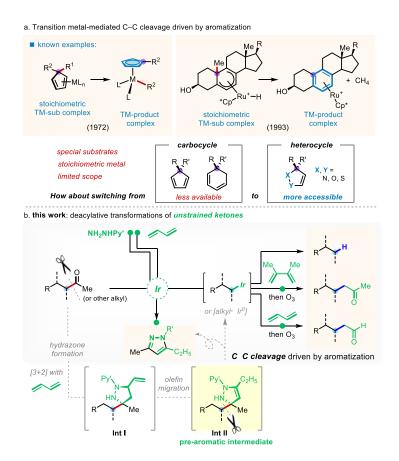
Deacylative Transformations of Ketones via Aromatization-Promoted Carbon-Carbon Bond Activation

Yan Xu¹, Xiaotian Qi², Pengfei Zheng^{1,3}, Carlo C. Berti¹, Peng Liu^{2,*} and Guangbin Dong^{1,*}

Carbon-hydrogen (C-H) and carbon-carbon (C-C) bonds are generally the most abundant bonds in organic compounds, regardless for simple feedstock chemicals or complex drugs/natural products. The recent advancement of C-H functionalization technology has vastly expanded our toolbox for efficient manipulations of specific C-H bonds on molecular surfaces¹; in contrast, widely applicable C-C activation methods that allow for selectively editing embedded molecular skeletons remain limited². To date, a number of methods have appeared for catalytic C-C activation, particularly with ketone substrates, which are typically promoted either by ring-strain release as a thermodynamic driving force^{2d,2g} or using directing groups^{2f,3} (DGs) to gain kinetic benefits. While effective, these strategies require employment of ketone substrates that are highly strained, or containing a preinstalled DG, or belonging to certain special classes^{2f}. Hence, to extend the synthetic utility of C-C activation, methods that can activate a significantly broader range of unstrained substrates would be particularly desirable. Herein, we report a new C-C activation mode suitable for a wide variety of unstrained ketone substrates, which is driven by aromatization of an in situ-formed pre-aromatic intermediate. This reaction is catalyzed by a unique iridium/phosphine combination, and promoted by a hydrazine reagent and 1,3-dienes. Specifically, the acyl moiety is removed from the ketone substrate and transformed to a pyrazole structure, and the resulting alkyl fragment undergoes various distinct transformations. The synthetic utility is primarily demonstrated in (a) deacetylation of methyl ketones, (b) carbenoid-free formal homologation of aliphatic linear ketones, and (c) deconstructive pyrazole synthesis from cyclic ketones.

Aromaticity has been known as an important thermodynamic driving force⁴ for various synthetic and enzymatic transformations. For example, in the biosynthesis of estrogens, aromatase converts testosterone to estradiol through a multi-step oxidative C–C cleavage process⁵. Forming aromatic compounds has also been known to promote the transition metal-mediated C–C activation since 1972^{6a}, which unfortunately has been largely underappreciated with only scattered examples⁶ (Fig. 1a). These reactions use a pre-aromatic substrate to complex with a low-valent TM, and subsequent C–C cleavage leads to stable arene-metal species, such as CpTM complexes (Cp: cyclopentadienyl)^{6b-e,6i}. However, to utilize such an approach for catalytic synthetic applications, a number of challenges still exist. First, special high-energy pre-aromatic substrates, e.g. cyclopentadienes, are generally needed; thus, it is concerned that whether readily available compounds can be used as substrates. In addition, the aromatic products generated in this reaction typically coordinate strongly with TMs; thus, enabling catalyst turnover could be a significant issue^{6b-g,6i}. Moreover, given the narrow reaction scope, developing attractive and synthetically valuable transformations with aromatization-driven C–C activation represent another difficulty.

In contrast to the less accessible carbocyclic pre-aromatics, a number of heterocycles, prepared from readily available chemicals through 1,3-dipolar addition⁷, could potentially serve as precursors to form heteroarenes. Thus, if heterocyclic pre-aromatics could be employed as key intermediates for the aromatization-driven C–C activation, distinct and synthetically useful transformations would be imagined. Herein, we report a new C–C activation mode suitable for general unstrained ketone substrates, which is driven by aromatization of an *in situ*-formed pre-aromatic intermediate (Fig. 1b). This iridium-catalyzed reaction likely involves a three-component coupling among a ketone, a 1,3-diene and a substituted hydrazine to generate a dihydropyrazole intermediate (Int II) that could subsequently undergo C–C cleavage to form a pyrazole⁸ and an activated alkyl species (e.g. an alkyl-Ir intermediate). Ultimately, a number of deacylative transformations of ketones, including C–H or C–C forming reactions, can be selectively realized under different conditions. Given that ketone moieties ubiquitously exist in feedstock chemicals, natural products and advanced pharmaceuticals, these unusual transformations could offer new strategic bond disconnections in synthesis of complex bioactive molecules.


