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Exploring patterns enriched in a dataset with
contrastive principal component analysis

Abubakar Abid', Martin J. Zhang', Vivek K. Bagaria' & James Zou?3

Visualization and exploration of high-dimensional data is a ubiquitous challenge across dis-
ciplines. Widely used techniques such as principal component analysis (PCA) aim to identify
dominant trends in one dataset. However, in many settings we have datasets collected under
different conditions, e.g., a treatment and a control experiment, and we are interested in
visualizing and exploring patterns that are specific to one dataset. This paper proposes a
method, contrastive principal component analysis (cPCA), which identifies low-dimensional
structures that are enriched in a dataset relative to comparison data. In a wide variety of
experiments, we demonstrate that cPCA with a background dataset enables us to visualize
dataset-specific patterns missed by PCA and other standard methods. We further provide a
geometric interpretation of cPCA and strong mathematical guarantees. An implementation of
cPCA is publicly available, and can be used for exploratory data analysis in many applications
where PCA is currently used.
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rincipal component analysis (PCA) is one of the most
Pwidely used methods for data exploration and visualiza-

tion!. PCA projects the data onto a low-dimensional space
and is especially powerful as an approach to visualize patterns,
such as clusters, clines, and outliers in a dataset?. There is a large
number of related visualization methods; for example, t-SNE* and
multi-dimensional scaling (MDS)* allow for nonlinear data pro-
jections and may better capture nonlinear patterns than PCA.
Yet, all of these methods are designed to explore one dataset at a
time. When the analyst has multiple datasets (or multiple con-
ditions in one dataset to compare), then the current state-of-
practice is to perform PCA (or t-SNE, MDS, etc.) on each dataset
separately, and then manually compare the various projections to
explore if there are interesting similarities and differences across
datasets™®. Contrastive PCA (cPCA) is designed to fill in this gap
in data exploration and visualization by automatically identifying
the projections that exhibit the most interesting differences across
datasets. Figure 1 provides an overview of cPCA that we explain
in more detail ahead.

cPCA is motivated by a broad range of problems across dis-
ciplines. For illustration, we mention two such problems here and
demonstrate others through experiments later in the paper. First,
consider a dataset of gene-expression measurements from indi-
viduals of different ethnicities and sexes. This data includes gene-
expression levels of cancer patients {x;}, which we are interested
in analyzing. We also have control data, which corresponds to the
gene-expression levels of healthy patients {y;} from a similar
demographic background. Our goal is to find trends and varia-
tions within cancer patients (e.g., to identify molecular subtypes
of cancer). If we directly apply PCA to {x;}, however, the top
principal components may correspond to the demographic var-
iations of the individuals instead of the subtypes of cancers
because the genetic variations due to the former are likely to be
larger than that of the latter’. We approach this problem by
noting that the healthy patients also contain the variation asso-
ciated with demographic differences, but not the variation cor-
responding to subtypes of cancers. Thus, we can search for
components in which {x;} has high variance but {y;} has low
variance.

As a related example, consider a dataset {x;} that consists of
handwritten digits on a complex background, such as different
images of grass (see Fig. 2(a), top). The goal of a typical unsu-
pervised learning task may be to cluster the data, revealing the
different digits in the image. However, if we apply standard PCA
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on these images, we find that the top principal components do
not represent features related to the handwritten digits, but reflect
the dominant variation in features related to the image back-
ground (Fig. 2(b), top). We show that it is possible to correct for
this by using a reference dataset {y;} that consists solely of images
of the grass (not necessarily the same images used in {x;} but
having similar covariance between features, as shown in Fig. 2(a),
bottom), and looking for the subspace of higher variance in {x;}
compared to {y;}. By projecting onto this subspace, we can
actually visually separate the images based on the value of the
handwritten digit (Fig. 2(b), bottom). By comparing the principal
components discovered by PCA with those discovered by cPCA,
we see that cPCA identifies more relevant features (Fig. 2(c)),
which allows us to use cPCA for such applications as feature
selection and denoising®.

