Methods xxx (XXXX) XXX—XXX

Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier.com/locate/ymeth

MetaPheno: A critical evaluation of deep learning and machine learning in
metagenome-based disease prediction

Nathan LaPierre, Chelsea J.-T. Ju, Guangyu Zhou, Wei Wang"

Department of Computer Science, University of California at Los Angeles, Los Angeles, CA 90095, USA

ARTICLE INFO ABSTRACT

The human microbiome plays a number of critical roles, impacting almost every aspect of human health and
well-being. Conditions in the microbiome have been linked to a number of significant diseases. Additionally,
revolutions in sequencing technology have led to a rapid increase in publicly-available sequencing data.
Consequently, there have been growing efforts to predict disease status from metagenomic sequencing data, with
a proliferation of new approaches in the last few years. Some of these efforts have explored utilizing a powerful
form of machine learning called deep learning, which has been applied successfully in several biological do-
mains. Here, we review some of these methods and the algorithms that they are based on, with a particular focus
on deep learning methods. We also perform a deeper analysis of Type 2 Diabetes and obesity datasets that have
eluded improved results, using a variety of machine learning and feature extraction methods. We conclude by
offering perspectives on study design considerations that may impact results and future directions the field can
take to improve results and offer more valuable conclusions. The scripts and extracted features for the analyses

Keywords:

Deep learning
Machine learning
Metagenomics
Phenotype prediction

conducted in this paper are available via GitHub:https://github.com/nlapier2/metapheno.

1. Introduction

The human body is home to a highly complex and densely popu-
lated microbial ecosystem, the so-called “human microbiome” [1,2].
The microbes in the human body outnumber human cells and play a
critical role in almost every aspect of human health and functioning [2].
The advent of High Throughput Sequencing (HTS) has enabled the di-
rect study of microbial environments, forming the rich field of meta-
genomics. As sequencing becomes cheaper, vastly increased amounts of
metagenomic sequencing data are becoming publicly available, in-
cluding large-scale efforts such as the Human Microbiome Project,
which aims to understand the microbial environments in different
human body sites [3]. We can interrogate this data to answer two key
questions about the microorganisms in a community: who is there, and
what are they doing [1]? By studying the taxonomic composition and
metabolic activities of the microbes, we can begin to decipher how
these properties contribute to human health and disease.

One recent development is the availability of a large amount of
metagenomic shotgun sequence data matched to patients with labeled
disease phenotypes, sometimes called “metagenome-wide association
studies” or MGWAS [4]. This has in turn motivated computational re-
searchers to develop machine learning methods to predict patient
phenotype from their metagenomic sequence data. These models rely
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on extracting “features” from the sequence data. These features can
represent different aspects of the microbiome, for instance, taxonomic
composition or functional profiles. Ideally, the most informative fea-
tures can provide insights into how the microbiome relates to the dis-
ease. The methods for extracting the features from the raw sequence
data and the methods for predicting the disease based on the features
are both important to the performance of the model.

An important step forward in this effort was perhaps the first ma-
chine learning meta-analysis of publicly-available MGWAS data, per-
formed by Pasolli et al. [5]. In this study, the authors used a method
called MetaPhlAn2 [6] to predict the composition of the patient’s mi-
crobiome based on the sequence data. Using the predicted micro-
organisms and their abundances as features, they applied several well-
known classical machine learning algorithms such as Support Vector
Machines (SVMs) and Random Forests (RFs) to predict the patient’s
disease status. These approaches performed well at predicting some
patient diseases such as liver cirrhosis, colorectal cancer, and in-
flammatory bowel disease, but poorly on the others, such as type 2
diabetes and obesity [5].

Since the publication of the meta-analysis, several other papers have
emerged, attempting to use different machine learning methods to
improve upon the original results [7-9] or apply machine learning to
different types of data such as 16S rRNA [10]. Many of these methods
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have involved the use of deep learning [11], a powerful class of ma-
chine learning methods that have achieved record results in a number
of domains, and has recently seen great success in biological prediction
problems [12-14]. Briefly, deep learning uses a network of so-called
“neurons” (inspired by real neural networks in the brain) to learn
complex functions mapping input data, such as sequencing data, to an
output value, such as a prediction of the disease status.

Here, we review recent methodological advancements in the pre-
diction of disease from metagenomic data, with a particular focus on
deep learning methods. These are discussed in Section 3. Readers who
are unfamiliar with machine learning or deep learning may want to first
read our review of these subjects in Section 2. In Section 4, we present
the reported results on the data from the Pasolli et al. meta-analysis, as
it serves as a common basis for comparison among recent methods. In
Section 5, we present an in-depth analysis of a type 2 diabetes dataset
from the meta-analysis that has eluded improved results. We apply a
number of machine learning methods, including an autoencoder-pre-
trained neural network that we developed, to the data, and also explore
an alternate k-mer-based feature extraction method. In Section 6, we
offer perspectives gained from the review, including considerations for
study design and interpretability, and possible avenues to improve re-
sults in the future. Section 7 briefly summarizes the conclusions.

2. Overview of machine learning and deep learning methods
2.1. Primer on machine learning

Machine learning, broadly defined, involves the use of computer
algorithms to find the structure in data. In this study we focus on so-
called “supervised learning”, in which a mapping is learned from input
data to an output label. Here, the “structure” of the data is represented
as a set of features, extracted from the input data. In the context of this
paper, the input data is metagenomic sequence reads, the extracted
features are taxonomic or functional annotations, and the output label
is the binary disease status prediction.

A crucial aspect of machine learning is ensuring that the learned
model can work well not only on the available dataset but also on ex-
amples not included in the dataset. This is often called the “general-
izability” of a model. To achieve this, the model is learned on a subset
of the data, called “training data”, and then evaluated on the rest of the
data, called “testing data”, which is held out from the training process.
The testing data serves as a proxy for data outside the study.

A common way to split the data into training and testing is k-fold
cross-validation (k-fold CV) [15]. The data is partitioned into k equally-
sized subsets, called “folds”. Each fold is used once as the testing data,
and the model is trained on the rest of the data. The performance of the
model is the average of the results for all k folds. In some cases, there
may be a large imbalance of labels between two classes of data, for
instance, many more case examples than control examples. For such
cases, a slight variation in the k-fold CV technique can be used, in which
each fold has the same case-to-control ratio as the entire dataset. This is
called “stratified k-fold cross-validation”. Finally, there is a specific case
of k-fold cross-validation called “Leave One Out Cross-Validation
(LOOCV)”, in which k equals the number of individuals in the dataset.
Thus, each individual is used as the test set once and the model is
trained on the rest of the individuals.

