Modular *ipso/ortho* Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis

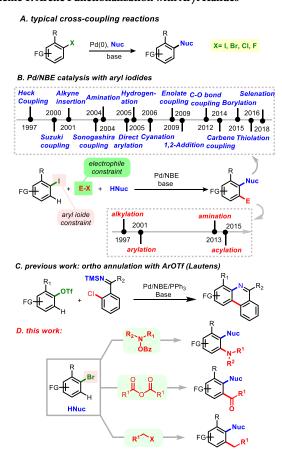
Zhe Dong,[†] Gang Lu,[‡] Jianchun Wang,[†] Peng Liu*[‡] and Guangbin Dong*[‡]

[†]Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States

[†]Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

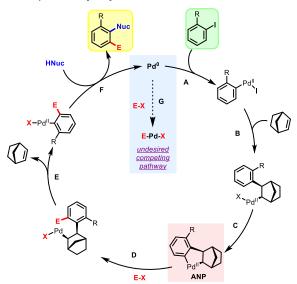
Supporting Information

ABSTRACT: Palladium/norbornene (Pd/NBE) cooperative catalysis has emerged as a useful tool for preparing poly-substituted arenes; however, its substrate scope has been largely restricted to aryl iodides. While aryl bromides are considered as standard substrates for Pd-catalyzed cross coupling reactions, their use in Pd/NBE catalysis remains elusive. Here we describe the development of general approaches for aryl bromide-mediated Pd/NBE cooperative catalysis. Through careful tuning the phosphine ligands and quenching nucleophiles, *ortho* amination, acylation and alkylation of aryl bromides have been realized in good efficiency. Importantly, various heteroarene substrates also work well and a wide range of functional groups are tolerated. In addition, the utility of these methods has been demonstrated in sequential cross coupling/*ortho* functionalization reactions, consecutive Pd/NBE-catalyzed difunctionalization to construct penta-substituted aromatics and two-step *meta*-functionalization reactions. Moreover, the origin of the ligand effect in *ortho* amination reactions has been explored through DFT studies. It is expected that this effort would significantly expand the reaction scope and enhance the synthetic potential for Pd/NBE catalysis in preparing complex aromatic compounds.

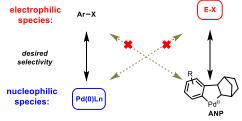

INTRODUCTION

Poly-substituted aromatics are ubiquitously found in pharmaceuticals¹, agrochemicals² and organic materials.³ During the past decades, cross-couplings⁴ and nucleophilic aromatic substitutions⁵ (S_NAr) have clearly become indispensable tools for preparing poly-functionalized arenes from readily available aryl halides through introducing a nucleophile at the ipso position (Scheme 1A). While powerful, these approaches typically only introduce one substituent at one time and the position of the newly installed functional group (FG) is dictated by the position of the halogen substituent.⁶ As a complementary approach for arene functionalization using aryl iodides, palladium/norbornene (Pd/NBE) cooperative catalysis, namely Catellani-type reactions, allows for vicinal difunctionalization of arenes through coupling a nucleophile at the ipso position and an electrophile at the ortho position simultaneously (Scheme 1B).7 It can be envisioned that, through using different combinations of nucleophiles and electrophiles, a diverse range of multi-substituted arene products would be easily obtained in one step from simple starting materials, thereby providing a modular approach for ipso/ortho difunctionalization. However, there have been some longlasting constraints in Pd/NBE catalysis that have limited its practical applications in synthesis.

Important contributions by Catellani, Lautens and others have demonstrated that, analogous to the cross coupling reactions, a broad range of nucleophiles can be coupled at the *ipso* position, which include Heck coupling, ^{7a,8} Suzuki coupling, ⁹ alkyne insertion, ¹⁰ Sonogashira coupling, ¹¹ cyanation, ¹² direct arylation, ¹³ amidation ¹⁴/amination, ¹⁵ aryl ether formation, ¹⁶ hydrogenolysis, ¹⁷ enolate coupling, ¹⁸, 1,2-addition to carbonyl group, ¹⁹ vinylation with hydrazone, ²⁰ borylation, ²¹ thiolation, ²² and selenation ²³ (Scheme 1B). However, compared to the highly versatile *ipso*-coupling, the scope of the electrophiles that can be introduced at the *ortho* position had been primarily restricted to alkyl and aryl halides since the seminal works by Catellani in 1997, and 2001, and addition, except a single elegant report by Lautens on aryl triflate-mediated annulation reaction, (Scheme 1C), the arene substrates in Catellani-


type reactions have been limited to aryl iodides, and use of aryl bromides remained elusive.

Scheme 1. Arene Functionalization with Aryl Halides



Such constraints might be better understood from the proposed catalytic cycle (Figure 1). It starts with oxidative addition of Pd(0) into the aryl-iodide bond (Step A), followed by syn-migratory insertion²⁵ into NBE (Step B) and C-H metalation, to generate an aryl-NBEpalladacycle (ANP)²⁶ (Step C), which can react with an electrophile to introduce a FG at the ortho position²⁷ (Step D). The following de-insertion of NBE through β -carbon (β -C) elimination gives a more sterically hindered aryl-palladium species²⁸ (Step E), which disfavors NBE re-insertion compared to the aryl-palladium species from Step A; thereby, it is persistent enough to be attacked by the nucleophile selectively to furnish the *ipso* functionalization and regenerate the Pd(0) catalyst^{7a} (Step F). Thus, to successfully implement the Pd/NBE catalysis, the electrophile employed should selectively oxidize or react with the **ANP** Pd(II) intermediate instead of the electron-rich Pd(0) catalyst (Step G); on the other hand, the aryl halide substrate must selectively react with the Pd(0)instead of ANP to avoid self-dimerization (Figure 1B). Given the simultaneous presence of two oxidants (aryl halides and the electrophiles) and two electron-rich Pd species (Pd(0)) and ANP, developing new ortho functionalization with expanded electrophile and aryl halide scopes is not a trivial issue.7g

A. simplified catalytic cycle

B. required selectivity

C.comparison betwen the use of Arl and ArBr

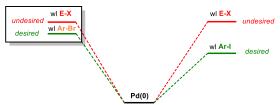


Figure 1. Mechanistic considerations.

To address the challenge of the "electrophile constraint", we hypothesized that electrophiles that have certain coordinating capability with the more Lewis acidic Pd(II) center at $\mbox{\bf ANP}$ might be suitable to afford

desired selectivity in the Pd/NBE catalysis. In 2013 we reported our preliminary study of developing *ortho* amination using *O*-benzoyl hydroxylamines as the electrophile²⁹, illustrating that heteroatoms can be introduced arene *ortho* positions (Scheme 1B). Subsequently, a series of elegant works on *ortho* amination-based different *ipso* functionalization have been disclosed.^{21,30} In 2015, the Liang, Gu and our laboratories concurrently described *ortho* acylation using anhydrides as the electrophiles.³¹ Recently, *ortho* acylation/*ipso* thiolation with thioesters²² and *ortho* carboxylation with carbonate anhydrides³² were reported by Gu and us respectively.

The challenge of the "aryl iodide constraint" may seem to be rather surprising, as aryl bromides have proved to be a suitable coupling partner in the Pd-catalyzed cross-coupling reactions for more than three decades. It is well known that aryl bromides undergo significantly slower oxidative addition with Pd(0) than aryl iodides, which inevitably increases the chance for the "external" electrophile to compete for the oxidation with Pd(0) (Figure 1C). Thus, it is reasonable to imagine the catalytic conditions that work well for aryl iodides may not work for aryl bromides. Hence, fine-tuning of the steric and electronic properties of the Pd(0) catalyst that can selectively accelerate certain steps in the catalytic cycle, e.g. oxidative addition (Step A) and β -C elimination (Step E), would become critical to enable the reactions with aryl bromides.

From a practicality viewpoint, aryl bromides are generally cheaper and more accessible than the corresponding aryl iodides.³⁶ In addition, for heterocycles and complex nature product derivatives, the aryl bromides are often more stable towards light or heat.³⁷ Moreover, availing the Pd/NBE catalysis with aryl bromides could also enable sequential cross coupling/ortho functionalization reactions or consecutive difunctionalization with polyhaloarenes³⁸ (vide infra, Scheme 9). Therefore, efficient and general methods for *ipso/ortho* difunctionalization of aryl bromides via Pd/NBE catalysis would be attractive.

In this article, we describe systematic efforts for developing various *ortho* functionalization reactions with different classes of electrophiles using aryl bromides as substrates (Scheme 1D). Diverse *ipso*—functionalization with different nucleophiles has also been exemplified. These methods have allowed for rapid access of a broad range of poly-substituted arenes and heteroarenes with complete control of site-selectivity.

