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Abstract
Semi-supervised learning uses underlying relationships in

data with a scarcity of ground-truth labels. In this paper, we intro-

duce an uncertainty quantification (UQ) method for graph-based

semi-supervised multi-class classification problems. We not only

predict the class label for each data point, but also provide a con-

fidence score for the prediction. We adopt a Bayesian approach

and propose a graphical multi-class probit model together with

an effective Gibbs sampling procedure. Furthermore, we propose

a confidence measure for each data point that correlates with the

classification performance. We use the empirical properties of

the proposed confidence measure to guide the design of a human-

in-the-loop system. The uncertainty quantification algorithm and

the human-in-the-loop system are successfully applied to classifi-

cation problems in image processing and ego-motion analysis of

body-worn videos.

Introduction
Applications such as police body-worn video cameras gen-

erate a huge amount of data, beyond what is humanly possible for

analysts to review. Such problems are ripe for the development of

semi-supervised learning algorithms, which, by definition, use a

small amount of training data. In the last year, progress has been

made in applying graph-based semi-supervised learning to body-

worn videos with the goal of recognizing camera-wearers’ activ-

ities, i.e., ego-motion [11, 5]. However, as is often the case with

real-world videos, the variability of the data leads to imperfect

classification. Recently, the authors of [3] proposed to pair uncer-

tainty quantification (UQ) with the binary classification problem

on a similarity graph. Besides a label assigned to each data point,

they also estimated a measure of uncertainty, which helped iden-

tify hard-to-classify data points that require further investigation.

In the present paper, we push the UQ methodology to a

multi-class setting. We extend the binary graphical probit method

to a multi-class version and develop a Gibbs sampler that draws

samples from the posterior distribution. We propose a confidence

measure for each data point that we find correlates with the clas-

sification performance; we observe that data points with higher

confidence scores are more likely to be classified correctly. Along

with the new methodology and the empirical observations, we de-

velop the foundations for a system with a human in the loop who

serves to provide additional class labels based on the confidence

scores; our uncertainty quantification method identifies hard-to-

classify data points and the human in the loop assigns ground truth

to them, leading to reduced overall confidence scores. Our ideas

are tested on an image data set — the MNIST data set [10] — and

a body-worn video data set, the HUJI EgoSeg data set [14].

Related Work
Semi-supervised learning has been studied extensively in the

past two decades and has been successfully applied to applications

such as hyperspectral images [12] and body-worn videos [11, 5].

We refer readers to [22] and the more recent article [1] for a lit-

erature review. We focus on graph-based methods, in which a

similarity is measured for each pair of nodes (i.e. data points)

and label information is spread across the similarity graph from

a small set of labeled fidelity points. The similarity information

is often leveraged via the graph Laplacian, which has been been

used in a myriad of machine learning methods (see, for instance,

[19, 20, 21, 23]). The analogy between the graph Laplacian and

the classical Laplacian operator inspires a number of PDE-based

classification methods, such as [2, 9]; this also introduces the

recent development in uncertainty quantification to the machine

learning community. For instance, in their recent work [3], the

authors used an efficient sampling method that was originally de-

veloped for PDE-based inverse problems [6] to perform uncer-

tainty quantification for binary classification.

We refer readers to the books [16, 17] and the recent arti-

cle [13] for a review of methodologies employed in the field of

uncertainty quantification. For the specific application to machine

learning methods, the book [20] investigates uncertainty quantifi-

cation for a variety machine learning problems using a Gaussian

process prior. Except the above-mentioned book and the recent

work [3], most machine learning methods, even those developed

with the Bayesian way of thinking, focus on finding the optimal

classification (and/or hyperparameters that produce the optimal

classification) in an optimization context and do not consider or

utilize uncertainty quantification.

Methodology

Graphical Setting
Let X = {x1,x2, . . . ,xn} be a set of feature vectors, where

xi ∈ R
d . Let Z = {1,2, . . . ,n} index the entire dataset and Z′ ⊂ Z
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be a fidelity set consisting of nodes with known labels. We aim to

classify n data points into c classes such that:

1) data points with similar feature vectors, measured via a suit-

able similarity measure, should belong to the same class;

2) the classification should respect the ground-truth labels on

the fidelity set.

