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Abstract—Many distributed graph computing systems have
been developed recently for efficient processing of massive graphs.
These systems require many messages to be exchanged among
computing machines at each step of the computation, making
communication bandwidth a major performance bottleneck. We
present a coded computing framework that systematically in-
jects redundancy in the computation phase to enable coding
opportunities in the communication phase thus reducing the
communication load substantially. Specifically, we propose coded
schemes that enable an inverse-linear trade-off (asymptotically)
between computation load and average communication load for
Erdös-Rényi (ER) random graph. The proposed scheme for ER
graph is shown to be optimal asymptotically as the graph size
n → ∞. For finite n, we demonstrate via numerical analysis that
for a given computation load r, i.e. when each graph vertex is
carefully stored at r servers, the proposed scheme slashes the
average communication load by (nearly) r.

I. INTRODUCTION

Graphs are widely used to identify and incorporate the rela-
tionship patterns and anomalies inherent in real-life datasets.
Their growing scale and importance have prompted the de-
velopment of various large-scale distributed graph processing
frameworks, such as Pregel [1] and GraphLab [2]. The un-
derlying theme in these systems is the “think like a vertex”
approach [3] where the computation at each vertex requires
only the data available in the neighborhood of the vertex. This
approach significantly improves performance in comparison
to general-purpose distributed processing systems (e.g., Dryad
[4], MapReduce [5]), which do not leverage the underlying
structure of graphs.

These distributed graph processing systems, however, re-
quire many messages to be exchanged among computing
machines (servers) during job execution. As a result, com-
munication bandwidth is a common bottleneck in parallel
computations over graphs [6], accounting for more than 50%
of the overall execution time in representative cases [7].

We develop a new approach that leverages coding to reduce
the communication load in distributed graph processing. Mo-
tivated by the “think like a vertex” approach, we describe a
mathematical model for MapReduce computations on graphs
and show how carefully injecting redundancy in Map phase
results in significant reduction in the communication load
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during Shuffle phase. The idea is to leverage the underlying
graph model and create coded messages that simultaneously
satisfy the data demand of multiple computing machines in
Reduce phase.

Our work is rooted in the recent development of a coding
framework for general MapReduce computations that estab-
lishes an inverse-linear trade-off between computation and
communication – Coded Distributed Computing (CDC) [8].
CDC achieves the communication bandwidth gain of r, when
each Map computation is carefully repeated at r servers.

As we move from the general MapReduce framework to
graph analytics, the key challenge is that the computation
associated with each vertex is a function of graph structure. In
particular, each computation needs data only from the neigh-
boring vertices, while in the general MapReduce framework,
each computation needs all the input files (corresponding to
a complete graph). This asymmetry in the data requirements
of the computations is the main challenge in developing
efficient subgraph allocation and Map computation, Reduce
computation allocation and Shuffling schemes.

As the main contribution of this paper, we solve the problem
for random Erdös-Rényi (ER) graph. Specifically, for a given
computation load r, i.e. when each vertex is stored on average
at r distinct servers, we show that the minimum average
normalized communication load is L∗(r) = 1

rp(1− r
K )+o(p),

where K denotes the number of servers and p = ω( 1
n2 ) is

the edge probability in the ER graph of size n. To prove the
achievability, we propose a coded scheme that creates coding
opportunities for communicating messages across machines by
Mapping the same graph vertex at different machines, so that
each coded transmission satisfies the data demand of multiple
machines. For converse, we use cut-set bounds and show that
the proposed scheme is asymptotically optimal as n → ∞.

We demonstrate via numerical results that our coded scheme
for ER graph achieves near optimal average communication
load for finite n and provides a gain of (almost) r in compar-
ison to an uncoded scheme described later.
Related Work: Recently, there has been significant interest
in the use of coding theoretic ideas for mitigating several
bottlenecks that arise in large scale distributed computation.
These works can be divided into two categories: those that
tackle the communication bandwidth bottleneck in distributed
computation, e.g. [8]–[13], and those who tackle the straggler
bottleneck in distributed computation, e.g. [10], [13]–[18].
Notation: We let [n] represent the set {1, 2, . . . , n} for n ∈ N.
For non-negative functions f and g of n, we denote f = Θ(g)
if there are positive constants c1 and c2 such that c1 ≤ f/g ≤





the number of bits communicated by K machines during
the Shuffle phase, normalized by the maximum possible total
number of bits in the intermediate values associated with all
the Reduce functions, i.e.

