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Abstract The generalized linear mixed model (GLMM) extends classical regression
analysis to non-normal, correlated response data. Because inference for GLMMs can
be computationally difficult, simplifying distributional assumptions are often made.
We focus on the robustness of estimators when a main component of the model,
the random effects distribution, is misspecified. Results for the maximum likelihood
estimators of the Poisson inverse Gaussian model are presented.
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function - Directional derivative - Maximum likelihood estimation

1 Introduction

Poisson mixed models, a class of generalized linear mixed models (McCulloch et al.
2008), are often used to analyze count data that exhibit overdispersion. For example,
see Dean and Nielsen (2007), Karlis and Xekalaki (2005), Ven and Weber (1995),
and Hougaard et al. (1997). For these models, we assume that the conditional distri-
bution of the response follows a Poisson distribution with a random mean. The mean
incorporates the random effects used to model the overdispersion.
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When estimating the model parameters via maximum likelihood, the distribution
of the random effects, known as the mixing distribution, is often chosen for com-
putational convenience. This assumption motivated us to consider the robustness of
the maximum likelihood estimators (MLEs) of the fixed effects and of the random
effects variance when the mixing distribution is slightly contaminated. In particular,
the mixing distribution is presumed to be an e-contamination of a specified parametric
family. This contamination results in misspecification of the marginal distribution of
the response variable.

Some research has indicated that small perturbations of the random effects distri-
bution have minimal impact on parameter estimation. For instance, see McCulloch
and Neuhaus (2013), Heagerty and Zeger (2000) and Neuhaus et al. (1992). Yet, other
research points to greater sensitivity of estimators, including Heckman and Singer
(1984) and Litiere et al. (2008), among others.

We examine the effects of this misspecification using an infinitesimal approach
based on the influence function (Hampel et al. 1986 and Huber 1981). Gustafson
(1996) followed the influence function approach to consider the robustness of MLEs
for certain conjugate mixture models under mixing distribution misspecification, and
Weems and Smith (2004) extended this approach to include a regression structure
in the mean. Specifically, Weems and Smith (2004) considered an influence func-
tion for mixed Poisson regression models that can be used to assess the effects of
mixing distribution misspecification on MLEs for regression parameters and the vari-
ance component. Using saddlepoint techniques of Bruijn (1953), they showed that
the integral of the influence function for MLEs of the Poisson-lognormal regression
model is uniformly bounded over a certain class of distribution functions; hence, the
MLEs are robust against mixing distribution misspecification. More recently, Verbeke
and Molenberghs (2013) considered the gradient function (directional derivative) as a
qualitative goodness-of-fit assessment of the random effects distribution.

Our focus is the Poisson inverse Gaussian model. In Sect. 2, we review the influence
function approach of Gustafson (1996) and Weems and Smith (2004) for determining
the robustness of MLEs in mixed Poisson regression models. Section 3 focuses on the
robustness of MLEs for the Poisson inverse Gaussian model. A simulation study is
presented in Sect. 4, and a summary is given in Sect. 5.

2 Robustness concepts
2.1 Influence function

Let W be an estimating function, and define the functional 7 (F’) to be the solution, in
6, of

/\Il(x;Q)F(dx) =0 (D
for a p-dimensional parameter vector 6. As discussed by Gustafson (1996) and Weems
and Smith (2004), T = T (X1, X3, ..., X,) can be regarded as a function T (Fy)

applied to the empirical cdf of the data X = (X1, X2, ..., Xp). In this case, T (Fy,)
estimates 7' (F), where F is the true distribution of the data.
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If the distribution of X is perturbed from F to F, = (1 — €)F + €G, then one may
consider )
T(F;G)=(3/96)T (Fe)le=0 2

as a measure of the sensitivity of T to small perturbations of F. The quantity (2) is the
Gateaux derivative of 7'(F') in the direction of G and is found by implicit differentiation
of the equation

/\Il(x; T(F)[(1 —e)F +eGl(dx) =0,

which gives

-1
T(F:G) = [—/Vell’(x; T(F))F(dX)] [/ W(x; T(F))G(dX)]~

Using this quantity, we state the following definition of robustness.

