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A B S T R A C T

The human microbiome plays a number of critical roles, impacting almost every aspect of human health and

well-being. Conditions in the microbiome have been linked to a number of significant diseases. Additionally,

revolutions in sequencing technology have led to a rapid increase in publicly-available sequencing data.

Consequently, there have been growing efforts to predict disease status from metagenomic sequencing data, with

a proliferation of new approaches in the last few years. Some of these efforts have explored utilizing a powerful

form of machine learning called deep learning, which has been applied successfully in several biological do-

mains. Here, we review some of these methods and the algorithms that they are based on, with a particular focus

on deep learning methods. We also perform a deeper analysis of Type 2 Diabetes and obesity datasets that have

eluded improved results, using a variety of machine learning and feature extraction methods. We conclude by

offering perspectives on study design considerations that may impact results and future directions the field can

take to improve results and offer more valuable conclusions. The scripts and extracted features for the analyses

conducted in this paper are available via GitHub:https://github.com/nlapier2/metapheno.

1. Introduction

The human body is home to a highly complex and densely popu-

lated microbial ecosystem, the so-called “human microbiome” [1,2].

The microbes in the human body outnumber human cells and play a

critical role in almost every aspect of human health and functioning [2].

The advent of High Throughput Sequencing (HTS) has enabled the di-

rect study of microbial environments, forming the rich field of meta-

genomics. As sequencing becomes cheaper, vastly increased amounts of

metagenomic sequencing data are becoming publicly available, in-

cluding large-scale efforts such as the Human Microbiome Project,

which aims to understand the microbial environments in different

human body sites [3]. We can interrogate this data to answer two key

questions about the microorganisms in a community: who is there, and

what are they doing [1]? By studying the taxonomic composition and

metabolic activities of the microbes, we can begin to decipher how

these properties contribute to human health and disease.

One recent development is the availability of a large amount of

metagenomic shotgun sequence data matched to patients with labeled

disease phenotypes, sometimes called “metagenome-wide association

studies” or MGWAS [4]. This has in turn motivated computational re-

searchers to develop machine learning methods to predict patient

phenotype from their metagenomic sequence data. These models rely

on extracting “features” from the sequence data. These features can

represent different aspects of the microbiome, for instance, taxonomic

composition or functional profiles. Ideally, the most informative fea-

tures can provide insights into how the microbiome relates to the dis-

ease. The methods for extracting the features from the raw sequence

data and the methods for predicting the disease based on the features

are both important to the performance of the model.

An important step forward in this effort was perhaps the first ma-

chine learning meta-analysis of publicly-available MGWAS data, per-

formed by Pasolli et al. [5]. In this study, the authors used a method

called MetaPhlAn2 [6] to predict the composition of the patient’s mi-

crobiome based on the sequence data. Using the predicted micro-

organisms and their abundances as features, they applied several well-

known classical machine learning algorithms such as Support Vector

Machines (SVMs) and Random Forests (RFs) to predict the patient’s

disease status. These approaches performed well at predicting some

patient diseases such as liver cirrhosis, colorectal cancer, and in-

flammatory bowel disease, but poorly on the others, such as type 2

diabetes and obesity [5].

Since the publication of the meta-analysis, several other papers have

emerged, attempting to use different machine learning methods to

improve upon the original results [7–9] or apply machine learning to

different types of data such as 16S rRNA [10]. Many of these methods
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have involved the use of deep learning [11], a powerful class of ma-

chine learning methods that have achieved record results in a number

of domains, and has recently seen great success in biological prediction

problems [12–14]. Briefly, deep learning uses a network of so-called

“neurons” (inspired by real neural networks in the brain) to learn

complex functions mapping input data, such as sequencing data, to an

output value, such as a prediction of the disease status.

Here, we review recent methodological advancements in the pre-

diction of disease from metagenomic data, with a particular focus on

deep learning methods. These are discussed in Section 3. Readers who

are unfamiliar with machine learning or deep learning may want to first

read our review of these subjects in Section 2. In Section 4, we present

the reported results on the data from the Pasolli et al. meta-analysis, as

it serves as a common basis for comparison among recent methods. In

Section 5, we present an in-depth analysis of a type 2 diabetes dataset

from the meta-analysis that has eluded improved results. We apply a

number of machine learning methods, including an autoencoder-pre-

trained neural network that we developed, to the data, and also explore

an alternate k-mer-based feature extraction method. In Section 6, we

offer perspectives gained from the review, including considerations for

study design and interpretability, and possible avenues to improve re-

sults in the future. Section 7 briefly summarizes the conclusions.

2. Overview of machine learning and deep learning methods

2.1. Primer on machine learning

Machine learning, broadly defined, involves the use of computer

algorithms to find the structure in data. In this study we focus on so-

called “supervised learning”, in which a mapping is learned from input

data to an output label. Here, the “structure” of the data is represented

as a set of features, extracted from the input data. In the context of this

paper, the input data is metagenomic sequence reads, the extracted

features are taxonomic or functional annotations, and the output label

is the binary disease status prediction.