We consider each data point as a node in a weighted similarity

graph, where the edge weights are given by

wi j = exp
(

−‖xi − x j‖2/τi j

)

,

where ‖ · ‖ is the Euclidean distance and τi j are the self-tuning

constants proposed in [21]. The weights are chosen such that a

pair of nodes with similar feature vectors will have a weight close

to one and dissimilar nodes will have a near-zero weight. Suppose

u : Z → R
c is an assignment function; if u`(i) = max ˆ̀u ˆ̀(i) then

we interpret this to mean that u assigns class ` to data point i.

One way to achieve a classification is to optimize the following

objective function with respect to an assignment function u:

J(u) =
1

4

n

∑
i, j=1

wi j‖u(i)−u( j)‖2 +Φ(u,u′), (1)

where u′ encodes the ground-truth labels on the fidelity set Z′,
Φ(u,u′) measures the extent to which u differs from u′ on Z′.
Minimizing the first term in the object function ensures that a pair

of data points (i, j) with a high similarity wi j will be assigned to

the same class.

Using matrix notation, we identify u and u′ with n× c ma-

trices so that ui` = u`(i). If we let W be the matrix of wi j and

D = diag(d1,d2, · · · ,dn) where di = ∑ j wi j , we can introduce the

graph Lapalcian

L = D−W (2)

and the Dirichlet energy

〈u,Lu〉= 1

2

n

∑
i, j=1

wi j‖u(i)−u( j)‖2, (3)

where 〈u,v〉= trace
(

uT v
)

, and hence we may write eq. (1) as

J(u) =
1

2
〈u,Lu〉+Φ(u,u′) (4)

The quadratic form in eq. (3) alludes to the connection to

Bayesian Gaussian process models.

It is common in graph-based learning methods to use nor-

malized variants of the graph Laplacian in place of the unnormal-

ized graph Laplacian eq. (2) because of better numerical proper-

ties as well as the classification performance (see, for instance,

[2]). One popular choice is the symmetrically normalized graph

Laplacian,

Lsym = D−1/2LD−1/2, (5)

which is convenient to compute with due to its symmetry. With

the choice of the symmetrically normalized graph Laplacian, the

quadratic form in eq. (3) becomes

〈u,Lsymu〉= 1

2

n

∑
i, j=1

wi j

∥

∥

∥

∥

∥

u(i)√
di

− u( j)
√

d j

∥

∥

∥

∥

∥

2

.

In the remainder of this manuscript, the notation L is a placeholder

for any choice of graph Laplacian.

Bayesian model
We now present a Bayesian model for the assignment func-

tion u, for which the posterior distribution takes the form:

p(u|u′) ∝ exp(−J(u)), (6)

so a maximum a posteriori probability (MAP) estimator is a mini-

mizer of J(u). We assume the prior on u is a Gaussian distribution,

p(u) ∝ exp

(

−1

2
〈u,Lu〉

)

.

To explicitly construct a sample u that follows the prior distribu-

tion, we employ the Karhunen-Loéve expansion. Let L = QΛQT

be the eigen-decomposition of the graph Laplacian where the

columns of Q ∈ R
n×n form an orthonormal basis of R

n and

Λ = diag(λ1,λ2, · · · ,λn) obeys

0 = λ1 ≤ λ2 ≤ ·· · ≤ λn.

We observe that L is positive semi-definite. Suppose {ξi}n
i=1 is

a collection of independent c-variate normal random variables

N (0, Ic), where Ic is an identity matrix of size c. We construct a

sample u as the random sum

u =
n

∑
i=2

λ
−1/2
i qiξ

T
i ,

so that the columns of u live in span{q1}⊥ and u has the desired

probability distribution

p(u) ∝ exp

(

−1

2

n

∑
i=1

c

∑
`=1

λi〈u`,qi〉2

)

= exp

(

−1

2
〈u,Lu〉

)

.

