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Abstract— We consider the problem of decentralized con-
sensus optimization, where the sum of n convex functions are
minimized over n distributed agents that form a connected net-
work. In particular, we consider the case that the communicated
local decision variables among nodes are quantized in order to
alleviate the communication bottleneck in distributed optimiza-
tion. We propose the Quantized Decentralized Gradient Descent
(QDGD) algorithm, in which nodes update their local decision
variables by combining the quantized information received from
their neighbors with their local information. We prove that un-
der standard strong convexity and smoothness assumptions for
local cost functions, QDGD achieves a vanishing mean solution
error. To the best of our knowledge, this is the first algorithm
that achieves vanishing consensus error in the presence of
quantization noise. Moreover, we provide simulation results
that show tight agreement between our derived theoretical
convergence rate and the experimental results.

I. INTRODUCTION

Distributed optimization of a sum of convex functions

has a variety of applications in different areas including de-

centralized control systems [1], wireless systems [2], sensor

networks [3], networked multiagent systems [4], multirobot

networks [5], and large scale machine learning [6]. In such

problems, one aims to solve a consensus optimization prob-

lem to minimize f(x) =
∑n

i=1 fi(x) cooperatively over n
nodes or agents that form a connected network. The function

fi(·) represents the local cost function of node i that is only

known by this node.

Distributed optimization has been largely studied in the

literature starting from seminal works in the 80s [7], [8].

Since then, various algorithms have been proposed to ad-

dress decentralized consensus optimization in multiagent

systems. The most commonly used algorithms are decen-

tralized gradient descent or gradient projection method [9]–

[12], distributed alternating direction method of multipliers

(ADMM) [13]–[15], decentralized dual averaging [16], [17],

and distributed Newton optimization method [18], [19]. Fur-

thermore, the decentralized consensus optimization problem

has been considered in online or dynamic settings, where

the dynamic cost function becomes an online regret function

[20], [21].
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A major bottleneck in achieving fast convergence in de-

centralized consensus optimization is limited communication

bandwidth among nodes. As the dimension of input data

increases (which is the current trend in large-scale distributed

machine learning), a considerable amount of information

must be exchanged among nodes, over many iterations of

the consensus algorithm. This causes a significant commu-

nication bottleneck that can substantially slow down the

convergence time of the algorithm [22], [23].

Quantized communication for the agents is brought into

the picture for bounded and stable control systems [24].

Furthermore, consensus distributed averaging algorithms are

studied under discretized message passing [25]. Motivated

by the energy and bandwidth-constrained wireless sensor

networks, the work in [26] proposes distributed optimization

algorithms under quantized variables and guarantees conver-

gence within a non-vanishing error. Deterministic quantiza-

tion has been considered in distributed averaging algorithms

[27] where the iterations converge to a neighborhood of

the average of initials. However, randomized quantization

schemes are shown to achieve the average of initials, in

expectation [28]. The work in [29] also considers a con-

sensus distributed optimization problem over a cooperative

network of agents restricted to quantized communication.

The proposed algorithm guarantees convergence to the op-

tima within an error which depends on the network size

and the number of quantization levels. Aligned with the

communication bottleneck described earlier, [30] provides a

quantized distributed load balancing scheme that converges

to a set of desired states while the nodes are constrained to

remain under maximum load capacities.

More recently, 1–Bit SGD [22] was introduced in which

at each time step, the agents sequentially quantize their local

gradient vectors by entry-wise signs while contributing the

quantization error induced in previous iteration. Moreover,

in [31], the authors propose the Quantized-SGD (QSGD), a

class of compression scheme algorithms that is based on a

stochastic and unbiased quantizer of the vector to be trans-

mitted. QSGD provably provides convergence guarantees, as

well a good practical performance. Recently, a different line

of work has proposed the use of coding theoretic techniques

to alleviate the communication bottleneck in distributed

computation [32]–[35].

In this paper, our goal is to analyze the quantized de-

centralized consensus optimization problem, where node i
transmits a quantized version of its local decision vari-

able Q(xi) to the neighboring nodes instead of the exact

decision variable xi. Motivated by the stochastic quan-

tizer proposed in [31], we consider unbiased and variance



bounded random quantizers Q(·), i.e. E
[
Q(x)|x

]
= x and

E
[
‖Q(x)− x‖2|x

]
≤ σ2 for some fixed constant σ2.