¹Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

²Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

³College of Pharmacy, Army Medical University, Chongqing 400038, China

^{*}Corresponding author, e-mail: <u>gbdong@uchicago.edu</u>

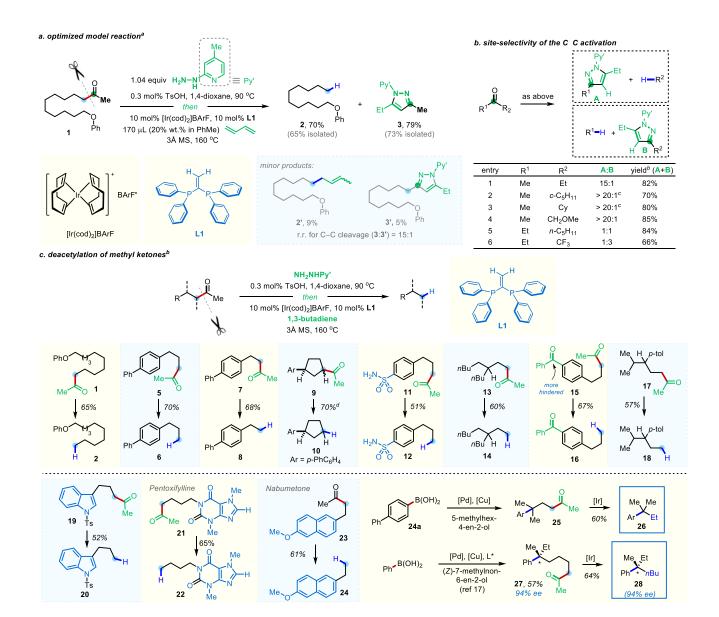

^{*}Corresponding author, e-mail: pengliu@pitt.edu

Figure 1 | **C–C** activation driven by aromatization. a, Transition metal-mediated C–C cleavage driven by aromatization. b, Deacylative transformations of common unstrained ketones.

The initial reaction mode was discovered during our exploration of the Rh-catalyzed β-C-H functionalization of ketones with 1,3-butadiene⁹, in which a small amount of pyrazoles (ca. 5%) were surprisingly yielded as a side product. This reaction was further optimized using 12-phenoxydodecan-2-one (1) as the model substrate, and iridium was found to offer a more active catalytic system than rhodium (see *Supplementary Information, Section 3.1*). After a systematic survey of reaction parameters, the ketone substrate, upon treatment with 4-methyl-2-pyridyl hydrazine and 1,3-butadiene in toluene, underwent efficient α-C-C bond cleavage using cationic [Ir(cod)₂]BArF¹⁰ and *1,1-bis(diphenylphosphino)ethylene* as the optimal metal/ligand combination (Fig. 2a). Pyrazole 3 was formed in 79% yield, along with deacetylation product 2 in 70% yield, as the two major products. A minor deacylative crotylation product (2°) was also observed in 9% yield, which should come from coupling of the alkyl fragment with 1,3-butadiene. Resulted from cleavage at the alternative methyl side, compound 3° was isolated in 5% yield, which indicated >15:1 site-selectivity in the key C-C activation step. The general trend of site-selectivity in the C-C cleavage process was then examined (Fig. 2b), and the results indicated that the bond scission prefers to occur at more substituted (entries 1-3) or α-to-heteroatom carbons (entry 4). An exception was found with trifluoromethyl-substituted ketones, in which cleavage of the ethyl group was more favored over the trifluoromethyl (entry 6). Unsurprisingly, no selectivity was observed between an ethyl and an *n*-pentyl group in 3-octanone (entry 5).

Encouraged by the excellent site-selectivity with methyl ketones, we foresaw an opportunity of realizing a *redox-neutral* approach to remove an acyl (particularly an acetyl) moiety from a linear ketone (Fig. 2c). It is well known that the Tsuji-Wilkinson decarbonylation of aldehydes has been frequently employed in natural product synthesis, ¹² and recently a de-hydroformylation approach was reported to access unsaturated products. ¹³ Hence, the related *deacetylation* with readily accessible methyl ketones is also expected to be synthetically valuable from the strategic viewpoint. The scope of this transformation was first explored with various structurally diverse methyl ketones. Indeed, the deacetylation took place smoothly with protonation at primary or cyclic secondary positions. Notably, when two ketone carbonyl groups are present in the substrate, the C-C cleavage occurred selectively at the methyl ketone moiety while the benzophenone moiety remained untouched (16). In addition, FGs, such as primary sulfonamides (12), and heteroarenes, such as protected