A crucial aspect of machine learning is ensuring that the learned

model can work well not only on the available dataset but also on ex-

amples not included in the dataset. This is often called the “general-

izability” of a model. To achieve this, the model is learned on a subset

of the data, called “training data”, and then evaluated on the rest of the

data, called “testing data”, which is held out from the training process.

The testing data serves as a proxy for data outside the study.

A common way to split the data into training and testing is k-fold

cross-validation (k-fold CV) [15]. The data is partitioned into k equally-

sized subsets, called “folds”. Each fold is used once as the testing data,

and the model is trained on the rest of the data. The performance of the

model is the average of the results for all k folds. In some cases, there

may be a large imbalance of labels between two classes of data, for

instance, many more case examples than control examples. For such

cases, a slight variation in the k-fold CV technique can be used, in which

each fold has the same case-to-control ratio as the entire dataset. This is

called “stratified k-fold cross-validation”. Finally, there is a specific case

of k-fold cross-validation called “Leave One Out Cross-Validation

(LOOCV)”, in which k equals the number of individuals in the dataset.

Thus, each individual is used as the test set once and the model is

trained on the rest of the individuals.

Each machine learning model has a set of properties that can be set

by the user prior to the training process, called “hyperparameters”. For

instance, before learning a decision tree, a hyperparameter can be set to

limit the depth of the tree. The performance of the machine learning

model can vary significantly based on the settings of hyperparameters

[16,17], so it is important to set them optimally. The traditional and

most comprehensive way to do this is to perform a “grid search”. Based

on a user-specified set of hyperparameters and possible settings of

them, the grid search exhaustively enumerates each combination of

these settings. The grid search selects the best settings as measured by

cross-validation [18].

2.2. Classical machine learning algorithms

Two classical machine learning methods are commonly used in

metagenome-based disease prediction: Support Vector Machines

(SVMs) [19] and Random Forests (RFs) [20]. SVMs can be thought of as

representing the input data as points in space, and their objective is to

learn a decision boundary to maximally separate different classes. To do

this, SVMs search for the points in each class that are the closest to the

decision boundary. Those points are called “support vectors”. RFs are

an example of ensemble learning, in which a complex model is made by

combining many simple models. In this case, the simple models are

decision trees [20]. RFs take many random subsamples of the complete

dataset. For each of these subsamples, a decision tree is learned. The

final output of a RF is the most common prediction of the individual

decision trees. As these are well-studied methods, they are used as

baselines for comparison in many studies. Additionally, both SVMs and

RFs can output the most informative features to the predictive model. In

the context of metagenome-based disease prediction, these features are

the microbes or the functional elements that contribute most to the

disease prediction, enhancing the interpretability of the model

[5,9,7,21].

Several new methods have been proposed to improve upon these

classical methods. eXtreme Gradient Boosting (XGBoost) [22] is similar

to RFs, in that it builds an ensemble of decision trees. The main dif-

ference is that trees are sequentially built to reduce the errors of the

previous trees. Another variant of the forest approach, called multi-

Grained Cascade Forest (gcForest) or “deep forest” [23], performs an

ensemble of forests, i.e. an ensemble of ensembles.

2.3. Deep learning algorithms

Deep learning is a powerful class of machine learning algorithms

consisting of artificial neural networks (ANN) with many layers. These

neural networks are inspired by biological neural networks in the

human brain. They are composed of one or more inter-connected

“layers”, each of which consists of separate simple computational units

called “neurons”. The input information flows through the network as

follows: each layer receives input data for each of its neurons, each

neuron then executes a simple user-defined function, and then the

output of the neuron is transmitted as input to neurons in the next layer.

Two neurons are said to be connected if a neuron in one layer sends

output to the other neuron in the next layer. The connections are

weighted, reflecting the contribution to the prediction. The learning

process of a neural network is the updating of these connection weights,

based on prediction errors made with training data. By composing the

numerous simple functions executed by each neuron in a network

structure, complex relationships between inputs and their relevance to

the output can be learned [11]. Networks with more layers can learn

more complex functions, thus explaining the power of deep learning

[11]. However, since the input features are sent through a complex

network of functions, it is difficult to pinpoint the most informative

features. This confounds the interpretability of the model [24].

Nevertheless, deep learning models have achieved record-breaking re-

sults in the fields of natural language processing [11], image classifi-

cation [25,26], and speech recognition [27]. The successes of these

applications have encouraged the exploration of this approach in the

field of bioinformatics [12,28], including the analysis of metagenomic

data [8,9].

We review three main types of deep learning architectures in this

paper: fully-connected feedforward deep neural networks (which we

simply refer to as DNNs) [29–31], convolutional neural networks

(CNNs) [32,25], and auto-encoders (AEs) [33]. DNNs are general-pur-

pose architectures, CNNs are specialized for image-based tasks, and AEs

are used for dimensionality reduction (see below). Another common
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architecture, Recurrent Neural Networks (RNNs) have thus far not often

been used in metagenome-based disease prediction, so we do not re-

view them in this paper.

As the name of DNNs suggests, every neuron in one layer is con-

nected to every neuron in the next layer without backward connections.

DNNs are sometimes also referred to as multilayer perceptrons (MLP)

[29]. However, MLP can have a more general definition that includes

other types of architectures, so we use DNNs to avoid ambiguities here.