Our main contribution is to propose a Quantized Decen-

tralized Gradient Descent (QDGD) method, which involves

a novel way of updating the local decision variables by

combining the quantized message received from the neigh-

bors and the local information such that proper averaging is

performed over the local decision variable and the neighbors’

quantized vectors. We prove that under standard strong

convexity and smoothness assumptions, for any unbiased and

variance bounded quantizer, QDGD achieves a vanishing

mean solution error: for all i = 1, . . . , n we obtain that

E
[
‖xi,T − x∗‖2

]
≤ O

(
1

T 1/4

)
for sufficiently large T ,

where xi,T is the local decision variable of node i at

iteration T and x∗ is the optimal solution. To the best of

our knowledge, this is the first decentralized gradient-based

algorithm that achieves vanishing consensus error in the

presence of non-vanishing quantization noise. We further

provide simulation results that corroborate our theoretical

results.

Notation. In this paper, we denote by [n] the set {1, · · · , n}
for any natural number n ∈ N. The gradient of a function

f(x) is denoted by ∇f(x). For non-negative functions g and

h of t, we denote g(t) = O(h(t)) if there exist t0 ∈ N and

constant c > 0 such that g(t) ≤ ch(t) for all t ≥ t0. we use

dae to indicate the least integer greater than or equal to a.

Paper Organization. The rest of the paper is organized as

follows. In Section II, we precisely formulate the quantized

decentralized consensus optimization problem. We provide

the description of the Quantized Decentralized Gradient

Descent algorithm in Section III. The main theorem of

the paper is stated and proved in Section IV. We provide

numerical studies in Section V. Finally, we conclude the

paper and discuss future directions in Section VI.

II. PROBLEM FORMULATION

In this section we formally define the consensus optimiza-

tion problem that we aim to solve. Consider a set of n nodes

that communicate over a connected and undirected graph

G = (V, E) where V = {1, · · · , n} and E ⊆ V × V denote

the set of nodes and edges, respectively. We assume that

nodes are only allowed to exchange information with their

neighbors and use the notation Ni for the set of node i’s
neighbors. In our setting, we assume that each node i has

access to a local convex function fi : R
p → R, and nodes in

the network cooperate to minimize the aggregate objective

function f : Rp → R taking values f(x) =
∑n

i=1 fi(x). In

other words, nodes aim to solve the optimization problem

min
x∈Rp

f(x) = min
x∈Rp

n∑

i=1

fi(x). (1)

We assume the local objective functions fi are strongly

convex and smooth, and, therefore, the aggregate function f
is also strongly convex and smooth. In the rest of the paper,

we use x∗ to denote the unique minimizer of Problem (1).

In decentralized settings, nodes have access to a single

summand of the global objective function f and to reach the

optimal solution x∗ communication with neighboring nodes

is inevitable. To be more precise, nodes need to minimize

their local objective functions, while they ensure that their

local decision variables are equal to their neighbors’. This

interpretation leads to an equivalent formulation of Prob-

lem (1). If we define xi as the decision variable of node i,
the alternative formulation of Problem (1) can be written as

min
x1,...,xn∈Rp

n∑

i=1

fi(xi)

s.t. xi = xj , for all i, j ∈ Ni. (2)

Since we assume that the underlying network is a connected

graph, the constraint in (2) implies that any feasible solution

should satisfy x1 = · · · = xn. Under this condition the

objective function values in (1) and (2) are equivalent. Hence,

it follows that the optimal solutions of Problem (2) are equal

to the optimal solution of Problem (1), i.e., if we denote

{x∗
i }

n
i=1 as the optimal solutions of Problem (2) it holds

that x∗
1 = · · · = x∗

n = x∗. Therefore, we proceed to solve

Problem (2) which is naturally formulated for decentralized

optimization in lieu of Problem (1).

The problem formulation in (2) suggests that each node i
should minimize its local objective function fi while keeping

its decision variable xi close to the decision variable xj of its

neighbors j ∈ Ni. This goal can be achieved by exchanging

local variables xi among neighboring nodes to enforce

consensus on the decision variables. Indeed, exchange of

updated local vectors between the distributed nodes induces

a potentially heavy communication load on the shared bus.