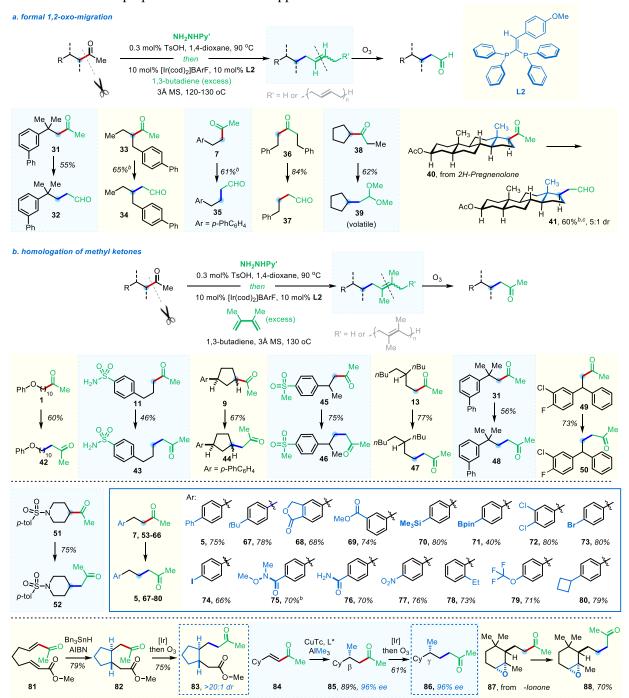
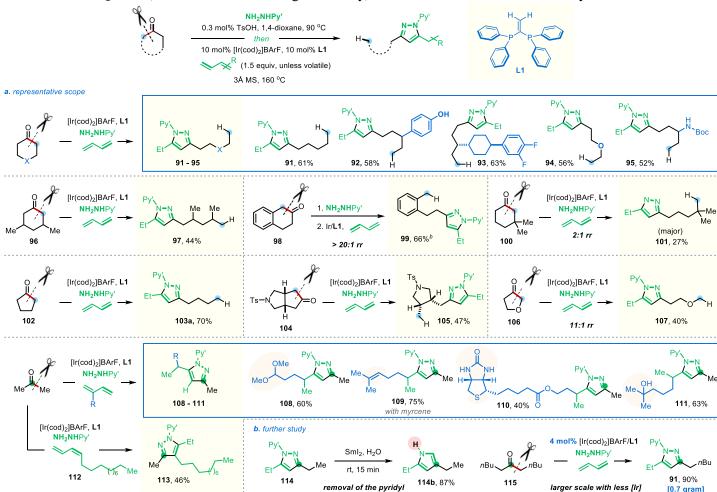


Figure 2 | **Iridium-catalyzed cleavage of unstrained ketones. a,** Optimized model reaction using linear ketone **1**. The reaction is redox neutral, showing high selectivity. **b,** The site-selectivity of this reaction was further explored. In general, the bond scission prefers to occur at more substituted or α-to-heteroatom carbons. **c,** Deacetylation of methyl ketones. The scope is broad and a number of FGs are tolerated. ^a The reactions were conducted with 0.05 mmol **1,** 0.052 mmol of 4-methyl-2-pyridyl hydrazine, and 0.5 mmol 1,3-butadiene. The yields were determined by ¹H NMR using 1,1,2,2-tetrachloroethane as the internal standard. ^b Isolated yield. ^c The reaction was conducted using (2-(4-methoxyphenyl)ethene-1,1-diyl)bis(diphenylphosphane) (**L2**) instead of **L1** as the ligand. ^d Using the pre-formed hydrazone as the substrate. For detailed experimental procedures, see Supplementary Information.

indole (20) and purine (22), were found compatible. This approach also holds promise for post-modification of bioactive compounds. For example, anti-inflammatory drugs, such as *Pentoxifylline* (21) and *Nabumetone* (23), underwent facile C–C cleavage to generate deacetylated analogues. Furthermore, *tert*-amylation of arenes is nontrivial *via* direct cross coupling approaches, ¹⁴ but it can be realized through first coupling of aryl boronic acid 24a with 5-methylhex-4-en-2-ol using Sigman's redox-relay oxidative-Heck reaction¹⁵ followed by this deacetylation reaction. Finally, enantioselective construction of hydrocarbon quaternary stereocenters that *lack nearby polar FGs* (28) was also achieved using a similar strategy. ¹⁵