CNNs are designed specifically to process images with spatial in-

formation. CNNs focus on summarizing local information with a

mathematical function, called “convolution”, which greatly reduces the

computational burden. For example, when analyzing a pixel in an

image, the nearby pixels are the most relevant and there is no need to

incorporate distant pixels. Because CNNs are very powerful for image

processing, researchers have developed methods for encoding different

types of information as images for a variety of applications, including

metagenome-based disease predictions. Methods that leverage the

CNNs architecture are discussed in Section 3.

AEs represent a different type of deep learning. In this case, the goal

is not to predict an output value, but rather to find a more compressed

representation of the input data [33]. This is also referred to as “di-

mensionality reduction” of the feature space. Dimensionality reduction

addresses a common issue of deep learning, called overfitting. Over-

fitting refers to learning a model that is very specific to the training data

but will not generalize well to the testing data. This is a concern when

there are more features than samples, as is often the case in meta-

genome-based disease prediction [34]. AEs take a set of input features

and learn a smaller set of latent features that capture the same amount

of information. This is done by ensuring that the original set of features

can be recovered from the smaller set with minimal loss [33]. By first

applying AEs to obtain a reduced set of features, which are then used as

input to DNNs, the model can avoid overfitting and generalize better

[11,33].

3. Current methods in metagenome-based disease prediction

3.1. Feature extraction

In disease phenotype prediction, there are three types of commonly

used features extracted from metagenomic sequence reads: the abun-

dances of different microbes, functional annotation of the metagenomic

samples, or the k-mer abundances from raw reads.

Given the metagenomic sequence data, one of the key questions is to

identify and quantify the presence of different microorganisms. Under

the assumption that microbiome composition is different between

healthy and diseased individuals, the profiles of microbial abundances

are widely used as a type of feature in disease prediction. MetaPhlAn2

[6] is a popular tool to estimate the relative abundance of microbial

taxa. It uses a set of clade-specific marker genes to assign reads to mi-

crobial clades. It then estimates the relative abundance of each taxon

based on the read coverage. The majority of the metagenome-based

disease predictive models in this paper leverage MetaPhlAn2 profiles

for the underlying features [5,8,9]. Met2Img [8] uses the species

abundances as the raw features; PopPhy-CNN [9] aggregates the

abundances reported by MetaPhlAn2 up to the genus level; MetaML [5]

investigates the performance of using species abundances or the pre-

sence of strain-specific markers as the microbiome features. Alter-

natives to MetaPhlAn2 include Quikr [35], Bracken [36], and CLARK

[37]. The platform UGENE can combine the results of several of these

tools into a single “ensemble” prediction [38].

The other aspect of understanding a microbial community is ad-

dressing the question of “what are they doing?” through functional

annotation. One example of this approach was demonstrated by

Yazdani et al. [39], who detected protein family shifts between healthy

and diseased gut microbiomes by using KEGG [40] annotations and a

random forest classifier. Other methods attempt to infer the functional

and metabolic properties of microbiomes from either shotgun [41] or

16S rRNA [42] sequence data. Predicted functional and metabolic

profiles have been used to predict ecological roles in the rhizosphere

[43] and general human gut dysbiosis [44].

The major drawback of the aforementioned feature extraction ap-

proaches is that they are limited by the reference database. In microbial

abundance profiling, we can only estimate the abundance of known

microbes, or the microbes present in the database. In functional pro-

filing, we rely on the annotated genes and pathways that can be re-

cognized in the sequencing data. Consequently, these two approaches

toss away unmapped reads with valuable information [7]. In order to

fully utilize all of the reads, several frameworks have proposed using

the k-mer abundances directly acquired from the raw reads [45–48].

These frameworks first count the k-mer frequencies of the metagenomic

reads in each individual. Common k-mer counters include Jellyfish [49]

and KMC [50]. The next step is to identify the significantly differen-

tially abundant k-mers between the cases and controls through a sta-

tistical test, such as Student’s t-test, Wilcoxon rank-sum test, or like-

lihood ratio test. The false discovery rate is then controlled for multiple

hypothesis testings. The statistically significant k-mers are sometimes

used directly as the features. In other cases, the raw k-mer counts are

used without statistical testing in pipelines alongside other steps, such

as assembly and clustering [7].

3.2. Meta-analysis of classical machine learning approach

Recently, the work of Pasolli et al. [5], MetAML (Metagenomic

prediction Analysis based on Machine Learning) comprehensively as-

sesses different machine learning approaches to metagenome-based

disease prediction tasks. In MetAML, six available disease-associated

metagenomic datasets spanning five diseases are discussed. They are:

liver cirrhosis [51], colorectal cancer [52], inflammatory bowel dis-

eases (IBD) [53], obesity [54], and type 2 diabetes (T2D) (two distinct

studies [4,55]). Each dataset is evaluated independently by cross-vali-

dation. MetaPhlAn2 [6] taxa abundances are used as features. Several

classical machine learning and statistical methods are evaluated. RFs

performs the best followed by SVMs. However, deep learning methods

(neural networks) are not evaluated.