(7)

In graph-based semi-supervised learning, it is common to

approximate the graph Laplacian using only its first few eigen-

vectors and eigenvalues, since these often contain the relevant

geometric information reflecting clustering of the data points at

nodes of the graph (see, for instance, [19]). Such truncation of the

spectrum both reduces computation cost and often improves the

classification performance. In this case, we also employ spectral

truncation and let u be the random sum up to K for K � n, i.e.

u =
K

∑
i=2

λ
−1/2
i qiξ

T
i . (8)

In their recent work [3], the authors considered several like-

lihood functions p(u′|u) to connect the latent variable u to the

ground-truth labeling u′ for binary classification. In the present

paper, we primarily investigate the independent probit likelihood

function. Suppose {η(i)}i∈Z′ is a collection of independent c-

variate normal random variables N (0,γ2Ic) where γ2 is the noise

variance. We connect u to u′ via

v(i) = u(i)+η(i)

u′(i) = threshold(v(i)) , i ∈ Z′.
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The threshold operator applied to a vector simply sets the largest

element in the vector to be 1 and the rest to be 0. With the intro-

duction of latent variables {v(i)}i∈Z′ , we have, from Bayes for-

mula, the following joint posterior probability distribution

p(u,v|u′) ∝ exp

(

−1

2
〈u,Lu〉− 1

2γ2 ∑
i∈Z′

‖u(i)− v(i)‖2

)

× ∏
i∈Z′

1threshold(v(i))=u′(i).

Using the change of variable from u to ξ , for ξ =
(ξ1,ξ2, · · · ,ξK) ∈ R

c×K in eq. (8), we can apply our chosen sam-

pling method to p(ξ ,v|u′). We compute that the joint probability

p(ξ ,v|u′) ∝ exp

(

−1

2
〈ξ T ,Λ′ξ T 〉− 1

2γ2
‖HQ′ξ T − v‖2

)

× ∏
i∈Z′

1threshold(v(i))=u′(i),

where Λ′ = diag(λ1,λ2, · · · ,λK), the matrix Q′ ∈ R
n×K consists

of the first K eigenvectors of the graph Laplacian, and H =(δi ji)∈
R
|Z′|×n for Z′ = { ji : i = 1,2, · · · , |Z′|}. We note that H applied to

a matrix selects its rows of the fidelity set Z′.
To sample from the joint posterior distribution, a Gibbs sam-

pler will alternate between the following three steps:

1) Draw ξ from p(ξ |v,u′),
2) Construct u from ξ via eq. (8),

3) Draw v from p(v|u,u′).

For Step 1) we note that for each ` ∈ {1,2, · · · ,c}, the con-

ditional probability for each row of ξ , denoted as p(ξ:,`|v,u′) has

the same distribution as

N

(

m,P−1
)

, P = Λ′+
1

γ2
Q′T HT HQ′, m =

1

γ2
P−1Q′T HT v`.

In Step 3), for each i ∈ Z′, we need to sample a c-variate nor-

mal random variable subject to a linear inequality constraint; let

ai denote the unique index such that u′ai
(i) = 1 for i ∈ Z′, i.e., data

point i belongs to class ai according to the ground-truth label.

Then we need to sample v(i) according to the following condi-

tions:

v(i)∼ N

(

u(i),γ2Ic

)

, vai
(i)≥ v`(i) for all ` ∈ {1,2, · · · ,c}.

We use the implementation from [4] to efficiently draw samples

from the linearly constrained normal distribution.

Uncertainty Quantification
Given a set of samples {u(k)}N

k=1 from the Gibbs sam-

pler, we investigate Eu|u′ (threshold(u)), the posterior mean of

threshold(u); this can be approximated by the sample mean

s`(i) = Eu|u′ (threshold(u(i))`)≈
1

N

N

∑
k=1

threshold(u(i))`.

Since each element threshold(u(i))` is either zero or one, the ex-

pectation s`(i) simply gives the probability, under the posterior

distribution, of the element being one; that is s`(i) can be inter-

preted as the probability data point i belongs to class `. We note

Figure 1. A flow chart summarizing the proposed human-in-the-loop sys-

tem.

that for each data point, the probability of it belonging to each

class should sum to one, i.e., ∑` s`(i) = 1. This is obeyed by both

the posterior mean and the sample mean approximation. We can

use the posterior mean s(i) as a classifier, which classifies data

point i according to its largest entry.