RESULTS AND DISCUSSION

2.1 Ortho amination

In 2004 Johnson and coworkers reported a seminal study on coppercatalyzed electrophilic amination between O-benzoyl hydroxylamines and organozinc reagent. 39 Yu and coworkers described the first Pd-catalyzed C-H amination using O-benzoyl hydroxylamines in 2011.40 Inspired by these important works, we found O-benzoyl hydroxylamines could serve as an excellent electrophile for Pd/NBE catalysis. In combination with isopropanol as the hydride reductant, the ortho amination/ipso hydrogenation with aryl iodides was developed in 2013.²⁹ Using different nucleophiles as quenching reagents, various ipso functionalization reactions based on ortho amination have been developed (Figure 2), including Mizoroki-Heck reaction with olefins, 30a,f vinylation with hydrazines, 30b Suzuki coupling with aryl and alkyl boronic acids, 30c,g Sonogashira reaction with alkynes, 30d,e Miyaura borylation with diboranes, 21 cyanation with cyanides, 30h,i ketone α -arylation with enol equivalents, 30j dearomatization with phenols 30k and intramolecular amidation with amides. 301 It is clear that the ortho amination chemistry holds broad applicability and potential for practical utility;⁴¹ however, aryl iodides have been the sole substrates employed in these reactions except a single example in our ortho amination/ipso reduction report using a special electron-deficient aryl bromide.29

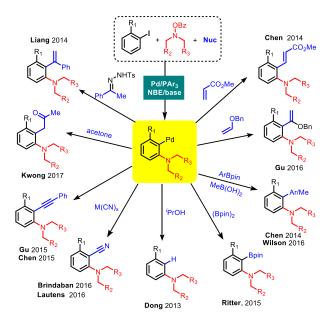


Figure 2. Examples of intermolecular ortho amination of aryl iodides.

To explore a general *ortho* amination method with aryl bromides, 2-bromoanisole **1a** was employed as the model substrate and the *ipso* hydrogenation was chosen as the model reaction. Under the previously reported conditions for aryl iodides, ²⁹ poor mass balance of aryl bromide and low yield of desired product **4a** were observed (Eq 1). Further effort to optimize the reaction identified that the major side-product was NBE-attached reduction compound **4a'** (Eq 2). The formation of **4a'** indicated that β -C elimination of NBE from the Pd(II) center was slower than hydride transfer from the alcohol reductant. We proposed that more sterically hindered secondary alcohol could significantly decrease the β -hydrogen (β -H) elimination speed thereby diminishing the side-product formation. After further examining the reaction conditions, bulky (-)-borneol **3** and 1,4-dioxane was found to be a better reductant and solvent combination for a balanced reactivity and selectivity.

Ligand effect: The ligand effect was then carefully investigated. The yields with mono-dentate phosphines were generally moderate with a significant amount of 4a' formed (Table 1). Compared to triaryl phosphines, trialkyl phosphines appear more selective with minimal 4a' observed, and by large, electron-rich ligands gave higher yields for the desired product 4a. Extremely bulky ligands, such as PtBu3, gave a trace amount of desired product. It is rather surprisingly that bidentate ligands worked well in this case, as they are typically less effective than monodentate ligands when aryl iodides were used as substrates. 7e In particular, bidentate phosphine ligands with a flexible backbone, such as dppb and DPEphos, gave reasonably good yields. On the contrary, those with a rigid backbone, such as dppBz, Xantphos and BINAP, gave NBEattached compound 4a' as the major product, which indicates that rigid phosphine ligands likely disfavored NBE extrusion. Meanwhile, the flexible backbone may allow one phosphine moiety dissociates⁴² and leaves a vacant site for NBE coordination and subsequent transformations.⁴³

Inspired by the fact that PCy_3 gave higher yield than PPh_3 , several bidentate trialkylphosphines were then tested. Gratifyingly, the dCypb ligand gave the desired product in 90% yield, though the same trend was not observed for DPEphos and dppf-type ligands. In addition, the analogous dCpentapb ligand gave a slightly lower yield, which later proved to be more efficient for other substrates.

Table 1. The Ligand Effect for Ortho Amination with Aryl Bromidesa

^a Run on a 0.2 mmol scale (0.1 M) for 14 h with 1.6 equiv of **2a** and 1.0 equiv of **3**; yields were determined by ¹H-NMR using 1,3,5-trimethoxylbenzene as the internal standard. The number in parentheses refers to the yield of side-product **4a**². For mono-dentate phosphines, the loading was 22 mol% instead of 11 mol%. ^b The corresponding HBF₄ salts were used. Cy, cyclohexyl.

To investigate the origin of ligands effects on the selectivity between the desired product 4a and the NBE-attached side-product 4a, DFT studies were carried out (Figure 3). In particular, we focused on the differences between alkyl- and aryl-phosphines as well as the effects of large bite-angle bidentate ligands. Therefore, dCypb, PCy₃, and PPh₃ were chosen as the model ligands in the computational study. Given that the NBE-attached compound 4a is the major side-product, we computed the competing β -C elimination pathway (product 4a formation) from carboxylate intermediate I and β -H elimination (side-product 4a formation) pathway from alkoxide intermediate I (Figure 3).⁴⁴

A. Ligand effect on β -C elimination в-С L = dCypb TS1a, ΔG^{\ddagger} = 15.8 kcal/mol elimination L = PCy₃ TS1b, ΔG^{\ddagger} = 16.9 kcal/mol $L = PPh_3$ TS1c, $\Lambda G^{\ddagger} = 18.4 \text{ kcal/mol}$ L = dCypbTS1a $\Delta G = 0.0 \text{ kcal/mol}$ ΔG^{\ddagger} = 15.8 kcal/mol TS1b I-1b $\Delta G = 0.0 \text{ kcal/mol}$ $\Delta G^{\ddagger} = 16.9 \text{ kcal/mol}$ 2.42 Å TS1c $\Delta G = 0.0 \text{ kcal/mol}$ $\Delta G^{\ddagger} = 18.4 \text{ kcal/mol}$ B. Ligand effect on β-H elimination ROH | Cs₂CO₃ L = dCypb TS2a, ΔG^{\ddagger} = 12.0 kcal/mol L = PCy₃ TS2b, ΔG^{\ddagger} = 9.7 kcal/mol β-Η L = PPh₃ **TS2c**, ΔG^{\ddagger} = 8.1 kcal/mol elimination TS2c

Figure 3. Computed barriers of β-C elimination and β-H elimination from the Pd(II) complexes supported by dCypb, PCy_3 and PPh_3 ligands. Activation free energies of β-C elimination are with respected to complex **I** and activation free energies of β-H elimination are with respected to complex **II.** Calculations were performed at the M06/SDD–6-

 $\Delta G^{\ddagger} = 8.1 \text{ kcal/mol}$

311+G(d,p)-SMD(1,4-dioxane)//B3LYP/LANL2DZ-6-31G(d) level of theory.

According to the DFT calculations, the activation energies of both the β-C and β-H elimination pathways are affected by the choice of ligand, and the reactivity trends in these pathways are different. The β-C elimination (TS1a-b, Figure 3A) is promoted by the use of alkylphosphine ligands (dCypb or PCy₃), consistent with the greater experimental yields of 4a with these ligands.⁴⁵ Here, the larger cone angle of PCy₃ (179°) compared to that of PPh₃ (145°) facilitates the elimination of norbornene. This ligand steric effect is evidenced by the short distance between the ligand and the a-hydrogen on the norbornyl group in intermediate **I-1b** (2.08 Å). A similar destabilization of intermediate **I-1a** is observed due to repulsions with the monodentate dCypb ligand (2.16 Å). It should be noted that bulkier ligands do not always lead to lower barrier to the β-C elimination, as PCy₃ is lightly less effective than dCypb. Very bulky ligands (e.g. $P(t-Bu)_3$) actually destabilize the β -C elimination transition state by causing repulsions with the bridgehead hydrogen on the norbornyl group (see Figure S2 for details). In the ligands investigated computationally, the monodentate dCypb is the most effective in β -C elimination due to the optimum steric environment that both destabilizes intermediate **I-1a** and stabilizes the β -C elimination transition state (**TS1a**). In the β -H elimination pathway, the use of sterically hindered and electron-rich ligands (dCypb and PCy3) stabilizes the threecoordinated alkoxide complex II and thus slows down the β-H elimination.46 The β-H elimination from the PPh3-ligated complex II-2c requires the lowest barrier among the three Pd(II) alkoxide complexes (Figure 3B). Taken together, the computational study suggests that reactions with the bulky and electron-rich dCypb and PCy3 ligands favor **4a** over **4a**' because these ligands can both promote the β -C elimination and inhibit the β-H elimination.

We also computationally investigated the reactivity of the Pd(dCypb) complex in the oxidative addition of aryl bromide $\bf 1a$. In this elementary step, the barrier to the oxidative addition with the Pd(dCypb) catalyst is 8.6 kcal/mol lower than that with $Pd(PCy_3)_2$ ($\bf TS4$ vs $\bf TS3$, see details in Figure S5). The higher reactivity with the dCypb ligand is due to the predistorted geometry of the Pd(0) catalyst with bidentate phosphine ligands that reduced the catalyst distortion energy in the oxidative addition transition state. These DFT calculations indicate the dCypb ligand is effective in both controlling the chemoselectivity in β -C elimination and enabling efficient oxidative addition of the aryl bromide.

