}Current affiliation: Brown University, Providence, RI, USA

Corresponding author: Lettie Roach, Lettie.Roach@niwa.co.nz

13 **Abstract**

14 Sea ice is composed of discrete floes, which range in size across orders of magnitude.
 15 Here, we present a model that represents the joint distribution of sea ice thickness
 16 and floe size. Unlike previous studies, we do not impose a particular form on the sub-
 17 grid-scale floe size distribution. Floe sizes are determined prognostically by the interac-
 18 tion of five key physical processes: new ice formation, welding of floes in freezing con-
 19 ditions, lateral growth and melt, and fracture of floes by ocean surface waves. Coupled
 20 model results suggest that these processes capture first-order characteristics of the floe size
 21 distribution, including decay in the distribution with increasing floe size and basin-wide
 22 spatial variability in representative radius. Lateral melt and floe welding are particularly
 23 important, with wave fracture creating floes at preferred sizes. The addition of floe size
 24 dependence to the existing model physics results in significant reductions in sea ice con-
 25 centration, particularly in summer and principally due to floe-size-dependent lateral melt.
 26 The increased lateral melt alters partitioning of the melting potential, which reduces basal
 27 melt and increases sea ice thickness in some locations. These results suggest that includ-
 28 ing a floe size distribution may be important for accurate simulation of the polar climate
 29 system.

30 **1 Introduction**

31 The Earth's sea ice cover is a heterogeneous and variable medium, comprised of
 32 myriad individual solid pieces, called *floes*, each identifiable with a horizontal size. Sizes
 33 of individual floes vary over an extremely broad range, from centimeters to hundreds of
 34 kilometers. The floe size distribution (FSD), $F(r)$, is a probability function that charac-
 35 terizes this variability [Rothrock and Thorndike, 1984]. Over a region of the ice-covered
 36 ocean, $F(r)dr$ is the fraction of a region covered by floes with a size between r and $r + dr$.
 37 Floe size has an important relationship with simulated sea ice evolution [Steele, 1992;
 38 Horvat *et al.*, 2016; Rynders *et al.*, 2016], which may be particularly relevant for the largely
 39 seasonal Antarctic sea ice cover, and as the Arctic ocean transitions from a perennial sea
 40 ice cover to a seasonal one [Aksenov *et al.*, 2017].

41 Current sea ice models are complex, incorporating multiple vertical layers in the
 42 snow and ice through which radiation scatters, variable surface treatments such as snow
 43 cover and melt ponds, and visco-plastic or elastic-brittle material properties that affect the
 44 ice deformation into ridges. Most describe the time evolution of ice using a probability
 45 distribution of ice in thickness categories following [Thorndike *et al.*, 1975]. To date no
 46 modern global climate models simulate floe size or the FSD. Recently, pan-Arctic [Zhang
 47 *et al.*, 2016] and stand-alone [Bennetts *et al.*, 2017] models which include floe size in-
 48 formation have been demonstrated, but these impose the FSD shape or behavior rather
 49 than allowing it to emerge from physical processes acting on individual floes. Further,
 50 the power-law FSD profiles used to develop these empirical parametrizations may be in-
 51 consistent with observations [Herman, 2010] and the physics of sea ice floes [Horvat and
 52 Tziperman, 2017; Herman *et al.*, 2018].

53 In this study, we allow the FSD to emerge from the interaction of a set of coupled
 54 processes, rather than imposing a particular distributional shape. Building from the model
 55 of the joint floe size and thickness distribution (FSTD) developed by Horvat and Tziper-
 56 man [2015, 2017], we present the first global ocean–sea ice model to prognostically simu-
 57 late the sea ice FSD. The scheme is compatible with existing sea ice thickness distribution
 58 models and is implemented within the Los Alamos sea ice model, CICE5.1 [Hunke *et al.*,
 59 2015]. The model simulates the statistical evolution of floes subject to lateral growth and
 60 melt, welding of floes in freezing conditions, new ice formation and fracture of floes by
 61 ocean surface waves, with the shape of the FSD emerging from these processes. Using the
 62 model in coupled ocean–sea ice simulations, we examine the contribution of those pro-

cesses to FSD evolution at a hemispheric scale. We further show that including floe size information has a significant impact on sea ice concentration and thickness globally.

This paper proceeds as follows: we discuss the incorporation of a prognostic FSD into CICE in Sec. 2. We show results from coupled simulations in Sec. 3; discuss limitations, compare to other studies, and make recommendations for observations that would advance FSD models in Sec. 4; and conclude in Sec. 5

2 Model

2.1 Standard model

The FSD model is implemented as a component of the Los Alamos sea ice model, CICE5.1 [Hunke *et al.*, 2015]. CICE ordinarily simulates an ice-thickness distribution (ITD), $g(h)$ (units m^{-1}), where $g(h)dh$ is defined as the fraction of ocean surface covered by ice with thickness between h and $h + dh$, such that

$$\int_0^{h_{\max}} g(h)dh = 1. \quad (1)$$

The sea ice concentration, c , is obtained by integrating over all non-zero thicknesses resolved,

$$\int_{h_{\min}}^{h_{\max}} g(h)dh = c, \quad (2)$$

where h_{\min} is the lower bound of the smallest ice thickness class resolved. The sea ice concentration, c , and the open water fraction, ϕ , sum to unity. The evolution of the ITD is,

$$\frac{\partial g}{\partial t} = -\frac{\partial}{\partial t}(\mu g) - \nabla \cdot (g\mathbf{v}) + \psi, \quad (3)$$

where terms on the right hand side, respectively, represent the change in thickness due to thermodynamic growth/melt at a melting/freezing rate $\mu(h)$; advection of the ice thickness distribution by sea ice dynamics at ice velocity \mathbf{v} ; and redistribution of ice between thickness categories caused by sea ice deformation, ψ . We briefly describe the treatment of sea ice thermodynamics in CICE here.

The heat available in the surface ocean to melt or freeze sea ice is denoted F_{frzmlt} (units W/m^2), and when $F_{\text{frzmlt}} < 0$, the sea ice melts. Ice thickness changes at the ice base are determined by balancing the the conductive heat flux at the bottom surface, F_{cb} , and the net downward heat flux from the ice to the ocean, F_{bot} [Maykut and McPhee, 1995],

$$F_{\text{bot}} = -c_p^{\text{ocn}} \rho_w C_h u_* (T_w - T_f), \quad (4)$$

where c_p^{ocn} and ρ_w are the ocean heat capacity and density, C_h is a heat transfer coefficient, u_* is the ocean-ice friction velocity, T_f is the freezing temperature and T_w is the ocean surface temperature.

Lateral sea ice melting is obtained as a function of a fixed floe size parameter, L . CICE uses a single floe size of $L \equiv 300$ m, which is an order of magnitude larger than the scale at which lateral melting is believed to affect sea ice volume evolution [Steele, 1992]. The change in sea ice concentration due to lateral melt follows Steele [1992],

$$\frac{dg(h)}{dt} = \frac{g(h)}{L} w_{\text{lat}}, \quad (5)$$

with a vertically-averaged lateral melt rate, w_{lat} , that is assumed to be uniform around the perimeter of each floe, given by Josberger and Martin [1981],

$$w_{\text{lat}} = m_1 (T_w - T_f)^{m_2}. \quad (6)$$

105 The coefficients m_1 and m_2 are the best fit to data quoted by *Maykut and Perovich* [1987],
 106 measured in a single static lead in the Canadian Arctic archipelago over a three week pe-
 107 riod. The sum of F_{bot} and the heat required to effect the change in concentration due to
 108 lateral melt, F_{side} , cannot exceed the melting potential, F_{frzmlt} , and are reduced proportion-
 109 ally if this occurs.

110 During freezing conditions, when $F_{\text{frzmlt}} \geq 0$, a volume of sea ice, V_{new} , is pro-
 111 duced in proportion to F_{frzmlt} . This volume is added to the thinnest category, provided
 112 $V_{\text{new}}/\phi \leq 0.9h'_1$, where h'_1 is the upper boundary of the thinnest category. The frac-
 113 tional coverage of the thinnest category is increased by $\min(\phi, V_{\text{new}}/0.05 \text{ m})$. However, if
 114 $V_{\text{new}}/\phi > 0.9h'_1$, then a volume $0.9h'_1\phi$ is added to the thinnest category and its fractional
 115 coverage is raised by ϕ , and the surplus volume $V_{\text{new}} - 0.9h'_1\phi$ is distributed to all other
 116 thickness categories in proportion to their fractional coverage.