Each machine learning model has a set of properties that can be set
by the user prior to the training process, called “hyperparameters”. For
instance, before learning a decision tree, a hyperparameter can be set to
limit the depth of the tree. The performance of the machine learning
model can vary significantly based on the settings of hyperparameters
[16,17], so it is important to set them optimally. The traditional and
most comprehensive way to do this is to perform a “grid search”. Based
on a user-specified set of hyperparameters and possible settings of
them, the grid search exhaustively enumerates each combination of
these settings. The grid search selects the best settings as measured by
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cross-validation [18].
2.2. Classical machine learning algorithms

Two classical machine learning methods are commonly used in
metagenome-based disease prediction: Support Vector Machines
(SVMs) [19] and Random Forests (RFs) [20]. SVMs can be thought of as
representing the input data as points in space, and their objective is to
learn a decision boundary to maximally separate different classes. To do
this, SVMs search for the points in each class that are the closest to the
decision boundary. Those points are called “support vectors”. RFs are
an example of ensemble learning, in which a complex model is made by
combining many simple models. In this case, the simple models are
decision trees [20]. RFs take many random subsamples of the complete
dataset. For each of these subsamples, a decision tree is learned. The
final output of a RF is the most common prediction of the individual
decision trees. As these are well-studied methods, they are used as
baselines for comparison in many studies. Additionally, both SVMs and
RFs can output the most informative features to the predictive model. In
the context of metagenome-based disease prediction, these features are
the microbes or the functional elements that contribute most to the
disease prediction, enhancing the interpretability of the model
[5,9,7,21].

Several new methods have been proposed to improve upon these
classical methods. eXtreme Gradient Boosting (XGBoost) [22] is similar
to RFs, in that it builds an ensemble of decision trees. The main dif-
ference is that trees are sequentially built to reduce the errors of the
previous trees. Another variant of the forest approach, called multi-
Grained Cascade Forest (gcForest) or “deep forest” [23], performs an
ensemble of forests, i.e. an ensemble of ensembles.

2.3. Deep learning algorithms

Deep learning is a powerful class of machine learning algorithms
consisting of artificial neural networks (ANN) with many layers. These
neural networks are inspired by biological neural networks in the
human brain. They are composed of one or more inter-connected
“layers”, each of which consists of separate simple computational units
called “neurons”. The input information flows through the network as
follows: each layer receives input data for each of its neurons, each
neuron then executes a simple user-defined function, and then the
output of the neuron is transmitted as input to neurons in the next layer.
Two neurons are said to be connected if a neuron in one layer sends
output to the other neuron in the next layer. The connections are
weighted, reflecting the contribution to the prediction. The learning
process of a neural network is the updating of these connection weights,
based on prediction errors made with training data. By composing the
numerous simple functions executed by each neuron in a network
structure, complex relationships between inputs and their relevance to
the output can be learned [11]. Networks with more layers can learn
more complex functions, thus explaining the power of deep learning
[11]. However, since the input features are sent through a complex
network of functions, it is difficult to pinpoint the most informative
features. This confounds the interpretability of the model [24].
Nevertheless, deep learning models have achieved record-breaking re-
sults in the fields of natural language processing [11], image classifi-
cation [25,26], and speech recognition [27]. The successes of these
applications have encouraged the exploration of this approach in the
field of bioinformatics [12,28], including the analysis of metagenomic
data [8,9].

We review three main types of deep learning architectures in this
paper: fully-connected feedforward deep neural networks (which we
simply refer to as DNNs) [29-31], convolutional neural networks
(CNNs) [32,25], and auto-encoders (AEs) [33]. DNNs are general-pur-
pose architectures, CNNs are specialized for image-based tasks, and AEs
are used for dimensionality reduction (see below). Another common
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architecture, Recurrent Neural Networks (RNNs) have thus far not often
been used in metagenome-based disease prediction, so we do not re-
view them in this paper.

As the name of DNNs suggests, every neuron in one layer is con-
nected to every neuron in the next layer without backward connections.
DNNs are sometimes also referred to as multilayer perceptrons (MLP)
[29]. However, MLP can have a more general definition that includes
other types of architectures, so we use DNNs to avoid ambiguities here.

CNNs are designed specifically to process images with spatial in-
formation. CNNs focus on summarizing local information with a
mathematical function, called “convolution”, which greatly reduces the
computational burden. For example, when analyzing a pixel in an
image, the nearby pixels are the most relevant and there is no need to
incorporate distant pixels. Because CNNs are very powerful for image
processing, researchers have developed methods for encoding different
types of information as images for a variety of applications, including
metagenome-based disease predictions. Methods that leverage the
CNNs architecture are discussed in Section 3.

AEs represent a different type of deep learning. In this case, the goal
is not to predict an output value, but rather to find a more compressed
representation of the input data [33]. This is also referred to as “di-
mensionality reduction” of the feature space. Dimensionality reduction
addresses a common issue of deep learning, called overfitting. Over-
fitting refers to learning a model that is very specific to the training data
but will not generalize well to the testing data. This is a concern when
there are more features than samples, as is often the case in meta-
genome-based disease prediction [34]. AEs take a set of input features
and learn a smaller set of latent features that capture the same amount
of information. This is done by ensuring that the original set of features
can be recovered from the smaller set with minimal loss [33]. By first
applying AEs to obtain a reduced set of features, which are then used as
input to DNNs, the model can avoid overfitting and generalize better
[11,33].

3. Current methods in metagenome-based disease prediction
3.1. Feature extraction

In disease phenotype prediction, there are three types of commonly
used features extracted from metagenomic sequence reads: the abun-
dances of different microbes, functional annotation of the metagenomic
samples, or the k-mer abundances from raw reads.

Given the metagenomic sequence data, one of the key questions is to
identify and quantify the presence of different microorganisms. Under
the assumption that microbiome composition is different between
healthy and diseased individuals, the profiles of microbial abundances
are widely used as a type of feature in disease prediction. MetaPhlAn2
[6] is a popular tool to estimate the relative abundance of microbial
taxa. It uses a set of clade-specific marker genes to assign reads to mi-
crobial clades. It then estimates the relative abundance of each taxon
based on the read coverage. The majority of the metagenome-based
disease predictive models in this paper leverage MetaPhlAn2 profiles
for the underlying features [5,8,9]. Met2Img [8] uses the species
abundances as the raw features; PopPhy-CNN [9] aggregates the
abundances reported by MetaPhlAn2 up to the genus level; MetaML [5]
investigates the performance of using species abundances or the pre-
sence of strain-specific markers as the microbiome features. Alter-
natives to MetaPhlAn2 include Quikr [35], Bracken [36], and CLARK
[37]. The platform UGENE can combine the results of several of these
tools into a single “ensemble” prediction [38].

The other aspect of understanding a microbial community is ad-
dressing the question of “what are they doing?” through functional
annotation. One example of this approach was demonstrated by
Yazdani et al. [39], who detected protein family shifts between healthy
and diseased gut microbiomes by using KEGG [40] annotations and a
random forest classifier. Other methods attempt to infer the functional
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and metabolic properties of microbiomes from either shotgun [41] or
16S rRNA [42] sequence data. Predicted functional and metabolic
profiles have been used to predict ecological roles in the rhizosphere
[43] and general human gut dysbiosis [44].

