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ABSTRACT

The Internet of Things (IoT) is an emerging 
technology that proffers to connect massive smart 
devices together and to the Internet. On the basis 
of IoT, a smart city is endowed with real-time 
monitoring, ubiquitous sensing, universal connec-
tivity, and intelligent information processing and 
control. An IoT-based smart city can offer vari-
ous smart services to citizens and administrators, 
thus improving the utilization of public resources 
regarding transportation, healthcare, environment, 
entertainment, and energy. The integration of 
transmitting, computing, and caching is having a 
profound impact on the development of flexible 
and efficient IoT in smart cities. However, with 
the introduction of ultra dense networking (UDN) 
and mobile edge computing (MEC), we have to 
carefully consider a joint problem across the phys-
ical layer and MAC layer to enable the efficient 
transmission, computation, and caching of big IoT 
data generated by massive IoT devices distributed 
in a city. In doing so, efficient multiple access and 
computation offloading should be addressed in 
the physical layer and MAC layer, respectively. 
In this article, we propose a scalable and sustain-
able IoT framework that integrates UDN-based 
hierarchical multiple access and computation off-
loading between MEC and cloud to support the 
smart city vision. The proposed integrated frame-
work can substantially reduce the end-to-end 
delay and energy consumption of computing data 
from massive IoT devices. Numerical comparison 
results are presented to show the efficiency of the 
proposed framework. In addition, we discuss a 
number of open research issues in implementing 
the proposed framework.

INTRODUCTION

The Internet of Things (IoT) paradigm enables 
universal interconnections among a tremendous 
number of ubiquitous smart devices and objects 
(e.g., smart cars, wearable devices, smartphones, 
tablet computers, industrial and utility compo-
nents) via a network of networks anywhere at 
any time [1]. With the rapid advancement of IoT 
technology, the IoT-based smart city has received 
significant attention and is emerging as a promis-
ing technology integrated with ubiquitous sensing, 
universal networking, intelligent information pro-

cessing, and real-time control [2]. The key goal 
of the IoT-based smart city is to efficiently utilize 
public resources, thus offering a broad range of 
intelligent applications, including smart metering, 
smart manufacturing, smart home, automatic 
driving, and health monitoring. In the context of 
the IoT-based smart city, ubiquitously connected 
IoT devices are deployed to monitor the physical 
world in people’s daily lives in real time by col-
lecting and uploading their local sensed contents 
such as images, videos, and textual data [3]. Due 
to the limited spectrum-computation resource 
faced with the unprecedented IoT traffic volume, 
current wireless cellular networks are becoming 
incapable of guaranteeing the efficient transmit-
ting, computing, and caching of big IoT data in 
smart cities.

To cope with these challenges, ultra dense net-
working (UDN) [4] and mobile edge computing 
(MEC) [5] are emerging as promising technolo-
gies for IoT. UDN increases the network capacity 
and extends the network coverage to accommo-
date the 1000 capacity delivery of IoT traffic 
through deploying ultra-dense small cell base sta-
tions (BSs) [4]. MEC provides cloud computing, 
resource caching, and networking capabilities as 
well as an IT service environment at the edge of 
the radio access network (RAN) (e.g., beside the 
small cell BS) in close proximity to mobile devices, 
which offers ultra low-latency and high-bandwidth 
context-aware services [6]. It is envisioned that 
when MEC-enabled UDN is integrated into IoT, 
enormous potential benefits can be brought to 
various smart city applications. However, many 
challenges remain unsolved, such as multiple 
access and computation offloading.

MEC-enabled small cell BSs play the role of 
accessing, computing, and caching various IoT 
data in MEC-enabled UDN. With the ever grow-
ing popularity of IoT devices, the big IoT data 
generated from IoT devices are delivered to 
MEC-enabled small cell BSs. It is a potential bot-
tleneck for massive access to the small cell BS 
when the limited spectrum resources are orthogo-
nally allocated to the devices. Thus, new multiple 
access techniques are essential to meet the het-
erogeneous demands on low latency, high reli-
ability, massive connectivity, and high throughput 
through enabling massive IoT devices to effective-
ly share spectrum resources in UDN. MEC works 
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as a smart “brain” for computing and caching big 
IoT data at the network edge. However, it is dif-
ficult to process a flood of big IoT data due to 
the limited computation resource provisioning in 
MEC. Although delivering big IoT data from IoT 
devices to the remote cloud center via the Inter-
net suffers severe transmission delay, the cloud 
poses flexible and efficient resource provisioning 
for data processing [8]. With the diversity of big 
IoT data, the latency-tolerant IoT data can be off-
loaded to the remote cloud via the Internet for 
improving the computation and caching efficiency 
in MEC. Therefore, it is necessary to design an 
efficient big data transmission and computation 
architecture to explore the valuable information 
from IoT devices in IoT-based smart cities.