117 2.2 The joint floe size and ice thickness distribution

118 We extend the definition of the ice-thickness distribution following *Horvat and Tziper-*
 119 *man* [2015] to a joint floe size and thickness distribution (FSTD). Individual floes are
 120 identified with a size r and area $x(r)$, where $x(r) = 4\alpha r^2$ for $\alpha = 0.66 < \pi/4$ [*Rothrock*
 121 and *Thorndike*, 1984]. The probability distribution $f(r, h)drdh$ is the fraction of grid sur-
 122 face area covered by ice with thickness between h and $h + dh$ and lateral floe size between
 123 r and $r + dr$. The FSTD satisfies

$$\int_{r_{\min}}^{r_{\max}} \int_0^{h_{\max}} f(r, h)drdh \equiv \int_{\mathcal{R}} \int_{\mathcal{H}} f(r, h)drdh = 1. \quad (7)$$

124 Integrating the FSTD over all floe sizes yields the ITD,

$$\int_{\mathcal{R}} f(r, h)dr = g(h), \quad (8)$$

126 whereas integrating the FSTD over all ice thicknesses gives the FSD, $F(r)$,

$$\int_{\mathcal{H}} f(r, h)dh = F(r). \quad (9)$$

128 We can also define the number FSTD, $f^N(r, h)$, where $f^N(r, h)drdh$ is the number
 129 of floes per unit ocean surface area with thickness between h and $h + dh$ and lateral floe
 130 size between r and $r + dr$,

$$f^N(r, h) = \frac{f(r, h)}{4\alpha r^2}. \quad (10)$$

132 The number FSD, obtained by integrating $f^N(r, h)dh$ over all ice thicknesses, is often
 133 used in observational studies (eg. *Perovich et al.* [2014]).

134 Following *Horvat and Tziperman* [2015], time evolution of the FSTD is given by

$$\frac{\partial f(r, h)}{\partial t} = -\nabla \cdot (f(r, h)\mathbf{v}) + \mathcal{L}_T + \mathcal{L}_M + \mathcal{L}_W. \quad (11)$$

136 The terms on the right hand side represent forcing of the distribution $f(r, h)$ by advection,
 137 thermodynamics, mechanical interactions between floes (ridging and rafting), and fracture
 138 by ocean surface waves, respectively.

139 To implement this model in CICE, we define a modified areal FSTD (mFSTD),
 140 $L(r, h)$, where, within a given thickness range between h and $h + dh$, $L(r, h)dr$ is the frac-
 141 tion of ice with lateral floe size between r and $r + dr$. By definition, this satisfies

$$\int_{\mathcal{R}} L(r, h)dr = 1, \quad (12)$$

142 and

$$f(r, h) = g(h)L(r, h). \quad (13)$$

143 Implementation of the mFSTD allows preservation of the standard model formulation for
144 the ITD.145 We neglect the two-way relationship between floe size and mechanical redistribution,
146 retaining the standard CICE scheme for mechanical redistribution used to evolve the ITD.
147 Mechanical redistribution reduces the area fractions of all floes equally, without affecting
148 the mFSTD. Transport of the FSTD is achieved using the standard CICE scheme for tracer
149 advection. The sizes of floes do not appear directly in any terms in the momentum equa-
150 tion or constitutive law. In reality, we would expect floe sizes to affect both mechanical
151 redistribution and transport of the FSTD, but the precise relationships are uncertain and
152 we assume that they are of second-order importance to simulation of the FSD.153 Apart from advection, the processes which determine the FSTD are thermodynamics
154 - lateral melt and growth, freezing-together of floes, and new ice formation - and mechani-
155 cal wave fracture. These are described in more detail below.156

2.3 Thermodynamics

157 Thermodynamic changes to the FSTD are given by

$$\mathcal{L}_T(r, h) = -\nabla_{(r, h)} \cdot (f(r, h)\mathbf{G}) + \frac{2}{r}f(r, h)G_r + \delta(r - r_{\min})\delta(h - h_{\min})\dot{A}_p + \beta_{\text{weld}}. \quad (14)$$

159 The first two terms on the right-hand side in Eqn. 14 represent growth and melt of exist-
160 ing floes in thickness and lateral size, at a rate $\mathbf{G} = (G_r, G_h)$. The third term represents
161 growth of new ice: new floes are created at a rate \dot{A}_p in the smallest thickness category
162 h_{\min} , and the smallest lateral size category r_{\min} , i.e. that all ice forms initially as pancakes.
163 To allow for the joining of individual floes to one another, we represent the welding to-
164 gether of floes in freezing conditions via the fourth term, β_{weld} .

165 In melting conditions, the lateral melt rate is

$$G_r = w_{\text{lat}} \quad (15)$$

167 to preserve consistency with the standard model, with w_{lat} determined via Eqn. 6.

168 In freezing conditions, the lateral growth rate is

$$G_r = A_{\text{lat}}V_{\text{new}}/\Delta t, \quad (16)$$

170 where Δt is the time step and V_{new} is the volume of new ice growth in Δt , as per the stan-
171 dard model. A_{lat} is the fraction of new ice growth that is taken to adhere to floe edges,
172 representing lateral growth of existing floes. This is related to the “lead region”, the area
173 comprised of all annuli of width r_{lw} (Table 1) around floes. The fraction of the domain
174 belonging to the lead region, ϕ_{lead} , is

$$\phi_{\text{lead}} = \min \left[\int_{\mathcal{R}} \int_{\mathcal{H}} f(r, h) \left(\frac{2r_{lw}}{r} + \frac{r_{lw}^2}{r^2} \right) dr dh, \phi \right]. \quad (17)$$

176 where ϕ is the open water fraction. Noting that the circumference of a floe is $4\alpha \cdot 2r$, the
177 total lateral surface area of floes, per unit area of the ocean surface, is,

$$\overline{2hr} = \int_{\mathcal{R}} \int_{\mathcal{H}} f^N(r, h) 8\alpha r h dr dh.$$

179 Then the fraction of new ice growth adhering to floe edges, A_{lat} , is the product of the lead
180 region with the fractional contribution of lateral surface area to the total surface area,

$$A_{\text{lat}} = \phi_{\text{lead}} \frac{\overline{2hr}}{\overline{2hr} + c}.$$

182 The volume that remains after lateral growth, $(1 - A_{\text{lat}})V_{\text{new}}$, is distributed according
 183 to the standard CICE new ice growth formulation as described in Subsec. 2.1. We choose
 184 to place newly formed ice in the smallest floe size category, parametrizing them as pan-
 185 cake floes, as mentioned above. See Sec. 4 for discussion of this choice.

186 Floes that are determined to be in contact with one another while the upper ocean
 187 is being cooled may freeze together [Shen and Ackley, 1991], a process that is dominant
 188 in the Southern Ocean [Wadhams *et al.*, 1987]. We consider sea ice floes randomly placed
 189 on the model domain and allow them to weld together thermodynamically during freezing
 190 conditions according to the probability that they overlap. For simplicity, we briefly change
 191 variables to floe area $x = 4\pi r^2$ defined on $\mathcal{X} = [x_{\text{min}}, x_{\text{max}}]$, and presume sea ice is all
 192 of the same thickness. We define the area number density function $N(x)$ (units m^{-4}), with
 193 $N(x)dx$ equal to the number of floes per unit area between floe area x and $x + dx$, noting
 194 that the area fraction occupied by floes with area between x and $x + dx$ is $x \cdot N(x)dx$.
 195 The geometric probability of overlap is described using a “coagulation equation” [Smoluchowski,
 196 1916; Filbet and Laurençot, 2004],

$$197 \frac{\partial N(x, t)}{\partial t} = \frac{1}{2} \int_{\mathcal{X}} K(x', x - x') dx' - \int_{\mathcal{X}} K(x, x') dx'. \quad (18)$$

198 $K(a, b)$ (units $\text{m}^{-6}\text{s}^{-1}$) is the “coagulation kernel”, where $K(a, b)da db dt$ is the number of
 199 mergers per unit area of floes with area between a and $a + da$, and b and $b + db$ over a
 200 period dt , and $K(a, b) \equiv 0$ for any $a, b \leq 0$. The first integral in Eqn. 18 accounts for the
 201 formation of floes of area x resulting from the merger of two floes with respective areas
 202 x' and $x - x'$, where $x' < x$. The second integral describes the loss of floes with area x by
 203 coagulation with other floes. We compute the coagulation kernel $K(x, x')$ as the product
 204 of the area fraction of floes of size x and x' ,

$$205 K(x, x') = \kappa \cdot x \cdot x' \cdot N(x)N(x'), \quad (19)$$

206 where κ is a rate per unit area. Integrating Eqn. 18 over all x leads to the time change of
 207 floe number per unit area, \mathcal{N} ,

$$\begin{aligned} \frac{\partial \mathcal{N}}{\partial t} &= \kappa \left[\int_{\mathcal{X}} dx \int_{\mathcal{X}} \left(\frac{1}{2} x'(x - x') N(x') N(x - x') - x x' N(x) N(x') \right) dx' \right] \\ &= \frac{\kappa}{2} \left[\int_{x_{\text{min}}}^x dx' \left(\int_{\mathcal{X}} x'(x - x') N(x') N(x - x') dx \right) - 2c^2 \right] \\ &= -\frac{\kappa}{2} c^2, \end{aligned}$$

208 where we make use of the fact that $\int x N(x)dx = c$. The rate per unit area κ is the total
 209 number of floes that weld with another, per square meter, per unit time, in the case of a
 210 fully covered ice surface ($c = 1$), equal to twice the reduction in total floe number. Roach
 211 *et al.* [2018a] found a lower bound on κ of $0.001 \text{ m}^{-2}\text{s}^{-1}$ in observations of small floes
 212 freezing together in the autumn Arctic Ocean. We use a value of $\kappa = 0.01 \text{ m}^{-2}\text{s}^{-1}$ for the
 213 floe welding parameter.