To address this issue, we assume that each node provides

a randomly quantized variant of its local updated variable

to the neighboring nodes. That is, if we denote by xi the

decision variable of node i, then the corresponding quantized

variant zi = Q(xi) is communicated to the neighboring

nodes, Ni. Exchanging quantized vectors zi instead of the

true vectors xi indeed reduces the communication burden at

the cost of injecting noise to the information received by the

nodes in the network. The main challenge in this setting is to

ensure that nodes can still converge to the optimal solution

of Problem (2), while they only have access to a quantized

variant of their neighbors’ true decision variables.

III. QDGD ALGORITHM

In this section, we propose a quantized gradient based

method to solve the decentralized optimization problem

in (2) and consequently the original problem in (1) in a

fully decentralized fashion. To do so, consider xi,t as the

decision variable of node i at step t and zi,t = Q(xi,t)
as the quantized version of the vector xi,t. In the proposed

Quantized Decentralized Gradient Descent (QDGD) method,

nodes update their local decision variables by combining the

quantized information received from their neighbors with

their local information. To formally state the update of

QDGD, we first define wij as the weight that node i assigns



Algorithm 1 QDGD at node i

Require: Weights {wij}
n
j=1, total iterations T

1: Set xi,0 = 0
2: for t = 0, · · · , T − 1 do

3: Send zi,t = Q(xi,t) to j ∈ Ni and receive zj,t
4: Compute xi,t+1 according to the update in (3)

5: end for

6: return xi,T

to node j. If nodes i and j are not neighbors then wij = 0,

and if they are neighbors the weight wij ≥ 0 is nonnegative.

At each time step t, each node i sends its quantized zi,t
variant of its local vector xi,t to its neighbors j ∈ Ni and

receives their corresponding vectors zj,t. Then, using the

received information it updates its local decision variable

according to the update

xi,t+1 = (1− ε+ εwii)xi,t + ε
∑

j∈Ni

wijzj,t − αε∇fi(xi,t),

(3)

where ε and α are positive step-sizes. The update of QDGD

in (3) shows that the updated decision variable xi,t+1 is eval-

uated by proper averaging over the local decision variable

xi,t and neighbors quantized vectors zj,t, and descending

through the negative local gradient ∇fi(xi,t) with a proper

stepsize. Note that quantized decision variables of the neigh-

boring nodes contribute to the descent direction proportion-

ally to step-size ε, unlike the noiseless local gradient which

is scaled by αε. The steps of the proposed QDGD method

are summarized in Algorithm 1.

Remark 1. The proposed QDGD algorithm can be interpreted

as a variant of the decentralized (sub)gradient descent (DGD)

method [9], [10] for quantized decentralized optimization

(see Section IV). Note that the vanilla DGD method con-

verges to a neighborhood of the optimal solution in the

presence of quantization noise where the radius of conver-

gence depends on the variance of quantization error [9],

[10], [26], [29]. QDGD improves the inexact convergence of

DGD by modifying the contribution of quantized information

received from neighboring noise as described in update (3).

In particular, as we show in Theorem 1, the sequence

of iterates generated by QDGD converges to the optimal

solution of Problem (1) in expectation.

Moreover, the proposed QDGD algorithm does not restrict

the quantizer, except for few customary conditions. However,

design of efficient quantizers has been taken into consider-

ation. For instance, consider a low-precision representation

specified by γ ∈ R and b ∈ N. The range representable by

scale factor γ and b bits is {−γ · 2b−1, · · · ,−γ, 0, γ, · · · , γ ·
(2b − 1)}. For any kγ ≤ x < (k + 1)γ in the representable

range, the low-precision quantizer outputs

Q(γ,b)(x) =

{
kγ w.p. 1− x−kγ

γ ,

(k + 1)γ w.p. x−kγ
γ .

(4)

For any x in the range, the quantizer is unbiased

and variance bounded, i.e. E

[
Q(γ,b)(x)

]
= x and

E

[∥∥∥Q(γ,b)(x)− x
∥∥∥
2
]
≤ γ2

4 .

IV. CONVERGENCE ANALYSIS

In this section, we prove that for sufficiently large number

of iterations, the sequence of local iterates generated by

QDGD converges to an arbitrarily precise approximation of

the optimal solution of Problem (1). The following assump-

tions hold through out the analysis of the algorithm.