In this article, we address the aforementioned 
challenges arising in IoT-based smart cities from 
the physical layer and medium access control 
(MAC) layer of IoT networks, such as multiple 
access of massive IoT devices and computation 
offloading of big IoT data. To this end, a scalable 
and sustainable IoT architecture (i.e., HybridIoT) 
is proposed to efficiently transmit, compute, and 
cache big IoT data for various smart city applica-
tions by leveraging UDN-based hierarchical multi-
ple access and computation offloading between 
MEC and cloud. The procedure for UDN-based 
hierarchical multiple access is provided. Specifi-
cally, non-orthogonal multiple access (NOMA), 
which allows multiple simultaneous transmis-
sions to be active on the same frequency-time 

resource [7], is developed as a promising multiple 
access technique to provide the direct access of 
IoT devices to one small cell BS. Furthermore, to 
reduce transmission collisions among small cells 
due to frequency reuse, all small cell BSs oper-
ate in time-division multiplexing (TDM) mode, in 
which every small cell BS performs data trans-
mission/reception at individual time slots. Then, 
based on the service requirements of IoT applica-
tions and the computation resource constraints of 
MECs, big IoT data are classified into latency-sen-
sitive data (e.g., online gaming and augmented 
reality) and latency-tolerant data (e.g., web, chat, 
email) by the data classifier equipped at a small 
cell BS. In Internet Engineering Task Force (IETF) 
RFC 2474, the data classification is carried out 
according to the 6-bit differentiated services code 
point (DSCP) field in the IP header of each data 
packet. In particular, the application is identi-
fied as delay-sensitive if the DSCP decimal value 
belongs to the set of {8, 10, 14, 18, 22, 24, 28, 
34, 36, 38}. Otherwise, the application is identi-
fied as delay-tolerant. The latency-tolerant data is 
forwarded to the remote cloud via the Internet, 
and the latency-sensitive data is offloaded among 
MECs to minimize the end-to-end computation 
delay or computation cost. The end-to-end com-
putation delay and computation cost are analyzed 
and verified for HybridIoT. Finally, open research 
topics are discussed.

The remainder of this article is organized as 
follows. We describe an overview of recent lit-

FIGURE 1. Architecture of HybridIoT.
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erature on IoT. We present the IoT architecture 
(i.e., HybridIoT) proposed for smart cities, which 
integrates UDN-based hierarchical multiple access 
and computation offloading between MEC and 
cloud. Some performance of HybridIoT is ana-
lyzed and evaluated through simulations. Finally, 
we close the article with conclusions and discus-
sions on future research.

OVERVIEW OF RELATED WORK ON IOT
As the basis of the smart city concept, the 
advancement of IoT technology plays a significant 
role in IoT-based smart city realization. In this sec-
tion, we briefly introduce some past and present 
efforts on IoT for the efficient transmission, com-
putation, and caching of big IoT data.

COMPUTATION ARCHITECTURE FOR IOTS

In order to meet the computing and caching 
requirements of big IoT data, various computing 
paradigms have been proposed, such as cloud 
computing, fog computing, and MEC. In the frame-
work of cloud computing, the remote cloud center 
provides flexible and efficient resource provisioning 
for data processing and caching [8]. Thus, most 
data need to be transferred from the distributed 
IoT devices to the cloud center via the Internet. 
However, big data transmission via the Internet 
may not be feasible or economical due to the lim-
ited network resource, such as bandwidth, ener-
gy, and time. Therefore, cloud computing may not 
be applied to latency-sensitive IoT applications. In 
order to meet the ultra low-latency demand, fog/
edge computing and MEC have been proposed 
to enable computing services to reside at the edge 

of the network as opposed to servers in the cloud 
center [1]. In fog computing, near-user fog servers 
compose a distributed computing system to carry 
out a substantial amount of caching, networking, 
and computing. MEC is mainly oriented to RANs 
in close proximity to mobile devices. MEC servers 
integrated into mobile BSs provide computing and 
caching capacities for mobile services at the edge 
of RANs.