Definition 1 Let 7 be an M-estimate. Suppose that the distribution function F is
contaminated by an epsilon amount of a distribution G. Then T is robust against
distribution misspecification if

-1
[—/Ve‘l’(m T(F))F(dX)] [/‘J’(X;T(F))G(dX)] 3

is bounded for all G.

It is appropriate to examine the quantity given in (3) because it gives a first-order
approximation to the asymptotic bias in estimating 6 that is introduced by the e-
contamination of F' by a distribution G.

2.2 Misspecificiation in Poisson mixed models

Let Y;, U;, and X; denote the response variables, random effects and covariates, respec-
tively, fori = 1, ..., n. Suppose the conditional distribution of ¥;|X; is Poisson with
mean U; u;, where u; = u(X;) = exp(Bo + B1X;), and U; and X; are independent.
Note that By and B are unknown regression parameters.

Let F denote the nominal distribution function of the random effects U; and f
denote the corresponding density function. The mean and variance of U; are 1 and ,
respectively. Using maximum likelihood, our goal is to estimate 6 = (Bo, B, t). The
marginal density of ¥; is

.

(i) exp (—up;

P(Y,-=yi;x,-,e)=/ e
0 i

) fwydu, 4

with marginal mean and variance of w; and w;(1 + w;t), respectively. This model
includes a single covariate X;; however, the extension to multiple covariates is straight-
forward.
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To determine the MLE 6, we maximize / @;Y) = log(L#;Y)), where Y =
Y1,...,Y,) and

log(L(0; Y)) = [ [ P(¥i = yis X, 0).

i=1
Let W = Vyl(6; Y). Then (3) becomes [;°{I~"(6)s(0; u)}G(du), where
1) = -E [vgbzl(e; Y)]
is the Fisher information matrix,
s@;u) =E[Vol(0; V)| Ui = u]

is the conditional expected score matrix, and all expectations are taken with respect to
the nominal distribution F. The integrand /~'(6)s(6; u) is an influence function for
misspecification of the mixing distribution F (Gustafson 1996). Hence, integrating
this quantity captures the effect of a contaminating distribution G on the MLE of 6.
We let

IF(u: 6, F) = [IF(u; fo. F), TF(u; By, F), I F(u: %, F)]T

represent the 3 x 1 matrix of influence functions for the individual parameter estimates.
Hence, restating Definition 1, if

/IF(x; T, F)G(dx) = / (I710)s(0; )} G (du) (5)
0

is bounded for all G, then @ is robust. We note that if / —1(0) is well-behaved then
bounding (5) reduces to bounding the integral of the conditional expected score matrix.
We make the following assumptions:

1. Let F = {F|F isacdfon (0,0), [uF(du) = 1, and [ u?F(du) = 1 + t}. We
let the nominal distribution F' € F and, likewise, the contaminating distribution
GeF.

2. n ' — I*asn —> oo, where I* is positive definite.

3. The covariates X1, X, ..., X, are an i.i.d. sample from a nondegenerate distri-
bution whose support is a compact region of R”. Additionally, Cov(X) is positive
definite, where X = (X1, X2, ..., X,)T.

4. The interchange of expectation and differentiation of the log-likelihood and its
derivatives is permitted.

These assumptions are similar to those presented in Gustafson (1996). In particular,
Assumptions 1, 2, and 3 ensure identifiability of the parameters, and Assumption 4
follows usual regularity conditions for asymptotic results (see, for instance, Bickel
and Doksum 2001).
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There are many approaches to robustness beyond influence function methods, such
as the breakdown point. In a regression context, which is the focus of this paper,
there are even more ways to assess robustness, such as those found in Bickel (1984)
and Rieder (1994). However, our scope is limited to Definition 1 above focused on
infinitesimal misspecification of the distribution of the random effects.

In the next section, we use an influence function approach to determine the effect
of G on the MLEs for the fixed effect parameters Sg and 1 and the random effects
parameter T when fitting a Poisson inverse Gaussian regression model. We suppress
subscripts to simplify notation.