L ,

∑K
k=1 ck
n2T

. (2)

Reduce phase: Each server uses its locally computed in-
termediate values and the messages received from other
servers to first construct the required intermediate values
for Reduce functions that are allocated to it and then cal-
culates the final output. More formally, for each k ∈
[K], (i) machine k recovers the needed intermediate values
{vi,j : i ∈ Rk, j ∈ N (i), j /∈ Mk} using locally computed
intermediate values {vi,j : i ∈ N (j), j ∈ Mk} and received
messages

{

Xk′ : k′ ∈ [K] \ {k}
}

, (ii) machine k calculates
oi = hi

(

{vi,j : j ∈ N (i)}
)

for all i ∈ Rk.
To illustrate the above definitions, let us again consider

the graph depicted in Fig. 1(a) where K = 3 machines are
available to carry out the computation. For the subgraph and
computation allocation described in Fig. 1(c), each server k ∈
{1, 2, 3} Maps the vertices in subgraph Mk and computes the
Reductions associated with vertices in Rk. The computation
load is r = 2 and the normalized (uncoded) communication
load equals to L = 6

36 .

C. Problem Formulation

For an allowed computation load r, we aim to find the
optimal allocation of subgraphs and computations to servers,
and the optimal coding for Shuffling in order to minimize the
communication load. However, we note that this problem even
in the simplest case of r = 1 and uncoded transmission in the
Shuffling phase is NP-hard for general graphs [21]. Hence,
we restrict our attention to random graphs and focus on the
average communication load.

We consider a random undirected graph G = (V, E), where
edges independently exist with probability P[(i, j) ∈ E ] for
all i, j ∈ V . Let A(r) be the set of all possible subgraph and
computation allocations for a given computation load r (as
defined in the previous subsection). For a graph realization
G and an allocation A ∈ A(r), we denote by LA(r,G)
the minimum (normalized) communication load (as defined
in Definition 2) over all possible Shuffling coding schemes
that enable each machine to compute the Reduce functions
assigned to it.

We now formally define our problem as follows.
Problem: For a given random undirected graph G = (V, E)

and a computation load r ∈ N, our goal is to characterize the
minimum average normalized communication load, i.e.

L∗(r) , inf
A∈A(r)

EG [LA(r,G)]. (3)

Remark 2: As defined above, L∗(r) essentially reveals a
fundamental trade-off between computation and communica-
tion in distributed graph processing frameworks.

To solve the problem defined above, we need to establish the
optimal subgraph and computation allocations for each server
along with the efficient Shuffle scheme.

III. MAIN RESULTS

In this section, we present the main results of the paper. The
main contribution is the characterization of L∗(r) (defined in
(3)) for Erdös-Rényi random graph that is defined below.
Erdös-Rényi: Denoted by ER(n, p), this model consists of
graphs of size n in which each edge exists with probability
p ∈ (0, 1], independently of other edges.

Theorem 1: For Erdös-Rényi graph ER(n, p) with p =
ω( 1

n2 ), we have

lim
n→∞

L∗(r)

p
=

1

r
(1− r

K
). (4)

Remark 3: Achievability of Theorem 1 is proved in Section
IV, where we provide a subgraph and computation allocation
followed by the code design for Shuffling. Proof of converse
for Theorem 1 is provided in Section V.