Overall, the proposed MetAML method works well for some phe-

notypes such as liver cirrhosis, IBD, and colorectal cancer. However, it

performs relatively poorly on T2D and obesity [5]. There are two main

limitations of using MetaPhlAn2 for feature extraction. First, Me-

taPhlAn2 is limited to detecting only species in its reference database. A

metagenomic benchmark study by the CAMI consortium found that

MetaPhlAn2 has a high false negative rate, meaning that it fails to

identify many taxa present in the sample [56]. Due to the false nega-

tives, the relative abundances are mis-estimated, leading to noise in the

extracted features. Second, MetaPhlAn2 does not consider functional

elements of the microbiome, limiting potentially valuable information

that can be used to predict diseases.

3.3. Deep learning approaches

As deep neural networks (DNNs) have achieved excellent classifi-

cation results, researchers have recently attempted to apply them to the

problem of metagenome-based disease prediction. However, several

challenges remain, with various methods attempting to address them.

Reiman et al. [9,57] argue that the DNN architecture may not be

suitable to predict diseases using metagenomic data. Learning through

a deep architecture often requires an excessive amount of data, which is

currently impractical with the limited number of sampled patients

[7,24]. In addition, as previously discussed, extracting the significant

features from the learned models is not trivial. To mitigate these issues,

Reiman et al. propose a framework that leverages the architecture of

CNNs to predict diseases from microbial abundance profiles [9,57].

Reiman et al.’s method PopPhy-CNN [9] uses phylogenetic trees to
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describe the relatedness of different features, i.e. microbes. The tree is

further embedded in a 2D matrix to include the observed relative

abundance of microbial taxa, allowing the CNNs to fully exploit the

spatial relationship of the microbes and their quantitative character-

istics in metagenomic data. A comprehensive evaluation has demon-

strated that the framework can efficiently train models without an ex-

cessive amount of data. The significant microbes contributing to

different diseases can also be extracted and visualized on the phylo-

genetic tree.

Another common issue in this domain is overfitting. To alleviate this

issue when conducting disease predictions, Nguyen et al. [8] propose

the Met2Img approach, which relies on embedding taxonomic abun-

dances as color pixels in an image, called “synthetic images”. Each

image corresponds to an individual and each pixel corresponds to a

taxon, with a color representing the abundance of that taxon. Pixels are

arranged by phylogenetic sorting such that pixels near each other re-

present taxa that are phylogenetically similar. Nguyen et al. explore a

variety of ways to set the colors and arrange the pixels. Finally, a CNN is

used to predict the disease based on the image created. Evaluating on

twelve benchmark datasets shows that Met2Img outperforms classical

machine learning algorithms (RFs and SVMs) [8]. Nguyen et al. claim

that the integration of phylogenetic information alongside abundance

data improves classification [8].

Several other related approaches have been developed that use deep

learning to predict both host and environmental phenotypes.

MicroPheno [10] uses extracted k-mer counts to predict various host

and environmental phenotypes, reporting that deep learning outper-

forms random forests for predicting environmental phenotypes but not

disease phenotypes. MetaNN [58] uses microbe abundance profiles,

augments them with simulated samples generated from a negative bi-

nomial distribution, and predicts host and body site phenotypes using

either a DNN or a CNN. They report that their method improves on

classical machine learning approaches, and that the DNN outperformed

the CNN [58]. Ditzler et al. apply a DNN and a recurrent neural network

(RNN) to host and environmental phenotype prediction. They find that

the DNN outperforms the RNN and a RF at predicting sample pH and

body site, while the RF is the best at predicting host phenotype [59].

3.4. Other machine learning approaches

Other methods have attempted to model the learning problem in a

different way. RegMIL [7] is one such method. RegMIL takes the ap-

proach of Multiple Instance Learning (MIL), which considers a set of

samples called “bags” that have known labels, and which contain a

number of “instances”, which have unknown labels. In this case, the

bags are the individuals in a study, the known labels are the disease

phenotypes, and the instances are the metagenomic sequence reads.

Because individual sequence reads provide limited information, RegMIL

begins by assembling reads into contigs and then binning and clustering

contigs. Normalized k-mer counts are then obtained for the sequences

in each cluster. Based on the association between k-mers and disease

status in the training set, a neural network is used to predict which k-

mers in the test set are associated with disease status. A RF classifier

uses these predictions as features to predict the disease status of the

individual. The authors claim that this approach leads to improved

results over MetaML in both accuracy and AUC on the liver cirrhosis

and IBD datasets [7]. RegMIL thus illustrates both a different way to

model the classification problem and an alternate way to employ neural

networks beyond the final disease prediction step.

Several other approaches have focused not directly on classification,

but on feature selection. Ditzler et al. introduce a feature selection

method called Fizzy that attempts to select important microbes or

functional elements for downstream classification algorithms to analyze

[60]. A competing taxonomy-aware feature selection method was re-

cently released by Oudah and Henschel [34]. The authors claim that

applying it prior to classification improves colorectal cancer prediction

from 16S rRNA metagenomic data [34]. Feature selection for meta-

genome-based disease prediction seems to be a less-explored area, but

may be just as important as the classification method used and may

enhance interpretability, motivating further research in this direction.