3 Poisson inverse Gaussian model

Consider the Poisson inverse Gaussian model, where we denote the nominal mixing
distribution F' as IG(1, 1/7). The corresponding density is given by

_(u—l)z}

B 6
2rTud)l/2 exp { 2Tu ©)

fu) =

u > 0, 7 > 0. The Poisson inverse Gaussian distribution has been studied extensively
by Ong (1998), Shaban (1981), Seshadri (1993) and Dean et al. (1989). In addition,
Seshadri (1999) points out several applications in actuarial science, linguistics, and
ecology. Zha et al. (2016) and Shoukri et al. (2004) use the Poisson inverse Gaussian
regression model to analyze motor vehicle crashes and disease incidence, respectively.

The marginal probabilities of a Poisson inverse Gaussian mixture, denoted by PIG,
are as follows:

2uY exp (1/7)
el Ay S
yQRmr)l/2 Y2

| 1
Kir(v) = 5/0 uk=1 exp {—g (u + ;) }du

denotes the modified spherical Bessel function of the third kind of order k (Abramowitz
and Stegun 1972).

Pr(Y = y|X, ) =

; ; 1 %(y—%)
T ()
[ (T +2u)] Y ,
)

where

3.1 Asymptotic behavior of probability ratios

We present a theorem by Willmot (1990) that is used to gain some insight into the
marginal Poisson inverse Gaussian probabilities. This theorem relates the behavior
of the right tail probabilities to the corresponding right tail of the random effects
distribution. We first introduce the following definition.

Definition 2 A positive function L, defined on [0, 00), varies slowly at infinity if, for
all ¢ > 0, limy_ o L(cx)/L(x) = 1.
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Let Py denote the marginal probabilities of any mixed Poisson distribution, y =
0, 1,2, ... The notation a(x) ~ b(x), x — oo, means lim,_,, a(x)/b(x) = 1.

Theorem 1 (Willmot 1990) Let P, denote probabilities of a mixed Poisson distribu-
tion so that

o [T

Suppose that
f(x) ~ C(x)x¥exp (—px), x — oo,

where C(x) is a locally bounded function on (0, 00) which varies slowly at infinity,
B >0, and —o00 < a < oo (witha < —1if B =0). Then Py satisfies

) (A)ya e
Y ()L_|_13)a+1 L+ B Yoy '

We now apply this theorem to the PIG(1, 1/7) distribution.
Proposition 1 For the PIG(1, 1/71) density with probabilities Py,

Py~ exp | 2L et GO & Ty
7 2Ty 2T wi + 27)~! ’

Proof Through algebraic manipulations, the IG(1, 1/7) density in (6) can be rewritten
as

flu) = Cau=" exp (= 32),

where C(u) = (V2r1)~ /2 exp{(Ru — 1)/2tu}. It is clear that C(u) is locally
bounded on (0, c0). Notice that for all ¢ > 0,

. C(cu) . c—1
lim = lim exp =1
u—oo C(u) u—00 2tcu

so by definition C(u) varies slowly at infinity. Therefore, by Theorem 1,

Py~ Vamrenp | 2! : L)y
’ Pl 2oy Jwreo h i \urao1) ?
2y —1 4+ o)t 2 y —3/2
= . 8
xp { 2ty } 27T (u + (27)7! Y ®
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We note that this result is closely related to one by Teugels and Willmot (1987) which
examines the asymptotic behavior of the probabilities for a different parameterization
of the model.

In the following section, we will be concerned with the ratios Py 1/Py. The next
proposition gives an asymptotic result for these ratios.