214 2.4 Wave fracture

215 Following Horvat and Tziperman [2015], the change in the FSTD $f(r, h)$, per unit
 216 time due to fracture by ocean surface waves is,

$$217 \mathcal{L}_W(r, h) = -\Omega(r, h) + \int_{\mathcal{R}} \int_{\mathcal{H}} \Omega(s, h_s) \zeta(r, h, s, h_s) ds dh_s. \quad (20)$$

218 $\Omega(r, h)dr dh$ is the fraction of ocean surface area covered by floes with size and thickness
 219 between (r, h) and $(r + dr, h + dh)$ that is fractured by waves per unit time. $\zeta(r, h, s, h_s)dr dh$
 220 is the fraction of ocean surface area covered by floes with size and thickness between

(r, h) and $(r + dr, h + dh)$ formed due to the fracture of floes with size and thickness between (s, h_s) and $(s + ds, h_s + dh_s)$. The first term on the right-hand side in Eqn. 20 thus represents the fracture of floes at a given size and thickness into smaller sizes, and the second term represents the fracture of floes at larger sizes that result in floes at a given size and thickness.

We proceed by calculating the fractures that would occur if waves enter a fully ice-covered region defined in one dimension in the direction of propagation, and then apply the outcome proportionally to the ice-covered fraction in each grid cell. Noting that floe size is half its diameter, the sum of floe sizes in a one-dimensional, fully ice-covered domain is equal to the half the domain length, $D/2$. We consider the histogram of floe sizes, $W(r)$, formed due to the fracture of sea ice by waves, where $W(r)dr$ is equal to the number of fractures with a resulting floe size between r and $r + dr$,

$$\int_{\mathcal{R}} r W(r) dr = D/2. \quad (21)$$

The function $\zeta(r, h, s, h_s)$ is the fraction of D composed of fractures of size r , equal to $rW(r)$ if $r < s$, and zero otherwise,

$$\zeta(r, h, s, h_s) = \frac{rW(r)}{\int_{r_{\min}}^s rW(r) dr} \delta(h - h_s) \Theta(s - r) \quad (22)$$

where Θ is the Heaviside step function. By definition,

$$\int_{\mathcal{R}} \int_{\mathcal{H}} \zeta(r, h, s, h_s) dr dh = 1, \quad (23)$$

so Eqn. 20 conserves sea ice area and volume. We compute the area of floes of size (r, h) that is fractured per unit time as

$$\Omega(r, h) = f(r, h) \frac{c_g}{D} \left(\frac{1}{D/2} \int_{r_{\min}}^r r' W(r') dr' \right), \quad (24)$$

the product of three terms: (1) the fraction of ocean surface area originally covered by floes of size (r, h) ; (2) the fraction of the domain that is reached by ocean surface waves moving at their group velocity c_g , (c_g/D) ; and (3) the fraction of a fully-ice covered domain of width D that would be fractured into radii smaller than r .

It remains to compute the histogram of new floe sizes $W(r)$, for which we require the sea surface height field $\eta(x)$. In the absence of a coupled wave model that simulates wave attenuation in ice, we construct an approximate attenuated sea surface height field using hindcast wave data outside the sea ice region. We neglect swell induced by winds within the ice pack and only draw in ocean swell along lines of constant longitude. In each ice-covered grid cell, we find the closest equatorward non-ice covered grid cell along lines of constant longitude. If this grid cell is land, no wave fracture occurs. If this grid cell is not land, we select the significant wave height and mean period from a wave model hindcast. The ocean wave spectrum is then constructed as a Bretschneider spectrum, following *Horvat and Tziperman* [2015] and *Bennetts et al.* [2017]. It is attenuated exponentially according to the number of floes in the grid cells between the ice-covered grid cell being considered and the non-ice-covered one. The attenuation coefficient is a quadratic function of sea ice thickness and wave period fit by *Horvat and Tziperman* [2015] to the results of *Kohout and Meylan* [2008]. Further information can be found in the Supplement of *Horvat and Tziperman* [2015].

From the local ocean surface wave spectrum we generate a realization of the sea surface height field using a random phase as in *Horvat and Tziperman* [2015]. Assuming

261 that sea ice flexes with the sea surface height field $\eta(y)$, strain ϵ is given by

262

$$\epsilon = \frac{h}{2} \frac{\partial^2 \eta}{\partial y^2}, \quad (25)$$

263 where y is the spatial coordinate. The derivative is computed between successive extrema
 264 of the sea surface height, either (maximum, minimum, maximum) or (minimum, maxi-
 265 mum, minimum). If the strain between successive extrema exceeds a critical value, ϵ_{crit}
 266 (Table 1), new floes are formed with diameters equal to the distance between the extrema.
 267 New floe radii resulting from fracture are collected into a histogram, $W(r)$, which depends
 268 only on the local sea surface height field. In the interests of computational expense, $W(r)$
 269 and c_g are computed offline for different values of sea ice thickness, mean wave period,
 270 significant wave height, and number of attenuating floes. This look-up table defines 5000
 271 attenuated sea surface height fields which can be used to fracture ice during code integra-
 272 tion. Given a sea surface height field, the scheme computes the new floe sizes generated
 273 by wave fracture explicitly, without requiring any assumptions about the FSD.

274 **3 Results**

275 The additional physics described in Subsec. 2.2-2.4 has been implemented in CICE5.1
 276 [Hunke *et al.*, 2015] and coupled to the NEMO ocean model, using a configuration based
 277 on Rae *et al.* [2015]. The ocean–sea ice model is forced with the atmospheric reanalysis
 278 JRA-55 [Japan Meteorological Agency, 2013] and run on a 1° tripolar grid. All simula-
 279 tions described here use repeated atmospheric forcing from a single year. We choose a
 280 pre-satellite era year (1975), as these spin-up simulations will be used to initialize trans-
 281ient simulations over the satellite era in later work. Wave forcing corresponding to the
 282 same year is taken from a hindcast of the ocean surface wave model, Wavewatch III [Tol-
 283 man, 2009], which was also forced by JRA-55.

284 We present here two experiments: a simulation using the standard model (CICE5.1),
 285 and a simulation including a prognostic FSD as described above. All analysis uses monthly
 286 model output. Floe size categories follow a Gaussian spacing and span a similar range
 287 to those chosen by Zhang *et al.* [2015]. Finite differencing in floe size space follows the
 288 scheme used by Hibler III [1980] for finite differencing in thickness space.

289 Parameters which are not present in standard CICE and their values are shown in
 290 Table 1. As global observations of sea ice FSD are not available, parameter values have
 291 not been tuned or calibrated to reproduce certain FSD behavior and are based on estimates
 292 from previous studies. More information on the parameter values and their uncertainty
 293 can be found in the references provided in Table 1. In particular, Horvat and Tziperman
 294 [2015] performed local sensitivity tests for most parameters listed. As Roach *et al.* [2018a]
 295 suggest that their estimated lower bound for the floe welding parameter, κ , is conservative,
 296 we use a value that is one order of magnitude higher. κ is the only new parameter pre-
 297 sented here, so we include results from an experiment where its value is reduced in the
 298 Supplement. Grid-cell average floe sizes depend strongly on this parameter (see Supple-
 299 ment). Naturally, we expect floe sizes to also depend on the choice of floe size categories.
 300 More investigation of parameter sensitivity is required, but should occur in fully-coupled
 301 atmosphere-ocean simulations where all feedbacks are included—a step which is beyond
 302 the scope of this manuscript.

303 A key test of the new model physics is whether a sea ice FSD showing physically
 304 reasonable characteristics can be simulated in model experiments that begin without FSD
 305 initialization, sea ice cover and imposed FSD shape. All simulations are initialized with-
 306 out sea ice cover. Sea ice volume stabilizes after 15 years in the Arctic and after 45 years
 307 in the Antarctic. All further analysis is therefore conducted over the final twenty years of
 308 a 65 year model run. While detailed information is simulated at the sub-grid-scale, here
 309 we focus on resulting characteristics at the hemispheric scale to give an overall picture of

310 model behavior without focusing on any particular region. *Horvat and Tziperman* [2015,
 311 2017] describe behavior of most processes included here at the sub-grid-scale. We pro-
 312 ceed by first describing overall behavior of simulated floe size and then examining how
 313 different processes contribute to it.

314 To show floe size characteristics spatially at the hemispheric scale, we average over
 315 floe sizes. Fig. 1 shows the cell-average area-weighted ‘representative’ floe radius, r_a ,
 316 which is defined using the areal FSTD,

$$317 \quad r_a = \frac{\int_{\mathcal{R}} \int_{\mathcal{H}} r f(r, h) dr dh}{\int_{\mathcal{R}} \int_{\mathcal{H}} f(r, h) dr dh}. \quad (26)$$

318 The representative floe radius climatology in Fig. 1 is obtained after beginning the sim-
 319 ulation without sea ice cover and allowing it to spin up. In the Northern Hemisphere
 320 (NH), the representative floe radius is largest in the centre of the ice pack and smaller to-
 321 wards the edges at the winter maximum in March (Fig. 1a). At the summer minimum in
 322 September, there are fewer very small and very large representative radii (Fig. 1b). Larger
 323 floes are concentrated around the coast near the Canadian archipelago and East Siberian
 324 sea. Generally, the representative floe radius is smaller in the Southern Hemisphere (SH)
 325 than the NH (Fig. 1c-d). In the winter, floes are largest in areas of compact ice, such as
 326 the Amundsen and Weddell Seas (Fig. 1d). In the summer, large floes are found on the
 327 edge of the ice cover (Fig. 1c).