The Pd/P ratio also appeared to be important for this transformation. Different loadings of dCypb were tested under the otherwise standard conditions (Scheme 2). When 5 mol% of dCypb ligand was used (Pd/P = 1:1), a complex mixture was formed with a poor conversion of aryl bromide 1a. The 1:2 and 1:3 Pd/P ratios both proved to be efficient giving comparable yields of the desired product. In contrast, a 1:4 Pd/P ratio completely inhibited the reaction, giving nearly no conversion of both starting materials. We reasoned that excess phosphine ligands would suppress formation of the coordinatively unsaturated 14-electron Pd(0) species (*vide supra*, Figure 4), which in turn would inhibit the oxidative addition with aryl bromides.

Scheme 2. The Ligand Ratio Effect

Halide effect: Besides the oxidative addition (Step A, Figure 1A), we found, switching from aryl iodides to aryl bromides, the steps after C-N bond formation could also be affected. For example, 2-iodoanisole gave 76% of the desired amination product 4a with only 9% NBE-attached side-product 4a' when using tri(4-trifluoromethylphenyl)phosphine as the ligand. However, 2-bromoanisole gave 41% 4a and 38% 4a' under the same reaction conditions (Scheme 3). Considering the large difference of the 4a/4a' ratios in these results, we hypothesized that the halide leaving group from the substrate likely influenced the steps after the reaction of ANP with the amine electrophile. To test this hypothesis, 20 mol% CsI was added to the reaction with aryl bromide under the otherwise identical conditions. Indeed, the 4a/4a' ratio was significantly improved from nearly 1:1 to 3:1.47

Scheme 3. The Iodide Effect for Aryl Bromide Substrates

Regarding this halide effect, we tentatively propose that the iodide anion may either promote the $\beta\text{-}C$ elimination or inhibit the $\beta\text{-}H$ elimination. It has been known for the reactions with platinum complexes [PtX(alkyl)(diphosphine)] (X = Cl, Br, I) that the one with iodide as the X ligand gives faster $\beta\text{-}H$ elimination than those with bromide and chloride. However, a more detailed mechanistic explanation remains to be disclosed at this stage. 49

Reductant effect: Clearly, besides promoting β -C elimination, slowing down the β -H elimination should also help to minimize formation of undesired product 4a'. Indeed, increasing the steric of the reductant (secondary alcohols) from isopropanol to the (-)-borneol 3 decrease formation of 4a'. More interestingly, using the corresponding deuterated alcohol, i.e. d_8 -isopropanol, that should give a slower β -H elimination than the normal isopropanol, the ratio of 4a/4a' was also enhanced (Scheme 4). Altogether, the observed reductant effect is consistent with the hypothesis that slow β -H elimination would inhibit formation of NBE-attached side-product 4a'.

Scheme 4. The Isotope Effect of the Reductant

NBE Effect: Besides simple NBE, a variety of substituted NBEs have also been examined under the optimal reaction condition (Scheme 5). For example, Yu and coworkers demonstrated that methyl norborne-2-carboxylate (**N2**) is particularly effective in the Pd/NBE-catalyzed *meta* C—H functionalization reactions. ⁵⁰ In the Catellani-type annulation between aryl iodides and epoxides, we recently found the **N3** was more selective than regular NBE. ⁵¹ However, for the reaction with aryl bromide

1a all the electron-deficient norborne-2-carboxylates (N2-N4) only gave a trace amount of the desired product 4a. The *endo-5*-norborne-2-carboxamide N5, previously used in the *ortho* acylation, ^{31b} gave a slightly lower yield. The 5-norbornene-2-carboxylic acid potassium salt (N6), recently employed by Zhou and coworkers, ⁵² led to a low yield probably due to its poor solubility in 1,4-dioxane. Finally, ester substitutions at NBE different positions (N7 and N8) also showed low activity.

Scheme 5. The NBE Substitution Effect^a

^a Run on a 0.2 mmol scale (0.1 M) for 14 h with 1.6 equiv of **2a** and 1.0 equiv of **3**; yields were determined by ¹H-NMR using 1,3,5-trimethoxylbenzene as the internal standard.

Since simple NBE (N1) gave the best result, the use of a catalytic amount of NBE was then attempted under the otherwise standard reaction conditions (Scheme 6). While 1 equiv of NBE gave the highest efficiency, decreasing the loading to 50 or 25 mol% gave similar or comparable yields. Interestingly, when 10 mol% of NBE was used instead (Pd:NBE =1:1), 60% yield of product 4a was still obtained, suggesting that NBE indeed behaved as a co-catalyst in this transformation. Due to the convenience and low cost of NBE, 1 equiv of NBE was employed subsequently to explore the substrate scope.

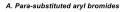
Scheme 6. Examination of the NBE Loading^a

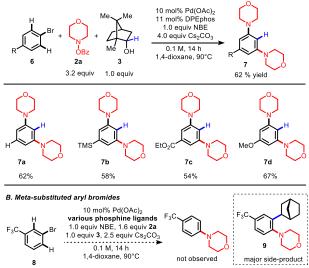
 a Run on a 0.4 mmol scale (0.1 M) for 14 h with 1.6 equiv of **2a** and 1.0 equiv of **3**; yields were determined by 1 H-NMR using 1,3,5-trimethoxylbenzene as the internal standard.

Table 2. Aryl Bromide Scope for Ortho Amination^a

^aRun on a 0.3 mmol scale (0.1 M) for 14 h with 1.6 equiv of **2a** and 1.0 equiv of **3**. All yields are isolated yields. ^b 11 mol % dCpentapb·2HBF₄ was used instead of dCypb.

Substrate scope: With the optimized reaction conditions in hands, the scope of aryl bromides was investigated next (Table 2). We first tested different FGs at the ortho position of aryl bromides. Both electron-rich (4a, 4d) and -deficient (4e) substrates smoothly gave the desired products in good yields. Bulky substituents at the ortho position, such as isopropyl (4c) and ketal (4g), were tolerated. Ester, ketal and glycoside moieties proved compatible under the reaction conditions (4f-h). The FG tolerance was further examined with different 2-bromoanisole derived substrates (4i-p). A broad range of FGs, including methoxy ether (4k), fluoride (4i), chloride (4j), free tertiary benzyl alcohol (41), nitrile (4m), aldehyde (4n), methyl ester (4o) and epoxide (4p), are tolerated. The scope can be further expanded to naphthalene and heteroarenes. Bromo-substituted pyridine (4r), pyrimidine (4s), quinoline (4t), benzo[b]furan (4u), benzo[b]thiophene (4v), isoquinoline (4w) and protected isatin (4x) all delivered the desired ortho amination products in reasonably good yields, therefore showing promise for medicinal chemistry applications. Note that for certain substrates the dCpentpb ligand gave slightly higher yields.


Table 3. O-Benzoyl Hydroxylamine Scope for Ortho Aminationa


^a Run on a 0.3 mmol scale (0.1 M) for 14 h with 1.6 equiv of **2** and 1.0 equiv of **3**. All yields are isolated yields.

We then continued to explore the scope of the amine coupling partners, and bromopyridine **3r** was used as the model substrate (Table 3). Piperidine, azepane, dimethylamine, azetidine and Boc-protected piperazine-derived amination reagents all provided the desired products in moderate to good yields (**5a-5e**). Additional FG tolerance was observed with alkyl sulfide (**5i**), tertiary benzylic alcohol (**5n**), TBS and MOM-protected secondary alcohols (**5f** and **5h**), carbamate (**5e**) and benzodioxole (**5m**). The protected 4-piperidone moiety (**5g**) could be converted to free aniline through ketal hydrolysis and retro-aza-1,4-addition. The complex *O*-benzoyl hydroxylamine, derived from commercial drug paroxetine, was successfully coupled to give an interesting product (**5m**).

Besides *ortho*-substituted aryl bromides, *para* and *meta*-substituted substrates have also been evaluated (Scheme 7). Similar to the prior observation when using aryl iodides, ²⁹ *para*-substituted aryl bromides afforded the 1,3-diaminated products. It is noteworthy that no mono-amination product was observed in all the cases. *Meta*-substituted aryl bromides, such as the 1-bromo-3-isopropylbenzene and 3-bromobenzotrifluoride **8**, did not give either mono- or di-substituted products; instead, the NBE-attached compound **9** was formed as the major side-product.

Scheme 7. Ortho Amination of Aryl Bromides without Ortho Substitution

Other *ipso* functionalization: Besides coupling with hydride as the nucleophile, other classes of *ipso* coupling with different nucleophiles also worked smoothly using large-bite-angle ligands with flexible backbones (Scheme 8). DPEphos proved to be a better ligand than dcypb for Chen's *ipso* Mizoroki-Heck *ortho* amination reaction. Sonogashira quench with masked terminal acetylides afforded the desired alkynylation product. Neopentyl diol-derived boronates were found to be a better coupling partner to deliver *ipso* arylation products. Finally, Ritter's *ipso* borylation with $B_2(pin)_2$ also provided the desired aryl boronic ester 13. Due to its instability on column chromatography, compound 13 was further transformed to the corresponding aryl bromide (14), of fering an intriguing net-*ortho* amination of 1a.