4. Results from previous works on MetAML datasets

Since several methods, including PopPhy-CNN [9], Met2Img [8],

and RegMIL [7], have been developed in comparison to the results of

MetAML [5], we review their results here in order to provide a com-

parison of several recent and related papers in the field. The datasets we

cover in this review are profiled in Table 1. As previously stated, Me-

tAML’s best results are obtained with a RF, PopPhy-CNN and Met2Img

are CNN based methods, and RegMIL models the problem with Multiple

Instance Learning (MIL), while using both a nerual network and RF as

part of their pipeline. Below, we compare and contrast the experimental

procedures used in each study and then review the results.

4.1. Cross-validation settings

MetAML performs grid search using stratified 5-fold cross-validation

to select the hyperparameters for each classifier, and then runs 10-fold

cross-validation 20 times using the selected hyperparameters to de-

termine the disease classification results [5]. PopPhy-CNN performs

hyperparameter grid search for SVMs using 5-fold cross-validation,

while the CNN is manually tuned and the settings of RFs are mostly left

to the default [9]. Met2Img performs 10 runs of stratified 10-fold cross-

validation to gather results and hyperparameter tuning is not men-

tioned for any of the methods in the paper [8]. RegMIL [7] performs

Leave One Out Cross-Validation (LOOCV), and sets the hyperpara-

meters manually.

4.2. Evaluation protocols

Commonly used evaluation metrics for binary classification include

accuracy, precision, recall, F1-Score and area under the receiver oper-

ating characteristic curve (AUC). Accuracy simply refers to the per-

centage of correctly predicted individuals. Precision is the percentage of

predicted cases that are actual cases. Recall is the percentage of actual

cases that are correctly identified by the classifier. In other words,

precision measures the rate of falsely predicting disease, while recall

measures the rate of falsely predicting healthy. The F1-Score is the

harmonic mean of precision and recall, defined as follows:

− =
× ×

+
F Score

precision recall

precision recall
1

2

Most classifiers can report the probability of their prediction, which

can be considered as the confidence in the prediction. The AUC uses this

information to summarize the false prediction rate at different con-

fidence levels. While accuracy is the most straightforward representa-

tion of performance, the F1-Score and AUC are better metrics when

there is an imbalance of cases and controls. PopPhy-CNN [9] reports

AUC, Met2Img [8] reports accuracy, RegMIL [7] reports both accuracy

and AUC, and MetAML [5] reports all of the above metrics.

Table 1

Summary of the datasets covered in this study. More information is available in

the MetAML paper [5].

Number of case samples Number of control samples Citation

Liver cirrhosis 118 114 [61]

T2D 170 174 [4]

Obesity 164 89 [62]

IBD 25 85 [63]
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4.3. Summary of results

Because of the inconsistencies in cross-validation and hyperpara-

meter tuning, we only report the results of the baseline RF model and

the proposed model for each study without making cross-study com-

parisons. In Table 2, we show the comparison between PopPhy-CNN

and its RF baseline, denoted by PopPhy-RF. They report increased AUC

in liver cirrhosis, T2D, and obesity of between 0.8% and 3.4% [9].

Met2Img-CNN is reported to outperform their RF baseline (denoted as

Met2Img-RF) in liver cirrhosis, obesity and IBD, and the differences are

statistically significant based on the one-tailed t-test (p-value < 0.05)

[8]. RegMIL compares their proposed model with the MetAML package

(denoted as RegMIL baseline) and reports that it outperforms the

baseline in terms of accuracy and AUC for both liver cirrhosis and IBD

by 0.5–2%.

5. In-depth analysis of type 2 diabetes and obesity datasets

As summarized in Section 4, machine learning methods present

promising power (high accuracy and AUC) in predicting liver cirrhosis

and IBD using only the information from metagenomic reads. However,

these methods still struggle to predict T2D and obesity. Here we analyze

the performance of many different classification algorithms on the T2D

and obesity datasets. We also explore an alternate feature extraction

method to see if the results can be improved.

5.1. k-mer-based feature extraction

Many existing approaches rely on MetaPhlAn2 to estimate the re-

lative abundances of microbes in each individual based on the meta-

genomic data. To address the drawback of this approach as discussed in

Section 3, we examine the potential to improve T2D and obesity pre-

diction using k-mer abundance profiles.

We count the k-mer frequencies of the metagenomic reads in each

individual using Jellyfish [49]. To avoid the bias of different sequen-

cing depths, the k-mer counts are normalized by the total number of

possible k-mers in each sample. Each k-mer is represented by its ca-

nonical form (i.e., the lexicographical minimum of itself and its reverse

complementary sequence). In our study, we set k to 12, resulting in

8,390,656 unique k-mers. Shorter k-mers have a higher chance to

randomly appear in the genome; longer k-mers generate more candi-

dates in exponential order for the statistical analysis in the next step,

which can be computationally intractable. We empirically find that

setting =k 12 leads to sufficiently significant k-mers while still being

computationally feasible to process.