Proposition 2 For the PIG(1, 1/t) distribution

lim Py+1 _ 2[1/[
y—00 Py 2/,L'L' =+ l

Proof Let

2y —1 w+ Q2r)~! 2 4 _3/2
1) = 7.
) eXp{ 21y } 2mt <M+(2r)‘1 Y

From Proposition 1, Py ~ [(y). We have that

lim Py lim Pyyr (y+1)
y—00 Py y—00 l(y+l) Py

i Pt 16+ D) y 3% exp{—1/Q2ty)}
= lim . ©)]
v—ool(y+1) Py y 3 Pexp{—1/Qty)}

Notice that

—3/2 _
2 exp (—1/Q2ry))
O+ DS e Sy

_ Cy+1D | [n+@o)! % v iy
_eXp{Zr(y+1)} o2nt (M+(2r)—1> O+

Y2 exp(=1/Q1y))
X
y 2 exp(=1/Q2ty)}

_ 1 1 w+ (2t)! " Y an
=exp{——-— —) v
T 2ty 2nt w+ 21)

o s ) G (15)
P12y T 2o+ 1)} PR A G

-0 (i) o) (5)
=ee oy ) e ) U TS '

Therefore, (9) becomes
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P, I 1 2 1\ 32
lim —2*1 » 1im ﬂxnmexp< )( ki ><1+—)
y=ool(y+1)  y—oo Py y—oo 42y(y + 1)) \2ut +1 y
. 2urt
C2ut+ 17

3.2 Robustness of maximum likelihood estimators

We examine the robustness of the MLEs for By, f1, and t. Recall that u = n(X). Let

p 2
V=VX) =u—p1*1+1)+Eyx [(Y + 1)%]
Y
and
1
K:K(X)=(+2r'u)< e —V>.
T 1+tu
Then, the influence function for the PIG(1, 1/7) is given by
IF(u; 0, F) = 1-1(0)s(0; u), (10
where
vV oo .
10)=Ex | XV X2v . (11)
K Xk —k/u?
and
Eypxo [¥ = (0 + D2 X, U = u]
503 u) = Ex X Eyixo [¥ = (0 + D52 X, U = u] C12)

(“S“) Eyix.u [M_I(Y + 1)1){)—;1 - 1} X,U = u]

Details concerning the computation of the Fisher information matrix 7 () can be found
in Dean et al. (1989).

Recall that the integral of the influence function should be bounded in order for the
estimators to be robust. Notice that the influence function for PIG(1, 1/7) is a linear
combination of the terms of the conditional score matrix s(6; u), which depends on
u. Therefore, in order to bound the integral of the influence function, we will bound
fooos(é; u)G (du). Notice also that each term in the score matrix contains the quantity
(y + D Py11/ Py, so we focus on bounds for these quantities in the following three
lemmas.
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Lemmal Fory =0,

Py Py ~1/2
D2 == 42 &
(y+)Py 7o u(l +2tw)

Proof As presented in Seshadri (1993), the probability generating function for the
PIG(u, 1/1) model is

SR =exp 1= (1= 2z = 1)),
y=0

From this function, we find that the following recursive relationship exists:
Py = n(1 4+ 2tp)~ /2 Py. Thus,

P P
L ZL 42t 2

1
O+ P, Po

O

We refer the reader to the Appendix for proofs of the next two lemmas. The first
lemma gives an upper bound for the ratio of Poisson inverse Gaussian probabilities;
the second, a lower bound.

Lemma 2 Letv =+t~ 1(t=1 4+ 2u). Then for y > 0,

Pyy1
1 Yy
O+ P,

Lemma3 Letv =4/t 1(t=1 4+ 2u). Then fory > 0,

Py _ 1 Y
D22 > (1420721 :
(y+)Py =420 A

<(1+20)""20+vHey - 1.

Using the above two lemmas, we now state our main results. The first result gives
uniform bounds for the integral of the conditional expected score function for fy.