Contrastive PCA is a tool for unsupervised learning, which
efficiently reduces dimensionality to enable visualization and
exploratory data analysis. This separates cPCA from a large class
of supervised learning methods whose primary goal is to classify
or discriminate between various datasets, such as linear dis-
criminant analysis (LDA)’, quadratic discriminant analysis
(QDA)'?, supervised PCA!!, and QUADRO!2. This also din-
stinguishes cPCA from methods that integrate multiple data-
sets'3716, with the goal of identifying correlated patterns among
two or more datasets, rather than those unique to each individual
dataset. There is also a rich family of unsupervised methods for
dimension reduction besides PCA. For example, multi-
dimensional scaling (MDS)* finds a low-dimensional embed-
ding that preserves the distance in the high-dimensional space;
principal component pursuit'” finds a low-rank subspace that is
robust to small entry-wise noise and gross sparse errors. But none
are designed to utilize relevant information from a second dataset,
as cPCA does. In the supplement, we have compared cPCA to
many of the previously-mentioned techniques on representative
datasets (see Supplementary Figs. 3 and 4).

In a specific application domain, there may be specialized tools
in that domain with similar goals as cPCA'®~2. For example, in
the results, we show how cPCA applied on genotype data
visualizes geographical ancestry within Mexico. Exploring fine-
grained clusters of genetic ancestries is an important problem in
population genetics, and researchers have recently developed an
algorithm to specifically visualize such ancestry clusters'8. While
cPCA performs well here, the expert-crafted algorithm might
perform even better for a specific dataset. However, the
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Fig. 1 Schematic Overview of cPCA. To perform cPCA, compute the covariance matrices Cy, Cy of the target and background datasets. The singular vectors
of the weighted difference of the covariance matrices, Cx — a- Cy, are the directions returned by cPCA. As shown in the scatter plot on the right, PCA (on
the target data) identifies the direction that has the highest variance in the target data, while cPCA identifies the direction that has a higher variance in the
target data as compared to the background data. Projecting the target data onto the latter direction gives patterns unique to the target data and often
reveals structure that is missed by PCA. Specifically, in this example, reducing the dimensionality of the target data by cPCA would reveal two distinct
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Fig. 2 Contrastive PCA on Noisy Digits. a, Top: We create a target dataset of 5,000 synthetic images by randomly superimposing images of handwritten
digits 0 and 1 from MNIST dataset32 on top of images of grass taken from ImageNet dataset33 belonging to the synset grass. The images of grass are
converted to grayscale, resized to be 100 x 100, and then randomly cropped to be the same size as the MNIST digits, 28 x 28. b, Top: Here, we plot the
result of embedding the synthetic images onto their first two principal components using standard PCA. We see that the points corresponding to the
images with O's and images with 1's are hard to distinguish. a, Bottom: A background dataset is then introduced consisting solely of images of grass
belonging to the same synset, but we use images that are different than those used to create the target dataset. b, Bottom: Using cPCA on the target and
background datasets (with a value of the contrast parameter a set to 2.0), two clusters emerge in the lower-dimensional representation of the target
dataset, one consisting of images with the digit O and the other of images with the digit 1. ¢ We look at the relative contribution of each pixel to the first
principal component (PC) and first contrastive principal component (cPC). Whiter pixels are those that carry a more positive weight, while darker denotes
those pixels that carry negative weights. PCA tends to emphasize pixels in the periphery of the image and slightly de-emphasize pixels in the center and
bottom of the image, indicating that most of the variance is due to background features. On the other hand, cPCA tends to upweight the pixels that are at
the location of the handwritten 1's, negatively weight pixels at the location of handwritten O's, and neglect most other pixels, effectively discovering those
features useful for discriminating between the superimposed digits