To identify the significant k-mers, we conduct a statistical test based

on the abundance of each k-mer between the cases and controls. We

first pool the k-mer counts from all diseased samples into a case group

and other samples into a control group. For each k-mer, we calculate

the p-value with the Student’s t-test, followed by the Benjamini-

Hochberg procedure [64] to control the false discovery rate from

multiple hypothesis testings. We sort the k-mers based on their adjusted

p-values, and retain the top 1000 k-mers as our significant features. This

criterion is used because retaining all k-mers with p-values smaller than

0.05 increases the computational time and does not improve the per-

formance. It is important to note that the significant k-mers are ex-

tracted from the training data for our machine learning analysis, and

the same set of k-mers is then used for the testing data.

5.2. Evaluation protocols

We compare the performance of k-mer-based features against the

microbial abundance profile estimated by MetaPhlAn2 down to the

strain level. These features are used as input to five different machine

learning algorithms: SVM, RF, XGBoost, gcForest, and an AE-pretrained

DNN (henceforth referred to as AutoNN). Hyperparameter grid search is

performed for all five algorithms using 5-fold cross-validation to select

the best settings. With these settings, each model is evaluated over five

independent runs of 5-fold cross-validation. We report the accuracy,

precision, recall, F1-Score, and AUC for each model (defined in Section

4). We also conduct a pairwise statistical test to determine if the result

of the best k-mer-based approach is significantly better than the result

of the best MetaPhlAn-based approach.

5.3. Summary of classification results

Tables 3 and 4 show that different models yield different perfor-

mances when learning from these two types of features. When learning

from the microbial abundance profiles, there is no single model that

outperforms the others in all metrics. SVM achieves the best recall and

F1-Score in both the T2D and obesity analyses. However, the SVM

simply leverages the class imbalance in the obesity data (see Table 1) to

achieve perfect recall, and reasonable precision and accuracy, by pre-

dicting positive for every sample. This highlights the importance of

careful interpretation for metrics on imbalanced data such as the obe-

sity and IBD datasets. The best accuracy using the microbial features is

achieved by AutoNN and RF for T2D and obesity, respectively; the best

precision is demonstrated by RF for T2D and XGBoost for obesity.

On the other hand, gcForest is particularly effective at learning from

the k-mer abundance profiles. It consistently outperforms the others in

all metrics in the T2D analysis. A similar observation is shown in the

obesity analysis, except that RF achieves the best recall. We further

evaluate whether the best accuracy results are significantly different

between the k-mer and microbial abundance features. The pairwise

Student’s t-test reveals that gcForest with k-mer features is not sig-

nificantly different from AutoNN with microbial abundance features in

the T2D dataset (p-value of 0.096 after Benjamini-Hochberg correc-

tion). Similarly, in the obesity dataset, gcForest with k-mer features is

not significantly different from RF with microbial abundance features

(p-value 0.558). These analyses further the evidence that T2D and

obesity will continue to be challenging traits to predict using only

metagenomic reads.

Table 2

Comparison of machine learning approaches in predicting different diseases.

Liver cirrhosis T2D Obesity IBD

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

MetAML-SVM 0.834 ± 0.052 0.922 ± 0.041 0.613 ± 0.057 0.663 ± 0.066 0.636 ± 0.042 0.648 ± 0.071 0.809 ± 0.066 0.862 ± 0.083

MetAML-RF 0.877 ± 0.043 0.945 ± 0.036 0.664 ± 0.052 0.744 ± 0.056 0.644 ± 0.052 0.744 ± 0.056 0.809 ± 0.050 0.890 ± 0.078

PopPhy-RF NA 0.932 NA 0.727 NA 0.642 NA NA

PopPhy-CNN NA 0.94 NA 0.753 NA 0.676 NA NA

Met2Img-RF 0.877 ± 0.060 NA 0.672 ± 0.080 NA 0.645 ± 0.042 NA 0.808 ± 0.068 NA

Met2Img-CNN 0.905 ± 0.071 NA 0.651 ± 0.094 NA 0.680 ± 0.066 NA 0.868 ± 0.081 NA

RegMIL baseline 0.923 ± 0.041 0.922 ± 0.040 NA NA NA NA 0.839 ± 0.028 0.824 ± 0.0374

RegMIL-RF 0.928 ± 0.036 0.927 ± 0.035 NA NA NA NA 0.847 ± 0.035 0.844 ± 0.026
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Table 3

Comparison of different types of features used to train the models for T2D The mean and standard deviation are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best performances are

highlighted in bold.

Microbial Abundances k-mer Abundances

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SVM 0.643 ± 0.007 0.626 ± 0.006 0.720 ± 0.015 0.664 ± 0.008 0.725 ± 0.005 0.638 ± 0.020 0.641 ± 0.028 0.617 ± 0.022 0.625 ± 0.016 0.695 ± 0.0215

RF 0.657 ± 0.018 0.681 ± 0.016 0.602 ± 0.025 0.632 ± 0.022 0.729 ± 0.013 0.680 ± 0.016 0.694 ± 0.016 0.642 ± 0.017 0.663 ± 0.018 0.746 ± 0.008

XGBoost 0.640 ± 0.019 0.645 ± 0.020 0.615 ± 0.025 0.626 ± 0.022 0.691 ± 0.011 0.676 ± 0.025 0.696 ± 0.029 0.632 ± 0.030 0.657 ± 0.027 0.731 ± 0.015

gcForest 0.655 ± 0.018 0.652 ± 0.020 0.667 ± 0.025 0.655 ± 0.022 0.734 ± 0.011 0.694 ± 0.006 0.698 ± 0.010 0.685 ± 0.015 0.687 ± 0.007 0.762 ± 0.011

AutoNN 0.663 ± 0.018 0.664 ± 0.022 0.660 ± 0.019 0.657 ± 0.018 0.734 ± 0.016 0.652 ± 0.008 0.644 ± 0.012 0.676 ± 0.019 0.653 ± 0.010 0.713 ± 0.004

Table 4

Comparison of different types of features used to train the models for obesity. The mean and standard deviation are recorded for different evaluation metrics after five runs of 5-fold cross-validation. The best performances

are highlighted in bold.