Scheme 8. Different Ipso Functionalization in the Ortho Amination of Aryl Bromidesa

^a The reactions were operated using the conditions described in Table 2 except replacing alcohol 3 with the corresponding nucleophiles.

Synthetic applications: The synthetic utility of this method was then tested. Sequential cross-coupling⁵⁵ plays an important role in synthesis of complex aromatic compounds and is often employed in

pharmaceutical research.⁵⁶ Using commercially available bromo-io-doarene **15**, selective coupling at the iodide site via Sonogashira reaction afforded alkyne **16**. Subsequently, *ortho* amination occurred smoothly to afford 3,5-disubstituted anisole **17** (Scheme 9A). Hence, the ArBr-based Pd/NBE catalysis offers an additional option for preparing *meta*-substituted arenes.

Encouraged by the success of the sequential cross-coupling, we envisioned that merging the classical ArI-based Catellani reaction with the current ArBr-based method would realize a rapid access to multi-and diverse-substituted aromatic compounds from polyhaloarenes. Starting with 2-bromo-6-iodoanisole **18**, *ortho* methylation/*ipso* Heck reaction, ^{30g} followed by *ortho* amination with either hydride or Sonogashira quench, provided tetra- or penta-substituted arenes efficiently (Scheme 9B). It is noteworthy that for the penta-substituted product (**21**) all the five substituents are different from each other, containing all three hybridized forms of carbons (sp to sp3), oxygen and nitrogen groups. To the best of knowledge, this represents the first example of combining two different Pd/NBE catalysis reactions into a single arene substrate, showing promise for efficient generation of a diverse range of poly-substituted arenes.

Scheme 9. Synthetic Utility of ArBr-Based Ortho Amination.

A. sequential cross coupling

B. sequential Pd/NBE-catalyzed couplings

Finally, this method is applied in a two-step *meta*-amination of heterocycles. One merit of this protocol is the avoidance of using directing groups. ^{50b,6,57} Bromination of the commercially available 8-methox-yquinoline with NBS gave exclusively C5-brominated product **22** in nearly a quantitative yield (Scheme 10A). Subsequent *ortho* amination afforded C6-aminated quinoline **23** in 98% yield on a gram scale with 5 mol% Pd. Further lowering the Pd loading to 1 mol% still gave the desired product with 42 turnovers. On the other hand, amination of pyridine **24** resulted in an inseparable mixture of 4.2: 1 regio-isomers; however, directly subjecting this mixture to the *ortho* amination conditions provided a *single* regioisomer of the C4-amination product **26** in 83% yield (Scheme 10B). It is worthy to mention that an alternative route to product **26** could be through the Ir-catalyzed C–H borylation of

pyridine **24**,⁵⁸ followed by electrophilic amination⁵⁹ or Chan–Evans–Lam coupling.⁶⁰

Scheme 10. Stepwise Meta-Amination of Heterocycles

2.2 *Ortho* **acylation.** In 2015, we reported an initial study on *ortho* acylation/*ipso* hydrogenation using a bifunctional mixed anhydride. ^{31b} Concurrently, the Liang and Gu groups developed *ortho* acylation/*ipso* Heck using symmetrical anhydrides or acyl chlorides as electrophiles. ^{31ac} In all these cases, only aryl iodides were used as substrates, and the electron-deficient less bulky trifurylphosphine was found to give the best results. ⁶¹ To enable the use of aryl bromides as substrates, *ortho* acylation/*ipso* Heck coupling was chosen as the model reaction. Unsurprisingly, applying the trifurylphosphine conditions directly to aryl bromides led to very low conversion. To our delight, analogous to the *ortho* amination reaction, large bite-angle bidentate phosphine ligands with flexible backbones also worked well for the *ortho* acylation. A survey of ligand effects revealed DPEphos to be optimal.

The aryl bromide scope was then explored using anhydride 27a as the coupling partner (Table 4). A range of substituents and FGs, such as ketals (28e) and tertiary alcohols (28g), could be tolerated on the arene substrates. Quinoline (28h) and benzofuran-derived (28i) substrates also participated in this transformation. When 1-bromonaphthylene was used, 90% yield of the desired acylation product (28c) was obtained. The acid anhydride scope is also reasonably broad (Table 5). Sterically hindered anhydrides, such as 2-methyl and 2,6-dimethoxyl benzoic anhydrides (29a), gave significantly higher yields than the simple benzoic anhydride (29b). Aryl chloride (29c) is compatible in this reaction. Heteroarenes, such as thiophene (29d), and ferrocenes (29f) were also tolerated. Besides aromatic acyl groups, the cyclopropyl-derived one was also successfully introduced with aryl bromides (29e), in which epimerization was not observed.

Table 4. Aryl Bromide Scope for Ortho Acylation/Ipso Heck Reaction^a

"Run on a 0.3 mmol scale (0.1 M) for 14 h with 1.8 equiv of 27a, 1.0 equiv of 3, 1.5 equiv of t-butyl acrylate, 2.0 equiv of NBE and 3.0 equiv of Cs_2CO_3 ; all yields are isolated yields.

Table 5. Carboxylic Acid Anhydride Scope^a

^aRun on a 0.3 mmol scale (0.1 M) for 14 h with 1.8 equiv of **27**; 1.0 equiv of **3**; 1.5 equiv of *t*-butyl acrylate, 2.0 equiv of NBE and 3.0 equiv of Cs₂CO₃; all yields are isolated yields.



Figure 4. X-ray Crystal structure of compound 29f.

2.3 Ortho alkylation. Ortho alkylation with alkyl halides has been the first Catellani reaction reported. However, the use of aryl bromides for ortho alkylation remained to be developed. The feasibility of aryl bromide-mediated ortho alkylation was first explored with benzyl electrophiles, in which the corresponding reactions with aryl iodides were reported by Lautens and Liang. When benzyl bromides were employed as the electrophile, no desired benzylation product was observed, which is likely due to the strong oxidative ability of benzyl bromides compared to aryl bromides. However, combining benzyl chlorides as the electrophile and tris (4-methoxyphenyl) phosphine as the ligand, the desired benzylation product **31a** was isolated in 64% yield with 2-bromoanisole as the substrate (Table 6). In addition, both electron-rich and -deficient benzyl chlorides gave the desired products in comparable yields (**31b** and **31c**). Moreover, bromo-heteroarenes, such as quinoline **31g** and pyrimidine **31h**, are also competent substrates.

Table 6. Ortho Alkylation/Ipso Heck Reaction of Aryl Bromides with Benzyl Chlorides a

^a Run on a 0.3 mmol scale (0.1 M) for 14 h with 2.0 equiv of **30**; 1.0 equiv of **3**; 1.5 equiv of t-butyl acrylate, 2.0 equiv of NBE and 3.0 equiv of Cs₂CO₃; All yields are isolated yields.

With preliminary success of the reactions using activated benzyl halides as the electrophile, ortho alkylation with unactivated alkyl halides, 64 which has been utilized in several elegant total syntheses, 65 was investigated next. 2-Bromoanisole 1a was again employed as the model substrate. When alkyl iodides (e.g. BuI) were employed as the alkylating reagent, regardless the choice of phosphine ligands, the reaction proceeded with a low conversion without forming any desired product. It is likely that alkyl iodides may react with Pd(0) faster than 2-bromoanisole. Hence, a weaker alkylating reagent, such as alkyl bromides, was tested. To our delight, when BuBr was used as the electrophile, tri-n-butylphosphine was found to give optimal results at this stage (Scheme 11). In addition, ortho methylation was realized using methyl 4-nitrobenzenesulfonate as the electrophile, given that methyl bromide, a toxic gas, is not convenient to handle. Considering the importance of methylation of arenes⁶⁶ and heteroarenes⁶⁷ in drug design, ⁶⁸ this method is expected to be useful for medicinal chemistry. While the efficiency of these ortho alkylation reactions remains to be further improved, they nevertheless show the feasibility of employing widely available aryl bromides as suitable substrates.

Scheme 11. Ortho Alkylation of Aryl Bromides with Unactivated Alkyl Electrophiles

CONCLUSIONS

In summary, we describe the efforts of developing general approaches for aryl-bromide-mediated Pd/NBE catalysis, in which ortho amination, acylation and alkylation have been realized using O-benzoyl hydroxylamines, carboxylic acid anhydrides and alkyl halides respectively as electrophiles. For the ortho amination and acylation of aryl bromides, electron-rich bidentate phosphines with large bite angles and flexible backbones generally worked efficiently. For ortho benzylation and alkylation, mono-dentate tris(4-methoxyphenyl)phosphine and tributylphosphine were found to be superior than bidentate ligands. The conditions (at least for ortho amination) are also general for introducing various substituents, such as vinyl, alkynyl, boryl groups or hydrogen, at ipso positions. The high chemoselectivity and tolerance of various heterocycles observed in this study should make these methods attractive for medicinal chemistry research. Allowing aryl bromides for Pd/NBE catalysis also permits development of sequential functionalization strategies for constructing more complex and diverse aromatic compounds, therefore offering new strategic insights for bond disconnection approaches. The knowledge obtained from the DFT study should shed light on the choice of ligands for Pd/NBE catalysis. Further improvement of the catalyst efficiency and efforts towards expanding the substrate scope to more challenging aryl chlorides are ongoing.