The major drawback of the aforementioned feature extraction ap-
proaches is that they are limited by the reference database. In microbial
abundance profiling, we can only estimate the abundance of known
microbes, or the microbes present in the database. In functional pro-
filing, we rely on the annotated genes and pathways that can be re-
cognized in the sequencing data. Consequently, these two approaches
toss away unmapped reads with valuable information [7]. In order to
fully utilize all of the reads, several frameworks have proposed using
the k-mer abundances directly acquired from the raw reads [45-48].
These frameworks first count the k-mer frequencies of the metagenomic
reads in each individual. Common k-mer counters include Jellyfish [49]
and KMC [50]. The next step is to identify the significantly differen-
tially abundant k-mers between the cases and controls through a sta-
tistical test, such as Student’s t-test, Wilcoxon rank-sum test, or like-
lihood ratio test. The false discovery rate is then controlled for multiple
hypothesis testings. The statistically significant k-mers are sometimes
used directly as the features. In other cases, the raw k-mer counts are
used without statistical testing in pipelines alongside other steps, such
as assembly and clustering [7].

3.2. Meta-analysis of classical machine learning approach

Recently, the work of Pasolli et al. [5], MetAML (Metagenomic
prediction Analysis based on Machine Learning) comprehensively as-
sesses different machine learning approaches to metagenome-based
disease prediction tasks. In MetAML, six available disease-associated
metagenomic datasets spanning five diseases are discussed. They are:
liver cirrhosis [51], colorectal cancer [52], inflammatory bowel dis-
eases (IBD) [53], obesity [54], and type 2 diabetes (T2D) (two distinct
studies [4,55]). Each dataset is evaluated independently by cross-vali-
dation. MetaPhlAn2 [6] taxa abundances are used as features. Several
classical machine learning and statistical methods are evaluated. RFs
performs the best followed by SVMs. However, deep learning methods
(neural networks) are not evaluated.

Overall, the proposed MetAML method works well for some phe-
notypes such as liver cirrhosis, IBD, and colorectal cancer. However, it
performs relatively poorly on T2D and obesity [5]. There are two main
limitations of using MetaPhlAn2 for feature extraction. First, Me-
taPhlAn2 is limited to detecting only species in its reference database. A
metagenomic benchmark study by the CAMI consortium found that
MetaPhlAn2 has a high false negative rate, meaning that it fails to
identify many taxa present in the sample [56]. Due to the false nega-
tives, the relative abundances are mis-estimated, leading to noise in the
extracted features. Second, MetaPhlAn2 does not consider functional
elements of the microbiome, limiting potentially valuable information
that can be used to predict diseases.

3.3. Deep learning approaches

As deep neural networks (DNNs) have achieved excellent classifi-
cation results, researchers have recently attempted to apply them to the
problem of metagenome-based disease prediction. However, several
challenges remain, with various methods attempting to address them.

Reiman et al. [9,57] argue that the DNN architecture may not be
suitable to predict diseases using metagenomic data. Learning through
a deep architecture often requires an excessive amount of data, which is
currently impractical with the limited number of sampled patients
[7,24]. In addition, as previously discussed, extracting the significant
features from the learned models is not trivial. To mitigate these issues,
Reiman et al. propose a framework that leverages the architecture of
CNNs to predict diseases from microbial abundance profiles [9,57].
Reiman et al.’s method PopPhy-CNN [9] uses phylogenetic trees to
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describe the relatedness of different features, i.e. microbes. The tree is
further embedded in a 2D matrix to include the observed relative
abundance of microbial taxa, allowing the CNNs to fully exploit the
spatial relationship of the microbes and their quantitative character-
istics in metagenomic data. A comprehensive evaluation has demon-
strated that the framework can efficiently train models without an ex-
cessive amount of data. The significant microbes contributing to
different diseases can also be extracted and visualized on the phylo-
genetic tree.

Another common issue in this domain is overfitting. To alleviate this
issue when conducting disease predictions, Nguyen et al. [8] propose
the Met2Img approach, which relies on embedding taxonomic abun-
dances as color pixels in an image, called “synthetic images”. Each
image corresponds to an individual and each pixel corresponds to a
taxon, with a color representing the abundance of that taxon. Pixels are
arranged by phylogenetic sorting such that pixels near each other re-
present taxa that are phylogenetically similar. Nguyen et al. explore a
variety of ways to set the colors and arrange the pixels. Finally, a CNN is
used to predict the disease based on the image created. Evaluating on
twelve benchmark datasets shows that Met2Img outperforms classical
machine learning algorithms (RFs and SVMs) [8]. Nguyen et al. claim
that the integration of phylogenetic information alongside abundance
data improves classification [8].

Several other related approaches have been developed that use deep
learning to predict both host and environmental phenotypes.
MicroPheno [10] uses extracted k-mer counts to predict various host
and environmental phenotypes, reporting that deep learning outper-
forms random forests for predicting environmental phenotypes but not
disease phenotypes. MetaNN [58] uses microbe abundance profiles,
augments them with simulated samples generated from a negative bi-
nomial distribution, and predicts host and body site phenotypes using
either a DNN or a CNN. They report that their method improves on
classical machine learning approaches, and that the DNN outperformed
the CNN [58]. Ditzler et al. apply a DNN and a recurrent neural network
(RNN) to host and environmental phenotype prediction. They find that
the DNN outperforms the RNN and a RF at predicting sample pH and
body site, while the RF is the best at predicting host phenotype [59].

3.4. Other machine learning approaches

Other methods have attempted to model the learning problem in a
different way. RegMIL [7] is one such method. RegMIL takes the ap-
proach of Multiple Instance Learning (MIL), which considers a set of
samples called “bags” that have known labels, and which contain a
number of “instances”, which have unknown labels. In this case, the
bags are the individuals in a study, the known labels are the disease
phenotypes, and the instances are the metagenomic sequence reads.
Because individual sequence reads provide limited information, RegMIL
begins by assembling reads into contigs and then binning and clustering
contigs. Normalized k-mer counts are then obtained for the sequences
in each cluster. Based on the association between k-mers and disease
status in the training set, a neural network is used to predict which k-
mers in the test set are associated with disease status. A RF classifier
uses these predictions as features to predict the disease status of the
individual. The authors claim that this approach leads to improved
results over MetaML in both accuracy and AUC on the liver cirrhosis
and IBD datasets [7]. RegMIL thus illustrates both a different way to
model the classification problem and an alternate way to employ neural
networks beyond the final disease prediction step.