328 Fig. 2a-d shows total hemispheric number distributions, which are obtained by in-
 329 tegrating $f^N(r, h)$ over sea ice thickness and the ocean area in each hemisphere, for the
 330 NH in March (Fig. 2a), the NH in September (Fig. 2b), the SH in March (Fig. 2c) and
 331 the SH in September (Fig. 2d). The four total number distributions have a similar shape.
 332 A high number of small (< 5 m) floes is simulated all year, with more during the winter
 333 months than the summer months, due to the production of new pancake ice at the smallest
 334 resolved floe size. All four distributions in Fig. 2a-d show a significant fraction of floes
 335 in the largest floe size category (> 750 m), which arises from the truncation of floe size
 336 categories. The SH shows greater seasonal variation than the NH, with an order of mag-
 337 nitude more floes per unit area at nearly all sizes in March (Fig. 2c) than in September
 338 (Fig. 2d). The NH has more very large (> 750 m) floes per unit area than the SH. Some
 339 bending in the distribution is visible at floe sizes of around 100 m, particularly in the SH
 340 in September (Fig. 2d).

341 Fig. 2e-h show the tendencies arising from different floe processes in the total hemi-
 342 spheric number distributions, where the tendency in the number FSTD due to some pro-
 343 cess is defined as

$$344 \quad \frac{df^N(r, h)}{dt} = \frac{1}{dt} (f(r, h)_{\text{after process}}^N - f(r, h)_{\text{before process}}^N), \quad (27)$$

345 and the model monthly output is the time average of $\frac{df(r, h)}{dt}$. The tendencies at each floe
 346 size are the net result of floes being added to and removed from each floe size. Fig. 2f
 347 shows the NH in September and illustrates the general tendencies of the different pro-
 348 cesses. New ice growth creates very small floes; lateral growth and melt respectively act
 349 to increase and reduce the number at most sizes; wave fracture redistributes large floes to
 350 smaller sizes; and floe welding redistributes all floes to larger sizes.

351 Floe welding has the largest magnitude tendency of all five processes (Fig. 2e-h).
 352 Welding moves the smallest floes, created during new ice formation, to larger sizes and is
 353 the dominant process in the creation of very large floes. Fracture is a process that destroys
 354 large floes and produces smaller floes, so we expect the tendency of floe production to be
 355 negative for larger floes. In our simulation, the largest six floe sizes show a net loss due
 356 to wave fracture with a shape that is similar to their number distribution (but inverted).
 357 Sizes below around 150 m show a net gain, as large floes fracture into them, driving the

358 bending in the total floe number distribution at this size (Fig. 2a-d). Peaks around 100 m
 359 induced by wave fracture are balanced out by stronger freezing together of floes at that
 360 size in winter (Fig. 2e, h). Of the five processes, wave fracture has the most significant
 361 hemispheric difference, with net losses at some sizes below 100 m in the SH, unlike the
 362 NH.

363 Lateral melt is the dominant process to reduce floe sizes (Fig. 2e-h). It results in
 364 a net gain in the next-to-largest floe size category, due to the large number of floes in
 365 the largest floe size category (Fig. 2a-d). Lateral melt is around two orders of magnitude
 366 more important than lateral growth (Fig. 2e-h). Note that the model scheme directly cou-
 367 ples lateral growth and new ice formation, such that if a larger portion of new ice went
 368 into lateral growth, fewer very small (< 5 m) floes would be created.

369 Fig. 3a-e show the tendency in representative radius,

$$\frac{dr_a}{dt} = \frac{\int_{\mathcal{R}} \int_{\mathcal{H}} r \frac{df(r,h)}{dt} dr dh}{\int_{\mathcal{R}} \int_{\mathcal{H}} f(r, h) dr dh}, \quad (28)$$

371 hemispherically averaged for each process to give a sense of the seasonality of different
 372 processes. Wave fracture and lateral melt are much more impactful during the summer
 373 months than the rest of the year (Fig. 3a, e). During the summer months, there are more
 374 small floes (Fig. 1b-c), exposing more perimeter to lateral melt and allowing waves to
 375 penetrate deeper into the ice field. New ice growth climbs from zero just before the sum-
 376 mer minimum and peaks two months after (Nov in the NH, Apr in the SH), gradually de-
 377 creasing over the other months (Fig. 3b). Floe welding is strong all year outside of the
 378 summer months (JJA in the NH, DJF in the SH) (Fig. 3d).

379 Fig. 3f-o show the spatial variability of different processes, with each subplot show-
 380 ing the month where the net effect of each process is largest (according to Fig. 3a-e). For
 381 example, Fig. 3f shows lateral melt in the NH in July, which Fig. 3a shows is the month
 382 of largest impact. For all processes, the largest impacts occur around the ice edge (Fig.
 383 3f-o). Floe welding is the only size-increasing process to have substantial impacts in the
 384 ice interior (Fig. 3i, n). It is the dominant driver in the creation of large floes (Fig. 2e-h)
 385 and thus controls the behavior of floe sizes in the central ice pack (Fig. 1a). Floe size re-
 386 ductions due to wave fracture occur along lines of constant longitude with few impacts in
 387 the central ice pack (Fig. 3j, o).

388 Of the five processes that determine the FSTD, only lateral melt, new ice forma-
 389 tion and lateral growth directly change sea ice concentration, with lateral growth being the
 390 only of these not parametrized in the standard model. Yet even with these similarities to
 391 the standard model, the addition of a FSD results in significant changes to the standard
 392 model sea ice climatology. Fig. 4 shows the sea ice concentration simulated by the stan-
 393 dard model and the difference between the standard and FSTD models. Only differences
 394 significant at the 95 % confidence level are shown. The inclusion of floe sizes generally
 395 acts to lower sea ice concentrations, particularly in already low-concentration areas. The
 396 average sea ice concentration reduction for regions that have reductions significant at the
 397 95 % confidence level is -10% in September in the NH and -40% in March in the SH.
 398 At the ice edge, some of these represent total removal of ice in a grid cell. There are also
 399 small areas of increased concentrations at a similar magnitude to the decreases, such as
 400 the Weddell Sea (Fig. 4g). The small areas of increased concentrations tend to be near ar-
 401 eas of increased ice advection. Overall, impacts are larger in the SH (Fig. 4g, h) than the
 402 NH (Fig. 4e, f), and in summer months (Fig. 4f, g) than winter months (Fig. 4e, h).

403 There are also significant differences when considering sea ice thickness. Fig. 5
 404 shows the the grid cell mean thickness, which is the volume of ice per unit area, for the
 405 standard model and the difference between the standard and FSTD models. There are both
 406 increases and decreases in sea ice thickness relative to the standard model. The average
 407 reduction in the thickness of the ice-covered portion of grid cells (for regions that have

408 reductions significant at the 95 % confidence level) is -5% (10 cm) in September in the
 409 NH and -12% (13 cm) in March in the SH. Likewise, the average increase is 6% (13
 410 cm) in September in the NH and 25% (23 cm) in March in the SH. Maximum increases
 411 and reductions in thickness are much greater at some locations.

412 Differences in lateral melt rates between the standard and FSTD models, which occur
 413 via the replacement of $L = 300$ m in Eqn. 5 with the distribution-integrated factor from Eqn. 14, are near-universally positive and coincide with areas of concentration
 414 decrease. Summing hemispherically, the total lateral melt rate increases approximately
 415 threefold in both hemispheres relative to the standard model (in September in the NH and
 416 March in the SH). This acts to reduce concentrations, and also allows some areas of in-
 417 creased frazil growth into the new open water.

418 Drawing a larger heat flux to melt ice laterally from the oceanic melting potential
 419 means that less is available for basal melt, which may contribute to thicker ice. The to-
 420 tal hemispheric basal melt rate decreases by 20% and 30% in the NH in March and the
 421 SH in September respectively relative to the standard model. This reduction in basal melt
 422 occurs principally in areas of thick ice, where there is not much melting potential avail-
 423 able to divide between basal and lateral melt. Therefore, areas of thick ice experience less
 424 basal melt in the FSTD model compared to the standard model, and so remain thicker
 425 throughout the year compared to the standard model. Areas of thin ice, where there is a
 426 higher melting potential, do not experience this basal melt reduction.

428 4 Discussion

429 The results presented here demonstrate that the inclusion of floe size information
 430 has a significant impact on sea ice concentration and thickness, in agreement with *Zhang*
 431 *et al.* [2016] and *Bennetts et al.* [2017]. The increase in lateral melt due to including a
 432 prognostic FSD reduces sea ice concentrations in both hemispheres, in an ocean–sea ice
 433 model with cyclic atmospheric forcing. This expanded model physics has the potential to
 434 alter sea ice feedbacks, climate sensitivity and the sea ice response to storms—impacts
 435 which will be investigated in future work.