Besides the simple C–H formation, the cleaved alkyl fragment could also be trapped by 1,3-butadiene to give C-allylation products (*vide supra*, Fig. 2a, compound 2')¹⁷. The efficiency of the C-allylation products could be significantly improved using excess 1,3-butadiene at a lower reaction temperature, and high conversion was obtained with **L2** as the ligand. Upon

facile ozonolysis, a formal "1,2-oxo-migration", relocating the carbonyl moiety from the internal to the terminal position, was realized, providing the corresponding aldehydes in good yields (Fig. 3a). Ketones that contain α (33, 38, 40) and/or β stereocenters (31, 40) could be tolerated. The transformation is not limited to methyl ketones. In particular, selective cleavage and coupling at the cyclopentyl site (versus the ethyl site) in ketone 38 was effectively achieved. Gratifyingly, a steroid natural product, i.e. 2*H*-pregnenolone (40), was also a competent substrate; the corresponding aldehyde product (41) would be non-trivial to prepare via conventional approaches.

Figure 3 | **Deacylative C–C forming reactions of linear ketones. a,** Formal "1,2-oxo-migration". After C–C cleavage, through coupling the alkyl fragment with 1,3-butadiene followed by ozonolysis, an aldehyde with the same length of a carbon chain is afforded **b,** Carbenoid-free homologation of aliphatic linear ketones. With additional 2,3-dimethyl-1,3-butadiene followed by ozonolysis, the sequence offers formal one-carbon homologation selectively at the non-methyl site of the ketone. ^a All yields are isolated yields. ^b Using the pre-formed hydrazone as the substrate. ^c The reaction was conducted at 170 °C. For detailed experimental procedures, see Supplementary Information.

Interestingly, when the reaction was run in the presence of a second but bulkier 1,3-diene, such as 2,3-dimethyl-1,3-butadiene, the resulting C-allylation intermediate, upon ozonolysis, led to a formal one-carbon homologation product (Fig. 3b). A variety of ketones with different skeletons, including those with multiple substitutions at α and/or β positions, readily reacted and gave decent yields of the homologation products over two steps. A variety of FGs, such as aryl iodides (74) and bromides (73), aryl boronic esters (71) and silanes (70), epoxides (88), esters (69, 83), lactones (68), nitros (77), amides (75, 76), sulfonamides (43, 52), and sulfones (46) were tolerated. It is noteworthy that the strained cyclobutane motif remained untouched (80). This formal-homologation approach also allows for preparation of 1,7-ketoesters (83) and enantioselective synthesis of ketones with γ -stereocenters (86) from readily available precursors. Natural product-derived ketones, such as the one from α -ionone (87), could also be used as substrates. Compared with the classical carbenoid-mediated homologation¹⁸, this method features high reactivity, excellent site- and chemo-selectivity.

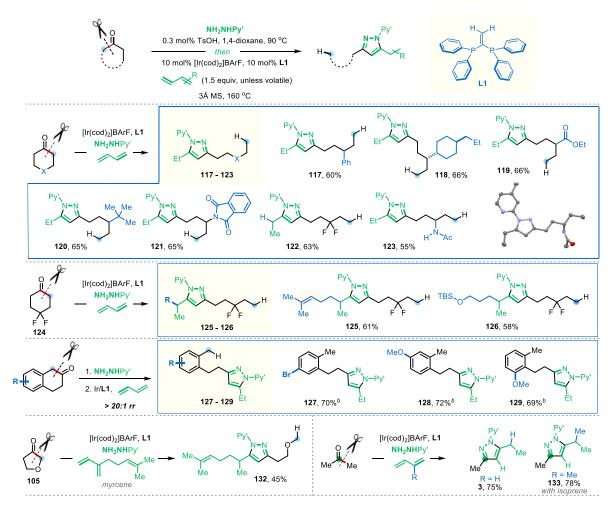
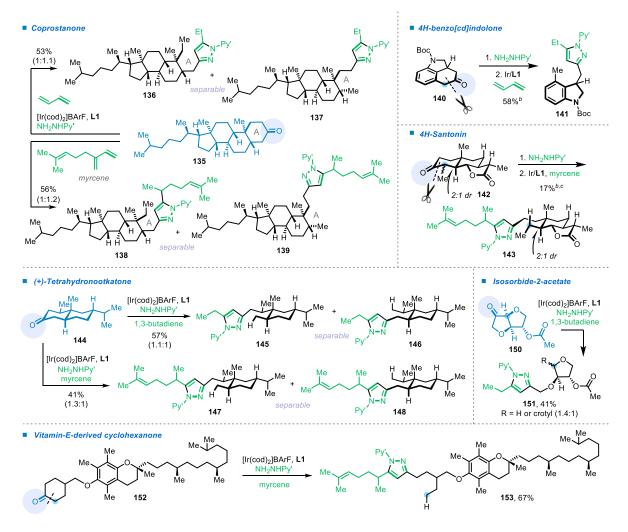
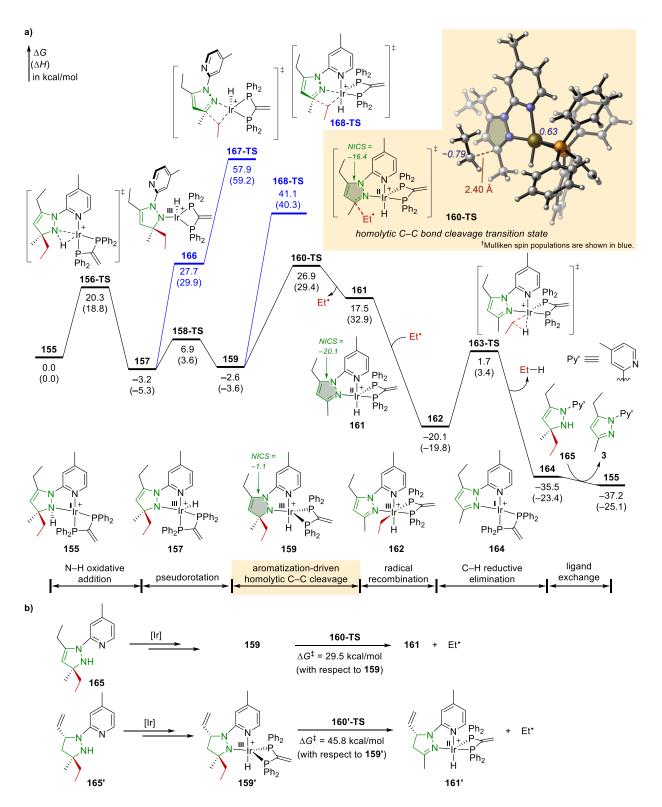


