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Single-shot on-chip spectral sensors based
on photonic crystal slabs
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Miniaturized spectrometers have significant potential for portable applications such as

consumer electronics, health care, and manufacturing. These applications demand low cost

and high spectral resolution, and are best enabled by single-shot free-space-coupled spec-

trometers that also have sufficient spatial resolution. Here, we demonstrate an on-chip

spectrometer that can satisfy all of these requirements. Our device uses arrays of photo-

detectors, each of which has a unique responsivity with rich spectral features. These

responsivities are created by complex optical interference in photonic-crystal slabs posi-

tioned immediately on top of the photodetector pixels. The spectrometer is completely

complementary metal–oxide–semiconductor (CMOS) compatible and can be mass produced

at low cost.

https://doi.org/10.1038/s41467-019-08994-5 OPEN

1 Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI 53705, USA. 2 Center for Integrated
Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA. 3 Department of Physics, Huazhong University of Science and Technology,
Wuhan, Hubei, China. Correspondence and requests for materials should be addressed to Z.Y. (email: zyu54@wisc.edu)

NATURE COMMUNICATIONS |         (2019) 10:1020 | https://doi.org/10.1038/s41467-019-08994-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2368-8883
http://orcid.org/0000-0003-2368-8883
http://orcid.org/0000-0003-2368-8883
http://orcid.org/0000-0003-2368-8883
http://orcid.org/0000-0003-2368-8883
mailto:zyu54@wisc.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Current use of spectroscopy is still largely confined to
laboratories because spectrometers are bulky, expensive,
and delicate. There has been tremendous interest in

miniaturizing spectrometers to enable a broader range of appli-
cations1. There are two classes of compact spectrometers:
waveguide-coupled2–10 and free-space coupled11–21. The
waveguide-coupled spectrometers have limited applications,
because they require delicate couplers and do not offer spatial
information. On the other hand, free-space coupled devices offer
much broader use11,12,18,22–31 such as imaging. The most
important example is the color camera that relies three spectral
filters: Red(R), Green(G), Blue(B). To go beyond three spectral
bands, Fabry-Perot13 and plasmonic filters12,27,29 have been
developed. However, these resonant filters have simple Lorentz
line shapes and lack the spectral diversity to provide high spectral
resolution. It was theoretically shown that random spectral filters
can offer high spectral resolution when combined with advanced
signal processing methods such as compressive sensing32.
Recently, a seminal work by Bao and Bawendi17 experimentally
demonstrated a high-resolution spectrometer based on random
spectral filters. It showcased a different path other than the
resonant filters. The diverse range of spectral features are created
by absorption of colloidal quantum dots.

Built upon these progresses, here we developed a scalable
method to realize random spectral filters based on photonic
crystals (PCs). In contrast to quantum dots where the fabrication
could be complicated by the use of non-standard complementary
metal–oxide–semiconductor (CMOS) materials and processes,
PC slabs can be defined via single exposure photolithography and
only require standard CMOS materials. As the spectral response
functions are entirely extrinsic and enabled by structures instead
of materials’ properties, the concept can be applied to any
wavelength range by scaling the dimension of PC. They are also
extremely compact, with sizes similar to light-sensing pixels in
CMOS image sensors. They provide single-shot measurement,
which is particularly important for mobile applications.

Results
Working principle of PC spectrometers. The difficulty of
reducing spectrometer size arises from the fact that a long pro-
pagation path is needed for light of similar wavelengths to
accumulate a detectable difference in phase. In typical mono-
chromators or Fourier-transform spectrometers, light only passes
through the instrument once or twice. As a result, the optical path
length is limited by the physical size of the instrument. One
effective way to reduce the spectrometer size is to utilize multiple
reflections of light within microstructures. Microcavities have
been shown to increase the optical path length to millions of
times larger than their physical size. Compact spectrometers have
been demonstrated based on photonic-crystal cavities33, micro-
donut6, and micro-ring resonators34,35. However, the path
enhancement in microcavities only occurs at selected wave-
lengths. As a result, many distinct cavities are needed to con-
tinuously cover even a small spectral range. The larger the
enhancement of the optical path, the narrower the cavity line-
width becomes, which further exacerbates the issue of spectral
coverage. Narrow linewidths also reject most of incident light,
making such spectrometers particularly susceptible to detector
noise.