Proposition 3 Let i = (X)) and v = +/t=1(z =1 4 2). The integral of the con-
ditional expected score function for By, given by

Py 11
Py

00
/ ExEyx,u { Y—-x+1
0

X,U = u} G(du),

is uniformly bounded above by

Ex {u — (42012 [1 ¥ LG (fj’;v)”
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and below by

Exlu— (1420720 +v"hHeu - D,
where L () denotes the Laplace transform of G.
Proof Using Lemma 3,

Py 1
Ex Eyx.u {Y — Y+t
Py

1 Y
< ExEyx.u : |:Y — (1 +20)" 1?2 (1 + (1 +2U> )]

2vuu
=Eyx |:uu -1+ 21:)_1/2 (1 + exp (—1 +M2v)>} ,

where the second term comes from evaluating the probability generating function of
a Poisson random variable. Therefore, we have the following:

X,U:u}

X,U:u}

o° Py 1
ExEyix,vo 1Y — X +1)
0 Py

00 2
< /O Ex [W — (1420712 (1 +exp (—1 1“2”‘)))} G(du)
00 2
:]EX/O |:uu—(l+21)_1/2 <l+exp (—1 iugv))}G(du)

=Ey {,L— (1+427)"'72 [1 + Lg (]2:’;})“

This gives our upper bound. For a lower bound, recall from Lemma 2 that we have

X,U = u} G(du)

Py 1
Py

> ExEyx.u { |:Y —(1+20)7 12 (1 + l) QY — 1)” X, U= u}
vV

= Exfup — (1+20) 21 + v HQuu — D].

X,U:u}

ExEyx,vu {Y - +1

Integrating with respect to G, we have that

Py 41
Py

X,U = u} G(du)

/0 ExEyx,u {Y - +D
z/ Exlup — (14 20)" (1 + v~ Qup — DG (dw)
0

_ EX/ e — (1420~ Y2(1 + v Qup — DG (du)
0
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=Ex[n— (1 +20)7 21 +v Hep - 1]
as claimed. O

The next result for 8 is analogous to the previous one. Its proof directly follows that
of Proposition 3 after including the covariate X.

Proposition 4 Let i = p(X) and v = +/t=1(z~! + 2u). The integral of the con-
ditional expected score function for By, given by

xEyix,u1 X| Y- +1D)—— || X, U =u; G(du),
0 Py

is uniformly bounded above by

IEX{X,u—X(1+2t)_1/2 [1+£G( 2Vt >]}

1+2v
and below by
Ex[Xu — X(14+20)" 21 +vHeu — D],
where L¢ () denotes the Laplace transform of G.

The last main result concerns bounds for the expected conditional score function for
T.

Proposition 5 Let i = u(X) and v = +/t=1(z~! + 2u). The integral of the con-
ditional expected score function for t, given by

r—zfomExEYX,U {(1 +7u) <M_1(Y -+ 1>PIY,—:‘ - 1)‘ X U= u} G(du).
is uniformly bounded above by
2Ey {(1 Fowp A+ 2020 40 ) Qu — 1) — 1]}
and below by

2
2By {(1 + ) <u1(1 +20)7 12 [1 YL (1 :ZU)} - 1)} ,

where L () denotes the Laplace transform of G.

Proof By Lemma 2, we have
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P
1 2ExEy|x.v =(1+m) (,fl(Y+1) ;:1 —1>‘X,U:u}
<t 2ExEyx.u {(l+w) [M*1(1+2r)*1/2 (1+v*1)(2Y— - 1]‘X,U=u}

=t 2By (1 + ) [,f‘(l +or)~1/2 (1 + v*‘) Quu—1) — 1] .

Integrating with respect to G, we have that

2 [ -1 Py
T / ExEy|x,u { (I+7w (M Y+1H)—— - 1>‘X, U= u}
0 Py
o
< r—zf Ex(1+ 7 [u_l(l 12012 (1 n v_1> Quu—1) — l]dc(u)
0 o0
= r_2]EX/ (147w [u_l(l +27)" 172 (1 + u—l) Quu —1) — l]dG(u)
0
=28y [+ el + 2072 (14 eu - - 11},

This gives our upper bound. For a lower bound, we use Lemma 3 to obtain
2 -1 Py 41
T ]EXEYlX,U I+ pn (Y+1)P7_1 X, U=u
Y
> 2By By o [+ (1 A+ 2072 [T+ a4 207 ] - 1) [ X U =]