Several other approaches have focused not directly on classification,
but on feature selection. Ditzler et al. introduce a feature selection
method called Fizzy that attempts to select important microbes or
functional elements for downstream classification algorithms to analyze
[60]. A competing taxonomy-aware feature selection method was re-
cently released by Oudah and Henschel [34]. The authors claim that
applying it prior to classification improves colorectal cancer prediction

Methods xxx (xxXxX) XXX-XXX

Table 1
Summary of the datasets covered in this study. More information is available in
the MetAML paper [5].

Number of case samples ~ Number of control samples  Citation
Liver cirrhosis 118 114 [61]
T2D 170 174 [4]
Obesity 164 89 [62]
IBD 25 85 [63]

from 16S rRNA metagenomic data [34]. Feature selection for meta-
genome-based disease prediction seems to be a less-explored area, but
may be just as important as the classification method used and may
enhance interpretability, motivating further research in this direction.

4. Results from previous works on MetAML datasets

Since several methods, including PopPhy-CNN [9], Met2Img [8],
and RegMIL [7], have been developed in comparison to the results of
MetAML [5], we review their results here in order to provide a com-
parison of several recent and related papers in the field. The datasets we
cover in this review are profiled in Table 1. As previously stated, Me-
tAML’s best results are obtained with a RF, PopPhy-CNN and Met2Img
are CNN based methods, and RegMIL models the problem with Multiple
Instance Learning (MIL), while using both a nerual network and RF as
part of their pipeline. Below, we compare and contrast the experimental
procedures used in each study and then review the results.

4.1. Cross-validation settings

MetAML performs grid search using stratified 5-fold cross-validation
to select the hyperparameters for each classifier, and then runs 10-fold
cross-validation 20 times using the selected hyperparameters to de-
termine the disease classification results [5]. PopPhy-CNN performs
hyperparameter grid search for SVMs using 5-fold cross-validation,
while the CNN is manually tuned and the settings of RFs are mostly left
to the default [9]. Met2Img performs 10 runs of stratified 10-fold cross-
validation to gather results and hyperparameter tuning is not men-
tioned for any of the methods in the paper [8]. RegMIL [7] performs
Leave One Out Cross-Validation (LOOCV), and sets the hyperpara-
meters manually.

4.2. Evaluation protocols

Commonly used evaluation metrics for binary classification include
accuracy, precision, recall, F1-Score and area under the receiver oper-
ating characteristic curve (AUC). Accuracy simply refers to the per-
centage of correctly predicted individuals. Precision is the percentage of
predicted cases that are actual cases. Recall is the percentage of actual
cases that are correctly identified by the classifier. In other words,
precision measures the rate of falsely predicting disease, while recall
measures the rate of falsely predicting healthy. The F1-Score is the
harmonic mean of precision and recall, defined as follows:

2 X precision X recall
precision + recall

F1 — Score =

Most classifiers can report the probability of their prediction, which
can be considered as the confidence in the prediction. The AUC uses this
information to summarize the false prediction rate at different con-
fidence levels. While accuracy is the most straightforward representa-
tion of performance, the F1-Score and AUC are better metrics when
there is an imbalance of cases and controls. PopPhy-CNN [9] reports
AUC, Met2Img [8] reports accuracy, RegMIL [7] reports both accuracy
and AUC, and MetAML [5] reports all of the above metrics.
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Table 2
Comparison of machine learning approaches in predicting different diseases.
Liver cirrhosis T2D Obesity IBD
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

MetAML-SVM 0.834 = 0.052 0.922 + 0.041 0.613 = 0.057 0.663 = 0.066 0.636 = 0.042 0.648 = 0.071 0.809 + 0.066 0.862 *= 0.083
MetAML-RF 0.877 = 0.043 0.945 *= 0.036 0.664 = 0.052 0.744 = 0.056 0.644 = 0.052 0.744 = 0.056 0.809 =+ 0.050 0.890 = 0.078
PopPhy-RF NA 0.932 NA 0.727 NA 0.642 NA NA
PopPhy-CNN NA 0.94 NA 0.753 NA 0.676 NA NA
Met2Img-RF 0.877 = 0.060 NA 0.672 = 0.080 NA 0.645 *= 0.042 NA 0.808 + 0.068 NA
Met2Img-CNN 0.905 = 0.071 NA 0.651 = 0.094 NA 0.680 *= 0.066 NA 0.868 + 0.081 NA
RegMIL baseline 0.923 = 0.041 0.922 * 0.040 NA NA NA NA 0.839 + 0.028 0.824 * 0.0374
RegMIL-RF 0.928 *= 0.036 0.927 + 0.035 NA NA NA NA 0.847 + 0.035 0.844 = 0.026

4.3. Summary of results

Because of the inconsistencies in cross-validation and hyperpara-
meter tuning, we only report the results of the baseline RF model and
the proposed model for each study without making cross-study com-
parisons. In Table 2, we show the comparison between PopPhy-CNN
and its RF baseline, denoted by PopPhy-RF. They report increased AUC
in liver cirrhosis, T2D, and obesity of between 0.8% and 3.4% [9].
Met2Img-CNN is reported to outperform their RF baseline (denoted as
Met2Img-RF) in liver cirrhosis, obesity and IBD, and the differences are
statistically significant based on the one-tailed t-test (p-value < 0.05)
[8]. RegMIL compares their proposed model with the MetAML package
(denoted as RegMIL baseline) and reports that it outperforms the
baseline in terms of accuracy and AUC for both liver cirrhosis and IBD
by 0.5-2%.

5. In-depth analysis of type 2 diabetes and obesity datasets

As summarized in Section 4, machine learning methods present
promising power (high accuracy and AUC) in predicting liver cirrhosis
and IBD using only the information from metagenomic reads. However,
these methods still struggle to predict T2D and obesity. Here we analyze
the performance of many different classification algorithms on the T2D
and obesity datasets. We also explore an alternate feature extraction
method to see if the results can be improved.

5.1. k-mer-based feature extraction

Many existing approaches rely on MetaPhlAn2 to estimate the re-
lative abundances of microbes in each individual based on the meta-
genomic data. To address the drawback of this approach as discussed in
Section 3, we examine the potential to improve T2D and obesity pre-
diction using k-mer abundance profiles.

We count the k-mer frequencies of the metagenomic reads in each
individual using Jellyfish [49]. To avoid the bias of different sequen-
cing depths, the k-mer counts are normalized by the total number of
possible k-mers in each sample. Each k-mer is represented by its ca-
nonical form (i.e., the lexicographical minimum of itself and its reverse
complementary sequence). In our study, we set k to 12, resulting in
8,390,656 unique k-mers. Shorter k-mers have a higher chance to
randomly appear in the genome; longer k-mers generate more candi-
dates in exponential order for the statistical analysis in the next step,
which can be computationally intractable. We empirically find that
setting k = 12 leads to sufficiently significant k-mers while still being
computationally feasible to process.