To overcome issues with narrow-band filters, we propose to
miniaturize spectrometers based on PC slabs, which are
micrometer-thin dielectric layers with periodic patterning. Light
incident from free-space can couple to lateral propagation modes,
where the periodic nanostructures allow light to bounce back and
forth many times. Unlike microcavities, where the path

enhancement only occurs at resonant frequencies, the effect of
path enhancement in PC slabs spreads over a broader spectral
range and creates a transmission spectrum with rich spectral
features, including sharp peaks due to guided resonances36,37,
broad background variation by Fabry-Perot resonance, and
irregular line shapes due to Fano interference38,39. To work as a
spectrometer, arrays of different PC slabs are fabricated on top of
a CMOS imaging sensor. Each PC slab has a different periodicity,
lattice constant, and hole sizes. These slabs produce different
transmission spectra Ti(λ), where λ is the free-space wavelength.
Thus, the photodetector underneath the ith PC slab receives the
following signal:

Si ¼
Z

IðλÞTiðλÞηðλÞdλ; ð1Þ

where I(λ) is the spectrum of incident light and ηðλÞ is the
spectral responsivity of the photodetector, which can be
characterized in experiments (Supplementary Note 1).

Spectrometers can be characterized by the spectral response
Ti(λ) that they use to sample the incident light. As shown in
Fig. 1a, b, conventional spectrometers such as monochromators
and Fourier-transform spectrometers use delta-like or sinusoidal
functions to sample incident light. However, creating such
spectral response in a compact device can be challenging. Instead
of relying on these conventional sampling functions, PC slabs,
which are extremely compact, rely on a set of complex and
variable spectral functions, as shown in Fig. 1c. These functions
form a random basis that allows the incident spectrum to be
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Fig. 1 Different spectrometers and their spectral responses. a The spectral
responsivity of grating or microcavity spectrometers has a single sharp
peak. The spectrum is measured by point-wise sampling. b The spectral
responsivity of a Fourier-transform spectrometer is a sinusoidal function.
The period varies to perform sampling based on Fourier basis. c Photonic-
crystal (PC) slabs create complex and variable spectral responsivity
depending on the structures. They randomly sample the incident light
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efficiently recovered using least-square methods40 or compressive
sensing32.

Fabrication and characterization of devices. In this work, we
realized a spectrometer, as illustrated in Fig. 2a, operating in the
wavelength range of 550 to 750 nm, with a resolution of
approximately 1 nm. We used 36 different PC structures. Each PC
has a size of 32 × 32 μm, and the entire spectrometer size is 210 ×
210 μm (Fig. 2b). The PC structures are chosen to minimize the
correlation among different Ti(λ), as shown in Supplementary
Note 2. Nano-patterns are defined by electron-beam lithography
and transferred into a silicon-on-sapphire (SOS) substrate using
reactive-ion etching.

After fabrication, we first measured the spectral responsivities
of all individual PC slabs Ti(λ) using a wavelength-tunable light
source incident from the normal direction. Each PC slab covers
tens of CMOS pixels (the pixel size is 5.86 μm). Excluding the
pixels at the boundaries, which may be only partially covered by
the PC slab due to misalignment, we sum signals from all pixels,
resulting in a measured responsivity, which is normalized by the
CMOS sensor signal without PC slabs. Three representative
measurements are shown in Fig. 2c. All Ti(λ) were measured at
the same time, using an expanded beam that illuminated the
entire chip.

The inversion of Eq. 1 to obtain I(λ) from Si is generally an
under-determined problem. We used a reconstruction algorithm
based on minimizing regularized squares error with nonnegativity
constraints (Supplementary Note 1)41,42.

To test our spectrometer, we first measured light sources with
varying intensity and bandwidth. We combined beams from a
green LED (Thorlabs, LED570L) and a red LED (Thorlabs,
LED630L), as shown Fig. 3a. The combined spectrum was first
measured using a commercial monochromator (Spectral Products

DK480), and has two broad peaks centered at 570 and 630 nm
(red curve in Fig. 3a). The reconstructed spectrum using our PC
spectrometer is shown with blue circles, and agrees very well with
the reference. Unlike the monochromator, the PC spectrometer
captures a spectrum in a single-shot, within tens of milliseconds
when the incident power is tens of μW. By comparison, it took a
few seconds for the monochromator to acquire the spectrum.
Another multi-color LED (Thorlabs, LEDRY) was tested as
shown in Fig. 3b, also resulting in good agreement. We then use
the spectrometer to study the metamerism effect, where two
different spectra are perceived as the same by human eyes or RGB
cameras. The first spectrum is the combination of green and red
light in a 3:4 power ratio. The second spectrum has one narrow
peak centered at 590 nm. The PC slab spectrometer easily
distinguishes the two signals and reconstructs the exact spectral
components (Fig. 3c, d). In all of the above measurements, we
used the same reconstruction algorithm with identical para-
meters. The performance can be further improved by tuning the
reconstruction algorithm to take advantage of prior knowledge,
such as the approximate bandwidth of the measured spectrum.