Figure 4 | **Deconstructive pyrazole synthesis from ketones. a,** Representative substrate scope. **b,** Further studies on pyridyl group removal and larger scale synthesis. ^a All yields are isolated yields. ^b Yields refer to the key C–C activation reaction using pre-formed hydrazones as the substrates. See Extended Data Figs. 1 and 2 for additional substrate scope, and see Supplementary Information for detailed experimental procedures.


On the other hand, when *cyclic ketones* were employed as substrates, a redox-neutral deconstructive pyrazole-synthesis method was realized (Fig. 4 and Extended Data Fig. 1)⁸. As a highly important class of pharmacophores, pyrazoles are commonly found in bioactive compounds and approved drugs^{19b}, e.g. *Celecoxib*, *Rimonabant*, *Fomepizole* and *Sildenafi*. While many methods have been developed for pyrazole synthesis,¹⁹ it could still be attractive to devise a straightforward and oxidant-free approach to prepare complex functionalized pyrazoles from readily available ketones and 1,3-dienes through aromatization-promoted C–C activation. Under the same conditions shown in Fig. 2c, a variety of cyclic ketones with different substitutions and ring-sizes were converted to the desired pyrazole products that contain rich structural diversity. Similarly, when using unsymmetrical ketones, the C–C bonds at more substituted (101) or benzylic positions (99, 127-129), or α to a heteroatom (107), were activated dominantly. Ketones featuring oxygen heterocycles (94 and 107) also reacted as well. Note that simple acetone could be used as the substrate, and a range of different dienes, such as 1,3-

butadiene, *isoprene*, *myrcene*, 1,3-pentadecadiene and other functionalized 1,3-dienes, could be readily coupled to introduce different FGs and substitution patterns. The transformation tolerates trisubstituted olefins (109), aryl bromides (127), free and protected alcohols (111 and 126), free phenols (92), thioethers (110), dimethyl acetals (108), protected amines (95 and 123), phthalimides (121), sulfonamides (105), esters (119), ethers (94 and 107), aliphatic and aromatic fluorides (93 and 122), and ureas (110). Moreover, the 2-pyridyl moiety can be readily removed using SmI₂ and water, furnishing a free pyrazole product in a high yield. Importantly, the catalyst loading could be reduced to 4 mol% on larger scales, where 0.7 gram of product 91 was isolated in 90% yield (Fig. 4b). Compared with the classical pyrazole syntheses ¹⁹, this approach only requires a mono-ketone FG to be used as a handle. Thus, it provides a simple and distinct strategy to introduce pyrazole moieties into complex natural products or biologically interesting scaffolds (Extended Data Fig. 2). In addition, simply by switching the 1,3-diene coupling partners, several structurally related and separable pyrazole-derived analogues could be rapidly made available in one step from a single natural product (135 and 144). These pyrazole products would be difficult to access via conventional approaches. Given that mono-ketone moieties are prevalent in complex molecules or readily accessible from other FGs, this C–C activation method could become a useful tool of preparing novel pyrazole-containing analogues for pharmaceutical or agrochemical research.


