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SCATTERING RESONANCES FOR HIGHLY
OSCILLATORY POTENTIALS

BY Avrexis DROUOT

ABSTRACT. — We study resonances of compactly supported potentials Ve (x) = W(x, x/¢) where
W : R4 x R4 / (27[Z)d — C, d odd. That means that V; is a sum of a slowly varying potential, Wy,
and one oscillating at frequency 1/e. When Wy = 0 we prove that there are no resonances above
the line ImA = —Aln(¢™!), except a simple resonance near 0 when d = 1. We show that this
result is optimal by constructing a one-dimensional example. This settles a conjecture of Duchéne-
Vukicevic-Weinstein [12]. When Wy # 0 and W smooth we prove that resonances in fixed strips
admit an expansion in powers of ¢. The argument provides a method for computing the coefficients
of the expansion. We produce an effective potential converging uniformly to Wy as ¢ — 0 and whose
resonances approach resonances of ¥, modulo O(s*). This improves the one-dimensional result of
Duchéne, Vukicevi¢ and Weinstein and extends it to all odd dimensions.

REsuME. — Nous étudions les résonances de potentiels a support compact Ve (x) = W(x, x/e), ou
W R4 x R4 / (2rZ)? — Cetd est impair. Ainsi, V; est la somme d’un potentiel qui varie lentement
Wy et d’un potentiel qui oscille a fréquence 1/¢. Quand Wy = 0 nous prouvons que V; n’a pas de
résonances dans la zone {Im A > —AIn(¢~1)} mise & part une unique résonance proche de 0si d = 1.
Nous montrons par un exemple explicite que ce résultat est optimal. Cela prouve une conjecture de
Duchéne-Vukicevic-Weinstein [12]. Quand Wy # 0 et W est lisse nous montrons que les resonances
de V¢ qui restent bornées lorsque ¢ tend vers 0 admettent une expansion en puissances de ¢. Les
arguments de la preuve permettent de calculer les coefficients de cette expansion. Nous construisons un
potentiel effectif qui converge uniformément vers Wy lorsque ¢ tend vers 0 et dont les résonances sont a
distance O(e*) de celles de Wy. Cela améliore et étend les résultats de Duchéne, Vukiéevi¢ et Weinstein
a toutes les dimensions impaires.

1. Introduction

In this paper we are interested in the poles of the meromorphic continuation of
(—A + UV — A2)~! where d is odd and ©V : RY — C is a bounded compactly supported
potential. These poles called scattering resonances appear in many physical situations, for
instance their imaginary parts are the rates of decay of waves scattered by .
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866 A. DROUOT

Let —A > 0 be the free Laplacian on R?. The operator Ry(A) = (—A — A?)7!, well
defined as an operator L2(R?) — H2(R?) for ImA > 0, extends to a meromorphic family
of bounded operators Lgomp(Rd) — HI%JC(]Rd) for A € C (see §1.5 for review of nota-
tion). This family admits one simple pole at 0 if d = 1 and is entireif d > 3. If Visa
bounded compactly supported function on R? then Rqy(d) = (—A + D — A2~ is well
defined for ImA > 1 as an operator L2(R¢) — HZ2(R?). It extends to a meromorphic
family of operators Lgomp (R?) — HI%C (R?). In this sense, the resonances of a real-valued
potential %)—similarly, the poles of the meromorphic continuation of R¢)(1)—are a gener-
alization of eigenvalues of —A + %: each eigenvalue E of —A + % is negative and generates
a resonance i v/—E, and conversely every resonance A of %) in the upper half-plane lies
in i [0, o) and corresponds to the eigenvalue A2. Resonances of % in the lower half-plane
are not related to eigenvalues of —A + 9, though they quantize the rate of decay of waves
scattered by V. We refer to [15, §2, 3] for a complete introduction to resonances in potential

scattering.

Let W be a bounded complex valued function with support in BZ (0, L) x T¢. We define V,
as

x
Ve(x) =W (x, ;) .
If W is formally given by
Wix.y) =Y Wi(x)e'*

kezd

we can write V; as a highly oscillatory perturbation of Wj:

(1.1 Ve(x) = Wox) + Vy(x),  Ve(x) = ) Wi(x)e!™/e.
k#0

In this paper we study resonances of potentials V; given by (1.1).

1.1. Main results

The first theorem concerns the case of a vanishing slowly varying part. In the notations of
(1.1) we will assume for this result that W € Lg"(IBd (0, L) x T?) (i.e., supp(W) is a compact
subset of B4 (0, L) x T and W is uniformly bounded) and that moreover,

Wi |prs
35 € (0, 1), Z' Ili:f <ooifd =1,
(1.2) k#0
' W,
Z” lf”l <ooifd > 3.
o |k

THEOREM 1. — Let W bein Lg"(]Bd (0, L) x T9, C) such that Wy = 0 and (1.2) holds. Then
there exists C, ¢, A three positive constants such that

ifd =1, Res(Ve) \ D (o, ces/z) C{AeC:ImA<C—AlnE");
ifd >3, Res(V;) C{AeC: ImA <C —Aln(e™")}.