Experimental Section

General procedure of palladium/norbornene-catalyzed *ortho* amination of aryl bromides. An oven-dried 4 mL vial was charged with aryl bromide (0.3 mmol, 1.0 equiv), *O*-benzoyl hydroxylamine (0.3 mmol, 1.6 equiv), (–)-borneol (46.2 mg, 0.3 mmol, 1.0 equiv), norbornene (28.2 mg, 0.3 mmol, 1.0 equiv), palladium acetate (6.7 mg, 0.03 mmol, 0.1 equiv) and a magnetic stir

bar. The vial was sealed in the air and transferred in a nitrogen-filled glovebox. 1,4-Bis(dicyclo-hexylphosphino)butane (14.9 mg, 0.033 mmol, 0.11 equiv) and cesium carbonate (245 mg, 0.75 mmol, 2.5 equiv) were added to the vial in the glove box. 1,4-Dioxane (3 ml) was added, and the vial was then sealed with PTFE lined cap in the glovebox. The resulting mixture was stirred at room temperature for 10 minutes until the all the palladium acetate was fully dissolved. The vial was subsequently transferred out of glovebox and stirred on a pie-block preheated to 90°C for 14 hours. After completion of the reaction, the mixture was filtered through a thin pad of celite. The filter cake was washed with ethyl acetate, and the combined filtrate was concentrated. The residue was directly purified by flash column chromatography on silica gel to yield the desired product.

General procedure of palladium/norbornene-catalyzed ortho acylation of aryl bromides. An oven-dried 4 mL vial was charged with aryl bromide (0.3 mmol, 1.0 equiv), carboxylic acid anhydride (0.54 mmol, 1.8 equiv), tert-butyl acrylate (56.7 mg, 0.45 mmol, 1.5 equiv), norbornene (56.4 mg, 0.6 mmol, 2.0 equiv), dichlorobis(acetonitrile)palladium(II) (7.8 mg, 0.03 mmol, 0.10 equiv), bis[2-(diphenylphosphino)phenyl] ether (16.1 mg, 0.03 mmol, 0.10 equiv) and a magnetic stir bar. The vial was sealed in the air and transferred in a nitrogen-filled glovebox. Cesium carbonate (294.0 mg, 0.9 mmol, 3.0 equiv) was added to the vial in the glove box. 1,4-Dioxane (3 ml) was added, and the vial was then sealed with PTFE lined cap in the glovebox. The resulting mixture was stirred at room temperature for 15 minutes until the all the dichlorobis(acetonitrile)palladium(II) was fully dissolved. The vial was subsequently transferred out of glovebox and stirred on a pie-block preheated to 100°C for 14 hours. After completion of the reaction, the mixture was filtered through a thin pad of celite. The filter cake was washed with ethyl acetate, and the combined filtrate was concentrated. The residue was directly purified by flash column chromatography on silica gel to yield the desired product.

General procedure of palladium/norbornene-catalyzed ortho benzylation of aryl bromides. An oven-dried 4 mL vial was charged with aryl bromide (0.30 mmol, 1.0 equiv), benzyl chloride (0.60 mmol, 2.0 equiv), tert-butyl acrylate (56.7 mg, 0.45 mmol, 1.5 equiv), norbornene (56.4 mg, 0.6 mmol, 2.0 equiv, 2.0 equiv) and a magnetic stir bar ("substrate vial"). Palladium acetate (6.7 mg, 0.03 mmol, 0.1 equiv) and tris(4-methoxyphenyl)-phosphine (21.1 mg, 0.06 mmol, 0.2 equiv) were put in another oven-dried 4 mL vial ("Pd/ligand vial"). Both vials were transferred in a nitrogen-filled glovebox. 1,4-Dioxane (1 ml) was added to the Pd/ligand vial. The resulting mixture was stirred at room temperature for 10 minutes until the all the palladium acetate was fully dissolved to give a bright yellow homogenous solution. 1,4-Dioxane (2 ml) and cesium carbonate (294.0 mg, 0.9 mmol, 3.0 equiv) were added to another vial in the glove box. The palladium/ligand solution was transferred to the substrate vial that was then sealed inside the glovebox. The vial was subsequently transferred out of glovebox and stirred on a pie-block preheated to 95°C for 14 hours. After completion of the reaction, the mixture was filtered through a thin pad of celite. The filter cake was washed with ethyl acetate, and the combined filtrate was concentrated. The residue was directly purified by flash column chromatography on silica gel to yield the desired product.

ASSOCIATED CONTENT

Text, figures, tables, and CIF files giving experimental procedures, kinetics data, and crystallographic information. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*pengliu@pitt.edu *gbdong@uchicago.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

University of Chicago, Eli Lilly, University of Pittsburgh and the National Science Foundation (CHE-1654122) (P.L.) are acknowledged for research support. We thank Mr. Jianchun Wang for donation of several O-benzoyl hydroxylamines. We also thank Dr. Zhou Xuan, Dr. Hee Nam Lim and Dr. Ziqiang Rong for donation of several aryl bromides. Mr. Ki-Young Yoon is acknowledged for X-ray crystallography. Calculations were performed at the Center for Research Computing at the University of Pittsburgh and the Ex-treme Science and Engineering Discovery Environment (XSEDE) supported by the NSF.

REFERENCES

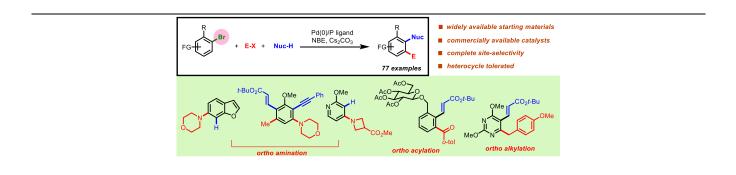
- (1) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. "Rings in Drugs." *J. Med. Chem.* **2014**, *57*, 5845-5859.
- (2) (a) Clarke, E. D.; Delaney, J. S. "Physical and Molecular Properties of Agrochemicals: An Analysis of Screen Inputs, Hits, Leads, and Products." *CHIMIA International Journal for Chemistry* **2003**, *57*, 731-734; (b) Theodoridis, G. "Chapter 4 Fluorine-Containing Agrochemicals: An Overview of Recent Developments" In *Advances in Fluorine Science*; Tressaud, A., Ed.; Elsevier, 2006; Vol. 2.
- (3) Koizumi, T.-a.; Kanbara, T. "Cross-Coupling Polymerization" In *Organometallic Reactions and Polymerization*; Osakada, K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014.
- (4) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century; John Wiley & Sons, Ltd, 2005.
- (5) Buncel, E.; Dust, J. M.; Terrier, F. "Rationalizing the Regioselectivity in Polynitroarene Anionic .sigma.-Adduct Formation. Relevance to Nucleophilic Aromatic Substitution." *Chem. Rev.* **1995**, *95*, 2261-2280.
- (6) For fluorination at both *ipso* and *ortho* positions of aryl halides, see: Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase, M. K.; Buchwald, S. L. "Evidence for in Situ Catalyst Modification during the Pd-Catalyzed Conversion of Aryl Triflates to Aryl Fluorides." *J. Am. Chem. Soc.* 2011, *133*, 18106-18109.
- (7) For the seminal report, see: (a) Catellani, M.; Frignani, F.; Rangoni, A. "A Complex Catalytic Cycle Leading to a Regioselective Synthesis of o,o -Disubstituted Vinylarenes." Angew. Chem. Int. Ed. 1997, 36, 119-122; For selected reviews, see: (b) Catellani, M. "Catalytic Multistep Reactions via Palladacycles." Synlett 2003, 2003, 0298-0313; (c) Catellani, M. "Novel Methods of Aromatic Functionalization Using Palladium and Norbornene as a Unique Catalytic System." Top. Organomet. Chem. 2005, 14, 21-53; (d) Catellani, M.; Motti, E.; Della Ca', N. "Catalytic Sequential Reactions Involving Palladacycle-Directed Aryl Coupling Steps." Acc. Chem. Res. 2008, 41, 1512-1522; (e) Martins, A.; Mariampillai, B.; Lautens, M. "Synthesis in the Key of Catellani: Norbornene-Mediated ortho C-H Functionalization." Top. Curr. Chem. 2010, 292, 1-33; (f) Ye, J.; Lautens, M. "Palladium-catalysed norbornene-mediated C-H functionalization of arenes." Nat. Chem. 2015, 7, 863-870; (g) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. "Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation." Acc. Chem. Res. 2016, 49, 1389-1400.
- (8) (a) Lautens, M.; Piguel, S. "A New Route to Fused Aromatic Compounds by Using a Palladium-Catalyzed Alkylation-Alkenylation Sequence." *Angew. Chem. Int. Ed.* **2000**, *39*, 1045-1046; (b) Faccini, F.; Motti, E.; Catellani, M. "A New Reaction Sequence Involving Palladium-Catalyzed Unsymmetrical Aryl Coupling." *J. Am. Chem. Soc.* **2004**, *126*, 78-79.
- (9) Catellani, M.; Motti, E.; Minari, M. "Symmetrical and Unsymmetrical 2,6-dialkyl-1,1'-biaryls by Combined Catalysis of Aromatic Alkylation via Palladacycles and Suzuki-type Coupling." *Chem. Commun.* **2000**, 157-158. (10) (a) Catellani, M.; Motti, E.; Baratta, S. "A Novel Palladium-Catalyzed Synthesis of Phenanthrenes from ortho-Substituted Aryl Iodides and Diphenyl- or Alkylphenylacetylenes." *Org. Lett.* **2001**, *3*, 3611-3614; (b) Liu, H.; El-Salfiti, M.; Lautens, M. "Expeditious Synthesis of Tetrasubstituted Helical Alkenes by a Cascade of Palladium-Catalyzed C–H Activations." *Angew. Chem. Int. Ed.* **2012**, *51*, 9846-9850.