To identify the significant k-mers, we conduct a statistical test based
on the abundance of each k-mer between the cases and controls. We
first pool the k-mer counts from all diseased samples into a case group
and other samples into a control group. For each k-mer, we calculate
the p-value with the Student’s t-test, followed by the Benjamini-
Hochberg procedure [64] to control the false discovery rate from
multiple hypothesis testings. We sort the k-mers based on their adjusted

p-values, and retain the top 1000 k-mers as our significant features. This
criterion is used because retaining all k-mers with p-values smaller than
0.05 increases the computational time and does not improve the per-
formance. It is important to note that the significant k-mers are ex-
tracted from the training data for our machine learning analysis, and
the same set of k-mers is then used for the testing data.

5.2. Evaluation protocols

We compare the performance of k-mer-based features against the
microbial abundance profile estimated by MetaPhlAn2 down to the
strain level. These features are used as input to five different machine
learning algorithms: SVM, RF, XGBoost, gcForest, and an AE-pretrained
DNN (henceforth referred to as AutoNN). Hyperparameter grid search is
performed for all five algorithms using 5-fold cross-validation to select
the best settings. With these settings, each model is evaluated over five
independent runs of 5-fold cross-validation. We report the accuracy,
precision, recall, F1-Score, and AUC for each model (defined in Section
4). We also conduct a pairwise statistical test to determine if the result
of the best k-mer-based approach is significantly better than the result
of the best MetaPhlAn-based approach.

5.3. Summary of classification results

Tables 3 and 4 show that different models yield different perfor-
mances when learning from these two types of features. When learning
from the microbial abundance profiles, there is no single model that
outperforms the others in all metrics. SVM achieves the best recall and
F1-Score in both the T2D and obesity analyses. However, the SVM
simply leverages the class imbalance in the obesity data (see Table 1) to
achieve perfect recall, and reasonable precision and accuracy, by pre-
dicting positive for every sample. This highlights the importance of
careful interpretation for metrics on imbalanced data such as the obe-
sity and IBD datasets. The best accuracy using the microbial features is
achieved by AutoNN and RF for T2D and obesity, respectively; the best
precision is demonstrated by RF for T2D and XGBoost for obesity.

On the other hand, gcForest is particularly effective at learning from
the k-mer abundance profiles. It consistently outperforms the others in
all metrics in the T2D analysis. A similar observation is shown in the
obesity analysis, except that RF achieves the best recall. We further
evaluate whether the best accuracy results are significantly different
between the k-mer and microbial abundance features. The pairwise
Student’s t-test reveals that gcForest with k-mer features is not sig-
nificantly different from AutoNN with microbial abundance features in
the T2D dataset (p-value of 0.096 after Benjamini-Hochberg correc-
tion). Similarly, in the obesity dataset, gcForest with k-mer features is
not significantly different from RF with microbial abundance features
(p-value 0.558). These analyses further the evidence that T2D and
obesity will continue to be challenging traits to predict using only
metagenomic reads.



Table 3
Comparison of different types of features used to train the models for T2D The mean and standard deviation are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best performances are
highlighted in bold.

Microbial Abundances k-mer Abundances
Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC
SVM 0.643 = 0.007 0.626 = 0.006 0.720 = 0.015 0.664 + 0.008 0.725 = 0.005 0.638 = 0.020 0.641 = 0.028 0.617 = 0.022 0.625 = 0.016 0.695 = 0.0215
RF 0.657 *= 0.018 0.681 + 0.016 0.602 * 0.025 0.632 + 0.022 0.729 + 0.013 0.680 + 0.016 0.694 *+ 0.016 0.642 = 0.017 0.663 *+ 0.018 0.746 = 0.008
XGBoost 0.640 = 0.019 0.645 = 0.020 0.615 = 0.025 0.626 *= 0.022 0.691 * 0.011 0.676 = 0.025 0.696 = 0.029 0.632 = 0.030 0.657 = 0.027 0.731 = 0.015
gcForest 0.655 = 0.018 0.652 = 0.020 0.667 = 0.025 0.655 = 0.022 0.734 = 0.011 0.694 + 0.006 0.698 + 0.010 0.685 + 0.015 0.687 + 0.007 0.762 + 0.011
AutoNN 0.663 + 0.018 0.664 = 0.022 0.660 = 0.019 0.657 = 0.018 0.734 + 0.016 0.652 += 0.008 0.644 = 0.012 0.676 = 0.019 0.653 = 0.010 0.713 = 0.004
Table 4

Comparison of different types of features used to train the models for obesity. The mean and standard deviation are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best performances
are highlighted in bold.

Microbial Abundances k-mer Abundances
Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC
SVM 0.637 = 0.001 0.637 = 0.001 1.000 *= 0.000 0.777 + 0.001 0.513 *= 0.036 0.615 = 0.027 0.692 = 0.020 0.723 = 0.030 0.703 = 0.020 0.599 = 0.017
RF 0.648 + 0.011 0.651 + 0.003 0.968 + 0.018 0.776 = 0.009 0.642 = 0.006 0.614 + 0.016 0.673 = 0.005 0.779 + 0.027 0.717 + 0.016 0.594 + 0.027
XGBoost 0.635 = 0.024 0.675 + 0.011 0.828 = 0.037 0.741 = 0.021 0.606 *= 0.024 0.617 = 0.026 0.682 = 0.012 0.761 = 0.043 0.715 = 0.025 0.598 = 0.020
gcForest 0.640 = 0.013 0.655 = 0.009 0.925 = 0.016 0.764 = 0.008 0.650 += 0.015 0.637 = 0.024 0.704 + 0.019 0.747 = 0.028 0.721 + 0.018 0.619 += 0.034
AutoNN 0.624 = 0.007 0.643 + 0.002 0.930 + 0.025 0.757 *= 0.008 0.603 = 0.013 0.597 + 0.012 0.667 = 0.011 0.753 = 0.018 0.700 + 0.011 0.567 + 0.014

D 32 9L121dDT ‘N

XXX=XXX (XXXX) XXX SPOYIIN



N. LaPierre, et al.

5.4. Hyperparameter grid search details

Here we discuss the details of the grid search that was performed to
select the best hyperparameters for classification. Grid search was
performed for all five algorithms using 5-fold cross-validation to select
the best settings, which were then used in the subsequent classification
steps. We attempted to identify a limited number of critical hy-
perparameters for each algorithm that significantly modified perfor-
mance, as comprehensively evaluating all combinations of all possible
hyperparameters is computationally infeasible. Similarly, we ran some
small tests to evaluate choices for these settings that were computa-
tionally feasible and positively affected results. These hyperparameters
(and the settings evaluated) were: the type of kernel (linear/poly-
nomial) and the error term penalty (0.25/0.5/0.75/1.0/1.25/1.5/1.75/
2.0) for the SVM; the maximum tree depth (2/6/10), number of esti-
mators (10/50/100), and the splitting criterion (entropy/gini) for the
Random Forest; the maximum tree depth (2/6/10), “alpha” L1 reg-
ularization term (0/0.25/0.5), and “lambda” L2 regularization term
(0.5/1.0/1.5) for XGBoost; the number of training rounds (3/5) and the
maximum forest depth (unlimited/50,/100) for gcForest; the number of
autoencoder layers (none/1/2/3), number of feedforward layers (3/5/
10), dropout rate (0/0.25/0.5), optimizer (stochastic gradient descent
[65]/adagrad[66]/adam[67]), and learning rate (0.01/0.001) for Au-
toNN. SVM and RandomForest were implemented via the scikit-learn
library [68] and the AutoNN was implemented in Keras [69]. For more
information on the XGBoost [22] and gcForest [23] hyperparameters,
see their respective papers and software packages.