Preliminary mechanistic studies have been performed (see Supplementary Information, Section 3.2) to support the proposed reaction pathway depicted in Fig. 1b. First, the [3+2] cycloaddition adduct (Int I) between 1,3-butadiene and the hydrazone intermediate²⁰ could be isolated during the course of the reaction, and was found to undergo the C-C cleavage with similar efficiency and selectivity as the standard reaction (Fig. S2). Upon olefin migration, the dihydropyrazole species (Int II), which is one unsaturation degree shy of an aromatic pyrazole structure, is proposed to be the key intermediate for the following C-C activation. In contrast, no C-C cleavage was observed without the endocyclic double bond or the ring structure (Fig. S2c). From Int II, an aromatization-promoted homolytic C-C cleavage/radical recombination mechanism was suggested by density functional theory (DFT) calculations over other C-C activation pathways (Extended Data Fig. 3a and Fig. S5). The initial N-H oxidative addition gives rise to a mixture of Ir(III) hydride isomers (157 and 159), in which the exocyclic C-C bond of the dihydropyrazole is significantly weakened (BDE = 39.0 and 36.5 kcal/mol for 157 and 159, respectively). From 159, the homolytic C-C cleavage (160-TS, $\Delta G^{\dagger} = 29.5$ kcal/mol with respect to 159) yields a transient Ir(II) species (161) and an alkyl radical, which then rapidly recombine to form 162. The computed NICS(1)zz aromaticity index values revealed a substantial increase of aromaticity of the fivemembered ring that stabilizes 160-TS. As a comparison, without the driving force of aromatization, the corresponding C-C cleavage of pyrazolidine 165' requires a much higher barrier (Extended Data Fig. 3b). From 162, an alkane and the pyrazole product 3 are formed via C-H reductive elimination and subsequent ligand exchange. Based on the current mechanistic understanding, future work will focus on enhancing the reaction efficiency and discovering new transformations or applications based on this C-C activation mode.

Extended Data Fig. 1 | **Additional substrate scope for deconstructive pyrazole synthesis from ketones**. ^a All yields are isolated yields. ^b The yield refers to the key C–C activation reaction using pre-formed hydrazone as the substrate. For detailed experimental procedures, see Supplementary Information.

Extended Data Fig. 2 | **Introducing pyrazoles into complex ketones via C–C cleavage**. ^a All yields are isolated yields. ^b The yield refers to the key C–C activation reaction using pre-formed hydrazone as the substrate. ^c 15 mol% Ir catalyst and 15 mol% **L1** were used. For detailed experimental procedures, see Supplementary Information.

Extended Data Fig. 3 | Computational studies of the aromatization-driven C–C bond activation. a, Free energy profiles of the aromatization-driven C–C bond activation of dihydropyrazole 165. Calculations were performed at the M06-L/6-311+G(d,p)–SDD/SMD(1,4-dioxane)//B3LYP/6-31G(d)–SDD level of theory. The less favorable β -C elimination pathways with and without pyridine coordination (168-TS and 167-TS, respectively) are shown in blue. The NICS(1)_{zz} aromaticity index was calculated at B3LYP/6-311+G(d,p)–SDD level of theory to describe the aromaticity of pyrazole ring (highlighted in green) in 159, 160-TS, and 161. The variation of NICS(1)_{zz} values indicates a significant increase of aromaticity during the homolytic C–C bond cleavage. b, Comparison between homolytic C–C bond cleavage of dihydropyrazole 165 and pyrazolidine 165' (165' without the driving force of aromatization). See Section 3.2.2 in Supplementary Information for details.

Acknowledgements

This project was supported by NIGMS (R01GM109054). Y. X. thanks the Charles H. Viol and William Rainey Harper Dissertation Fellowship from the University of Chicago, and the Bristol-Myers Squibb Graduate Fellowship for financial support. P. Z. thanks the Joint Ph.D. Student Scholarship 2016 from China Scholarship Council (File No. 201603170182). P. L. thanks the NSF (CHE-1654122) for funding. Calculations were performed at the Center for Research Computing at the University of Pittsburgh. Ms. Lin Deng is acknowledged for kind donation of substrate **140**. Dr. Jun Zhu is acknowledged for conducting several control experiments.