specialized algorithm requires substantial domain knowledge to  Results
design, is more computationally expensive, and can be challen- Subgroup discovery in protein expression data. Researchers
ging to use. The goal of cPCA is not to replace all these specia- have noted that standard PCA is often ineffective at discovering
lized state-of-the-art methods in each of their domains, but to  subgroups within biological data, at least in part because
provide a general method for exploring arbitrary datasets. “dominant principal components...correlate with artifacts,?!
We propose a concrete and efficient algorithm for cPCA in this  rather than with features that are of interest to the researcher.
paper. The method takes as input a target dataset {x;} that we are How can cPCA be used in these settings to detect the more
interested in visualizing or identifying patterns within. As a sec-  significant subgroups? By using a background dataset to cancel
ondary input, cPCA takes a background dataset {y;}, which does out the universal but uninteresting variation in the target, we can
not contain the patterns of interest. The cPCA algorithm returns  search for structure that is unique to the target dataset.
subspaces which capture a large amount of variation in the target Our first experiment uses a dataset consisting of protein
data {x;}, but little in the background {y;} (see Fig. 1, Methods, expression measurements of mice that have received shock
and Supplementary Methods for more details). This subspace therapy?>??. Some of the mice have developed Down Syndrome
corresponds to features containing structure specific to {x;}. (DS). To create an unsupervised learning task where we have
Hence, when the target data is projected onto this subspace, we ground truth information to evaluate the methods, we assume
are able to visualize and discover the additional structure in the this DS information is not known to the analyst and only use it
target data relative to the background. Analogous to the principal for algorithm evaluation. We would like to see if we detect any
components (PCs), we call the directions found by ¢cPCA the significant differences within the shocked mice population in an
contrastive principal components (cPCs). We emphasize that unsupervised manner (the presence or absence of Down
cPCA is fundamentally an unsupervised technique, designed to  Syndrome being a key example). In Fig. 3a (top), we show the
resolve patterns in one dataset more clearly by using the back- result of applying PCA to the target dataset: the transformed data
ground dataset as a contrast. In particular, cPCA does not seek to  does not reveal any significant clustering within the population of
discriminate between the target and background datasets; the mice. The major sources of variation within mice may be natural,
subspace that contains trends that are enriched in the target such as sex or age.
dataset is not necessarily the same subspace that is optimal for We apply cPCA to this dataset using a background consists of
classification between the datasets. protein expression measurements from a set of mice that have not
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Fig. 3 Discovering subgroups in biological data. a We use PCA to project a protein expression dataset of mice with and without Down Syndrome (DS) onto
the first two components. The lower-dimensional representation of protein expression measurements from mice with and without DS are seen to be
distributed similarly (top). But, when we use cPCA to project the dataset onto its first two cPCs, we discover a lower-dimensional representation that
clusters mice with and without DS separately (bottom). b Furthermore, we use PCA and cPCA to visualize a high-dimensional single-cell RNA-Seq dataset
in two dimensions. The dataset consists of four cell samples from two leukemia patients: a pre-transplant sample from patient 1, a post-transplant
sample from patient 1, a pre-transplant sample from patient 2, and a post-transplant sample from patient 2. b, left: The results using only the samples from
patient 1, which demonstrate that cPCA (bottom) more effectively separates the samples than PCA (top). When the samples from the second patient are
included, in b, right, again cPCA (bottom) is more effective than PCA (top) at separating the samples, although the post-transplant cells from both patients
are similarly-distributed. We show plots of each sample separately in Supplementary Fig. 5, where it is easier to see the overlap between different samples

been exposed to shock therapy. They are control mice that likely
have similar natural variation as the experimental mice, but
without the differences that result from the shock therapy. With
this dataset as a background, cPCA is able to resolve two different
groups in the transformed target data, one corresponding to mice
that do not have Down Syndrome and one corresponding
(mostly) to mice that have Down Syndrome, as illustrated in
Fig. 3a (bottom). As a comparison, we also applied 8 other
dimensionality reduction techniques to identify directions that
differentiate between the target and background datasets, none of
which were able to separate the mice as well as cPCA (see
Supplementary Fig. 4 for details).

Subgroup discovery in single-cell RNA-Seq data. Next, we
analyze a higher-dimensional public dataset consisting of single-
cell RNA expression levels of a mixture of bone marrow mono-
nuclear cells (BMMCs) taken from a leukemia patient before
stem-cell transplant and BMMCs from the same patient after
stem-cell transplant?®. All single-cell RNA-Seq data is pre-
processed using similar methods as described by the authors. In

4 | (2018)9:2134

particular, before applying PCA or cPCA, all datasets are reduced
to 500 genes, which are selected on the basis of highest dispersion
[variance divided by mean] within the target data. Again, we
perform PCA to see if we can visually discover the two samples in
the transformed data. As shown in Fig. 3b (top left), both cell
types follow a similar distribution in the space spanned by the
first two PCs. This is likely because the differences between the
samples is small and the PCs instead reflect the heterogeneity of
various kinds of cells within each sample or even variations in
experimental conditions, which can have a significant effect on
single-cell RNA-Seq measurements”.