For the taxonomic features, the SVM’s best hyperparameter settings
were a linear kernel and an error term penalty parameter of 1.75. For
the Random Forest, the best hyperparameter settings were a maximum
tree depth of 6, 100 estimators, and the entropy splitting criterion. For
XGBoost, the best settings were a maximum tree depth of 2, an alpha of
0.0, and a lambda of 1.0. For gcForest, the best settings were 5 rounds
of training and unlimited maximum forest layers. For AutoNN, the best
settings were a single autoencoder layer, five feedforward layers, a
dropout rate of 0.5, the adagrad optimizer, and a learning rate of 0.001.

For the k-mer-based features, the SVM’s best hyperparameter set-
tings were a linear kernel and an error term penalty parameter of 0.25.
For the Random Forest, the best hyperparameter settings were a max-
imum tree depth of 6, 50 estimators, and the gini splitting criterion. For
XGBoost, the best settings were a maximum tree depth of 2, an alpha of
0.25, and a lambda of 1.5. For gcForest, the best settings were 3 rounds
of training and unlimited maximum forest layers. For AutoNN, the best
settings were a single autoencoder layer, three feedforward layers, a
dropout rate of 0.25, the adam optimizer, and a learning rate of 0.001.

6. Discussion

We have reviewed several methods that claim to improve disease
prediction on several datasets from a popular meta-analysis by Pasolli
et al. [5]. There are several inconsistencies that make a comparative
analysis of these methods difficult, namely different cross-validation
and hyperparameter searching methods used both between and within
studies, and different classification metrics being reported between
studies. Any valid cross-validation analysis is reasonable to report in a
given study, whether 5-fold, 10-fold, or LOOCV, but within the same
study, each method should be run with the same cross-validation and
comprehensive hyperparameter search settings. As for which cross-va-
lidation method is ideal for this setting, there is no obvious best choice,
but LOOCYV has been shown to have low bias and strong generalization
to new data [15,70,71], with the main drawback being computational
cost [15]. It is often recommended for small datasets and has the ad-
ditional benefit of avoiding questions surrounding stratification and
different numbers of independent k-fold runs. Performance metric in-
consistency is also an issue. With case-control class imbalances, dif-
ferent metrics may vary in usefulness, but reporting all of the ones

Methods xxx (xxXxX) XXX-XXX

mentioned in Section 4 makes it clear why an algorithm is out-
performing others, whether due to fewer false case predictions or fewer
false control predictions. Some papers also report the Matthews Cor-
relation Coefficient (MCC) which is robust to case-control class im-
balances [72]. Overall, greater clarity and robustness of results can be
achieved by keeping study methodology and performance metrics
consistent across all tested algorithms.

There are several other ways that interpretability can be enhanced.
PopPhy-CNN, RegMIL, and MetAML all discuss the most significant
microbes for their classification models. This facilitates comparisons
between the biological implications suggested by each model. Met2Img
provides results for many different variants of their method, and also
used a t-test to highlight significant results [8]. All of these methods
provide confidence bounds for their predictions. Each of these factors
help to determine the robustness and the relevance of results. Another
aid to replicable results and consistent experiments is public, cen-
tralized resources for metagenomic data analysis. One example of this is
ExperimentHub [73], which compiles many phenotyped metagenomic
datasets, including those used in the Pasolli et al. meta-analysis. Ex-
perimentHub provides both microbiome taxonomic and functional an-
notations [73].

Feature extraction plays an important role in the performance of the
classification model. We have reviewed the benefits and limitations of
MetaPhlAn2-based feature extraction and also discussed an alternative
k-mer-based approach in this paper. One difficulty of the k-mer-based
approach is the computational burden of analyzing k-mers with a large
k because of the exponential increase of the numbers of possible k-mers.
With short k-mers, the interpretability is challenging, as it is unclear
what the k-mers represent. One less explored feature extraction ap-
proach is attempting to explicitly infer functional characteristics of the
microbiome, using methods such as HUMAnN [41] or PICRUSt [42].
Finally, integration between different types of extracted features can be
explored and further research in this direction is critical.

Ultimately, however, there has been extensive effort put into these
studies with increasingly powerful machine learning algorithms, but
with only minor performance improvements and modest changes in
feature importance rankings. This suggests that there are upper limits
on predictive accuracy that can be achieved from only metagenomic
sequence read data. Thus, perhaps the greatest way to improve results is
to include genetic data from the human subjects from whom metage-
nomic samples are taken. While this increases the cost of studies, it is
likely critical to understanding the microbiome’s role in complex phe-
notypes such as obesity and T2D. For instance, it has been demon-
strated recently that combining microbiome and genetic data can sig-
nificantly improve the prediction accuracy of several human traits,
including obesity [74]. Additonally, microbiome and genetic data are
largely complementary in contributing to this predictive performance,
and the microbiome is largely shaped by the environment [74]. Criti-
cally, these results indicate that using microbiome data alongside host
genetic data can help disentangle the intricate web of genetic and en-
vironmental factors that lead to complex traits. Additional multi-omic
data sources, such as metatranscriptomics, are just now seeing in-
creased availability and hold significant potential for elucidating the
function of the microbiome [71]. Finally, deep learning has been sug-
gested as a promising method for successfully integrating multiple data
types [75], and existing methods such as Similarity Network Fusion
[76] can also be employed.

We note that, while disease prediction has been challenging in some
cases, deep learning methods in particular seem to perform extremely
well at classifying the body-site origin of microbial samples from the
HMP [3] and other datasets as reported by MicroPheno [10] and others
[58,59]. Other works have performed strongly at predicting phenotypes
of the microbiome itself (as opposed to host phenotype) [59,77], pre-
dicting disease with deep learning on non-metagenomic data [78], or
identifying protein family shifts in microbiomes of diseased patients
[39]. While these directions are outside the scope of this review, they
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highlight other interesting applications of machine learning and deep
learning in metagenome-based phenotype prediction.