References:

- 1. For selected reviews on activation of C–H bonds, see: (a) Yu, J.-Q. & Shi, Z.-J. *C–H Activation*. (Springer: Berlin, 2010). (b) Li, J. J. *C–H Bond Activation in Organic Synthesis*. (CRC PRESS, 2017). (c) Davies, H. M. L., Du Bois, J. & Yu, J.-Q. C–H functionalization in organic synthesis. *Chem. Soc. Rev.* 40, 1855–1856 (2011). (d) Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. *Chem. Rev.* 110, 1147–1169 (2010). (e) Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. *Acc. Chem. Res.* 45, 864–873 (2012). (f) Yang, L. & Huang, H. Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. *Chem. Rev.* 115, 3468–3517 (2015). (g) He, J., Wasa, M., Chan, K. S., Shao, Q., & Yu, J. Q. Palladium-catalyzed transformations of alkyl C–H bonds. *Chem. Rev.* 117, 8754–8786 (2017). (h) Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. *Chem. Rev.* 117, 9163–9227 (2017) (i) Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. *Chem. Rev.* 117, 9247–9301 (2017).
- For selected reviews on activation of C–C bonds, see: (a) Murakami, M. & Ito, Y. Cleavage of carbon—carbon single bonds by transition metals. *Top. Organomet. Chem.* 3, 97–129 (1999). (b) Dong, G. C–C bond activation. (Springer: Berlin, 2014). (c) Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. *Chem. Rev.* 114, 8613–8661 (2014). (d) Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. *Chem. Rev.* 115, 9410–9464 (2015). (e) Chen, P.-H., Billett, B. A., Tsukamoto, T. & Dong, G. "Cut and sew" transformations via transition-metal-catalyzed carbon–carbon bond activation. *ACS Catal.* 7, 1340–1360 (2017). (f) Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. *Chem. Rev.* 117, 8977–9015 (2017). (g) Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. *Chem. Rev.* 117, 9404–9432 (2017).
- 3. (a) Suggs, J. W. & Jun, C. H. Directed cleavage of carbon–carbon bonds by transition metals: the α-bonds of ketones. *J. Am. Chem. Soc.* **106**, 3054–3056 (1984). (b) Dreis, A.; Douglas, C. In *C–C Bond Activation*; Dong, G., Ed.; Springer: Berlin; **346**, 85–110 (2014).
- 4. Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. *Org. Lett.* **4,** 2873–2876 (2002).
- 5. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. *Endocr. Rev.* **30**, 343–375 (2009).
- For transition metal-mediated C-C activation driven by aromatization, see: (a) King, R. B. & Efraty, A. Pentamethylcyclopentadienyl derivatives of transition metals. II. Synthesis of pentamethylcyclopentadienyl metal carbonyls from 5-acetyl-1,2,3,4,5-pentamethylcyclopentadiene. J. Am. Chem. Soc. 94, 3773-3779 (1972). (b) Benfield, F. W. S. & Green, M. L. H. Alkyl, alkynyl, and olefin complexes of bis(π-cyclopentadienyl)-molybdenum or -tungsten: a reversible metal-to-ring transfer of an ethyl group. J. Chem. Soc., Dalton Trans. 1324-1331 (1974). (c) Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of Aromatase: Saga of an Important Biological Mediator and Therapeutic Target. Endocr. Rev. 30, 343-375 (2009). (d) Eilbracht, P. & Dahler, P. J. C-C-einfachbindungsspaltung 1,1dialkylsubstituierter cyclopentadiene durch Fe₂(CO)₉ unter ausbildung von π -cyclopentadienyl- σ -alkyl-eisen-komplexen. Organomet. Chem. 135, C23-C25 (1977). (e) Crabtree, R. H., Dion, R. P., Gibboni, D. J., Mcgrath, D. V. & Holt, E. M. Carbon-carbon bond cleavage in hydrocarbons by iridium complexes. J. Am. Chem. Soc. 108, 7222-7227 (1986). (f) Halcrow, M. A., Urbanos, F. & Chaudret, B. Aromatization of the B-ring of 5,7-dienyl steroids by the electrophilic ruthenium fragment "[Cp*Ru]+". Organometallics 12, 955-957 (1993). (g) Older, C. M. & Stryker, J. M. The mechanism of carbon-carbon bond activation in cationic 6-alkylcyclohexadienyl ruthenium hydride complexes. J. Am. Chem. Soc. 122, 2784-2797 (2000). (h) Youn, S. W., Kim, B. S. & Jagdale, A. R. Pd-catalyzed sequential C-C bond formation and cleavage: evidence for an unexpected generation of arylpalladium(II) species. J. Am. Chem. Soc. 134, 11308-11311 (2012). (i) Smits, G., Audic, B., Wodrich, M. D., Corminboeuf, C. & Cramer, N. A β-Carbon elimination strategy for convenient in situ access to cyclopentadienyl metal complexes. Chem. Sci. 8, 7174–7179 (2017).