Intuitively, a single large s`(i) for a data point i indicates a

very confident classification of class `; in this case, the remaining

entries in s(i) are necessarily small due to the sum-to-one condi-

tion; this creates a large variance in the vector s(i). On the other

hand, if entries in the vector s(i) are all roughly equal, meaning

the data point is equally likely to be classified as either class, the

classification has a lot of uncertainty, resulting in an s(i) with a

small variance. Based on this intuition, we measure the classifi-

cation confidence of node i by the variance of s(i)

S(i) = var(s(i)) =
1

c

c

∑
`=1

(

s`(i)−
1

c

c

∑
`=1

s`(i)

)2

.

We emphasize that this variance is not the posterior variance.

However, we can show the following connection between the

quantity S(i) and the posterior variance

S(i) =
1

c
− 1

c2
− 1

c

c

∑
`=1

varu|u′ (threshold(u(i))`) ,

where varu|u′(·) is the posterior variance. Therefore, the quantity

S(i) is a constant minus the mean posterior variance, which can be

interpreted as a measure of uncertainty, averaged over all classes.

Human-in-the-loop
In the following experiments section, we demonstrate a pos-

itive correlation between the proposed confidence score and the

classification performance; the confidence score enables us to lo-

cate hard-to-classify data points, which we may label and use as

additional fidelity. This naturally leads to the idea of using the

confidence measure to intelligently select new fidelity points to

achieve a better classification performance with limited human

labeling effort. We design a human-in-the-loop system as follows

(see fig. 1). We start with a small set of initial fidelity points

and apply the UQ algorithm to obtain a confidence score for the

entire data set. We randomly sample, in a uniform fashion, ad-

ditional candidate fidelity points with confidence scores within a

percentile range. The human in the loop then observes each of the

candidate fidelity points to assign ground truth to them. We per-

form the UQ algorithm again to update the confidence scores and

repeat the process until we reach the maximum number of fidelity

points permitted (this will be determined by the application).

We observe that in practice adding data points with the low-

est confidence scores does not benefit overall classification per-
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(a) Low confidence (b) High confidence

Figure 2. Uncertainty quantification on the MNIST dataset. S(i) is the proposed confidence score. For each digit, we present four examples chosen from the

top/bottom ten with the highest/lowest confidence scores within each class.

formance because these data points are often outliers. The signifi-

cance of classifying these outliers correctly is scenario dependent.

In our experiments, we focus on the overall accuracy and do not

sample fidelity from data points with confidence scores strictly

below the tenth percentile.

Experiments

We perform uncertainty quantification on 1) the MNIST data

set, a handwritten digit data set, and 2) the HUJI EgoSeg data

set, a body-worn video data set. Through these experiments, we

illustrate some empirical properties of the confidence score; we

demonstrate its correlation with the classification performance.

We also validate our human-in-the-loop system and showcase its

ability to improve classification results with limited human input.

MNIST

The MNIST data set [10] consists of 70,000 images of hand-

written digits; each image is of the size 28×28 pixels. We choose

uniformly at random 500 images each from the digits 1, 4, 7, and 9

to form a graph of 2000 nodes. We follow the graph construction

procedure in [3]; each image is projected onto the lead 50 princi-

pal components yielding a 50-dimensional feature vector, and we

construct a 15-nearest neighbor graph. The weighting constants

τi j are chosen according to [21]. For data point i, we compute

the mean distance of its 15 nearest neighbors, denoted as τi; then

the weighting constant τi j is given by τi j = τiτ j. We use the sym-

metrically normalized graph Laplacian (see eq. (5)) and truncate

its spectrum at K = 300. We perform the Gibbs sampler with 3%

uniformly randomly sampled fidelity points; the noise variance is

chosen to be γ = 0.1, and we draw 2×104 samples to estimate the

uncertainty. We showcase examples of images with the highest or

the lowest confidence scores in fig. 2. It is interesting to note that

the lowest confidence score of digit 1 is much higher than that of

the other digits; we theorize that it is easier for the algorithm to

differentiate digit 1 from the other three digits.