- (11) Motti, E.; Rossetti, M.; Bocelli, G.; Catellani, M. "Palladium catalyzed multicomponent reactions in ordered sequence: new syntheses of 0,0′ dialkylsubstituted diarylacetylenes and diarylalkylidenehexahydromethanofluorenes." *J. Organomet. Chem.* **2004**, *689*, 3741-3749.
- (12) (a) Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M. "Synthesis of Polycyclic Benzonitriles via a One-Pot Aryl Alkylation/Cyanation Reaction." *J. Am. Chem. Soc.* **2006**, *128*, 14436-14437; (b) Mariampillai, B.; Alliot, J.; Li, M.; Lautens, M. "A Convergent Synthesis of Polysubstituted Aromatic Nitriles via Palladium-Catalyzed C-H Functionalization." *J. Am. Chem. Soc.* **2007**, *129*, 15372-15379.
- (13) Bressy, C.; Alberico, D.; Lautens, M. "A Route to Annulated Indoles via a Palladium-Catalyzed Tandem Alkylation/Direct Arylation Reaction." *J. Am. Chem. Soc.* **2005**, *127*, 13148-13149.
- (14) Ferraccioli, R.; Carenzi, D.; Rombolà, O.; Catellani, M. "Synthesis of 6-Phenanthridinones and Their Heterocyclic Analogues through Palladium-Catalyzed Sequential Aryl—Aryl and N-Aryl Coupling." *Org. Lett.* **2004**, *6*, 4759-4762.
- (15) (a) Thansandote, P.; Raemy, M.; Rudolph, A.; Lautens, M. "Synthesis of Benzannulated N-Heterocycles by a Palladium-Catalyzed C-C/C-N Coupling of Bromoalkylamines." *Org. Lett.* **2007**, *9*, 5255-5258; (b) Candito, D. A.; Lautens, M. "Exploiting the Chemistry of Strained Rings: Synthesis of Indoles via Domino Reaction of Aryl Iodides with 2H-Azirines." *Org. Lett.* **2010**, *12*, 3312-3315.
- (16) Motti, E.; Della Ca', N.; Xu, D.; Piersimoni, A.; Bedogni, E.; Zhou, Z.-M.; Catellani, M. "A Sequential Pd/Norbornene-Catalyzed Process Generates o-Biaryl Carbaldehydes or Ketones via a Redox Reaction or 6H-Dibenzopyrans by C-O Ring Closure." *Org. Lett.* **2012**, *14*, 5792-5795.
- (17) (a) Deledda, S.; Motti, E.; Catellani, M. "Palladium-catalysed synthesis of nonsymmetrically disubstituted-1,1'-biphenyls from o-substituted aryl iodides through aryl coupling and delayed hydrogenolysis." *Can. J. Chem.* **2005**, *83*, 741-747; (b) Wilhelm, T.; Lautens, M. "Palladium-Catalyzed Alkylation—Hydride Reduction Sequence: Synthesis of Meta-Substituted Arenes." *Org. Lett.* **2005**, *7*, 4053-4056; (c) Martins, A.; Candito, D. A.; Lautens, M. "Palladium-Catalyzed Reductive ortho-Arylation: Evidence for the Decomposition of 1,2-Dimethoxyethane and Subsequent Arylpalladium(II) Reduction." *Org. Lett.* **2010**, *12*, 5186-5188.
- (18) Maestri, G.; Della Ca, N.; Catellani, M. "A catalytic synthesis of selectively substituted biaryls through sequential intermolecular coupling involving arene and ketone C-H bond functionalization." *Chem. Commun.* **2009**, 4892-4894.
- (19) Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.; Lautens, M. "Exploiting the Divergent Reactivity of Aryl-Palladium Intermediates for the Rapid Assembly of Fluorene and Phenanthrene Derivatives." *Angew. Chem. Int. Ed.* **2009**, *48*, 1849-1852.
- (20) Zhou, P.-X.; Zheng, L.; Ma, J.-W.; Ye, Y.-Y.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. "Palladium-Catalyzed/Norbornene-Mediated C-H Activation/ N-Tosylhydrazone Insertion Reaction: A Route to Highly Functionalized Vinylarenes." *Chem. Eur. J.* **2014**, *20*, 6745-6751.
- (21) Shi, H.; Babinski, D. J.; Ritter, T. "Modular C–H Functionalization Cascade of Aryl Iodides." *J. Am. Chem. Soc.* **2015**, *137*, 3775-3778.
- (22) Sun, F.; Li, M.; He, C.; Wang, B.; Li, B.; Sui, X.; Gu, Z. "Cleavage of the C(O)—S Bond of Thioesters by Palladium/Norbornene/Copper Cooperative Catalysis: An Efficient Synthesis of 2-(Arylthio)aryl Ketones." *J. Am. Chem. Soc.* **2016**, *138*, 7456-7459.
- (23) Fan, X.; Gu, Z. "Palladium/Norbornene-Catalyzed Ortho-Acylation and Ipso-Selenation via C(O)–Se Bond Cleavage: Synthesis of α-Carbonyl Selane." *Org. Lett.* **2018**, *20*, 1187-1190.
- (24) Blanchot, M.; Candito, D. A.; Larnaud, F.; Lautens, M. "Formal Synthesis of Nitidine and NK109 via Palladium-Catalyzed Domino Direct Arylation/N-Arylation of Aryl Triflates." *Org. Lett.* **2011**, *13*, 1486-1489.
- (25) Horino, H.; Arai, M.; Inoue, M. Tetrahedron Lett. 1974, 647.
- (26) (a) Catellani, M.; Chiusoli, G. P. "Palladium-(II) and -(IV) complexes as intermediates in catalytic C-C bond-forming reactions." *J. Organomet. Chem.* **1988**, *346*, C27-C30; (b) Chai, D. I.; Thansandote, P.; Lautens, M. "Mechanistic Studies of Pd-Catalyzed Regioselective Aryl C-H Bond Functionalization with Strained Alkenes: Origin of Regioselectivity." *Chem. Eur. J.* **2011**, *17*, 8175-8188.
- (27) Catellani, M.; Mann, B. E. "Conformational effects in elementary steps in catalytic reactions. Oxidative addition of 3-bromoprop-1-ene to a palladium(II) metallacyclic complex." *J. Organomet. Chem.* **1990**, *390*, 251-255.
- (28) Catellani, M.; Fagnola, M. C. "Palladacycles as Intermediates for Selective Dialkylation of Arenes and Subsequent Fragmentation." *Angew. Chem. Int. Ed.* **1994**, *33*, 2421-2422.