We apply cPCA using a background dataset that consists of
RNA-Seq measurements from a healthy individual’s BMMC cells.
We expect that this background dataset to contain the variation
due to the heterogeneous population of cells as well as variations
in experimental conditions. We may hope, then, that cPCA might
be able to recover directions that are enriched in the target data,
corresponding to pre- and post-transplant differences. Indeed,
that is what we find, as shown in Fig. 3b (bottom left).

We further augment our target dataset with BMMC samples
from a second leukemia patient, again before and after stem-cell
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Fig. 4 Relationship between Mexican ancestry groups. a PCA applied to genetic data from individuals from 5 Mexican states does not reveal any visually
discernible patterns in the embedded data. b cPCA applied to the same dataset reveals patterns in the data: individuals from the same state are clustered
closer together in the cPCA embedding. ¢ Furthermore, the distribution of the points reveals relationships between the groups that matches the geographic
location of the different states: for example, individuals from geographically adjacent states are adjacent in the embedding. ¢ Adapted from a map of

Mexico that is originally the work of User:Allstrak at Wikipedia, published under a CC-BY-SA license, sourced from https://commons.wikimedia.org/wiki/

File:Mexico_Map.svg

transplant. Thus, there are a total of four subpopulations of cells.
Application of PCA on this data shows that the four subpopula-
tions are not separable in the subspace spanned by the top two
principal components (PCs), as shown in Fig. 3b (top right).
Again, however, when cPCA is applied with the same background
dataset, at least three of the subpopulations show much stronger
separation, as shown in Fig. 3b (bottom right). The cPCA
embedding also suggests that the cell samples from both patients
are more similar to each other after stem-cell transplant (cyan
and green dots) than before the transplant (gold and pink dots), a
reasonable hypothesis which can be tested by the investigator.
One may refer to Supplementary Fig. 5 for more details of this
experiment. We see that cPCA can be a useful tool to infer the
relationship between subpopulations, a topic we explore further
next.

Relationship between ancestral groups in Mexico. In previous
examples, we have seen that cPCA allows the user to discover
subclasses within a target dataset that are not labeled a priori.
However, even when subclasses are known ahead of time,
dimensionality reduction can be a useful way to visualize the
relationship within groups. For example, PCA is often used to
visualize the relationship between ethnic populations based on
genetic variants, because projecting the genetic variants onto two
dimensions often produces maps that offer striking visualizations
of geographic and historic trends?®%’. But again, PCA is limited
to identifying the most dominant structure; when this represents
universal or uninteresting variation, cPCA can be more effective
at visualizing trends.

The dataset that we use for this example consists of single
nucleotide polymorphisms (SNPs) from the genomes of indivi-
duals from five states in Mexico, collected in a previous study?®.
Mexican ancestry is challenging to analyze using PCA since the
PCs usually do not reflect geographic origin within Mexico;
instead, they reflect the proportion of European/Native American
heritage of each Mexican individual, which dominates and
obscures differences due to geographic origin within Mexico
(see Fig. 4a). To overcome this problem, population geneticists
manually prune SNPs, removing those known to derive from
Europeans ancestry, before applying PCA. However, this
procedure is of limited applicability since it requires knowing
the origin of the SNPs and that the source of background
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variation to be very different from the variation of interest, which
are often not the case.

As an alternative, we use cPCA with a background dataset that
consists of individuals from Mexico and from Europe. This
background is dominated by Native American/European varia-
tion, allowing us to isolate the intra-Mexican variation in the
target dataset. The results of applying cPCA are shown in Fig. 4b.
We find that individuals from the same state in Mexico are
embedded closer together. Furthermore, the two groups that are
the most divergent are the Sonorans and the Mayans from
Yucatan, which are also the most geographically distant within
Mexico, while Mexicans from the other three states are close to
each other, both geographically as well as in the embedding
captured by cPCA (see Fig. 4c). See also Supplementary Fig. 6 for
more details.