Remark 4: Theorem 1 reveals an interesting inverse lin-
ear trade-off between computation and communication. In
particular, the scheme that we propose for achievability of
Theorem 1 asymptotically gives a communication load gain
of r in comparison to the uncoded scheme that as we discuss
later in Section IV only achieves an average normalized
communication load of p(1− r

K ). This trade-off can be used
to leverage additional computing resources and capabilities to
alleviate the costly communication bottleneck. Moreover, we
numerically demonstrate that even for finite graphs, not only
the proposed scheme significantly reduces the communication
load, but also has a small optimality gap (Fig. 2).
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Fig. 2: Performance comparison of the coded scheme with uncoded
scheme and the proposed lower bound. The averages for the com-
munication load for the two schemes were obtained over 300 graph
realizations with p = 0.1 and K = 5.

IV. ACHIEVABILITY FOR ERDÖS-RÉNYI MODEL

We now propose our coded and uncoded schemes for Erdös-
Rényi model, and prove the achievability of Theorem 1.

A. Proposed Scheme

As explained in Section II, a scheme for distributed imple-
mentation of the computation consists of subgraph allocation,
computation allocation, and Shuffling algorithm. We next
precisely describe our proposed scheme.
Subgraph Allocation and Map Computation: The n vertices
are partitioned into

(

K
r

)

batches of size g = n/
(

K
r

)

denoted



by BT , where each of them corresponds to a set T ⊆ [K]
of size r, i.e. {1, · · · , n} = ∪T ⊆[K],|T |=rBT . Server k ∈ [K]
Maps the vertices in BT if k ∈ T . Equivalently, BT ⊆ Mk if
k ∈ T , i.e. each server Maps r n

K vertices.
Reduce Computation Allocation: The n Reduce functions
are uniformly partitioned into K subsets and each subset is
assigned to one machine. Thus, each server is responsible for
computing n

K Reducers. We denote the proposed subgraph and
computation allocation by A•.
Uncoded Shuffle: Given the above subgraph and computation
allocation, each vertex in V requires on average pn interme-
diate values for the Reduce phase, where a fraction r

K of
them are locally available. The rest of the intermediate values
should be sent from the other servers. Therefore, the average
normalized communication load for the uncoded scheme is
p(1− r

K ).
Coded Shuffle: Consider a set of servers S ⊆ [K], |S| = r+1.
For each server k ∈ S , let Zk

S\{k} be the set of all intermediate
values needed by Reduce functions in k, which are available
exclusively at each server k′ ∈ S \ {k}, i.e.
Zk

S\{k} = {vi,j : (i, j) ∈ E , i ∈ Rk, j ∈ ∩k′∈S\{k}Mk′}.
For each k ∈ S , each intermediate value vi,j ∈ Zk

S\{k} is

evenly split into r segments v
(1)
i,j , · · · , v

(r)
i,j , each of size T

r
bits. Each segment is associated with a distinct server in S \
{k}. Therefore, Zk

S\{k} is evenly partitioned to r sets, which
are denoted by Zk

S\{k},s for s ∈ S \ {k}. Depending on the
realization of the graph, the maximum possible size of Zk

S\{k}

is g̃ = g n
K = n2

K(Kr )
= Θ(n2). Each server s ∈ S creates an

r×g̃ table and fills that out with segments which are associated
with it. Each row of the table is filled from left by the segments
in one of the sets Zk

S\{k},s, where k ∈ S \{s} (Fig. 3). Then,
server s broadcasts the XOR of all the segments in each (non-
empty) column of the table (for each non-empty column, the
empty entries are zero padded). Clearly, there exist at most g̃
of such coded messages. The process is carried out similarly
for all remaining subsets S ⊆ [K] with |S| = r + 1.

After the Shuffle phase, each server can recover the in-
termediate values associated with its assigned set of Reduce
functions using the received coded messages and the locally
computed intermediate values.

Remark 5: The proposed scheme carefully aligns and com-
bines the existing intermediate values to benefit from the
coding opportunities. This resolves the issue posed by the
asymmetry in the data requirements of the Reducers which
is one of the main challenges in moving from the general
MapReduce framework to graph analytics.