- (29) Dong, Z.; Dong, G. "Ortho vs Ipso: Site-Selective Pd and Norbornene-Catalyzed Arene C-H Amination Using Aryl Halides." *J. Am. Chem. Soc.* **2013**, *135*, 18350-18353.
- (30) (a) Chen, Z.-Y.; Ye, C.-Q.; Zhu, H.; Zeng, X.-P.; Yuan, J.-J. "Palladium/Norbornene-Mediated Tandem C-H Amination/C-I Alkenylation Reaction of Aryl Iodides with Secondary Cyclic O-Benzoyl Hydroxylamines and Activated Terminal Olefins." Chem. Eur. J. 2014, 20, 4237-4241; (b) Zhou, P.-X.; Ye, Y.-Y.; Ma, J.-W.; Zheng, L.; Tang, Q.; Qiu, Y.-F.; Song, B.; Qiu, Z.-H.; Xu, P.-F.; Liang, Y.-M. "Palladium-Catalyzed/Norbornene-Mediated ortho-Amination/N-Tosylhydrazone Insertion Reaction: An Approach to the Synthesis of ortho-Aminated Vinylarenes." J. Org. Chem. 2014, 79, 6627-6633; (c) Ye, C.; Zhu, H.; Chen, Z. "Synthesis of Biaryl Tertiary Amines through Pd/Norbornene Joint Catalysis in a Remote C-H Amination/Suzuki Coupling Reaction." J. Org. Chem. 2014, 79, 8900-8905; (d) Sun, F.; Gu, Z. "Decarboxylative Alkynyl Termination of Palladium-Catalyzed Catellani Reaction: A Facile Synthesis of α-Alkynyl Anilines via Ortho C-H Amination and Alkynylation." Org. Lett. 2015, 17, 2222-2225; (e) Pan, S.; Ma, X.; Zhong, D.; Chen, W.; Liu, M.; Wu, H. "Palladium-Catalyzed One-Pot Consecutive Amination and Sonogashira Coupling for Selective Synthesis of 2-Alkynylanilines." Adv. Synth. Catal. 2015, 357, 3052-3056; (f) Wang, J.; Gu, Z. "Synthesis of 2-(1-Alkoxyvinyl)anilines by Palladium/Norbornene-Catalyzed Amination Followed by Termination with Vinyl Ethers." Adv. Synth. Catal. 2016, 358, 2990-2995; (g) Wilson, J. E. "Palladium-catalyzed Catellani-type couplings using methylating reagents for the synthesis of highly substituted ortho-methyl-arenes and heteroarenes." Tetrahedron Lett. 2016, 57, 5053-5056; (h) Majhi, B.; Ranu, B. C. "Palladium-Catalyzed Norbornene-Mediated Tandem ortho-C-H-Amination/ipso-C-I-Cyanation of Iodoarenes: Regiospecific Synthesis of 2-Aminobenzonitrile." Org. Lett. 2016, 18, 4162-4165; (i) Luo, B.; Gao, J.-M.; Lautens, M. "Palladium-Catalyzed Norbornene-Mediated Tandem Amination/Cyanation Reaction: A Method for the Synthesis of ortho-Aminated Benzonitriles." Org. Lett. 2016, 18, 4166-4169; (j) Fu, W. C.; Zheng, B.; Zhao, Q.; Chan, W. T. K.; Kwong, F. Y. "Cascade Amination and Acetone Monoarylation with Aryl Iodides by Palladium/Norbornene Cooperative Catalysis." Org. Lett. 2017, 19, 4335-4338; (k) Fan, L.; Liu, J.; Bai, L.; Wang, Y.; Luan, X. "Rapid Assembly of Diversely Functionalized Spiroindenes by a Three-Component Palladium-Catalyzed C-H Amination/Phenol Dearomatization Domino Reaction." Angew. Chem. Int. Ed. 2017, 56, 14257-14261; (1) Whyte, A.; Olson, M. E.; Lautens, M. "Palladium-Catalyzed, Norbornene-Mediated, ortho-Amination ipso-Amidation: Sequential C-N Bond Formation." Org. Lett. 2018, 20, 345-348.
- (31) (a) Zhou, P.-X.; Ye, Y.-Y.; Liu, C.; Zhao, L.-B.; Hou, J.-Y.; Chen, D.-Q.; Tang, Q.; Wang, A.-Q.; Zhang, J.-Y.; Huang, Q.-X.; Xu, P.-F.; Liang, Y.-M. "Palladium-Catalyzed Acylation/Alkenylation of Aryl Iodide: A Domino Approach Based on the Catellani—Lautens Reaction." *ACS Catal.* **2015**, 4927-4931; (b) Dong, Z.; Wang, J.; Ren, Z.; Dong, G. "Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis." *Angew. Chem. Int. Ed.* **2015**, *54*, 12664-12668; (c) Huang, Y.; Zhu, R.; Zhao, K.; Gu, Z. "Palladium-Catalyzed Catellani ortho-Acylation Reaction: An Efficient and Regiospecific Synthesis of Diaryl Ketones." *Angew. Chem. Int. Ed.* **2015**, *54*, 12669-12672.
- (32) Wang, J.; Zhang, L.; Dong, Z.; Dong, G. "Reagent-Enabled ortho-Alkoxycarbonylation of Aryl Iodides via Palladium/Norbornene Catalysis." *Chem* **2016**, *1*, 581-591.
- (33) Stille, J. K. "The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]." *Angew. Chem. Int. Ed.* **1986**, *25*, 508-524.
- (34) (a) Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. "Effect of Ligand Steric Properties and Halide Identity on the Mechanism for Oxidative Addition of Haloarenes to Trialkylphosphine Pd(0) Complexes." *J. Am. Chem. Soc.* **2009**, *131*, 8141-8154; (b) McMullin, C. L.; Jover, J.; Harvey, J. N.; Fey, N. "Accurate modelling of Pd(0) + PhX oxidative addition kinetics." *Dalton Trans.* **2010**, *39*, 10833-10836.
- (35) For an efficient method to prepare arene-NBE annulation products with aryl bromides, see: Wu, X.; Zhou, J. "An efficient method for the Heck-Catellani reaction of aryl halides." *Chem. Commun.* **2013**, *49*, 11035-11037. (36) For selected reviews on aryl halide synthesis, see: Petrone, D. A.; Ye, J.; Lautens, M. "Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation." *Chem. Rev.* **2016**, *116*, 8003-8104.
- (37) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. "Practical Aspects of Carbon–Carbon Cross-Coupling Reactions Using Heteroarenes." *Org. Process Res. Dev.* **2010**, *14*, 30-47.
- (38) For selected examples, see: (a) Handy, S. T.; Wilson, T.; Muth, A. "Disubstituted Pyridines: The Double-Coupling Approach." *J. Org. Chem.*

- 2007, 72, 8496-8500; (b) Espino, G.; Kurbangalieva, A.; Brown, J. M. "Aryl bromide/triflate selectivities reveal mechanistic divergence in palladium-catalysed couplings; the Suzuki-Miyaura anomaly." *Chem. Commun.* 2007, 1742-1744; (c) Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies, G. H. M.; Molander, G. A. "Haloselective Cross-Coupling via Ni/Photoredox Dual Catalysis." *ACS Catal.* 2017, 7, 5129-5133.
- (39) (a) Berman, A. M.; Johnson, J. S. "Copper-Catalyzed Electrophilic Amination of Diorganozinc Reagents." *J. Am. Chem. Soc.* **2004**, *126*, 5680-5681; (b) Berman, A. M.; Johnson, J. S. "Copper-Catalyzed Electrophilic Amination of Functionalized Diarylzinc Reagents." *J. Org. Chem.* **2005**, *70*, 364-366.
- (40) (a) Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. "Pd-Catalyzed Intermolecular C–H Amination with Alkylamines." *J. Am. Chem. Soc.* **2011**, *133*, 7652-7655; (b) Zhu, D.; Yang, G.; He, J.; Chu, L.; Chen, G.; Gong, W.; Chen, K.; Eastgate, M. D.; Yu, J.-Q. "Ligand-Promoted ortho-C–H Amination with Pd Catalysts." *Angew. Chem. Int. Ed.* **2015**, *54*, 2497-2500; (c) He, J.; Shigenari, T.; Yu, J.-Q. "Palladium(0)/PAr3-Catalyzed Intermolecular Amination of C(sp3)–H Bonds: Synthesis of β-Amino Acids." *Angew. Chem. Int. Ed.* **2015**, *54*, 6545-6549.
- (41) Ely, R.; Ramirez, A.; Richardson, P.; Muhuhi, J.; Zlota, A.; Knight, J. "Some Items of Interest to Process R&D Chemists and Engineers." *Org. Process Res. Dev.* **2014**, *18*, 362-369.
- (42) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. "Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions." *Chem. Soc. Rev.* **2009**, *38*, 1099-1118.
- (43) The partial dissociation of bidentated phosphine may not be essential for strong chealting ligand, other possible pathway couldn't be excluded at this stage.
- (44) The complete catalytic cycle of the *ortho*-amination is complex and is beyond the scope of the present computational study. Here, we focus our studies on the origins of ligand effects on the selectivity between 4a and 4a', which is expected to be controlled by the competing β -C and β -H elimination pathways.
- (45) O'Reilly, M. E.; Dutta, S.; Veige, A. S. "β-Alkyl Elimination: Fundamental Principles and Some Applications." *Chem. Rev.* **2016**, *116*, 8105-8145
- (46) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: California, 2010.
- (47) Adding more CsI from the beginning of the reaction was found to inhibit the conversion of the aryl bromide.
- (48) (a) Bergamini, P.; Costa, E.; Ganter, C.; Guy Orpen, A.; G. Pringle, P. "The reaction of trimethylsilyldiazomethane with complexes of the type [PtX(CH3)(diphosphine)] (X = Cl, Br, I). Some observations on [small beta]-hydrogen migrations in PtCHRCH3 species and organoplatinum(II)-catalysts for alkene formation from trimethylsilyldiazomethane." *J. Chem. Soc., Dalton Trans.* 1999, 861-866; (b) Fagnou, K.; Lautens, M. "Halide Effects in Transition Metal Catalysis." *Angew. Chem. Int. Ed.* 2002, 41, 26-47.
- (49) The attempts to understand this phenomenon by DFT study was not successful at this stage.
- (50) (a) Shen, P.-X.; Wang, X.-C.; Wang, P.; Zhu, R.-Y.; Yu, J.-Q. "Ligand-Enabled Meta-C-H Alkylation and Arylation Using a Modified Norbornene." *J. Am. Chem. Soc.* **2015**, *137*, 11574-11577; (b) Wang, P.; Li, G.-C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P.-X.; Yu, J.-Q. "Ligand-Promoted meta-C-H Amination and Alkynylation." *J. Am. Chem. Soc.* **2016**, *138*, 14092-14099; (c) Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.; Yu, J.-Q. "Ligand Promoted meta-C-H Chlorination of Anilines and Phenols." *J. Am. Chem. Soc.* **2016**, *138*, 14876-14879; (d) Li, G.-C.; Wang, P.; Farmer, M. E.; Yu, J.-Q. "Ligand-Enabled Auxiliary-Free meta-C-H Arylation of Phenylacetic Acids." *Angew. Chem. Int. Ed.* **2017**, *56*, 6874-6877; (e) Cheng, G.; Wang, P.; Yu, J.-Q. "meta-C-H Arylation and Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline Catalyst." *Angew. Chem. Int. Ed.* **2017**, *56*, 8183-8186; (f) Wang, P.; Farmer, M. E.; Yu, J.-Q. "Ligand-Promoted meta-C-H Functionalization of Benzylamines." *Angew. Chem. Int. Ed.* **2017**, *56*, 5125-5129.
- (51) Li, R.; Dong, G. "Direct Annulation between Aryl Iodides and Epoxides through Palladium/Norbornene Cooperative Catalysis." *Angew. Chem. Int. Ed.* **2018**, *57*, 1697-1701.
- (52) Cheng, H.-G.; Wu, C.; Chen, H.; Chen, R.; Qian, G.; Geng, Z.; Wei, Q.; Xia, Y.; Zhang, J.; Zhang, Y.; Zhou, Q. "Epoxides as Alkylating Reagents for the Catellani Reaction." *Angew. Chem. Int. Ed.* **2018**, *57*, 3444-3448.
- (53) Aschwanden, P.; Stephenson, C. R. J.; Carreira, E. M. "Highly Enantioselective Access to Primary Propargylamines: 4-Piperidinone as a Convenient Protecting Group." *Org. Lett.* **2006**, *8*, 2437-2440.