Body-Worn Videos

We also apply our method to the HUJI EgoSeg data set

[14, 15]. This data set contains 65 hours of egocentric videos

including 44 videos filmed using a head-mounted GoPro Hero3+,

the Disney data set [7] and other YouTube videos1. In the re-

cent paper [5], a graph-based semi-supervised learning method is

applied to this data set to classify video segments according to

camera-wearers’ activities and showed promising results. This

data set consists of footage of 7 activities: Walking, Driving,

Riding Bus, Biking, Standing, Sitting, and Static. We follow

the same feature extraction procedure described in [5] to obtain

a 50-dimensional feature vector for every 4-second video seg-

ments; this yields 36,421 segments. To speed up our calculation,

we sample every fifth segment. The graph is constructed from

the 50-dimensional feature vectors, and the weighting constants

τi j = τiτ j are chosen according to [21], where τi is the distance of

the 40th nearest neighbor of node i. We employ the symmetrically

normalized graph Laplacian and truncate the spectrum at K = 400.

The eigenvectors are computed using a low-rank approximation

of the graph Laplacian via the Nystrom extension [8]. The Gibbs

sampler is applied with γ = 0.1 and 2×104 iterations.

The data set is separated into a training and testing set, which

are disjoint sets of videos; the training set contains around 65% of

the data, measured in terms of the footage length. We refer read-

ers to [15] for the details of the experimental protocol. However,

we do not use the full training set but instead take a portion of

it as the fidelity. All classification performances are evaluated on

the testing set only. We first investigate the correlation between

the confidence score and the classification accuracy. We perform

uncertainty quantification with 12% of the training set. Recall

that the classification is produced by taking the largest entry of

the posterior mean s(i) for each data point i. In fig. 3, we plot

the classification accuracy of the top x% to x+5% confident data

points for each x ∈ {0,5,10, · · · ,95}. We observe that the clas-

sification is more accurate on data points with higher confidence

scores. We also validate our human-in-the-loop system on this

data set. We start with 6% fidelity data and gradually increase

the fidelity percentage to 30% over five iterations; at each iter-

ation, we introduce additional 6% fidelity points sampled from

data points with confidence scores within in the range of the tenth

and 50th percentile. We perform uncertainty quantification as

well as a graph-based semi-supervised learning method (an MBO

scheme [2]) using the same set of fidelity points. We refer read-

ers to the appendix for a description of the MBO scheme and its

1http://www.vision.huji.ac.il/egoseg/
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Figure 3. Classification accuracy on data points with top x% to x+5% confi-

dence scores on the HUJI EgoSeg data set. We group data points based on

their confidence score; each group contains 5% data points and we evaluate

the classification accuracy on each group.
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(a) Accuracy
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(b) Recall

Figure 4. Classification performance of UQ and an MBO classifier using

iteratively generated fidelity (UQ/MBO-iter) and uniformly randomly sampled

fidelity (UQ/MBO) on the HUJI EgoSeg data set.

parameters that we use for this experiment. We compare the clas-

sification performance, measured in terms of accuracy and mean

recall averaged over seven classes, of both classifiers using iter-

atively generated fidelity against the same classifiers using uni-

formly randomly sampled fidelity. The results are presented in

fig. 4. We observe that both classifiers benefit from the intelli-

gently sampled fidelity in terms of producing higher accuracy and

mean recall than using uniformly randomly sampled fidelity.

Conclusion
In this paper, we considered the problem of uncertainty

quantification in a graph-based semi-supervised multi-class clas-

sification problem . We extended the graphical probit model, orig-

inally proposed for the binary classification problem in [3], to the

multi-class case. We proposed a Gibbs sampler to sample from

the posterior distribution and a confidence score that connects to

the posterior variance. Through our experiments on the MNIST

data set, we demonstrated that the proposed confidence score is

easy to interpret; it is clear to see the contrast between the digit

images with low confidence scores and ones with high confidence

scores. The proposed confidence score also exhibits a correla-

tion with the classification performance in our experiments on the

HUJI EgoSeg data set. Based on these observations, we designed

a human-in-the-loop system to efficiently use human labeling ef-

fort to improve classification results. We validated this system on

the HUJI EgoSeg data set and observed that the classifiers that we

studied produced improved classification using the human-in-the-

loop system than the same classifiers using uniformly randomly

sampled fidelity.