Discussion

In many data science settings, we are interested in visualizing and
exploring patterns that are enriched in one dataset relative to
other data. We have presented cPCA as a general tool for per-
forming such contrastive exploration, and we have illustrated its
usefulness in a diverse range of applications. The main advan-
tages of cPCA are its generality and ease of use. Computing a
particular cPCA takes essentially the same amount of time as
computing a regular PCA. This computational efficiency enables
cPCA to be useful for interactive data exploration, where each
operation should ideally be almost immediate. As such, any set-
tings where PCA 1is applied on related datasets, cPCA can also be
applied. In the Supplementary Note 3 and Supplementary Fig. 8,
we show how cPCA can be kernelized to uncover nonlinear
contrastive patterns in datasets.

The only free parameter of contrastive PCA is the contrast
strength a. In our default algorithm, we developed an automatic
scheme based on clusterings of subspaces for selecting the most
informative values of a (see Methods). All of the experiments
performed for this paper use the automatically generated « values,
and we believe this default will be sufficient in many applications
of cPCA. The user may also input specific values for « if more
fine-grained exploration is desired.

cPCA, like regular PCA and other dimensionality reduction
methods, does not give p-values or other statistical significance
quantifications. The patterns discovered through cPCA need to be
validated through hypothesis testing or additional analysis using
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relevant domain knowledge. We have released the code for cPCA
as a python package along with documentation and examples.

Methods

Description of the Algorithm. For the d-dimensional target data {x; € Rd} and
background data {y; € R?}, let Cy, Cy be their corresponding empirical covar-
iance matrices. Let RY & {ve R : |v],= 1} be the set of unit vectors. For any
direction v € RY ., the variance it accounts for in the target data and in the

background data can be written as:

. def
Targetdatavariance : Ay (v) = vT Cyv,

Ay (v) d=efvTCyv.

Background datavariance :
Given a contrast parameter « > 0 that quantifies the trade-off between having high
target variance and low background variance, cPCA computes the contrastive
direction v* by optimizing

v = argmax, e Ay(v) — aky (v). )

This problem can be rewritten as

. _ T
V' = argmax, g« v (Cx — aCy)v,

wl"}igh implies that v* corresponds to the first eigenvector of the matrix

C=(Cy — aCy). Hence the contrastive directions can be efficiently computed
using eigenvalue decomposition. Analogous to PCA, we call the leading eigen-
vectors of C the contrastive principal components (cPCs). We note the cPCs are
eigenvectors of the matrix C and are hence orthogonal to each other. For a fixed a,
we compute (1) and return the subspace spanned by the first few (typically two)
cPCs.

The contrast parameter « represents the trade-off between having the high
target variance and the low background variance. When a =0, cPCA selects the
directions that only maximize the target variance, and hence reduces to PCA
applied on the target data {x;}. As « increases, directions with smaller background
variance become more important and the cPCs are driven towards the null space of
the background data {y;}. In the limiting case & = oo, any direction not in the null
space of {y;} receives an infinite penalty. In this case, cPCA corresponds to first
projecting the target data onto the null space of the background data, and then
performing PCA on the projected data.

Instead of choosing a single « and returning its subspace, cPCA computes the
subspaces of a list of «’s and returns a few subspaces that are far away from each
other in terms of the principal angle?®. Projecting the data onto each of these
subspaces will reveal different trends within the target data, and by visually
examining the scatterplots that are returned, the user can quickly discern the
relevant subspace (and corresponding value of &) for his or her analysis. See
Supplementary Fig. 1 for a detailed example.

The complete algorithm of cPCA is described in Algorithm 2 (Supplementary
Methods). We typically set the list of potential values of « to be 40 values
logarithmically spaced between 0.1 and 1000 and this is used for all experiments in
the paper. To select the representative subspaces, cPCA uses spectral clustering® to
cluster the subspaces, where the affinity is defined as the product of the cosine of
the principal angles between the subspaces. Then the medoids (representative) of
each cluster are used as the values of « to generate the scatterplots seen by the user.

Choosing the background dataset. The choice of the background dataset has a
large influence on the result of cPCA. In general, the background data should have
the structure that we would like to remove from the target data. Such structure
usually corresponds to directions in the target with high variance, but that are not
of interest to the analyst.