Next, we tested the resolution of the spectrometer using
narrow-band spectra. Here, we further optimized the reconstruc-
tion algorithm for narrow-band signals, which involved decreas-
ing the weight of the term that regulates the smoothness of
reconstructed spectrum. We measured the emission spectra of
HeNe lasers at 594 nm (JDSU, 1137) and 633 nm (Melles Griot,
25-LYR-173-249), respectively (Fig. 4a). The PC spectrometer
correctly identified the peak wavelengths, and the results matched
well with those obtained using the monochromator. As a further
test, we used the spectrometer to measure a series of narrow-band
spectra generated by the monochromator. The spectral peaks
have bandwidths of about 1.4 nm and wavelengths varying from
550 to 750 nm with a 1 nm step. Figure 4b shows examples of
spectra obtained by our spectrometer, which are compared with
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Fig. 2 Micro-spectrometer based on photonic-crystal (PC) slabs. a Schematic of the spectrometer, which consists of an array of PC slabs with different
parameters. These slabs are integrated on top of a CMOS sensor array. b Optical image of the fabricated 6 × 6 PC structures. Three scanning electron
microscopy (SEM) images of selected PC-slab structures marked by red, orange, and green frames, respectively, are shown on the side. c Measured
transmission spectra T(λ) of the three structures in b. For each PC slab, the corresponding T(λ) is characterized using a monochromator
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the specification of the monochromator. A total of 201 spectra are
measured. The peak positions agree with monochromator
specification (Fig. 4c). The shift of the peak position is within
±0.2 nm for 90% of the measurements, and within ±1 nm for all
measurements. The bandwidths also match the specification of
monochromator well, as shown in Fig. 4d.

The transmission through PC slabs is angle dependent. Thus,
our spectrometer requires the incidence angle to be the same for
the calibration and measurement. For our device, the perfor-
mance degrades if the two angles are different by more than 1
degree (See more details in Supplementary Note 3). Practically,
this can be overcome by using a collimating aperture to ensure a
consistent incident angle. We note that angular sensitivity is not a
problem unique to PC slabs, but is also found in other high-
resolution spectrometers including grating monochromators and
Fourier-transform spectrometers. PC slabs offer additional design
flexibility to trade spectral resolution for angular tolerance. For
example, we could use fewer periods in the PC slabs. Reduced
sizes weaken the effect of the photonic-crystal, and smooth the
sharp spectral features, which reduces the spectral resolution but
also makes the spectral responsivity less angle dependent.

Hyperspectral imaging. Finally, we demonstrated the potential of
PC-slab spectrometers for single-shot hyperspectral imaging. The
size of each of our spectrometers is around 200 μm on a side. We
fabricated 10 × 10 identical spectrometers on an SOS substrate,
comprising a total of 3600 PC slabs. Each spectrometer serves as a
single spatial pixel. The fabricated device was then attached onto
a CMOS sensor chip. As a proof-of-principle demonstration, we
used this 10 × 10 pixel imager to acquire a hyperspectral image.

Our target was formed by projecting the numbers “5” and “9” on
a piece of paper, as shown in Fig. 5a. The “5” is illuminated with
light at a wavelength of 610 ± 5 nm, and the “9” is illuminated at
670 ± 1 nm. These two numbers overlap spatially, and are not
easily differentiated using a conventional RGB camera.

A 35-mm lens was used to form an image on the PC-slab
sensor chip. We calibrated the spectral responsivity of the device
with lens in place. Using a similar reconstruction algorithm as
what we used for broadband signals, we obtained a hyperspectral
image from which the two numbers can be readily distinguished.
Figure 5b shows five images from the reconstructed data from 610
to 690 nm, at increments of 20 nm. Both the spectral and spatial
data were successfully retrieved.

The number of pixels of our hyperspectral imager is limited by
the throughput of electron-beam lithography, resulting in the
low-resolution image in Fig. 5. In practice, more pixels could be
added efficiently by using high-throughput photolithography.
Hundreds of spatial pixels in each dimension can be realized
using the present design. To further increase the spatial
resolution, we can also reduce the size of PC slabs with less
number of periods used for each PC structure, thus trading
spectral resolution for spatial resolution.

Discussion
In conclusion, we proposed and experimentally demonstrated a
spectrometer and a hyperspectral imager based on photonic-
crystal (PC) slabs. Traditional hyperspectral imaging techniques
often include spatial or spectral scanning, which usually require
long acquisition time and are only accurate for stationary scene.
Existing non-scanning methods43–49 often require large optical
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components and precision alignment. PC slabs enable non-
scanning single-shot imaging method on a compact and reliable
CMOS chip, which allows low-cost, portable applications. The
performance of demonstrated devices can be readily improved.
For example, the spectral resolution can be improved by replacing
silicon PC with silicon nitride or silicon carbide, which would
create more diverse spectral features due to the lack of light
absorption. Spatial resolution and angle tolerance can be
improved by using smaller PC slabs.

Data availability
The data that support the finding of this study are available from the corresponding
author upon reasonable request.
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