7. Conclusion

Disease prediction using metagenomic sequence data has shown
some potential, with a particularly large amount of effort having been
put into deep learning methods, but remains challenging. Study meth-
odology must remain consistent to compare different classification
methods, especially when margins of difference in performance are so
small. Feature extraction is as crucial to predictive performance as the
classification methods themselves, and deserves increased attention.
Supplementing metagenomic data with human genetic data may be the
best way to improve both classification performance and biological
understanding, especially with hard-to-classify complex traits such as
obesity and type 2 diabetes. This is because genetic and metagenomic
data provide complementary information about the host and environ-
ment, respectively [74].

Acknowledgements

The authors would like to thank the NSF the NIH for their funding
and support via NSF grants DGE-1829071, DBI-1565137 and NIH
grants T32 EB016640, RO1 GM115833.

References

[1] J. Handelsman, Metagenomics: application of genomics to uncultured micro-
organisms, Microbiol. Mol. Biol. Rev. 68 (4) (2004) 669-685.

[2] J.C. Wooley, A. Godzik, I. Friedberg, A primer on metagenomics, PLoS Comput.
Biol. 6 (2) (2010) €1000667 .

[3] P.J. Turnbaugh, R.E. Ley, M. Hamady, C.M. Fraser-Liggett, R. Knight, J.I. Gordon,
The human microbiome project, Nature 449 (7164) (2007) 804.

[4] J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen,
et al., A metagenome-wide association study of gut microbiota in type 2 diabetes,
Nature 490 (7418) (2012) 55.

[5] E. Pasolli, D.T. Truong, F. Malik, L. Waldron, N. Segata, Machine learning meta-
analysis of large metagenomic datasets: tools and biological insights, PLoS Comput.
Biol. 12 (7) (2016) €1004977 .

[6] D.T. Truong, E.A. Franzosa, T.L. Tickle, M. Scholz, G. Weingart, E. Pasolli, A. Tett,
C. Huttenhower, N. Segata, Metaphlan2 for enhanced metagenomic taxonomic
profiling, Nat. Methods 12 (10) (2015) 902.

[7] M.A. Rahman, H. Rangwala, Regmil: phenotype classification from metagenomic
data, in, Proceedings of the 2018 ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics ACM, 2018, pp. 145-154.

[8] T.H. Nguyen, E. Prifti, Y. Chevaleyre, N. Sokolovska, J.-D. Zucker, Disease classi-
fication in metagenomics with 2d embeddings and deep learning, arXiv preprint
arXiv:1806.09046.

[9] D. Reiman, A.A. Metwally, Y. Dai, Popphy-cnn: a phylogenetic tree embedded ar-
chitecture for convolution neural networks for metagenomic data, bioRxiv (2018)
257931 .

[10] E. Asgari, K. Garakani, A.C. McHardy, M.R. Mofrad, Micropheno: predicting en-
vironments and host phenotypes from 16s rrna gene sequencing using a k-mer
based representation of shallow sub-samples, bioRxiv (2018) 255018 .

[11] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.

[12] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku, D.
Newburger, J. Dijamco, N. Nguyen, P.T. Afshar, et al., A universal snp and small-
indel variant caller using deep neural networks, Nat. Biotechnol.

[13] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun,
Dermatologist-level classification of skin cancer with deep neural networks, Nature
542 (7639) (2017) 115.

[14] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C.
Langlotz, K. Shpanskaya, et al., Chexnet: radiologist-level pneumonia detection on
chest x-rays with deep learning, arXiv preprint arXiv:1711.05225.

[15] S. Arlot, A. Celisse, A survey of cross-validation procedures for model selection,
Stat. Surveys 4 (2010) 40-79.

[16] M. Claesen, B. De Moor, Hyperparameter search in machine learning, arXiv preprint
arXiv:1502.02127.

[17]1 H. Hoos, K. Leyton-Brown, An efficient approach for assessing hyperparameter
importance, International Conference on Machine Learning, 2014, pp. 754-762.

[18] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., A practical guide to support vector clas-
sification.

[19] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273-297.

[20] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32.

[21] C. Duvallet, et al., Meta-analysis of gut microbiome studies identifies disease-spe-
cific and shared responses, Nat. Commun. 8 (2017) e1784 .

[22]

[23]
[24]
[25]
[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Methods xxx (xxXxX) XXX-XXX

T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in, Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data
mining ACM, 2016, pp. 785-794.

Z.-H. Zhou, J. Feng, Deep forest: Towards an alternative to deep neural networks,
arXiv preprint arXiv:1702.08835.

T. Ching, et al., Opportunities and obstacles for deep learning in biology and
medicine, J. R. Soc. Interface 15 (141) (2018) e20170387 .

A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep con-
volutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097-1105.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

L. Deng, D. Yu, Deep convex net: a scalable architecture for speech pattern classi-
fication, Twelfth Annual Conference of the International Speech, Communication
Association, 2011.

S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Briefings Bioinf. 18 (5)
(2017) 851-869.

D. Svozil, V. Kvasnicka, J. Pospichal, Introduction to multi-layer feed-forward
neural networks, Chemometrics Intell. Lab. Syst. 39 (1) (1997) 43-62.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising
autoencoders: learning useful representations in a deep network with a local de-
noising criterion, J. Mach. Learn. Res. 11 (2010) 3371-3408.

G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science 313 (5786) (2006) 504-507.

Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard,
L.D. Jackel, Handwritten digit recognition with a back-propagation network, Adv.
Neural Inf. Process. Syst. (1990) 396-404.

G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science 313 (5786) (2006) 504-507.

M. Oudah, A. Henschel, Taxonomy-aware feature engineering for microbiome
classification, BMC Bioinf. 19 (1) (2018) €227 .

D. Koslicki, S. Foucart, G. Rosen, Quikr: a method for rapid reconstruction of
bacterial communities via compressive sensing, Bioinformatics 29 (17) (2013)
2096-2102.

J. Lu, F.P. Breitwieser, P. Thielen, S.L. Salzberg, Bracken: estimating species
abundance in metagenomics data, PeerJ Comput. Sci. 3 (2017) e104 .

R. Ounit, S. Wanamaker, T.J. Close, S. Lonardi, Clark: fast and accurate classifica-
tion of metagenomic and genomic sequences using discriminative k-mers, BMC
Genomics 16 (1) (2015) 236.

R. Rose, O. Golosova, D. Sukhomlinov, A. Tiunov, M. Prosperi, Flexible design of
multiple metagenomics classification pipelines with ugene, Bioinformatics.

M. Yazdani, et al., Using machine learning to identify major shifts in human gut
microbiome protein family abundance in disease, vol. 28, Association for
Computing Machinery, 2016, pp. 1272-1280.

M. Kanehisa, S. Goto, Kegg: kyoto encyclopedia of genes and genomes, Nucleic
Acids Res. 28 (1) (2000) 27-30.

S. Abubucker, et al., Metabolic reconstruction for metagenomic data and its ap-
plication to the human microbiome, PLoS Comput. Biol. 8 (6) (2012) e1002358 .
M.G. Langille, et al., Predictive functional profiling of microbial communities using
16s rrna marker gene sequences, Nat. Biotechnol. 31 (9) (2013) 814-821.