Cloud/fog computing and MEC have been 
widely developed for IoT. A typical architecture 
of integrating cloud/fog computing and MEC for 
IoT applications is introduced in [9]. The distribut-
ed IoT devices use cloud/fog computing or MEC 
depending on the types of their applications, con-
tents, and services.

MULTIPLE ACCESS TECHNOLOGIES FOR IOTS

Efficient multiple access techniques have been 
significantly studied for a long time in wireless 
systems, including cellular networks and emerg-
ing IoT networks. Compressive random access 
has been studied for uplink access in traditional 
IoTs based on the idea of compressive sensing 
[10]. Since compressive random access needs 
to detect distinct pilot signals from all active IoT 
devices at the access point before performing 
access authorization, the uniqueness of pilot sig-
nals makes it difficult to satisfy the requirement 
of massive connectivity for IoT devices. Orthogo-
nal multiple access (OMA) techniques have been 
proposed for multi-user connectivity in past and 
current cellular networks, such as time-division 
multiple access (TDMA) in the second generation 
(2G), code-division multiple access (CDMA) in 
3G, and orthogonal frequency-division multiple 
access (OFDMA) in 4G cellular systems [7]. How-
ever, the conflict between the scarcity of radio 
resource and the large number of IoT devices ren-
ders OMA unsuitable for emerging IoT.

Along with the introduction of UDNs into IoT, 
NOMA has been actively investigated as a poten-
tial alternative to conventional OMA due to its 
superior benefits in spectral and energy efficiency, 
massive connectivity, and low transmission laten-
cy. By means of NOMA, the technical challenges 
of IoTs, such as massive connectivity and utmost 
network capacity, can be partially fulfilled in the 
context of UDN.

EMERGING COMMUNICATION TECHNOLOGIES FOR IOT

The widespread proliferation of IoT devices leads 
to the exponential increase of IoT data. IoT net-
works have evolved to meet various demands 
for low power consumption, massive connectiv-
ity, low latency, and high data rate. To this end, 
various potential communication technologies 
in addition to multiple access have been active-
ly studied for IoT networks. The UDN has been 
proposed as a promising and scalable solution 
to accommodate massive access of IoT devic-
es to RANs through deploying ultra dense small 
cell BSs [4]. A low-power wide area network 
(LPWAN) radio technology standard, narrowband 
IoT, has been developed by the Third Genera-
tion Partnership Project (3GPP) for the IoT, which 
enables a wide range of IoT devices to be con-
nected using cellular telecommunications bands 
with low power consumption [11]. Driven by the 
large available bandwidth provisioning, millime-

FIGURE 2. Hierarchical multiple access in HybridIoT and an illustration of per-
forming NOMA.
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ter-wave communications [12] and massive mul-
tiple-input multiple-output communications [13] 
have been explored to support multi-gigabit data 
transmission in the Internet of Vehicles, which has 
been the most visible and familiar example of IoT. 
A full-duplex transmission framework has been 
proposed for IoT [14] because it can potential-
ly double the spectral efficiency by performing 
simultaneous transmission and reception on the 
same frequency band.

Apart from the aforementioned communica-
tion technologies, other networking technologies 
may also be imperative for IoT. As a new type of 
network architecture, software-defined network-
ing (SDN) has been explored to perform flexi-
ble resource allocation for better scalability and 
controllability in IoT [9] by introducing the sep-
aration of the data and control planes, and the 
direct programmability of network control with 
service virtualization. Cloud RAN (C-RAN) has 
been developed as another disruptive and emerg-
ing technology to facilitate IoT deployment by 
applying the centralization and virtualization of 
network functions to RANs [15].

HYBRIDIOT DESIGN

In this section, we propose an IoT framework that 
leverages UDN-based hierarchical multiple access 
and computation offloading between MEC and 
cloud to support the IoT-based smart city vision. 
We name this framework HybridIoT. The chal-
lenges, design, and implementation details of this 
framework are described as follows.