We provide a few general examples of background datasets that may provide
useful contrasts to target data: (1) A control group {y;} contrasted with a diseased
population {x;} because the control group contains similar population-level
variation but not the subtle variation due to different subtypes of the disease. (2)
The data at time zero {y;} used to contrast against data at a later time point {x;}.
This enables visualizations of the most salient changes over time. (3) A
homogeneous group {y;} contrasted with a mixed group {x;} because both have
intra-population variation and measurement noise, but the former does not have
inter-population variation. (4) A pre-treatment dataset {y;} contrasted with post-
treatment data {x;} to remove measurement noise but preserve variations caused by
treatment. (5) A set of signal-free recordings {y;} or images that contain only noise,
contrasted with measurements {x;} that consist of both signal and noise.

It is worth adding that the background data does not need to have exactly the
same covariance structure as what we would like to remove from the target
dataset. As an example, in the experiment shown in Fig. 2, it turns out that we do
not need to use a background dataset that consists of images of grass. In fact,
similar results are obtained even if instead of images of grass, images of the sky are
used as the background dataset. As the structure of the covariance matrices are
similar enough, cPCA removes the background structure from the target data. In
addition, cPCA does not require the target data and the background data to have a
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Fig. 5 Geometric Interpretation of cPCA. The set of target-background

variance pairs U is plotted as the teal region for some randomly generated
target and background data. The lower-right boundary, as colored in gold,
corresponds to the set of most contrastive directions S;. The blue triangles
are the variance pairs for the cPCs selected with a values 0.92 and 0.29
respectively. We note that they correspond to the points of tangency of the
gold curve and the tangent lines with slope i:1.08, 3.37, respectively

similar number of samples. Since the covariance matrices are computed
independently, cPCA only requires that the empirical covariance matrices be good
estimates of the underlying population covariance matrices, essentially the same
requirement as PCA.

Theoretical guarantees of cPCA. Here, we discuss the geometric interpretation of
cPCA as well as its statistical properties. First, it is interesting to consider which
directions are “better” for the purpose of contrastive analysis. For a direction
v e RY ., its significance in cPCA is fully determined by its target-background
variance pair (Ax(v), Ay(v)); it is desirable to have a higher target variance and a
lower background variance. Based on this intuition, we can further define a partial
order of contrastiveness for various directions: for two directions v; and v,, we
might say v; is a better contrastive direction if it has a higher target variance and a
lower background variance. In this case, the target-background variance pair of v,
would lie on the lower-right side of that of v, in the plot of target-background
variance pairs (Ax(v), Ay(v)), e.g., Fig. 5. Based on this partial order, the set of most
contrastive directions can be defined in a similar fashion as the definition of the
Pareto frontier®!. Let U/ be the set of target-background variance pairs for all
directions, i.e. U = {(Ay(v),Ay(V))},cpe - The set of most contrastive directions
corresponds to the lower-right boundary of ¢ in the plot of target-background
variance pairs, as shown in Fig. 5. (For the particular case of simultaneously
diagonalizable background and target matrices, see Supplementary Fig. 7.)

Regarding cPCA, we can prove (see Supplementary Note 2) that by varying a,
the set of top cPC’s is identical to the set of most contrastive directions. Moreover,
for the direction v selected by cPCA with the contrast parameter set to a, its
variance pair (Ax(v), 1y(v)) corresponds to the point of tangency of the lower-right
boundary of U with a slope-1/« line. As a result, by varying « from zero to infinity,
cPCA selects directions with variance pairs traveling from the lower-left end to the
upper-right end of the lower-right boundary of /.

We also remark that regarding the randomness of the data, the convergence rate

of the sample cPC to the population cPC is OP( ) under mild

assumptions, where d is the dimension and n,m are the sizes of the target and the
background data. This rate is similar to the standard convergence rate of the
sample eigenvector for a covariance matrix. See Supplementary Note 2.

_d
min(n,m)

Code availability. We have released a Python implementation of contrastive PCA
on GitHub (https://github.com/abidlabs/contrastive). The GitHub repository also
includes Python notebooks and datasets that reproduce most of the figures in this
paper and in the Supplementary Information.
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Data availability. Datasets that have been used to evaluate contrastive PCA in this
paper are either available from us or from the authors of the original studies. Please
see the GitHub repository listed in the previous section for the datasets that we
have released.
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