As an example, consider a system of K = 3 servers and
computation load r = 2. For the graph in Fig. 1(a), Fig. 1(c)
summarizes the subgraph and computation allocation followed
from the proposed scheme. Consider the set S = [K] of size
r + 1 = 3. Every intermediate value in Z3

{1,2} = {v5,1, v6,2}
is split into r = 2 segments, each associated with a distinct
server in {1, 2}. This is done similarly for servers 1 and 2.
Then, servers 1, 2, and 3 broadcast their coded messages X1 =

{v(1)5,1 ⊕ v
(1)
4,3, v

(1)
3,4 ⊕ v

(1)
6,2}, X2 = {v(2)5,1 ⊕ v

(1)
1,5, v

(2)
6,2 ⊕ v

(1)
2,6}, and

X3 = {v(2)4,3 ⊕ v
(2)
1,5, v

(2)
3,4 ⊕ v

(2)
2,6}, respectively.

All three servers can recover their needed intermediate
values. For instance, server 3 needs v5,1 to carry out the
Reduce function associated with vertex 5. Since it has already
Mapped vertices 3 and 5, intermediate values v4,3 and v1,5
are available locally. Thus, server 3 can recover v(1)5,1 and v

(2)
5,1

from v
(1)
5,1 ⊕ v

(1)
4,3 and v

(2)
5,1 ⊕ v

(1)
1,5 , respectively. Therefore, the

overall uncoded communication load 6
36 is reduced to coded

load 3
36 .

B. Proof of Achievability

We first define the average normalized communication loads
for our scheme as follows. For a graph realization G, the pro-
posed allocation A• ∈ A(r), and the proposed coded and un-
coded Shuffling scheme, we denote the normalized coded and
uncoded communication loads by LC

A•(r,G) and LUC
A•(r,G),

respectively. The average normalized coded and uncoded
communication loads will then be L̄C

A• , EG [L
C
A•(r,G)] and

L̄UC
A• , EG [L

UC
A•(r,G)], respectively.

We now apply the proposed coded scheme to graph G
and compute the induced average coded load. WLOG, we
analyze our algorithm by a generic argument for servers
S = {s1, · · · , sr+1} which can be similarly applied for other
sets of servers due to the symmetric structure induced by the
graph model and allocations. Following the Shuffle phase of
the proposed scheme, consider r servers s2, · · · , sr+1 and
the (r + 1)’th server s1. Server s1 broadcasts at most g̃
coded messages X1, · · · , X g̃ which are exclusively useful
for servers s2, · · · , sr+1. Each Xj , j ∈ [g̃], is XOR of at
most r segments of size T

r bits, associated with server s1.

More formally, for all j ∈ [g̃], Xj =
⊕r

i=1 v
(1)
α(i,j), where

Zsi+1

S\{si+1},s1
= {v(1)α(i,j) : j ∈ [g̃]} and i ∈ [r] (Fig. 3).

X1

=

v
(1)

α(1,1)

v
(1)

α(r,1)

⊕

⊕

...

X2

=

v
(1)

α(1,2)

v
(1)

α(r,2)

⊕

⊕

...

X g̃

=

v
(1)

α(1,g̃)

v
(1)

α(r,g̃)

⊕

⊕

...

. . .

. . .

P1 :

Pr :

Fig. 3: Creating coded messages by aligning intermediate values.

Let Bern(p) random variable Eα(i,j) indicate the existence
of the edge α(i, j) ∈ V×V , i.e. Eα(i,j) = 1, if α(i, j) ∈ E , and
Eα(i,j) = 0, otherwise. Clearly, for all vertices i, j, t, u ∈ V ,
Eα(i,j) is independent of Eα(t,u) if α(i, j) and α(t, u) do not
represent the same edge, and Eα(i,j) = Eα(t,u), otherwise.
For i ∈ [r], the random variable Pi is defined as Pi =
∑g̃

j=1 Eα(i,j), i.e. each Pi is sum of g̃ possibly dependent
Bern(p) random variables. Note that Pi’s are not independent
in general. By careful alignment of present intermediate values
(Fig. 3), s1 broadcasts Q coded messages each of size T

r bits,



where Q = maxi∈[r] Pi. Thus, the total coded communication
load sent from server s1 exclusively for servers s2, · · · , sr+1

is T
r Q bits. By similar arguments for other sets of servers, we

can characterize the average coded communication load of the
proposed scheme as

L̄C
A• =

1

rn2
K

(

K − 1

r

)

E[Q]. (5)

The following lemma asymptotically upper bounds E[Q] and
the proof is provided in Section IV-C.