436 The response of sea ice concentration and thickness to including prognostic floe size
 437 information in previous studies differ to those shown here, with both *Zhang et al.* [2016]
 438 and *Bennetts et al.* [2017] finding only reductions in sea ice thickness, and *Bennetts et al.*
 439 [2017] finding larger reductions in sea ice concentration than the present study. Differ-
 440 ences between model configurations and forcing scenarios in the various studies mean that
 441 we cannot directly compare the impacts on sea ice concentration and thickness results at
 442 this stage.

443 The sea ice model described here includes a more comprehensive description of
 444 physical processes that affect sea ice floe size than those included in other studies. The
 445 lack of observations of the FSD covering a region and time period large enough for global
 446 model validation means that we cannot discern which model simulates the most realistic
 447 FSD. This lack of observational data is precisely what motivates our fully prognostic ap-
 448 proach, rather than constraining the FSD based on minimal data as in *Zhang et al.* [2016]
 449 and *Bennetts et al.* [2017]. That we are able to capture some first-order characteristics of
 450 the FSD in our model experiments, which begin without initialization and allow the dis-
 451 tribution to evolve freely, suggests that we have implemented some of the key physics that
 452 drive the FSD. These first-order characteristics include a varied spatial distribution of rep-
 453 resentative radius (Fig. 1), and a multi-scale number FSD (Fig. 2a-d) in line with observa-
 454 tional studies (eg. *Steer et al.* 2008).

455 Our process-based approach to model development allows us to examine the contri-
 456 bution of different processes to the FSD, with insights that are useful for future model de-
 457 velopment. Such results cannot be obtained from reduced complexity models which tune

parametrizations to reproduce a certain FSD shape or behavior. While introducing additional uncertain parameters, we hope that consideration of individual physical processes will motivate further study and help prioritize parameters that require further observational constraints. Model results could inform development of parametrizations used in simpler models in the future. Below, we discuss the contribution of different processes to the FSD and their representation in current models, as well as highlighting areas that require further work.

We find that the freezing together of floes is a key process in determining the evolution of floe size (Fig. 2, 3). In previous modeling studies, the choice of how to include floe merging or welding has been ad-hoc: *Horvat and Tziperman* [2015] do not discuss welding; *Zhang et al.* [2016] move all floes into the largest category if the ice growth rate exceeds a threshold determined by tuning model output to observations in the western Arctic; and *Bennetts et al.* [2017] double the floe diameter in a grid cell if the ocean freezing potential is positive. Floe welding has only recently been quantified in the field for the first time by *Roach et al.* [2018a], who found observational support for use of the geometric floe welding model described here, but additional observations are required to better constrain the floe welding parameter.

The fracture of ice by ocean waves is also important, with preferred fracture sizes (eg. Fig. 2h) driving behavior in the number FSD (eg. Fig. 2d). We compute the new floe sizes generated by wave fracture explicitly, without requiring any assumptions about the FSD. In other parametrizations of wave fracture, *Zhang et al.* [2016] assume that wave-fractured ice is redistributed equally to all other categories of smaller size as a power law distribution. Their model depends strongly on a floe size redistribution “participation factor”, which they parametrize as a function of wind speed and open water fraction, fitting tuning constants in their model to cumulative number distributions observed in satellite images in the western Arctic. In *Bennetts et al.* [2017], floes fracture according to a strain criterion similar to ours, but the change in the FSD is calculated assuming a “split power law” distribution of floes sizes based on observations from *Toyota et al.* [2011]. *Zhang et al.* [2016] and *Bennetts et al.* [2017] impose behavior on fractured floe sizes that is inconsistent with results from a small-scale model [*Montiel and Squire*, 2017] and laboratory observations [*Herman et al.*, 2018], which indicate preferred sizes in the FSD resulting from wave fracture. Developing or tuning models to explicitly match “split power law” shapes may be misleading, as many observations do not show a this distribution (eg. *Inoue et al.* [2004], *Wang et al.* [2016], *Paget et al.* [2001]). Further, observations of a “split power law” distribution could be interpreted as a gradual bending of curves rather than an abrupt transition [*Herman*, 2010].

In future work, the sea ice model should be coupled to a full spectrum ocean wave model with an appropriate treatment of wave energy damping by sea ice. There are certainly limitations with our attenuation scheme, which may not be suitable for small floes [*Meylan*, 2002] and neglects wave direction, unlike *Bennetts et al.* [2017]. Sensitivity of the depth of wave penetration into the pack ice using different attenuation parametrizations such as *Meylan et al.* [2014] could be tested with our model, either using forcing data from a wave model hindcast or coupled to a wave model. Wave model coupling would also allow turbulent mixing due to ocean waves to occur within the sea ice region, influencing the heat fluxes available for sea ice melt and growth. More realistic simulation of waves in ice could also enable advances in the representation of sea ice growth [*Roach et al.*, 2018a].

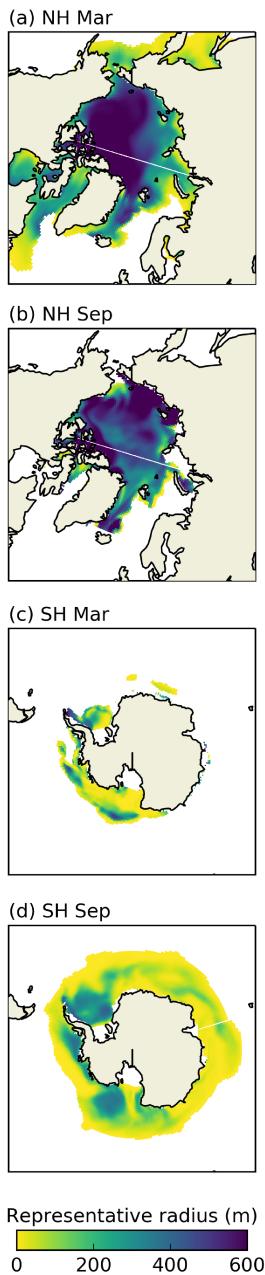
The choice of floe size assigned to new floes strongly impacts the simulated floe number distribution (Fig. 2). In our model, new ice is placed in the smallest floe size category, representing pancake ice formation. This results in large numbers of small floes during winter, a seasonality opposite to that obtained by *Zhang et al.* [2016]. In reality, new frazil ice is herded into pancake floes only in the presence of surface waves and/or winds, while in the absence of wind and wave action frazil crystals freeze together to form

511 large thin sheets of sea ice called nilas [Weeks and Ackley, 1986]. *Zhang et al.* [2016] do
 512 not specify how they initialize floe sizes at the start of their simulation, nor the floe sizes
 513 at which new ice forms. *Zhang et al.* [2015] perform simple experiments that are initialized
 514 at the largest floe size. *Bennetts et al.* [2017] initialize their model using a constant
 515 floe diameter of 300 m, and do not explain how the formation of new ice impacts the rep-
 516 resentative floe diameter. These models and the standard version of CICE could be con-
 517 sidered to include nilas growth only. In contrast, our model includes pancake growth only,
 518 although the initial thickness of ice may correspond better to nilas growth than pancakes.
 519 Future models should ideally incorporate both nilas and pancake growth, perhaps using
 520 some critical value of the tensile stress mode arising from the wave field [*Shen et al.*,
 521 2004] to determine which growth type occurs.