CHALLENGES

Serving massive heterogeneous IoT devices for 
transmitting, computing, and caching is not trivial 
in the IoT-based smart city. The challenges mainly 
come from the following aspects.

The first one is the aspect of multiple access 
technology. Due to the scarcity of radio resource, 
IoT devices suffer severe co-channel and adjacent 
interference along with the denser and denser 
deployment of small cells in UDNs when the mas-
sive access of devices to IoT is realized through 
the spectrum multiplexing among IoT devices and 
small cells. To this end, heterogeneous access 
methods should be considered from the view-

FIGURE 3. The details of implementing HybridIoT.
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point of IoT devices and small cells. The second 
one is the aspect of computing and caching. The 
IoT applications can be divided into two types 
in terms of latency sensitivity: latency-sensitive 
applications and latency-tolerant applications. 
Latency-sensitive applications include but are not 
limited to safety applications in an autonomous 
driving system, monitoring, free-viewpoint video 
service, and mobile augmented reality, which 
have strict latency requirements within the range 
of hundreds of milliseconds to even seconds. 
In order to reduce latency, one approach is to 
reduce the transmission delay through transmit-
ting the data generated from the latency-sensitive 
applications to MEC servers at the network edge 
for computing and caching. The latency-tolerant 
applications mainly cover the non-real-time con-
tent delivery, such as web browsing, imaging, 
messaging, and file transfers. With the massive 
deployment of IoT devices, the latency-tolerant 
data generated from IoT devices is also high in 
volume. It may be inefficient for MEC servers to 

compute and cache these data with limited cach-
ing and computation resource. For this, these data 
can be forwarded by small cell BSs to the remote 
cloud with flexible and sufficient resource provi-
sioning. Due to the imbalance of computing and 
caching capability between MECs and the cloud, 
we need to take into account computation and 
caching offloading between MECs and the cloud 
depending on the diversity and workload of IoT 
applications in each cell.

Therefore, in this article, we consider the phys-
ical layer issue and MAC layer issue together for 
IoT networks, and propose a novel IoT framework 
that integrates hierarchical multiple access as well 
as computation and caching offloading based on 
data retrieval in the UDN context. Based on the 
cooperation among MECs and the cloud, this 
integrated framework aims to minimize the end-
to-end computation delay while meeting the indi-
vidual requirements of various applications.

FRAMEWORK DESIGN OF HYBRIDIOT

The architecture of the proposed framework, 
referred to as HybridIoT, is shown in Fig. Fig. 1. 
In the framework of HybridIoT, we choose two 
types of multiple access methods: NOMA and 
time-division multiplexing (TDM), and equip every 
small cell BS with one MEC server and one data 
classifier. Also, all MEC-enabled small cell BSs are 
connected through one controller and to each 
other via fiber and switches.

All IoT devices in the coverage of one small 
cell BS send their sensed data to this BS in NOMA 
with power domain multiplexing. The key idea of 
the proposed NOMA scheme is to serve simul-
taneous transmissions of multiple IoT devices 
with distinct channel conditions via successive 
interference cancellation (SIC) at the small cell 
BS, as illustrated in Fig. 2. In particular, the small 
cell BS sequentially decodes the signal of an indi-
vidual IoT device by treating the undecoded sig-
nals of IoT devices as interference according to 
the decoding order of SIC. Given the number of 
IoT devices, the sum data rate across IoT devic-
es is fixed; however, the date rate of individual 
devices is determined by the decoding order of 
SIC. Therefore, in order to guarantee the worst 
transmission delay in each cell, it is critical to opti-
mize the decoding order of SIC for all connected 
IoT devices. Furthermore, multiple small cell BSs 
receive the data generated by IoT devices in TDM 
mode, in which every time frame is adaptively 
allocated to these small cell BSs in an orthogonal 
manner.