Assumption 1. Local objective functions fi are differen-

tiable and smooth with parameter L, i.e.,

∥∥∇fi(x)−∇fi(y)
∥∥ ≤ L‖x− y‖ , (5)

for any x,y ∈ R
p.

Assumption 2. Local objective functions fi are strongly

convex with parameter µ, i.e.,

〈∇fi(x)−∇fi(y),x− y〉 ≥ µ‖x− y‖2 , (6)

for any x,y ∈ R
p.

Assumption 3. The random quantizer Q(·) is unbiased and

has a bounded variance, i.e.,

E
[
Q(x)|x

]
= x, and E

[∥∥Q(x)− x
∥∥2 |x

]
≤ σ2, (7)

for any x ∈ R
p; and quantizations are carried out indepen-

dently on distributed nodes.

Assumption 4. The weight matrix W ∈ R
n×n with entries

wij satisfies the following conditions

W = W>, W1 = 1, null(I −W ) = span(1). (8)

The conditions in Assumptions 1 and 2 imply that the

global objective function f is strongly convex with parameter

µ and its gradients are Lipschitz continuous with constant

L. Assumption 3 poses two customary conditions on the

quantizer, that are unbiasedness and variance boundedness.

Assumption 4 implies that weight matrix W is symmetric

and doubly stochastic. The largest eigenvalue of W is

λ1(W ) = 1 and all the eigenvalues belong to (−1, 1],
i.e. the ordered sequence of eigenvalues of W are 1 =
λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ) > −1. We denote by

1 − β the spectral gap associated to the stochastic matrix

W , where β = max{|λ2(W )|, |λn(W )|} is the second

largest magnitude of the eigenvalues of matrix W . It is

also customary to assume rank(I − W ) = n − 1 such that

null(I −W ) = span(1).

In the following theorem we show that the local iterations

generated by QDGD converge to the global optima, as close

as desired.

Theorem 1. Consider the distributed consensus optimization

Problem (1) and suppose Assumptions 1– 4 hold. Then,

for each node i, the expected deviation of the output of



Algorithm 1 from the solution to Problem (1) is upper

bounded by

E

[∥∥xi,T − x∗
∥∥2
]
≤ O

(
1

T 1/4

)
, (9)

for ε = c1
T 1/2 , α = c2

T 1/4 and T ≥ T0, where c1, c2 and T0

are positive constants independent of T .

Remark 2. Theorem 1 demonstrates that the proposed QDGD

provides an approximation solution with vanishing deviation

from the optimal solution, despite the fact that the quantiza-

tion noise does not vanish by iteration.

To analyze the proposed method, we start by rewriting the

update rule (3) as follows

xi,t+1 = xi,t−εt

(
(1−wii)xi,t−

∑

j 6=i

wijzj,t+α∇fi(xi,t)
)
.

(10)

The next step is to write the update (10) in a matrix form.

To do so, we define the function F : Rnp → R as F (x) =∑n
i=1 fi(xi) where xi ∈ R

p and x = [x1; · · · ;xn] ∈ R
np.

It is easy to verify that the gradient of the function F is

the concatenation of local gradients evaluated at the local

variable, that is ∇F (xt) = [∇f1(x1,t); · · · ;∇fn(xn,t)]. We

also define the matrix W = W ⊗ I ∈ R
np×np as the

Kronecker product of the weight matrix W ∈ R
n×n and the

identity matrix I ∈ R
p×p. Similarly, define WD = WD⊗I ∈

R
np×np, where WD = [wii] ∈ R

n×n denotes the diagonal

matrix of the entries on the main diagonal of W . For the

sake of consistency, we denote by the boldface I the identity

matrix of size np. According to above definitions, we can

write the concatenated version of (10) as follows,

xt+1 = xt−ε
((

WD−W
)
zt+

(
I−WD

)
xt+α∇F (xt)

)
.