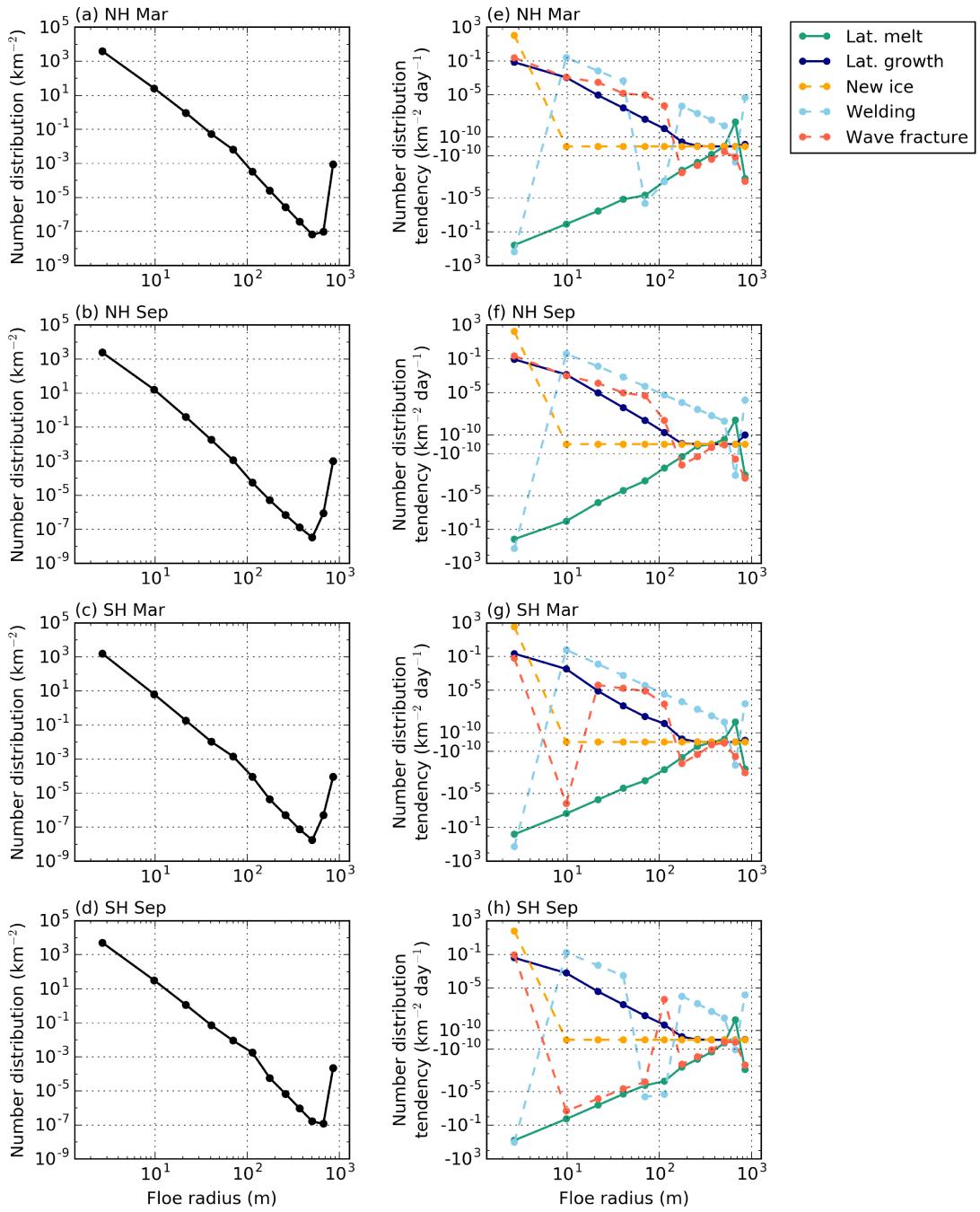
522 Of the five processes that determine the FSD, only new ice formation and lateral
 523 melt and growth cause changes to sea ice concentration in our model. We find that lateral
 524 growth, which was not included in either *Zhang et al.* [2016] or *Bennetts et al.* [2017], is
 525 around two orders of magnitude smaller overall than lateral melt (Fig. 2e-h). *Roach et al.*
 526 [2018a] find that the lateral growth model used here underestimates growth rates of small
 527 ice floes observed in the Arctic Ocean during fall. More observations are required to de-
 528 termine whether the model underestimates lateral growth rates in other conditions.

529 Here, lateral melting is a significant process for evolution of the sea ice FSD (Fig.
 530 2e-h) and is a function of the FSD itself. In contrast, the lateral melt formulation in *Zhang*
 531 *et al.* [2016] assumes all floe size categories have the same ITD, and does not parametrize
 532 the effect of lateral melting on the FSD (the second term in Eqn. 14). *Bennetts et al.*
 533 [2017] use a single representative floe size in each grid cell, neglecting the sub-grid-scale
 534 distribution of floe sizes, which could vary over a broad range. All three models demon-
 535 strate that lateral melt has large impact on simulated sea ice concentration, also motivating
 536 further observational validation. As noted by *Roach et al.* [2018b], the parametrization
 537 of lateral melt rate used in our model and standard CICE5.1, as well as other models, is
 538 based on a single field study of a single floe [Maykut and Perovich, 1987]. Further con-
 539 straints on individual processes like this, which strongly impact the sea ice FSD, could
 540 greatly assist model development, particularly in the absence of global observations of floe
 541 sizes.

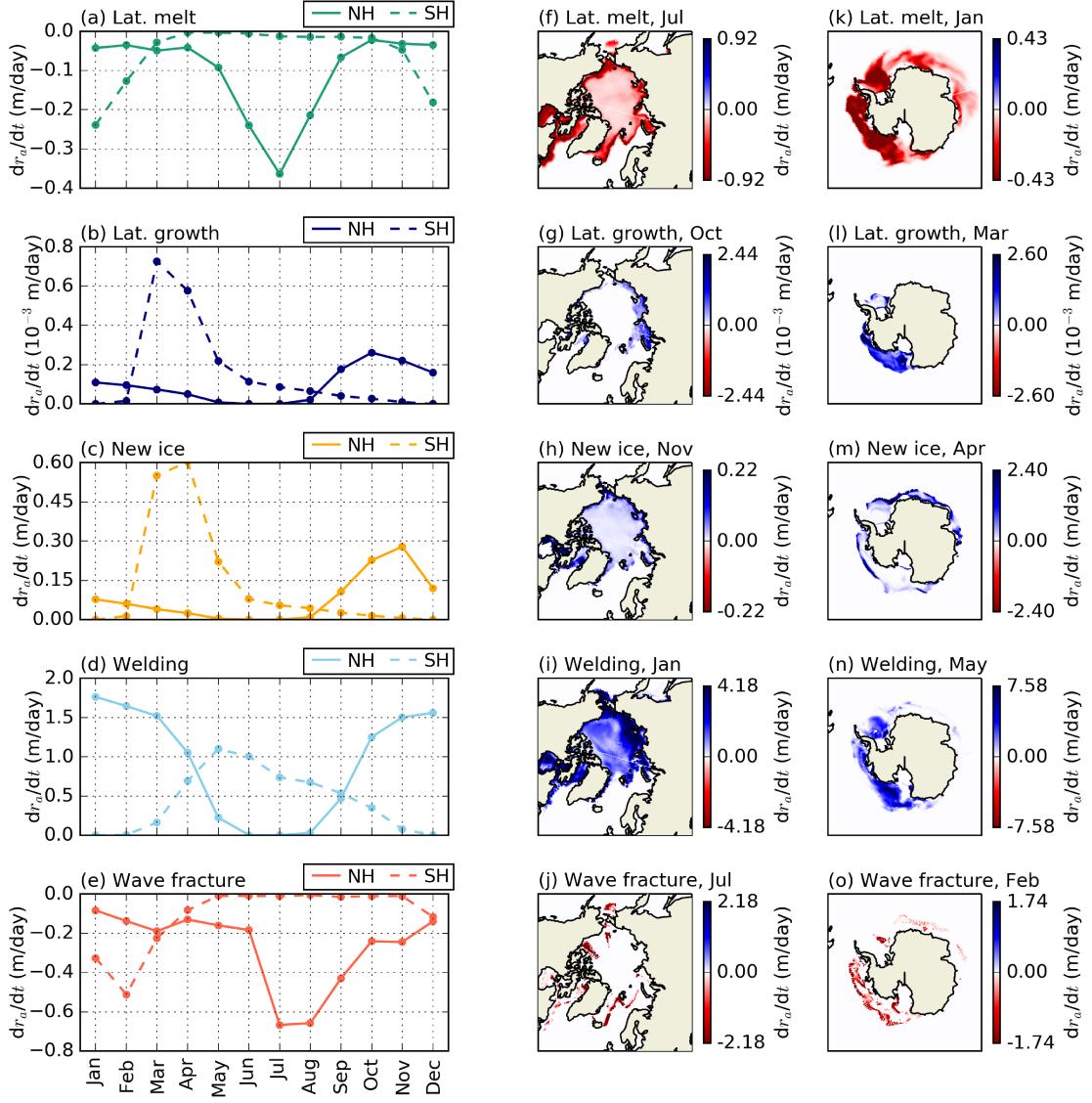
542 5 Conclusions

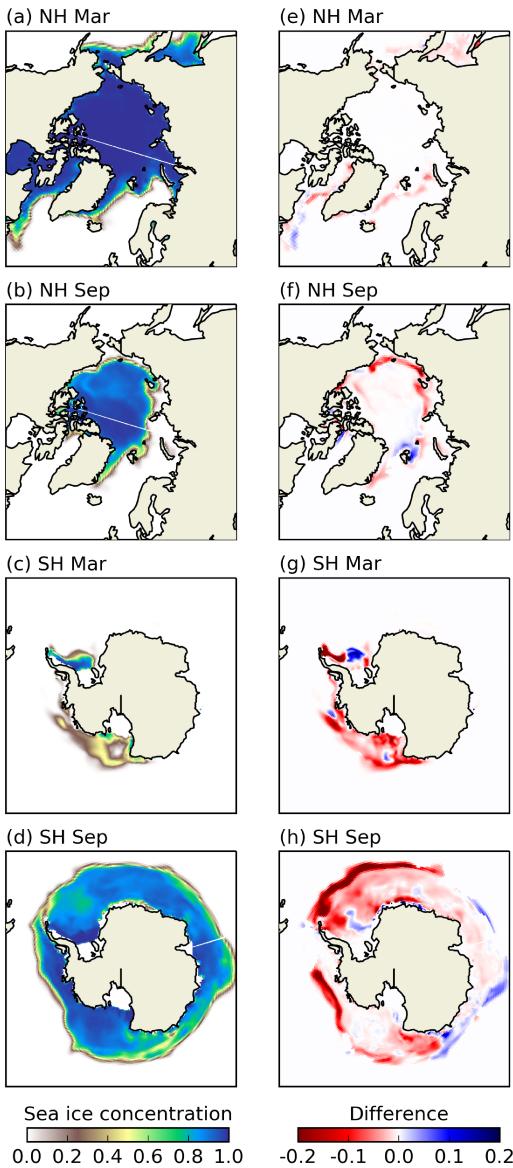

543 In this study, we have presented a scheme for modeling a fully prognostic joint sea
 544 ice floe size and thickness distribution. We have examined model results in both hemi-
 545 spheres obtained without initialization or tuning parameters to obtain a particular floe size
 546 distribution, unlike previous studies. We find that the five processes implemented here—
 547 lateral melt and growth of floes, floe welding in freezing conditions, new ice formation
 548 and fracture of floes by ocean surface waves—capture some first-order characteristics of
 549 the floe size distribution.