- 7. Padwa, A. & Pearson, W. H. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products (John Wiley & Sons, 2003).
- 8. For pyrazole synthesis via oxidative C–C cleavage from dihydropyrazole intermediates, see: (a) Fevre, G. L. & Hamelin, J. Existence d'une forme N–H stable de pyrazoline-4 lors de l'aromatisation de pyrazolidines 3,3-disubstituees en pyrazole. Mecanisme de la reaction. *Tetrahedron Lett.* **19**, 4503–4506 (1978). (b) Tian, M., Shi, X., Zhang, X. & Fan, X. Synthesis of 4-acylpyrazoles from saturated ketones and hydrazones featured with multiple C(sp³)–H bond functionalization and C–C bond cleavage and reorganization. *J. Org. Chem.* **82**, 7363–7372 (2017).
- 9. Xu, Y., Young, M. C. & Dong, G. Catalytic coupling between unactivated aliphatic C–H bonds and alkynes via a metal-hydride pathway. *J. Am. Chem. Soc.* **139**, 5716–5719 (2017).
- 10. For seminal work and a review using [Ir(cod)₂]BArF as a catalyst in C-H activation, see: (a) Tsuchikama, K., Hashimoto, Y.-K., Endo, K. & Shibata, T. Iridium-catalyzed selective synthesis of 4-substituted benzofurans and indoles via directed cyclodehydration. *Adv. Synth. Catal.* 351, 2850–2854 (2009). (b) Pan, S. & Shibata, T. Recent advances in iridium-catalyzed alkylation of C-H and N-H bonds. *ACS Catal.* 3, 704–712 (2013).
- 11. (a) Xia, Y., Lu, G., Liu, P. & Dong, G. Catalytic activation of carbon–carbon bonds in cyclopentanones. *Nature* **539**, 546–550 (2016). (b) Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O–H bonds. *J. Am. Chem. Soc.* **138**, 10794–10797 (2016).
- 12. (a) Tsuji, J. & Ohno, K. Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex. *Tetrahedron Lett.* **6**, 3969–3971 (1965). (b) Dermenci, A. & Dong, G. Decarbonylative C–C bond forming reactions mediated by transition metals. *Sci. China Chem.* **56**, 685–701 (2013).
- 13. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. *Science* **347**, 56–60 (2015).
- 14. Zultanski, S. L. & Fu, G. C. Nickel-catalyzed carbon–carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. *J. Am. Chem. Soc.* **135**, 624–627 (2013).
- 15. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. *Nature* **508**, 340–344 (2014).
- 16. Fessard, T. E. C., Andrews, S. P., Motoyoshi, H. & Carreira, E. M. Enantioselective preparation of 1,1-diarylethanes: aldehydes as removable steering groups for asymmetric synthesis. *Angew. Chem. Int. Ed.* **46**, 9331–9334 (2007).
- 17. For representative examples of decarboxylative alkylation with electron-deficient olefins, see: (a) Chu, L., Ohta, C., Zuo, Z. & Macmillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-Pregabalin. *J. Am. Chem. Soc.* **136**, 10886–10889 (2014). (b) Qin, T. *et al.* Nickel-catalyzed Barton decarboxylation and Giese reactions: A practical take on classic transforms. *Angew. Chem. Int. Ed.* **56**, 260–265 (2017).
- 18. Candeias, N. R., Paterna, R. & Gois, P. M. P. Homologation reaction of ketones with diazo compounds. *Chem. Rev.* **116**, 2937–2981 (2016).
- 19. (a) Fustero, S., Sánchez-Roselló, M., Barrio, P. & Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. *Chem. Rev.* 111, 6984–7034 (2011). (b) Karrouchi, K. *et al.* Synthesis and pharmacological activities of pyrazole derivatives: A review. *Molecules* 23, 134 (2018). (c) Yet, L. Pyrazoles, in *Comprehensive Heterocyclic Chemistry III*; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Joule, J. A., Eds.; 4, 1–141. (Pergamon-Elsevier: Oxford, U.K., 2008).
- 20. (a) Hong, X. *et al.* Mechanism and selectivity of *N*-triflylphosphoramide catalyzed (3 + 2) cycloaddition between hydrazones and alkenes. *J. Am. Chem. Soc.* **136**, 13769–13780 (2014). (b) Lykke, L., Carlsen, B. D., Rambo, R. S. & Jørgensen, K. A. Catalytic asymmetric synthesis of 4-nitropyrazolidines: an access to optically active 1,2,3-triamines. *J. Am. Chem. Soc.* **136**, 11296–11299 (2014).