(11)

As we discussed in Section II, the distributed consensus

optimization Problem (1) can be equivalently written as

Problem (2). The constraint in the latter restricts the feasible

set to the consensus vectors, that is {x = [x1; · · · ;xn] :
x1 = · · · = xn}. According to the discussion on rank of

the weight matrix W , the null space of the matrix I −W is

null(I −W ) = span(1). Hence, the null space of I−W is

the set of all consensus vectors, i.e. x ∈ R
np is feasible for

problem (2) if and only if (I − W)x = 0, or equivalently

(I − W)1/2x = 0. Therefore, the alternative Problem (2)

can be compactly represented as the following linearly-

constrained problem,

min
x∈Rnp

F (x) =

n∑

i=1

fi(xi)

subject to (I−W)1/2x = 0.

(12)

We denote by x̃∗ = [x∗; . . . ;x∗] the unique solution to (12).

Now, for given penalty parameter α > 0, one can define

the quadratic penalty function corresponding to the linearly

constraint problem (12) as follows,

hα(x) =
1

2
x>
(
I−W

)
x+ αF (x). (13)

Since I − W is a positive semi-definite matrix and F is

L-smooth and µ-strongly convex, therefore the function hα

is Lα-smooth and µα-strongly convex on R
np having Lα =

1−λn(W )+αL and µα = αµ. We denote by x∗
α the unique

minimizer of hα(x), i.e.

x∗
α = argmin

x∈Rnp

hα(x) = argmin
x∈Rnp

1

2
x>
(
I−W

)
x+ αF (x).

(14)

In the following, we link the solution of problem (14)

to the local variable iterations provided by Algorithm 1.

Specifically, for sufficiently large number of iterations T , we

demonstrate that for proper choice of step-sizes, the expected

squared deviation of xT from x∗
α vanishes sub-linearly.

Lemma 1. Consider the optimization Problem (14) and sup-

pose Assumptions 1– 4 hold. Then, the expected deviation

of the output of QDGD from the solution to Problem (14)

is upper bounded by

E

[
‖xT − x∗

α‖
2
]
≤ O

(
c1nσ

2‖W −WD‖2F
µc2

1

T 1/4

)
, (15)

for ε = c1
T 1/2 , α = c2

T 1/4 and T ≥ T1, where c1 and

c2 are positive constants independent of T , and T1 :=

max

{⌈(
c1c2µ

)4/3⌉
,

⌈(
c1(1+c2L)2

c2µ

)4⌉
}

.

Lemma 1 guarantees convergence of the proposed itera-

tions (3) to the solution of the later-defined Problem (14).

Loosely speaking, Lemma 1 ensures that xT is close to x∗
α

for large T . So, in order to capture the deviation of xT from

the global optima x̃∗, it suffices to show that x∗
α is close to

x̃∗, as well. The following lemma guarantees such argument.

Lemma 2. Consider the distributed consensus optimization

Problem (1) and the problem defined in (14). If Assumptions

1, 2 and 4 hold, then the deviation of the two solutions is

bounded as

‖x∗
α − x̃∗‖ ≤ O

(
c2

1− β
·

1

T 1/4

)
, (16)

for α = c2
T 1/4 and T ≥ T2, where c2 is

a positive constant independent of T and T2 :=

max

{⌈(
c2L

1+λn(W )

)4⌉
,
⌈
c42(µ+ L)4

⌉
}

.

Proofs of Lemmas 1 and 2 are skipped to the long version

of the paper [36]. Having set the main lemmas, now it is

straightforward to prove Theorem 1.

Proof of Theorem 1. For the specified step-sizes ε and α and

large enough iterations T ≥ T0 := max{T1, T2}, Lemmas 1



and 2 are applicable and we have

E

[
‖xT − x̃∗‖2

]
= E

[
‖xT − x∗

α + x∗
α − x̃∗‖2

]

≤ 2E
[
‖xT − x∗

α‖
2
]
+ 2‖x∗

α − x̃∗‖2

≤ O

(
1

T 1/4

)
+O

(
1

T 1/2

)

= O

(
1

T 1/4

)
. (17)

Since E

[∥∥xi,T − x∗
∥∥2
]

≤ E

[
‖xT − x̃∗‖2

]
for any i =

1, . . . , n, the inequality in (17) follows the claim of The-

orem 1.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the

proposed QDGD Algorithm on minimizing a distributed

quadratic objective. We pictorially demonstrate the effect

of quantization noise and graph topology on the relative

expected error rate.