550 However, definite statements on the realism of the simulated distribution are hin-
 551 dered by a lack of global observations of floe size distribution. Observations which cover
 552 a large spatial and temporal region at small enough resolution are not yet available. This
 553 lack of observations is the motivation for constructing a model which does not assume
 554 *a priori* distributions for simulated floe sizes. This general framework makes any addi-
 555 tions or modifications to physical processes straightforward to implement. Future addi-
 556 tions may include dynamics more appropriate for the marginal ice zone (eg. *Rynders et al.*
 557 2016), floe-size-dependent mechanical redistribution (eg. *Horvat and Tziperman* 2015), de-
 558 pendence of form drag on the simulated floe size distribution, two clearly defined sea ice
 559 growth pathways (nilas and pancake growth), and coupling with an ocean wave model.


560 In spite of our choices to keep much of the physics consistent with the standard
561 model, impacts on sea ice concentration and thickness caused by the addition of a floe
562 size distribution are significant. This suggests that small scale processes associated with
563 individual floes may be important for the polar climate system. The observed predomi-
564 nance of sea ice growth via pancake formation in the Antarctic [Wadhams *et al.*, 1987]
565 suggests that these processes may be particularly relevant for the Southern Hemisphere.
566 Moreover, the predicted increase in the Arctic marginal ice zone [Aksenov *et al.*, 2017]
567 implies that processes at the sea ice floe scale may become more important for simula-
568 tion of sea ice in the future. The model presented here could help to answer questions on
569 the seasonal evolution of floe size in the polar oceans, the possibility of power law emer-
570 gence from interactions at the floe scale in a climate model, and the degree to which sea
571 ice melting is influenced by fractured sea ice cover.

572 **Table 1.** Parameters that are not present in standard CICE. r_1 denotes the smallest floe size resolved in the
 573 model


Parameter	Description	Value	Reference
α	Non-circularity of floes	0.66	<i>Rothrock and Thorndike</i> [1984]
r_{lw}	Width of lead region	r_1	<i>Horvat and Tziperman</i> [2015]
κ	Rate constant for merging	$0.01 \text{ m}^{-2} \text{ s}^{-1}$	<i>Roach et al.</i> [2018a] and see Supplement
ϵ_{crit}	Critical strain	3×10^{-5}	<i>Horvat and Tziperman</i> [2015] , <i>Kohout and Meylan</i> [2000]
t_{wave}	Smallest floe size affected by waves	10 m	<i>Toyota et al.</i> [2011]


574 **Figure 1.** The simulated representative floe radius, averaged over twenty years following spin-up, in (a,
575 c) March and (b, d) September, in (a, b) the Northern Hemisphere and (c, d) the Southern Hemisphere. The
576 range displayed is chosen to display both hemispheres on the same scale; dark purple may be greater than 600
577 m.

578 **Figure 2.** (a) The Northern Hemisphere floe number distribution in March averaged over the twenty years
 579 following model spin-up. (b-d) Same as (a), for the Northern Hemisphere in September, the Southern Hemis-
 580 phere in March, and the Southern Hemisphere in September, respectively. (e) The net tendency in the floe
 581 number distribution from different physical processes in the Northern Hemisphere in March averaged
 582 over the twenty years following model spin-up. The axis in (e) is linearized around zero. (f-h) Same as (e), for
 583 the Northern Hemisphere in September, the Southern Hemisphere in March, and the Southern Hemisphere in
 584 September respectively.

585 **Figure 3.** Seasonal and spatial variability of tendencies in representative radius, r_a . (a) The hemispheric
 586 average tendency in representative radius due to lateral melt for the NH (solid line) and SH (dashed line).
 587 (b-e) as (a) but for lateral growth, new ice production, floe welding, and wave fracture respectively. (f) Map of
 588 the tendency in r_a due to lateral melt in the NH for the month with maximum average tendency, July, (see (a),
 589 solid line). (k) Map of the tendency in r_a due to lateral melt in the SH for the month with maximum average
 590 tendency, January, (see (a), dashed line). (g-j) as (f) and (l-o) as (k) but for lateral growth, new ice production,
 591 floe welding, and wave fracture respectively. Note that lateral growth has units of $10^{-3} \text{ m day}^{-1}$, while other
 592 processes have units of m day^{-1} .

593 **Figure 4.** Monthly sea ice concentration fields (out of maximum of 1) averaged over twenty years in the
 594 Northern and Southern Hemispheres for March (a, c, e, g) and September (b, d, f, h). The first column (a-d)
 595 shows the simulation from the standard model and the second column (b-h) shows shows the difference be-
 596 tween the standard and FSTD models, where only differences that are significant at the 95% confidence level
 597 are shown.

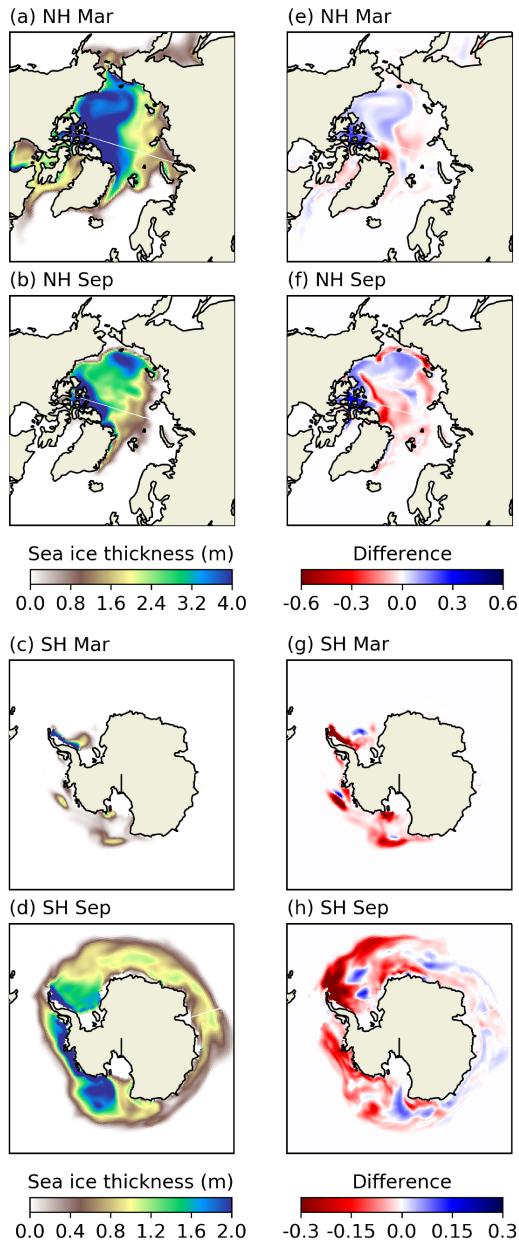


Figure 5. As Fig. 4, but for sea ice volume per unit area (in m).

598

599 **Acknowledgments**

600 LR and SD were funded via Marsden contract VUW-1408. CH was supported by the
 601 Frank Knox Memorial Fellowship during parts of this work. CMB was supported by the
 602 US National Science Foundation PLR-1643431. The authors would like to thank Richard
 603 Gorman for producing the wave model hindcast, Erik Behrens for setting up the standard
 604 model NEMO-CICE configuration, and Elizabeth Hunke and an anonymous reviewer for
 605 their consideration of the manuscript. The authors also wish to acknowledge the contrib-
 606 ution of NeSI high-performance computing facilities to the results of this research. NZ's
 607 national facilities are provided by the NZ eScience Infrastructure and funded jointly by
 608 NeSI's collaborator institutions and through the Ministry of Business, Innovation & Em-
 609 ployment's Research Infrastructure programme. Model results are publicly available via
 610 Zenodo, (<https://doi.org/10.5281/zenodo.1193929>).

611 **References**

612 Aksenov, Y., E. E. Popova, A. Yool, A. J. G. Nurser, T. D. Williams, L. Bertino, and
 613 J. Bergh (2017), On the future navigability of Arctic sea routes: High-resolution
 614 projections of the Arctic Ocean and sea ice, *Mar. Policy.*, 75, 300–317, doi:
 615 10.1016/j.marpol.2015.12.027.

616 Bennetts, L. G., S. O'Farrell, and P. Uotila (2017), Brief communication: Impacts of
 617 ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone
 618 version of the CICE sea-ice model, *Cryosphere*, 11(3), 1035–1040, doi:10.5194/tc-11-
 619 1035-2017.

620 Filbet, F., and P. Laurençot (2004), Numerical simulation of the Smoluchowski co-
 621 agulation equation, *SIAM Journal on Scientific Computing*, 25(6), 2004–2028, doi:
 622 10.1137/S1064827503429132.