P.E. Larsen, F.R. Collart, Y. Dai, Predicting ecological roles in the rhizosphere using
metabolome and transportome modeling, PLoS One 10 (9) (2015) e0132837 .
P.E. Larsen, Y. Dai, Metabolome of human gut microbiome is predictive of host
dysbiosis, Gigascience 4 (1) (2015) 42.

W. Han, M. Wang, Y. Ye, A concurrent subtractive assembly approach for identi-
fication of disease associated sub-metagenomes, Computational Molecular Biology
in: International Conference on Research, Springer, 2017, pp. 18-33.

M. Wang, T.G. Doak, Y. Ye, Subtractive assembly for comparative metagenomics,
and its application to type 2 diabetes metagenomes, Genome Biol. 16 (1) (2015)
243.

V.B. Dubinkina, D.S. Ischenko, V.I. Ulyantsev, A.V. Tyakht, D.G. Alexeev,
Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis,
BMC Bioinf. 17 (1) (2016) 38.

A. Rahman, I. Hallgrimsdéttir, M. Eisen, L. Pachter, Association mapping from se-
quencing reads using k-mers, eLife 7 (2018) €32920 .

G. Marcais, C. Kingsford, A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers, Bioinformatics 27 (6) (2011) 764-770.

M. Kokot, M. Dtugosz, S. Deorowicz, Kmc 3: counting and manipulating k-mer
statistics, Bioinformatics 33 (17) (2017) 2759-2761.

N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, J. Guo, E. Le Chatelier, J. Yao,
L. Wu, et al., Alterations of the human gut microbiome in liver cirrhosis, Nature 513
(7516) (2014) 59.

G. Zeller, J. Tap, A.Y. Voigt, S. Sunagawa, J.R. Kultima, P.I. Costea, A. Amiot,

J. Bohm, F. Brunetti, N. Habermann, et al., Potential of fecal microbiota for early-
stage detection of colorectal cancer, Mol. Syst. Biol. 10 (11) (2014) 766.

J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen,

N. Pons, F. Levenez, T. Yamada, et al., A human gut microbial gene catalogue es-
tablished by metagenomic sequencing, Nature 464 (7285) (2010) 59.

E. Le Chatelier, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, M. Almeida,
M. Arumugam, J.-M. Batto, S. Kennedy, et al., Richness of human gut microbiome
correlates with metabolic markers, Nature 500 (7464) (2013) 541.

F.H. Karlsson, V. Tremaroli, I. Nookaew, G. Bergstrom, C.J. Behre, B. Fagerberg,
J. Nielsen, F. Bickhed, Gut metagenome in european women with normal, impaired
and diabetic glucose control, Nature 498 (7452) (2013) 99.

A. Sczyrba, et al., Critical assessment of metagenome interpretation-a benchmark of
metagenomics software, Nat. Methods 14 (2017) 1063-1071.

D. Reiman, A. Metwally, Y. Dai, Using convolutional neural networks to explore the



N. LaPierre, et al.

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

microbiome, Engineering in Medicine and Biology Society (EMBC), 2017 39th
Annual International Conference of the IEEE, IEEE, 2017, pp. 4269-4272.

C. Lo, R. Marculescu, Metann: Accurate classification of host phenotypes from
metagenomic data using neural networks, Computational Biology, and Health
Informatics in: International Conference on Bioinformatics, Association for
Computing Machinery, 2018, pp. 608-609.

G. Ditzler, R. Polikar, G. Rosen, Multi-layer and recursive neural networks for
metagenomic classification, IEEE Trans NanoBiosci 14 (6) (2015) 608-616.

G. Ditzler, et al., Fizzy: feature subset selection for metagenomics, BMC Bioinf 16
(1) (2015) e358 .

N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen, L. Shao, J. Guo, E. Le Chatelier, J. Yao,
L. Wu, et al., Alterations of the human gut microbiome in liver cirrhosis, Nature 513
(7516) (2014) 59.

E. Le Chatelier, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, M. Almeida,
M. Arumugam, J.-M. Batto, S. Kennedy, et al., Richness of human gut microbiome
correlates with metabolic markers, Nature 500 (7464) (2013) 541.

J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen,

N. Pons, F. Levenez, T. Yamada, et al., A human gut microbial gene catalogue es-
tablished by metagenomic sequencing, Nature 464 (7285) (2010) 59.

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. R. Stat. Soc. Ser. B (Methodological)
(1995) 289-300.

L. Bottou, Large-scale machine learning with stochastic gradient descent,
Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177-186.

J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121-2159.

[67]

[68]

[69]
[70]

[71]
[72]
[73]
[74]
[75]
[76]
[77]

[78]

Methods xxx (xxXxX) XXX-XXX

D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint
arXiv:1412.6980.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning
in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830.

F. Chollet, keras,https://github.com/fchollet/keras (2015).

S. Varma, R. Simon, Bias in error estimation when using cross-validation for model
selection, BMC Bioinf. 7 (1) (2006) €91 .

L. Waldron, Data and statistical methods to analyze the human microbiome,
mSystems 3 (2018), pp. €00194-17.

S. Boughorbel, F. Jarray, M. El-Anbari, Optimal classifier for imbalanced data using
matthews correlation coefficient metric, PLoS One 12 (6) (2017) e0177678 .

E. Pasolli, et al., Accessible, curated metagenomic data through experimenthub,
Nat. Methods 14 (2017) 1023-1024.

D. Rothschild, et al., Environment dominates over host genetics in shaping human
gut microbiota, Nature 555 (2018) 210-215.

D.M. Camacho, et al., Next-generation machine learning for biological networks,
Cell 173 (7) (2018) 1581-1592.

B. Wang, et al., Similarity network fusion for aggregating data types on a genomic
scale, Nat. Methods 11 (2014) 333-337.

R. Feldbauer, et al., Prediction of microbial phenotypes based on comparative
genomics, BMC Bioinf. 16 (14) (2015) S1.

R. Fakoor, et al., Using deep learning to enhance cancer diagnosis and classification,
vol. 28, Association for Computing Machinery, 2013.



	MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction
	Introduction
	Overview of machine learning and deep learning methods
	Primer on machine learning
	Classical machine learning algorithms
	Deep learning algorithms

	Current methods in metagenome-based disease prediction
	Feature extraction
	Meta-analysis of classical machine learning approach
	Deep learning approaches
	Other machine learning approaches

	Results from previous works on MetAML datasets
	Cross-validation settings
	Evaluation protocols
	Summary of results

	In-depth analysis of type 2 diabetes and obesity datasets
	k-mer-based feature extraction
	Evaluation protocols
	Summary of classification results
	Hyperparameter grid search details

	Discussion
	Conclusion
	Acknowledgements
	References