Microbial Abundances k-mer Abundances

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

SVM 0.637 ± 0.001 0.637 ± 0.001 1.000 ± 0.000 0.777 ± 0.001 0.513 ± 0.036 0.615 ± 0.027 0.692 ± 0.020 0.723 ± 0.030 0.703 ± 0.020 0.599 ± 0.017

RF 0.648 ± 0.011 0.651 ± 0.003 0.968 ± 0.018 0.776 ± 0.009 0.642 ± 0.006 0.614 ± 0.016 0.673 ± 0.005 0.779 ± 0.027 0.717 ± 0.016 0.594 ± 0.027

XGBoost 0.635 ± 0.024 0.675 ± 0.011 0.828 ± 0.037 0.741 ± 0.021 0.606 ± 0.024 0.617 ± 0.026 0.682 ± 0.012 0.761 ± 0.043 0.715 ± 0.025 0.598 ± 0.020

gcForest 0.640 ± 0.013 0.655 ± 0.009 0.925 ± 0.016 0.764 ± 0.008 0.650 ± 0.015 0.637 ± 0.024 0.704 ± 0.019 0.747 ± 0.028 0.721 ± 0.018 0.619 ± 0.034

AutoNN 0.624 ± 0.007 0.643 ± 0.002 0.930 ± 0.025 0.757 ± 0.008 0.603 ± 0.013 0.597 ± 0.012 0.667 ± 0.011 0.753 ± 0.018 0.700 ± 0.011 0.567 ± 0.014
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5.4. Hyperparameter grid search details

Here we discuss the details of the grid search that was performed to

select the best hyperparameters for classification. Grid search was

performed for all five algorithms using 5-fold cross-validation to select

the best settings, which were then used in the subsequent classification

steps. We attempted to identify a limited number of critical hy-

perparameters for each algorithm that significantly modified perfor-

mance, as comprehensively evaluating all combinations of all possible

hyperparameters is computationally infeasible. Similarly, we ran some

small tests to evaluate choices for these settings that were computa-

tionally feasible and positively affected results. These hyperparameters

(and the settings evaluated) were: the type of kernel (linear/poly-

nomial) and the error term penalty (0.25/0.5/0.75/1.0/1.25/1.5/1.75/

2.0) for the SVM; the maximum tree depth (2/6/10), number of esti-

mators (10/50/100), and the splitting criterion (entropy/gini) for the

Random Forest; the maximum tree depth (2/6/10), “alpha” L1 reg-

ularization term (0/0.25/0.5), and “lambda” L2 regularization term

(0.5/1.0/1.5) for XGBoost; the number of training rounds (3/5) and the

maximum forest depth (unlimited/50/100) for gcForest; the number of

autoencoder layers (none/1/2/3), number of feedforward layers (3/5/

10), dropout rate (0/0.25/0.5), optimizer (stochastic gradient descent

[65]/adagrad[66]/adam[67]), and learning rate (0.01/0.001) for Au-

toNN. SVM and RandomForest were implemented via the scikit-learn

library [68] and the AutoNN was implemented in Keras [69]. For more

information on the XGBoost [22] and gcForest [23] hyperparameters,

see their respective papers and software packages.

For the taxonomic features, the SVM’s best hyperparameter settings

were a linear kernel and an error term penalty parameter of 1.75. For

the Random Forest, the best hyperparameter settings were a maximum

tree depth of 6, 100 estimators, and the entropy splitting criterion. For

XGBoost, the best settings were a maximum tree depth of 2, an alpha of

0.0, and a lambda of 1.0. For gcForest, the best settings were 5 rounds

of training and unlimited maximum forest layers. For AutoNN, the best

settings were a single autoencoder layer, five feedforward layers, a

dropout rate of 0.5, the adagrad optimizer, and a learning rate of 0.001.

For the k-mer-based features, the SVM’s best hyperparameter set-

tings were a linear kernel and an error term penalty parameter of 0.25.

For the Random Forest, the best hyperparameter settings were a max-

imum tree depth of 6, 50 estimators, and the gini splitting criterion. For

XGBoost, the best settings were a maximum tree depth of 2, an alpha of

0.25, and a lambda of 1.5. For gcForest, the best settings were 3 rounds

of training and unlimited maximum forest layers. For AutoNN, the best

settings were a single autoencoder layer, three feedforward layers, a

dropout rate of 0.25, the adam optimizer, and a learning rate of 0.001.