623 Herman, A. (2010), Sea-ice floe-size distribution in the context of spontaneous
 624 scaling emergence in stochastic systems, *Physical Review E*, 81(6), 66,123, doi:
 625 10.1103/PhysRevE.81.066123.

626 Herman, A., K.-U. Evers, and N. Reimer (2018), Floe-size distributions in laboratory ice
 627 broken by waves, *The Cryosphere*, 12, 685–699, doi:<https://doi.org/10.5194/tc-12-685-2018>.

628 Hibler III, W. D. (1980), Modeling a Variable Thickness Sea Ice Cover,
 629 *Monthly Weather Review*, 108(12), 1943–1973, doi:10.1175/1520-
 630 0493(1980)108<1943:MAVTSI>2.0.CO;2.

632 Horvat, C., and E. Tziperman (2015), A prognostic model of the sea-ice floe size and
 633 thickness distribution, *The Cryosphere*, 9(6), 2119–2134, doi:10.5194/tc-9-2119-2015.

634 Horvat, C., and E. Tziperman (2017), The evolution of scaling laws in the sea ice floe size
 635 distribution, *J. Geophys. Res. Ocean.*, 122(9), 7630–7650, doi:10.1002/2016JC012573.

636 Horvat, C., E. Tziperman, and J.-M. Campin (2016), Interaction of sea ice floe size,
 637 ocean eddies and sea ice melting, *Geophys. Res. Lett.*, 43(15), 8083–8090, doi:
 638 10.1002/2016GL069742.

639 Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott (2015), CICE: the
 640 Los Alamos Sea Ice Model Documentation and Software User's Manual Version 5.1
 641 LA-CC-06-012, *Tech. rep.*, Los Alamos National Laboratory, New Mexico, US.

642 Inoue, J., M. Wakatsuchi, and Y. Fujiyoshi (2004), Ice floe distribution in the Sea of
 643 Okhotsk in the period when sea-ice extent is advancing, *Geophys. Res. Lett.*, 31(20).

644 Japan Meteorological Agency, J. (2013), JRA-55: Japanese 55-year Reanalysis, Daily 3-
 645 Hourly and 6-Hourly Data, *Tech. rep.*, Japan Meteorological Agency, Boulder, CO, doi:
 646 10.5065/D6HH6H41.

647 Josberger, E. G., and S. Martin (1981), A laboratory and theoretical study of the boundary
 648 layer adjacent to a vertical melting ice wall in salt water, *Journal of Fluid Mechanics*,
 649 111, 439–473.

650 Kohout, A. L., and M. H. Meylan (2008), An elastic plate model for wave attenuation and
 651 ice floe breaking in the marginal ice zone, *J. Geophys. Res. Ocean.*, 113(C09016), 1–17,
 652 doi:10.1029/2007JC004434.

653 Maykut, G. A., and M. G. McPhee (1995), Solar heating of the Arctic mixed layer, *J.
 654 Geophys. Res. Ocean.*, 100(C12), 24,624–691,703, doi:10.1029/95JC02554.

655 Maykut, G. A., and D. K. Perovich (1987), The role of shortwave radiation in the sum-
 656 mer decay of a sea ice cover, *J. Geophys. Res. Ocean.*, 92(C7), 7032–7044, doi:
 657 10.1029/JC092iC07p07032.

658 Meylan, M. H. (2002), Wave response of an ice floe of arbitrary geometry, *J. Geophys.
 659 Res.*, 107(C1,3005), 5–1–5–11, doi:10.1029/2000JC000713.

660 Meylan, M. H., L. G. Bennetts, and A. L. Kohout (2014), In situ measurements and anal-
 661 ysis of ocean waves in the Antarctic marginal ice zone, *Geophys. Res. Lett.*, 41(14),
 662 5046–5051, doi:10.1002/2014GL060809.In.

663 Montiel, F., and V. A. Squire (2017), Modelling wave-induced sea ice breakup in the
 664 marginal ice zone, *Proc. R. Soc. A*, 473, 1–32, doi:10.1098/rspa.2017.0258.

665 Paget, M. J., A. P. Worby, and K. J. Michael (2001), Determining the floe-size distribution
 666 of East Antarctic sea ice from digital aerial photographs, *Ann. Glaciol.*, 33(1), 94–100.

667 Perovich, D., J. Richter-Menge, C. Polashenski, B. Elder, T. Arbitter, and O. Brennick
 668 (2014), Sea ice mass balance observations from the North Pole Environmental Observa-
 669 tory, *Geophys. Res. Lett.*, 41(6), 2019–2025, doi:10.1002/2014GL059356.

670 Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C.
 671 Hunke, and D. N. Walters (2015), Development of the Global Sea Ice 6.0 CICE config-
 672 uration for the Met Office Global Coupled model, *Geosci. Model Dev.*, 8(7), 2221–2230,
 673 doi:10.5194/gmd-8-2221-2015.

674 Roach, L. A., M. M. Smith, and S. M. Dean (2018a), Quantifying growth of pancake sea
 675 ice floes using images from drifting buoys, *J. Geophys. Res. Ocean.*, Accepted Author
 676 Manuscript. doi:10.1002/2017JC013693.

677 Roach, L. A., S. M. Dean, and J. A. Renwick (2018b), Consistent biases in Antarctic
 678 sea ice concentration simulated by climate models, *The Cryosphere*, 12, 365–383, doi:
 679 <https://doi.org/10.5194/tc-12-365-2018>.

680 Rothrock, D. A., and A. S. Thorndike (1984), Measuring the sea ice floe size distribution,
 681 *J. Geophys. Res. Ocean.*, 89(C4), 6477–6486, doi:10.1029/JC089iC04p06477.

682 Rynders, S., Y. Aksenov, D. Feltham, G. Nurser, and A. Naveira Garabato (2016), Mod-
 683 elling MIZ dynamics in a global model, in *EGU Gen. Assem. Conf. Abstr.*, p. 1004.

684 Shen, H. H., and S. F. A. Ackley (1991), A one-dimensional model for wave-induced ice-
 685 floe collisions, *Annals of Glaciology*, 15(1), 87–95.

686 Shen, H. H., S. F. Ackley, and Y. Yuan (2004), Limiting diameter of pancake ice, *Journal
 687 of Geophysical Research: Oceans*, 109(C12035), 1–13, doi:10.1029/2003JC002123.

688 Smoluchowski, M. V. (1916), Zur Theorie der Zustandsgleichungen, *Annalen der Physik*,
 689 353(24), 1098–1102, doi:10.1002/andp.19163532407.

690 Steele, M. (1992), Sea ice melting and floe geometry in a simple ice-ocean model, *J. Geo-
 691 phys. Res. Ocean.*, 97(C11), 17,729–17,738.

692 Steer, A., A. Worby, and P. Heil (2008), Observed changes in sea-ice floe size distribution
 693 during early summer in the western Weddell Sea, *Deep Sea Res. Pt II*, 55(8-9), 933–942,
 694 doi:10.1016/j.dsr2.2007.12.016.

695 Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony (1975), The
 696 thickness distribution of sea ice, *J. Geophys. Res. Ocean.*, 80(33), 4501, doi:
 697 10.1029/JC080i033p04501.

698 Tolman, H. L. (2009), User manual and system documentation of WAVEWATCH III TM
 699 version 3.14, *Tech. rep.*, Environmental Modeling Center, NCEP, Camp Springs, MD
 700 20746.

701 Toyota, T., C. Haas, and T. Tamura (2011), Size distribution and shape properties of rel-
 702 atively small sea-ice floes in the Antarctic marginal ice zone in late winter, *Deep Sea
 703 Res. Pt II*, 58(9), 1182–1193, doi:10.1016/j.dsr2.2010.10.034.

704 Wadhams, P., M. Lange, and S. F. Ackley (1987), The ice thickness distribution across the
705 Atlantic sector of the Antarctic Ocean in midwinter, *Journal of Geophysical Research: Oceans* (1978–2012), 92(C13), 14,535–14,552, doi:10.1029/JC092iC13p14535.

706 Wang, Y., B. Holt, W. E. Rogers, J. Thomson, H. H. Shen, W. Erick Rogers, J. Thomson,
707 and H. H. Shen (2016), Wind and wave influences on sea ice floe size and leads in the
708 Beaufort and Chukchi Seas during the summer-fall transition 2014, *J. Geophys. Res. Ocean.*,
709 121(2), 1502–1525, doi:10.1002/2015jc011349.

710 Weeks, W. F. S., and S. F. Ackley (1986), *The growth, structure, and properties of sea ice*,
711 vol. 146, 9–164 pp., Springer, Boston, MA, doi:10.1002/9781444317145.ch2.

712 Zhang, J., A. Schweiger, M. Steele, and H. Stern (2015), Sea ice floe size distribution in
713 the marginal ice zone: Theory and numerical experiments, *J. Geophys. Res. Ocean.*,
714 120(5), 3484–3498, doi:10.1002/2015JC010770.

715 Zhang, J., H. Stern, B. Hwang, A. Schweiger, M. Steele, M. Stark, and H. C. Gruber
716 (2016), Modeling the seasonal evolution of the Arctic sea ice floe size distribution,
717 *Elem Sci Anth*, 4(1), 126, doi:10.12952/journal.elementa.000126.

718