Consider the quadratic optimization problem

min
x∈Rp

f(x) =

n∑

i=1

1

2
x>Aix+ b>

i x, (18)

where fi(x) =
1
2x

>Aix+ b>
i x denotes the local objective

function of node i ∈ [n]. The unique solution to (18) is there-

fore x∗ = −
(∑n

i=1 Ai

)−1 (∑n
i=1 bi

)
. We pick diagonal

matrices Ai such that p/2 of the diagonal entries of each Ai

are drawn from the set {1, 2, 22} and the other p/2 diagonal

entries are drawn from the set {1, 2−1, 2−2}, all uniformly

at random. Entries of vectors bi are randomly picked from

the interval (0, 1). In our settup, the graph of agents is a

connected Erdös-Rényi with edge probability pc. We set the

edge weight matrix to be W = I − 2
3λmax(L)L where L is

the Laplacian with λmax(L) as its largest eigenvalue. In our

simulations, we let an additive noise model the quantization

error, i.e. Q(x) = x+ η where η ∼ N (0, σ2

p Ip).
We first consider a connected Erdös-Rényi graph of n =

50 nodes and connectivity probability of pc = 0.35 and

dimension p = 20. Fig. 1 shows the convergence rate

corresponding to three values of quantization noise σ2 ∈
{2, 20, 200}, compared to the theoretical upper bound de-

rived in Theorem 1 in the logarithmic scale. As expected,

Fig. 1 shows that the error rate linearly scales with the

quantization noise; however, it does not saturate around a

non-vanishing residual, regardless the variance. Moreover,

Fig. 1 demonstrates that the convergence rate closely follows

the upper bound derived in Theorem 1. For instance, for

the plot corresponding to σ2 = 20, the relative errors

are evaluated as eT1
/e0 = 0.0121 and eT2

/e0 = 0.0082
for T1 = 3200 and T2 = 12800, respectively. Therefore,

eT2
/eT1

≈ 0.68 which is upper bounded by (T1

T2

)1/4 ≈ 0.7.

To observe the effect of graph topology, quantization noise

variance is fixed to σ2 = 2 and we varied the connectivity

ratio by picking three different values, i.e. pc ∈ {0.1, 0.5, 1}
where pc = 1 corresponds to the complete graph case. As

T
50 200 800 3200 12800

E
[|
|x

T
−
x̃
∗
||
2
]/
||
x
0
−
x̃
∗
||
2

10−3

10−2

10−1

100

O
(

1
T 1/4

)

σ
2 = 200

σ
2 = 20

σ
2 = 2

Fig. 1. Relative optimal squared error for three vales of quantization noise
variance: σ2 ∈ {2, 20, 200}, compared with the order of upper bound.

T
50 200 800 3200 12800

E
[|
|x

T
−
x̃
∗
||
2
]/
||
x
0
−
x̃
∗
||
2

10−3

10−2

10−1

100

O
(

1
T 1/4

)

pc = 0.1
pc = 0.5
complete graph

Fig. 2. Relative optimal squared error for three vales of graph connectivity
ratio: pc ∈ {0.1, 0.5, 1}, compared with the order of upper bound.

Fig. 2 depicts, for the same number of iterations, deviation

from the optimal solution tends to increase as the graph

is gets sparse. In other words, even noisy information

of the neighbor nodes improves the gradient estimate for

local nodes. It also highlights the fact that regardless of

the sparsity of the graph, the proposed QDGD algorithm

guarantees the consensus to the optimal solution for each

local node, as long as the graph is connected.

VI. CONCLUSION

We proposed the QDGD algorithm to tackle the problem

of quantized decentralized consensus optimization. The algo-

rithm updates the local decision variables by combining the

quantized messages received from the neighbors and the local

information such that proper averaging is performed over the

local decision variable and the neighbors’ quantized vectors.

We proved that the QGDG algorithm achieves a vanishing

consensus error in mean-squared sense, and verified our

theoretical results with numerical studies.

An interesting future direction is to establish a funda-

mental trade-off between the convergence rate of quantized

consensus algorithms and the communication. More pre-

cisely, given a target convergence rate, what is the minimum

number of bits that one should communicate in decentralized

consensus? Another interesting line of research is to develop



novel source coding (quantization) schemes that have low

computation complexity and are information theoretically

near-optimal in the sense that they have small communication

load and fast convergence rate.
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