6. Discussion

We have reviewed several methods that claim to improve disease

prediction on several datasets from a popular meta-analysis by Pasolli

et al. [5]. There are several inconsistencies that make a comparative

analysis of these methods difficult, namely different cross-validation

and hyperparameter searching methods used both between and within

studies, and different classification metrics being reported between

studies. Any valid cross-validation analysis is reasonable to report in a

given study, whether 5-fold, 10-fold, or LOOCV, but within the same

study, each method should be run with the same cross-validation and

comprehensive hyperparameter search settings. As for which cross-va-

lidation method is ideal for this setting, there is no obvious best choice,

but LOOCV has been shown to have low bias and strong generalization

to new data [15,70,71], with the main drawback being computational

cost [15]. It is often recommended for small datasets and has the ad-

ditional benefit of avoiding questions surrounding stratification and

different numbers of independent k-fold runs. Performance metric in-

consistency is also an issue. With case-control class imbalances, dif-

ferent metrics may vary in usefulness, but reporting all of the ones

mentioned in Section 4 makes it clear why an algorithm is out-

performing others, whether due to fewer false case predictions or fewer

false control predictions. Some papers also report the Matthews Cor-

relation Coefficient (MCC) which is robust to case-control class im-

balances [72]. Overall, greater clarity and robustness of results can be

achieved by keeping study methodology and performance metrics

consistent across all tested algorithms.

There are several other ways that interpretability can be enhanced.

PopPhy-CNN, RegMIL, and MetAML all discuss the most significant

microbes for their classification models. This facilitates comparisons

between the biological implications suggested by each model. Met2Img

provides results for many different variants of their method, and also

used a t-test to highlight significant results [8]. All of these methods

provide confidence bounds for their predictions. Each of these factors

help to determine the robustness and the relevance of results. Another

aid to replicable results and consistent experiments is public, cen-

tralized resources for metagenomic data analysis. One example of this is

ExperimentHub [73], which compiles many phenotyped metagenomic

datasets, including those used in the Pasolli et al. meta-analysis. Ex-

perimentHub provides both microbiome taxonomic and functional an-

notations [73].

Feature extraction plays an important role in the performance of the

classification model. We have reviewed the benefits and limitations of

MetaPhlAn2-based feature extraction and also discussed an alternative

k-mer-based approach in this paper. One difficulty of the k-mer-based

approach is the computational burden of analyzing k-mers with a large

k because of the exponential increase of the numbers of possible k-mers.

With short k-mers, the interpretability is challenging, as it is unclear

what the k-mers represent. One less explored feature extraction ap-

proach is attempting to explicitly infer functional characteristics of the

microbiome, using methods such as HUMAnN [41] or PICRUSt [42].

Finally, integration between different types of extracted features can be

explored and further research in this direction is critical.

Ultimately, however, there has been extensive effort put into these

studies with increasingly powerful machine learning algorithms, but

with only minor performance improvements and modest changes in

feature importance rankings. This suggests that there are upper limits

on predictive accuracy that can be achieved from only metagenomic

sequence read data. Thus, perhaps the greatest way to improve results is

to include genetic data from the human subjects from whom metage-

nomic samples are taken. While this increases the cost of studies, it is

likely critical to understanding the microbiome’s role in complex phe-

notypes such as obesity and T2D. For instance, it has been demon-

strated recently that combining microbiome and genetic data can sig-

nificantly improve the prediction accuracy of several human traits,

including obesity [74]. Additonally, microbiome and genetic data are

largely complementary in contributing to this predictive performance,

and the microbiome is largely shaped by the environment [74]. Criti-

cally, these results indicate that using microbiome data alongside host

genetic data can help disentangle the intricate web of genetic and en-

vironmental factors that lead to complex traits. Additional multi-omic

data sources, such as metatranscriptomics, are just now seeing in-

creased availability and hold significant potential for elucidating the

function of the microbiome [71]. Finally, deep learning has been sug-

gested as a promising method for successfully integrating multiple data

types [75], and existing methods such as Similarity Network Fusion

[76] can also be employed.

We note that, while disease prediction has been challenging in some

cases, deep learning methods in particular seem to perform extremely

well at classifying the body-site origin of microbial samples from the

HMP [3] and other datasets as reported by MicroPheno [10] and others

[58,59]. Other works have performed strongly at predicting phenotypes

of the microbiome itself (as opposed to host phenotype) [59,77], pre-

dicting disease with deep learning on non-metagenomic data [78], or

identifying protein family shifts in microbiomes of diseased patients

[39]. While these directions are outside the scope of this review, they
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highlight other interesting applications of machine learning and deep

learning in metagenome-based phenotype prediction.

7. Conclusion

Disease prediction using metagenomic sequence data has shown

some potential, with a particularly large amount of effort having been

put into deep learning methods, but remains challenging. Study meth-

odology must remain consistent to compare different classification

methods, especially when margins of difference in performance are so

small. Feature extraction is as crucial to predictive performance as the

classification methods themselves, and deserves increased attention.

Supplementing metagenomic data with human genetic data may be the

best way to improve both classification performance and biological

understanding, especially with hard-to-classify complex traits such as

obesity and type 2 diabetes. This is because genetic and metagenomic

data provide complementary information about the host and environ-

ment, respectively [74].
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