The function of a data classifier is to categorize 
IoT data into latency-sensitive and latency-tolerant 
types according to the 6-bit DSCP field in the IP 
header of each data packet on the side of the 
small cell BS. If the DSCP decimal value is in the 
set of {8, 10, 14, 18, 22, 24, 28, 34, 36, 38}, the 
data is delay-sensitive, and it is delay-tolerant oth-
erwise. The latency-sensitive data is then forward-
ed to the data buffer equipped in the MEC server 
for the following data computing and caching. 
On the contrary, the latency-tolerant data is tem-
porarily stored in the data buffer equipped at the 
small cell BS, and then the small cell BS forwards 
these data to the cloud via the Internet. Consider-
ing the imbalance of workload as well as comput-
ing and caching resource provisioning between 

FIGURE 4. Performance evaluation of HybridIoT with different proportion of off-
loading between two small cell BSs: a) the end-to-end computation delay; 
b) the total energy consumption. Here, the negative proportion means the 
data is offloaded from small cell 1 to small cell 2, and vice versa.
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small cells, all MEC servers can offload workload 
between each other via fiber and switches under 
the guidance of the controller. In other words, the 
controller provides some computation offloading 
services between MEC servers according to the 
amount of IoT data and the capability of each 
MEC server.

The proposal of HybridIoT aims to improve 
the design of IoT networks from the physical layer 
and MAC layer to meet various demands on low 
power consumption, high data rate, low latency, 
and massive connectivity. To further improve the 
performance of HybridIoT, more efforts should be 
spent on the design of the SIC ordering optimi-
zation algorithm, computation offloading mech-
anisms, efficient network resource management, 
and so on.

IMPLEMENTATION DETAILS OF HYBRIDIOT

We consider an IoT topology with a set S = {1, 
…, S} of MEC-enabled small cell BSs, each of 
which can serve a set Ns = {1, …, Ns}of IoT devic-
es. All MEC-enabled small cell BSs operate in the 
TDM mode, and the time frame is divided into 
S time slots, each of which is allocated to one 
MEC-enabled small cell BS. Every IoT device sn 
has Bsn-bit data to be transmitted to the nearest 
MEC-enabled small cell BS in the NOMA mode. 
When the IoT device completes its data transmis-
sion, it will be removed from the set Ns, and the 
remaining IoT devices in Ns keep transmitting 
their data in the NOMA mode. Each MEC-en-
abled small cell BS receives the IoT data in the 
classify-save-then-forward mode. In particular, 
the data classifier first categorizes the data and 
stores them in two individual data buffers during 
the data receiving. Once the MEC-enabled 
small cell BS s finishes receiving the data from 
all IoT devices in its coverage, it forwards the 
latency-tolerant data to the cloud at the average 
data rate of Rsc via the Internet; meanwhile, the 
equipped MEC server performs the computing 
and caching of latency-sensitive data. Consid-
ering the imbalance of resource provisioning at 
every MEC server, the controller coordinates the 
intensive latency-sensitive workload among all 
MEC servers for minimizing the network-centric 
computation cost. Specifically, the computation 
workload can be offloaded between the small 
cell BSs s and s  at the average date rate1 of 
Rss. The details of implementing HybridIoT are 
shown in Fig. 3.

PERFORMANCE ANALYSIS AND  

SIMULATION VERIFICATION

In this section, we present some simulation results 
to show the efficiency of our proposed HybridIoT. 
The proposed framework can reduce the end-to-
end computation delay and computation cost by 
jointly considering hierarchical multiple access 
and cooperation among MECs and the cloud.

PERFORMANCE ANALYSIS

In this article, we consider the end-to-end compu-
tation delay and computation cost as two perfor-
mance metrics for the proposed HybridIoT:
• End-to-end computation delay: the total time 

needed when transmitting, computing, and 
caching all Bsn-bit data is completed

• Computation cost: the total energy con-
sumption during the transmitting, computing, 
and caching of all Bsn-bit data
In particular, the end-to-end computation 

delay can be evaluated based on the following 
five kinds of delay:

•The delay of transmitting the data generated 
by all IoT devices in the convergence of MEC-en-
abled small cell BS s to this BS, which is a function 
of the decoding order of SIC in NOMA and the 
time allocation in TDM

•The delay of transmitting the latency-tolerant 
data from small cell BS s to the cloud, which is 
determined by the size of latency-tolerant data and 
the date rate from the small cell BS s to the cloud

•The delay of computing the latency-tolerant 
data from small cell BS s at the cloud, which is 
determined by the computation resources allocat-
ed to small cell BS s

•The delay of offloading the workload between 
any two small cell BSs s and s, which is determined 
by the size of offloaded data and the transmission 
date rate between these two small cell BSs