Lemma 1: For ER(n, p) graphs with p = ω( 1
n2 ), we have

E[Q] ≤ pg̃ + o(pg̃). (6)
Putting (5) and Lemma 1 together, we have

L∗(r) ≤ L̄C
A• ≤ 1

r
p(1− r

K
) + o(p),

hence the acievability claimed in Theorem 1 is proved. Finally,
we note that as explained in the uncoded Shuffle algorithm,
the average normalized uncoded communication load of the
proposed scheme is L̄UC

A• = p(1− r
K ), which implies that our

scheme achieves an asymptotic gain r.

C. Proof of Lemma 1
For any s′ > 0, we have

es
′
E[Q] ≤ E[es

′Q] = E
[

max
i=1,··· ,r

es
′Pi

]

≤ E

[

r
∑

i=1

es
′Pi

]

=
r

∑

i=1

E[es
′Pi ] ≤ r(1 + pe2s

′ − p)g̃/2,

where the last inequality follows from Lemma 2 (proved in
[22]). Taking logarithm from both sides yields

E[Q] ≤ 1

s′
log(r) +

g̃

2s′
log(1 + pe2s

′ − p).

Let us substitute s = 2s′ in the above equation. Then,

E[Q] ≤ 1

s
log(r2) +

g̃

s
log(1 + pes − p), ∀s > 0.

Let p̄ , 1 − p and pick s∗ = 2
√

log(r)
g̃pp̄ . As g̃ = Θ(n2), for

p = ω( 1
n2 ), s∗ = o(1). By Taylor series expansion, we have

log(1 + p(es∗ − 1)) =

∞
∑

j=1

(−1)j+1 (p(e
s∗ − 1))j

j

= ps∗ +
pp̄

2
s2∗ + o(ps2∗).

Putting everything together, we have

E[Q] ≤ 1

s∗
log(r2) +

g̃

s∗

(

ps∗ +
pp̄

2
s2∗ + o(ps2∗)

)

= g̃p+ 2
√

g̃pp̄ log(r) + o
(
√

g̃p
)

.

Recall that g̃ = Θ(n2). Therefore, for p = ω( 1
n2 ) we have

g̃p = ω(1) and thus
√

g̃pp̄ log(r) = Θ
(√

g̃p
)

= o(g̃p) and
hence the claim (6) is proved.

V. CONVERSE FOR ERDÖS-RÉNYI MODEL

We complete the proof of Theorem 1 by deriving the lower
bound on the best average communication load for Erdös-
Rényi graph. Let G be an ER(n, p) random graph and consider
a subgraph and computation allocation A = (M,R), where
∑K

k=1 |Mk| = rn and |Rk| = n
K , for all k ∈ [K]. We

denote the number of files that are Mapped exclusively at j
servers under Map assignment M, as ajM, for all j ∈ [K].
The following lemma holds (the proof is available in [22]).

Lemma 2: EG [LA(r,G)] ≥ p
∑K

j=1
aj

M

n
K−j
Kj .

Proof of Converse for Theorem 1. First, we can bound the best
average communication load as

L∗(r) ≥ inf
A:|M1|+···+|MK |=rn

EG [LA(r,G)]

≥ inf
A:|M1|+···+|MK |=rn

p

K
∑

j=1

ajM
n

K − j

Kj
.

Additionally, for any subgraph allocation with computation
load r, we have the following equations:

K
∑

j=1

ajM = n,

K
∑

j=1

jajM = rn. (7)

By convexity of K−j
Kj in j and (7), the converse is proved.
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