-2
=1 2Ex(1+ 1) (u‘l(l +2r)71/2 [1 +exp< ””“)] - 1) ,
14+2v

where the second term comes from evaluating the probability generating function of
a Poisson random variable. Therefore,

T_Z/EXEYlX,U { (I +7p) (;ﬂ(Y + 1)% - 1)‘ X, U= u} G(du)
Y

o _
> T*Z/ Ex(1+tp0) <u’1 (1420712 [1 +exp (Mﬂ - 1) dGu)
0 1+4+2v

> r*zEx/oo(l o) <,r1(1 +2p)" 12 [1 T exp <_2v”“>} - 1) dG(u)
0 1+2v

2
=1 2Ex {(1 + W) (;L_l(l +27)" 12 [1 +Lg (%)] - 1)} .

O

The above three propositions have shown that the integral of the conditional
expected score matrix s(0; u) is uniformly bounded. These bounds were found by
using properties of Bessel functions and by relating the Bessel functions to the Pois-
son inverse Gaussian probabilities.

Note that the random effect U is positive (with probability 1); therefore, the Laplace
transform of G in Propositions 3-5 results in the uniformity of the respective bounds.
Hence, for the PIG(1, 1/7) model, 0 is robust to mixing distribution misspecification.
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Fig. 1 Upper and lower bounds Upper and Lower Bounds
for [ 5(8; u)G(du), the integral o

of the conditional expected score N Bo--- B1— 1

function, where 60 = (B, f1, 7)-

Shown are the bounds 0
corresponding to S (dotted
line), B1 (dashed line), and ©
(solid line) when By = 0.5,
t=1,8=(1,1.1,...,2),and

G~T(,1) “.’—\

3.3 Discussion of upper and lower bounds

The upper and lower bounds presented in Propositions 3-5 involve L (-), the
Laplace transform of the contaminating distribution G, which is equivalent to the
moment generating function (mgf) of G if it exists. We also note that the bounds
involve expectations of ;(X) = exp(Bo + B1X) with respect to the distribution of X,
requiring the mgf of X as well.

To illustrate the bounds presented in Propositions 3—5, we assume that G ~ I'(1, 1),
X ~ Uniform[0.5, 1], 8o = 0.5,7 = l,and B = (1, 1.1, ..., 2). The upper and lower
bounds for the integrals of the conditional expected score function of (12) for By, B,
and t are plotted against 81 in Fig. 1. Note that an increase in B corresponds to an
increase in u(X). We use the integrate function in R for numerical integration
(R Core Team 2017). For smaller values of 81, the upper and lower bounds are closer,
and they grow farther apart as 8 increases. In particular, note the similarities between
the upper and lower bounds for Sy and B;. The distance between the upper and lower
bounds for T increases at a faster rate than the distance between the bounds corre-
sponding to the regression parameters. This example suggests that £ may be more
sensitive to misspecification of the mixing distribution.

4 Simulations

In this simulation study, we explore how well the asymptotic results of the previ-
ous section describe the true performance of MLEs when the mixing distribution is
misspecified in various ways. We simulate Poisson mixtures and compute MLEs of
the parameters under an assumed inverse Gaussian mixing distribution. These esti-
mates are computed using the R package gamlss (Stasinopoulos et al. 2017), which
produces MLEs for a Poisson inverse Gaussian regression model.

As noted by Hilbe (2014), the Poisson gamma (or negative binomial) regression
model is the most commonly used model for overdispersed count data. Therefore, for
these simulations, we let ' ~ IG(1, 1/7) denote the nominal inverse Gaussian mixing
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distribution and G ~ I'(1/7, t) denote the contaminating gamma distribution. MLEs
are computed for an assumed PIG(1, 1/7) model.

We begin by generating 1000 iid covariates {X;} ~ N(0, 1), that are fixed through-
out the simulation, and by forming the regression structure By + X;pB1. Next, we
generate 1000 random effects {U;}, from either the inverse Gaussian distribution or a
misspecified mixing distribution, such that E(U;) = 1 and Var(U;) = t. Then, 1000
sample responses {Y;} are generated, conditionally on U; and X; so that

E(Y;|X;, U;) = U; exp{Bo + X B1}.