•The delay of computing the latency-sensitive data 
at the small cell BS s, which is determined by the 
computation resources equipped in small cell BS s

The computation cost can be evaluated based on 
the following seven kinds of energy consumption:

•The energy consumption of transmitting the 
data generated by IoT device sn to MEC-enabled 
small cell BS s, which is a product of the transmit 
power, the data size, and the data rate emitted by 
IoT device sn

•The energy consumption of transmitting the 
latency-tolerant data from small cell BS s to the cloud, 
which is a product of the transmit power used by 
small cell BS s to transmit the latency-tolerant data to 
the cloud, and the corresponding transmission delay

•The energy consumption of computing the 
latency-tolerant data from small cell BS s at the 
cloud, which is a product of the latency-tolerant 
data size and the computation energy efficiency 
(Joules per bit) of the cloud allocated to comput-
ing these data

FIGURE 5. Performance evaluation of HybridIoT with different IoT device density 
when adopting data offloading between small cell BSs: a) the minimum 
end-to-end computation delay on average; b) the minimum total energy 
consumption on average.
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•The energy consumption of caching the laten-
cy-tolerant data from small cell BS s at the cloud, 
which is a product of the latency-tolerant data 
size, the caching energy efficiency (Joules per bit) 
of the cloud allocated to caching these data, and 
the computation ratio of the cloud

•The energy consumption of offloading the 
workload between any two small cell BSs s and s’, 
which is a product of the offloading delay and the 
transmit power used by small cell BS s to offload 
the latency-tolerant data to other small cell BSs

•The energy consumption of computing the 
latency-sensitive data at small cell BS s, which is 
a product of the latency-sensitive data size and 
the computation energy efficiency of the MEC 
equipped at small cell BS s

•The energy consumption of caching the laten-
cy-sensitive data at small cell BS s, which is a prod-
uct of the latency-sensitive data size, the caching 
energy efficiency of the MEC equipped at small-
cell BS s, and the computation ratio of this MEC

In the evaluation of computation delay and 
computation cost, it is worth noting that they can 
be optimized by adjusting the factors including 
the decoding order of SIC in NOMA, the time 
allocation in TDM, the transmit power of IoT 
devices, and the proportion of data offloaded 
between any two small cell BSs.

SIMULATION VERIFICATION

In the simulations, we consider an LTE-A cellular 
network with two MEC-enabled small cell BSs, 
each of which serves N randomly distributed 
IoT devices. There is a computing cloud center 
connected with these two small-cell BSs via the 
Internet, which provides the computing and cach-
ing capabilities in the cloud. The computation 
energy efficiency, caching energy efficiency, and 
computation capacity allocated to compute the 
latency-tolerant data from each small cell BS are 
2.5  10–9 W/bit, 10–9 W/bit, and 2 Mb/s in the 
cloud, respectively. Based on the LTE-A specifi-
cation, 10 MHz spectrum is used in every small 
cell, and the noise power spectral density is set 
to be –140 dBm/Hz. We consider the path loss 
model 40log10(d) dB, where d means the distance 
between the IoT device and the connected small 
cell BS. The traffic volume of IoT device n asso-
ciated with small cell BS s is set to be Bsn Mbits, 
where Bsn is uniformly distributed in [10, 20]. We 
set the proportion of latency-tolerant data that 
these two small cell BSs forward to the cloud to 
be 0.3 and 0.2, respectively. We set the data rate 
Rsc to be 100 Mb/ps, and the offloading data 
rate to be 10 Mb/s between these two small cell 
BSs. We set the transmit power of small cell BS 
and the transmit power of IoT device to be 1 W 
and 0.1 W, respectively. We set the computation 
ratio2 of cloud and MEC servers to be 0.3 and 
0.6, respectively. Also, the computation energy 
efficiency, caching energy efficiency, computation 
capacity are respectively set to be (6, 3)  10–9 
W/bit, (2, 4)  10–9 W/bit, and(1, 0.5) Mb/s at 
the two MEC servers.