- (54) For synthesis of compound 14 using eletrophilic amination in a benzyne approach, see: Hendrick, C. E.; Wang, Q. "Synthesis of ortho-Haloaminoarenes by Aryne Insertion of Nitrogen–Halide Bonds." *J. Org. Chem.* **2015**, *80*, 1059-1069.
- (55) Schröter, S.; Stock, C.; Bach, T. "Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles." *Tetrahedron* **2005**, *61*, 2245-2267.
- (56) Keylor, M. H.; Niemeyer, Z. L.; Sigman, M. S.; Tan, K. L. "Inverting Conventional Chemoselectivity in Pd-Catalyzed Amine Arylations with Multiply Halogenated Pyridines." *J. Am. Chem. Soc.* **2017**, *139*, 10613-10616.
- (57) Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.; Yu, J.-Q. "Ligand-enabled meta-C-H activation using a transient mediator." *Nature* **2015**, *519*, 334-338.
- (58) (a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. "Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds." *Science* **2002**, *295*, 305-308; (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. "Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate." *J. Am. Chem. Soc.* **2002**, *124*, 390-391; (c) Murphy, J. M.; Liao, X.; Hartwig, J. F. "Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation." *J. Am. Chem. Soc.* **2007**, *129*, 15434-15435.
- (59) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. "Synthesis of Hindered Anilines: Copper-Catalyzed Electrophilic Amination of Aryl Boronic Esters." *Angew. Chem. Int. Ed.* **2012**, *51*, 3953-3956.
- (60) Qiao, J. X.; Lam, P. Y. S. "Recent Advances in Chan—Lam Coupling Reaction: Copper-Promoted C—Heteroatom Bond Cross-Coupling Reactions with Boronic Acids and Derivatives" In *Boronic Acids*; Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
- (61) For other *ortho*-aclyation of aryl iodides, see: (a) Pan, S.; Wu, F.; Yu, R.; Chen, W. "Palladium-Catalyzed Sequential Acylation/Cyanation of Aryl Iodides: A Regiospecific Synthesis of 2-Cyanoaryl Ketones." *J. Org. Chem.* **2016**, *81*, 1558-1564; (b) Xu, S.; Jiang, J.; Ding, L.; Fu, Y.; Gu, Z. "Palladium/Norbornene-Catalyzed ortho Aliphatic Acylation with Mixed Anhydride: Selectivity and Reactivity." *Org. Lett.* **2018**, *20*, 325-328.
- (62) Martins, A.; Lautens, M. "Aromatic ortho-Benzylation Reveals an Unexpected Reductant." *Org. Lett.* **2008**, *10*, 5095-5097.
- (63) Preliminary study shows that mono dentate phosphines work more efficiently for ortho alkylation, though the exact reason is unclear. One consideration is that, compared to O-benzoyl hydroxylamines and anhydrides used as electrophiles in ortho amination and acylation respectively, alkyl halides do not contain additional coordinating moieties. (64) For recent developments, see: (a) Zhang, H.; Chen, P.; Liu, G. "Palladium-Catalyzed Cascade C-H Trifluoroethylation of Aryl Iodides and Heck Reaction: Efficient Synthesis of ortho-Trifluoroethylstyrenes.' Angew. Chem. Int. Ed. 2014, 53, 10174-10178; (b) Lei, C.; Jin, X.; Zhou, J. "Palladium-Catalyzed Alkynylation and Concomitant ortho Alkylation of Aryl Iodides." ACS Catal. 2016, 6, 1635-1639; (c) Lei, C.; Jin, X.; Zhou, J. "Palladium-Catalyzed Heteroarylation and Concomitant ortho-Alkylation of Aryl Iodides." Angew. Chem. Int. Ed. 2015, 54, 13397-13400; (d) Sun, F.; Li, M.; Gu, Z. "Pd/norbornene-catalyzed sequential ortho-C-H alkylation and ipso-alkynylation: a 1,1-dimethyl-2-alkynol strategy." Org. Chem. Front. 2016, 3, 309-313; (e) Sui, X.; Ding, L.; Gu, Z. "The palladium/norbornene-catalyzed ortho-silylmethylation reaction: practical protocol for ortho-functionalized one-carbon homologation of arvl iodides." Chem. Commun. 2016, 52, 13999-14002.
- (65) (a) Weinstabl, H.; Suhartono, M.; Qureshi, Z.; Lautens, M. "Total Synthesis of (+)-Linoxepin by Utilizing the Catellani Reaction." *Angew. Chem. Int. Ed.* **2013**, *52*, 5305-5308; (b) Qureshi, Z.; Weinstabl, H.; Suhartono, M.; Liu, H.; Thesmar, P.; Lautens, M. "Application of the Palladium-Catalysed Norbornene-Assisted Catellani Reaction Towards the Total Synthesis of (+)-Linoxepin and Isolinoxepin." *Eur. J. Org. Chem.* **2014**, *2014*, 4053-4069; (c) Sui, X.; Zhu, R.; Li, G.; Ma, X.; Gu, Z. "Pd-Catalyzed Chemoselective Catellani Ortho-Arylation of Iodopyrroles: Rapid Total Synthesis of Rhazinal." *J. Am. Chem. Soc.* **2013**, *135*, 9318-9321; (d) Zhao, K.; Xu, S.; Pan, C.; Sui, X.; Gu, Z. "Catalytically Asymmetric Pd/Norbornene Catalysis: Enantioselective Synthesis of (+)-Rhazinal, (+)-Rhazinilam, and (+)-Kopsiyunnanine C1–3." *Org. Lett.* **2016**, *18*, 3782-3785.
- (66) (a) Shang, R.; Ilies, L.; Nakamura, E. "Iron-Catalyzed Directed C(sp2)-H and C(sp3)-H Functionalization with Trimethylaluminum." *J. Am. Chem. Soc.* **2015**, *137*, 7660-7663; (b) Shang, R.; Ilies, L.; Nakamura, E. "Iron-Catalyzed Ortho C–H Methylation of Aromatics Bearing a Simple Carbonyl


Group with Methylaluminum and Tridentate Phosphine Ligand." J. Am.

Chem. Soc. 2016, 138, 10132-10135.

(67) Jin, J.; MacMillan, D. W. C. "Alcohols as alkylating agents in heteroarene C–H functionalization." Nature 2015, 525, 87.

(68) Schönher, H.; Cernak, T. "Profound Methyl Effects in Drug Discovery

and a Call for New C-H Methylation Reactions." Angew. Chem. Int. Ed. **2013**, *52*, 12256-12267.