We simulate 1000 replicated samples with the same X; and estimate S, 81, and t via
maximum likelihood, and we examine the statistical behavior of these estimates using
a Monte Carlo approach.

Table 1 shows Monte Carlo estimates for B9 = 0.5, f1 = 1, and T =
(0.25,0.5,1,2) when there is a small amount of contamination (¢ = 0.01) and
complete misspecification (¢ = 1) of the mixing distribution. Although the theory
presented in Sect. 3.2 is for infinitesimal perturbations of the mixing distribution, we
consider complete misspecification of the mixing distribution which may be done in
practice.

When € = 0.01, the bias of ,30 and ,31 is very small, regardless of the true 7. The
bias of T is also small (— 0.0096, — 0.0141,— 0.0374, — 0.0907, respectively), yet it
increases with 7. The standard errors of the regression estimates increase gradually
as t increases. In contrast, the standard error of 7 T increases rapidly as T increases.
These results suggest that T is less robust than ﬂo and ﬁl However, these results
are not surprising since t is the variance of the mixing distribution which has been
contaminated.

When € = 1, the bias of ,50 and ,51 is still small, and their standard errors increase
gradually. Note that the standard errors of the regression estimates under complete
misspecification are similar to those when ¢ = 0.01. However, the bias of 7 is sub-
stantial; its standard error grows rapidly as t increases, so that for 7 > 1, the bias is
the dominant component of the mean squared error of 7.

Figure2 gives normal probability plots of the MLEs for 6 = (B, B1,7) =
(0.5, 1, 2) when the mixing distribution is completely contaminated. In general, the
plots suggest normality of the estimates, though there is some deviation from a straight
line in the tails of the distribution for 7. In Fig.3, the histograms of estimates for
T = (0.25,0.5, 1, 2) when By = 0.5 and B; = 1 also suggest normality of the MLEs;
however, the plots reveal the considerable bias of 7 for T > 1.

5 Summary

We have focused on the Poisson inverse Gaussian model and have examined the effects
of mixing distribution misspecification on MLEs. Extending the influence function
approach of Hampel (1974) to the unobservable random effects, we computed bounds
for the Gateaux derivatives of regression parameter estimators and the random effects
variance estimator. We showed that the MLEs are robust against small perturbations
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Table1 True and estimated parameter values under assumed inverse Gaussian mixing distribution, € = .01

ande = 1
Parameter Po B1 T Po B1 T
e =0.01 e=1
True 0.5 1 0.25 0.5 1 0.25
Estimated 0.4987 1.0003 0.2404 0.5021 0.9966 0.2609
SE (x102) (3.25) (2.92) (3.47) (3.26) (3.12) (3.76)
True 0.5 1 0.5 0.5 1 0.5
Estimated 0.4993 0.9998 0.4859 0.4982 0.9970 0.5651
SE (x10%) (3.65) (3.51) (5.71) (3.77) (3.72) (6.59)
True 0.5 1 1 0.5 1 1
Estimated 0.4980 1.0022 0.9626 0.5005 0.9811 1.2965
SE (x 102) (4.26) (4.30) (10.39) (4.67) (4.46) (14.05)
True 0.5 1 2 0.5 1 2
Estimated 0.4953 1.0003 1.9093 0.4985 0.9424 3.1598
SE (x10?) (5.29) (5.26) (20.87) (6.38) (5.76) (36.91)
Po
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Fig. 2 Normal probability plots of 1000 simulated MLEs for Poisson-gamma data under assumed inverse

Gaussian mixing distribution with Sy = 0.5, 8y = 1,and t =2
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Fig. 3 Histograms of 1000 simulated MLEs for the random effects variance t for Poisson-gamma data
under assumed inverse Gaussian mixing distribution with Sy = 0.5, 1 = 1, and T = (0.25,0.5, 1, 2)

of the mixing distribution, provided that the first two moments exist. Using properties
of Bessel functions and exploiting the recursive nature of ratios of Poisson inverse
Gaussian probabilities, we have computed bounds for the Gateaux derivatives of the
MLE:s.