Moving forward, we can develop new theory of uncertainty

quantification for semi-supervised multi-class classification. We

can investigate the performance bound of the Gibbs sampler with

respect to a large number of data points and classes. We can ex-

tend the previous analysis of uncertainty quantification methods

for binary classification to the multi-class case, in which we sus-

pect the number of classes play a nontrivial role in the perfor-

mance of the sampling methods. We also point out that speed

is the primary concern of the current Gibbs sampler. Despite

the development of scalable graph-based semi-supervised learn-

ing methods (see [2] for an example), the Gibbs sampler is mostly

sequential; we draw each sample based on the previous one. Nev-

ertheless, the current work opens the door for the development

of a system that combines modern machine learning with expert

analyst knowledge.
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Appendix
We detail the Merriman-Bence-Osher (MBO) scheme, a

graph-based semi-supervised learning method. We optimize the

graph Total Variation (TV) plus a least-squares fidelity term

1

2
|u|TV +ΦLS(u,u

′). (9)

subject to the constraint that each u(i) is discrete; it lies on the

corners of a unit simplex, i.e., one and only one entry of each u(i)
is one and the rest are zero; the graph TV is given by

|u|TV =
1

2

n

∑
i, j=1

wi j‖u(i)−u( j)‖1, (10)

and the least-squares fidelity term takes the form:

ΦLS(u,u
′) = ∑

i∈Z′

1

2γ2
‖u(i)−u′(i)‖2.

We note that when u(i) is discrete, the graph TV in eq. (10) agrees

with the Dirichlet energy eq. (3). We then relax the combinatorial

optimization problem; we allow u(i) to take values in R
c and pe-

nalize u for being away from the corners of the unit simplex with

a multi-well potential

M(u) =
n

∑
i=1

c

∏
`=1

1

4
‖u(i)− e`‖2 ,

where e` is the unit vector in R
c in the `th direction. Replacing

the graph TV with the Dirichlet energy and the discrete constraint

with the addition of the multi-well potential, we arrive at the fol-

lowing objective function

1

2
〈u,Lu〉+ 1

ε
M(u)+ΦLS(u,u

′) (11)

for a small positive constant ε . The first two terms of eq. (11) is

known as the Ginzburg-Landau functional, which Γ-converges to

the graph TV as ε → 0 [18].

In the MBO scheme, we alternatively perform the following

two steps to update u:

1. Diffuse. Solve a force-driven heat equation

∂u

∂ t
=−Lu− 1

γ2 ∑
i∈Z′

u(i)−u′(i),

for a short time ∆t to obtain u∗; this is effectively a gradi-

ent descent step for the first and third term of the objective

function eq. (11).

2. Threshold. set

u(i) = e`(i), `= argmax
ˆ̀

u∗ˆ̀(i).

This approximates the gradient descent step for the second

term of eq. (11) when ε is small.

We use a semi-implicit method to solve the heat equation:

u+−u

δ t
=−Lu+− 1

γ2 ∑
i∈Z′

u(i)−u′(i),

where δ t = ∆t/Nstep and Nstep is the number of time steps used to

solve the heat equation. We note that we use an implicit stepping

for the term involving the graph Laplacian to resolve the poten-

tial stiffness of L. To accelerate the computation of the implicit

stepping, we truncate the spectral at some level K, i.e., we approx-

imate L by

Q′Λ′Q′T =
K

∑
i=1

λiqiq
T
i .

In the experiment on the HUJI EgoSeg data set, we use the

following set of parameters: γ = 0.05, ∆t = 0.05, Nstep = 10, and

K = 400. The MBO scheme is allowed to run up to 100 iterations.
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