Figure 4 shows the performance of NOMA 
with different decoding orders of SIC and fre-
quency-division multiple access (FDMA) applied 
to HybridIoT. We can see that the performance 
of NOMA is always better than that of FDMA 
regardless of the decoding order of SIC adopt-

ed. For NOMA, when the decoding order of SIC 
follows the descending order of channel gains 
(i.e., the IoT device with the worse channel condi-
tion suffers less co-channel interference), the best 
performance is achieved. Comparing Fig. 4a with 
Fig. 4b, we see that the optimal proportion of off-
loading data is totally different for minimizing the 
end-to-end computation delay and the total ener-
gy consumption. This implies that the method of 
offloading data between MEC servers must be 
consistent with the specific performance metric.

Figure 5 shows the performance of NOMA 
and FDMA with optimal data offloading between 
two small cell BSs under different IoT device den-
sity (i.e., with varying N IoT devices per small cell). 
We can see that although the performance of 
NOMA and FDMA are both increasing with the 
increase of the number of IoT devices, the perfor-
mance of NOMA is always far superior to that of 
FDMA. This is because our proposed HybridIoT 
integrates the allocation of radio resource and 
computation resource. Since HybridIoT can pro-
vide a low-latency and low-energy-consumption 
experience for IoT, it can enable heterogeneous 
IoTs.

CONCLUSION AND FUTURE WORK

In this article, we review recent advances in trans-
mitting, computing, and caching oriented to the 
IoT. We propose a new architecture, HybridIoT, in 
order to efficiently transmit, compute, and cache 
big data generated from the massive distributed 
IoT devices deployed in a smart city. The pro-
posed HybridIoT integrates UDN-based hierarchi-
cal multiple access and computation offloading 
between MEC and cloud, and it can substantially 
reduce the end-to-end computation delay and the 
total energy consumption for IoT compared to 
traditional IoT architectures.

This article provides the initial step toward 
multi-access mobile edge computing for IoT-
based smart cities. Nevertheless, there are still 
many open issues that deserve in-depth investiga-
tion on the design of IoT.

Resource Allocation: There are three kinds of 
important resource in heterogeneous IoT: radio 
resource, computation resource, and caching 
resource. In order to meet various demands on 
ultra-low latency, high reliability, massive connec-
tivity, and high data volume during transmitting, 
computing, and caching big IoT data, adaptive 
radio resource allocation solutions should be 
developed for IoT-based smart cities. For exam-
ple, when the UDN paradigm is applied to IoT, 
the radio resource, such as transmit power, time 
slots, and frequency bands, should be properly 
allocated among small cells and IoT devices in 
accordance with channel conditions, data volume 
per small cell, and data volume per IoT device. 
From the operators’ perspective, the appropriate 
computation-caching resource should be assigned 
to every MEC server and the cloud subject to the 
data volume to be processed and delay require-
ments.

Multiple Access: To serve massive IoT devices 
with limited radio resource and perform high-data-
rate computation offloading among MEC servers, 
it is inevitable to explore new promising multiple 
access schemes. With the ultra dense deployment 
of small cells and IoT devices, we should keep 

2 In this article, the compu-
tation ratio means the data 
compression ratio after com-
puting the data.
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track of the co-channel interference mitigation 
when designing the multiple access scheme for 
the access of IoT devices to small cell BSs. On the 
other hand, in order to efficiently deliver data and 
commands among the controller and MEC serv-
ers, a practicable networking architecture as well 
as corresponding multiple access schemes should 
be carried out. After designing an efficient multi-
ple access scheme, we need to analyze the aver-
age data rate from IoT devices to small cell BSs 
and that between any two small cell BSs, which 
will be important for evaluating the end-to-end 
computation delay of IoT.

Deployment of Small Cells: With the denser 
and denser deployment of small cells, it seems 
that massive IoT devices are more likely to be 
served. However, the radio resource limitation 
results in more severe co-channel interference, 
and thus over densely deploying small cells 
degrades the system performance of IoT. In prac-
tice, it is imperative to strike a balance between 
the deployment density of small cells and the vari-
ous demands of IoT.

Cell Association: Due to the diversity of com-
putation and caching resource among MEC-en-
abled small cell BSs, the existing cell association 
schemes that account for channel conditions, 
data volume, and transmit power may be high-
ly suboptimal. New cell association schemes are 
therefore needed that associate IoT devices with 
proper small cell BSs by taking into account the 
computation and caching resource provisioning 
at each MEC server and individual service require-
ments in addition to data volume and channel 
conditions.
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