The simulation study of Sect. 4 considered the practical case of complete misspec-
ification of the mixing distribution. For the regression parameter estimates, our study
supports conclusions of McCulloch and Neuhaus (2013) and others who argue that
the choice of the mixing distribution has little impact. However, for the MLE of the
variance of the random effects distribution, our simulation results suggest that mix-
ing distribution misspecification can have a substantial impact as claimed by Litiere
et al. (2008). Therefore, when analyzing over-dispersed count data, one can be rea-
sonably confident when using maximum likelihood to estimate regression parameters;
however, if one believes that modeling assumptions may be incorrect, alternatives to
maximum likelihood estimation should be considered, particularly when estimating
the random effects variance.
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Appendix: Upper and lower bounds for Poisson inverse Gaussian proba-
bility ratios

Below we provide proofs to Lemmas 2 and 3, in which we find an upper bound and a
lower bound for Poisson inverse Gaussian probability ratios.

Lemma 2. Letv = +/t~!(z—! 4+ 2u). Then for y > 0,

P,
(v+1) ;)“ <1 +207 20 +v Hy - 1.
y

Proof Equation (7) gives us the following relationship:

“1/2K, 1(v)
1 y+1 _ 1 (14 27) y+3
R Rl B e serey
1 (V)
_ —1/2 H—
(1+27) —y_%(v) (13)

From Abramowitz and Stegun (1972), we have that fork =0, £1,£2, ...

(k +71)!
OE C(v)Z ESTR (14)

where C(v) = /7 /(2v) exp(—v). Therefore, we may write

Kyt & o+
Cv) =iy —nlQvy

_Zy: y—14r! G+r)
=y —1=n)Qu) (y—7)

2y)! yz‘l (=140  (y+7)

y!I(2v)Y oy =1=n!2v) (y—r)
(2y)! y—1+r)!

Ny T )ery— 1 — )12y
@yl @ -DK 1)

yIQ2v)Y C(v)

Substituting in the numerator of (13) we find that

P
(v + 1)1yT+1 <(1+2r)7 12
3

CCN/ 2V + 2y — DK, _1(v)
Ky,%(V)
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- C(v)2y)!
B bz 2772277 N
=(1+27) [y!(z\,)yKy_é(V) +2y 1}

<(1+207 20 +vHey -1, (15)

where the last line uses the following inequality:

VICOK, 4 0)  yieny = 140!
coeyt @t grwy—l—r)!(zv)r
Y@y @y -2)!
@yt (v = DHlv-!

v
2y —1°
[}
Lemma 3 Letv = + /! (z—! +2u). Then for y > 0,
1 y
S pan12 | .
(y+)y (I+27) +1+2v
Proof Recall from Eq. (13) that
K . 1(v)
O+1) ”1 = (142071222 (16)

(V)

.V y——

Using (14) with C(v) = /7 /(2v) exp(—V), we may write

K, 1) _ YZ‘I (v — 147!
C(v) Py — 1 — r)lQ2v)

r=0
y—1

_Z y+n! —r
o=@y (v +r)
y—1
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= g ri(y — r)!Qv)’

y

_ Z (y+n)! 2y)!
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Therefore, substituting into (16), we have the following lower bound:

(v + H2tL Py o (1427)"1/2

y

=1 +20)71?

>04+207"2 |1+

K, 1)
CO@yY (12v))
1

}"'F% (‘)) -

1= CMENYOICK, 1 (1)

Cv)2y)!
YIQVYK 1)

where we use the elementary inequality 1/(1 — x) > 1 4+ x. Notice that

YKy ()

Cv)(2y)!

Therefore, (17) becomes

y

Z (y+nr!  ylQv)
gy =ni2v)" 2y)!

_ Z (y + ) y!lQu)y—

— Q! iy -

y
_y o (y) -
2y)! \r

r=0

y
-5 ()
=1+

+2v)Y.

y
O+ ij‘>(1+2z)‘/2[1+< ! )]

y

by substitution.
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