4¢ SERIE - TOME 51 — 2018 — N° 4



SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 867

This settles a conjecture of [12]: for odd dimensions d > 3 and & small enough the
potential V; does not have a bound state. In §2.3 we construct a step-like function W such
that V;/2n) has aresonance A,, ~ —i In(n) asn — 4-o00. This shows that one cannot improve
the rate of escape of resonances given by Theorem 1 in dimension 1.

In the next statements we always assume that W is smooth. We consider the case Wy # 0.
If A is a simple resonance of W, we can write
iu®v

(1.3) Riny (1) = 7=

+ H(A), H(A) holomorphic near Ay,

for some functions u,v € HI%C(Rd,(C) called resonant states. As the potential V, given

by (1.1) converges weakly to Wp, it is natural to expect that resonances of V, converge to
resonances of Wy. In fact a much stronger statement holds:

THEOREM 2. — Let W belong to C° (B9 (0, L)xT¢, C) and V. be given by (1.1). Let kg bea
simple resonance of Wy. In a neighborhood of Ao and for ¢ small enough the potential V, admits
a unique resonance A.. Moreover, for any N,

e = Ao+ 262 + 383 + -+ en_1eV T+ 0(EN), c; € C.

If u, v are the resonant states of (1.3) then

czzi/ Ao(u(x)v(x)dx, «c3 =i/ A1()u(x)v(x)dx,
R4 R4

(1.4 Wil s 5 Wrllh- D))
Ay = — A =-2 - 7 7
0= 2L TR =S

k#0

If W is real-valued then so are Ag and A;. In §3.1 we will prove a version of Theorem 2
for resonances of higher multiplicity. Theorem 2 implies that perturbations of Wy by a high
frequency potential V4 enjoy some similarities with suitable analytic perturbations of Wp. In
fact we have the following

THEOREM 3. — Assume that W belongs to C(?o([Bd (0, L) x T¢,C) and that V, is given
by (1.1). Let Vege = Wo — e2Ng — e3A1 where Ao, Ay are given in (1.4). For every bounded
Jamily e — e of simple resonances of Ven e there exists a family of resonances € — Ag of Vs
such that

|Ae — pe| = 0(84)'

Conversely for every bounded family e — Ag of simple resonances of Ve there exists a family of
resonances & > g of Vesr,e such that

|Ae — pe| = 0(54)~

The potential Ve, plays the role of an effective potential. In dimension one Ay was
already derived in [12].

We next give a uniform description of the behavior of resonances of V, as ¢ — 0. For
Wy € C{,’"(IB%”’ (0,L),C) we define mw,(Ao) the multiplicity of a resonance Ao of Wy. If

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



868 A. DROUOT

e, B, c, A are given positive constants let C,, &, and &), be the sets

.= U D(A,csz/"’%”)), g.= U D(A,(A)_d_l)

A€Res(Wy), A€Res(Wp),
(1.5) Im A>—B Imi<—B

De = {x €C: ImA<—B, |A29+! > Aln(s‘l)}.

THEOREM 4. — Assume that W belongs to C(§’°(IB%d (0, L) x T, C) and that V; is given by
(1.1). There exists A > 0 with the following. For any B > 0, there exists ¢ > 0 such that for all
& small enough if Ce, & and ), are given by (1.5) then

Res(Vy) C Ce U T .U D,

A different version of Theorem 4 is stated as follow. Let ¢ — A, be a family of resonances
of V. Then after passing to a subsequence ¢; — 0, one of the three following scenarios
occurs:

(i) A, converges to a resonance A of Wy and A, = A 4+ O(2/™Wo%0)),
(i) ImA; — —oo and |A,| grows at least like In(e~")1/4+1)
(iii) ImA; — —oo and d(As, Res(Wy)) = O(|A.|~¢71).
In the above we suppressed the subsequence notation. We illustrated these results on
Figure 1.1.

Theorems 2, 3 and 4 are consequences of a stronger result. For U € L (B4(0,L),C) and
p € C$°(RY) that s 1 on supp(%), we define Koy(X) = pRo(A) V. If p > d + 4 and W is the
entire function defined by

2 _\r—1
(1.6) \I/(z)=(1+z)exp(—z+z——---+( 2) )—1,

2 p—1
the operator W(K (L)) is trace class. This allows us to define the Fredholm determinant
(1.7) Do(A) = Det(Id + ¥(K¢(1))) .

Apart from the special case of 0 in dimension one, resonances of < are exactly zeros of D ¢)—
see [16, Theorem 5.4]. To deal with the particular case of the zero resonance in dimension one
we define X; = Cifd > 3 and X; = C\ {0}. The following result shows that Dy admits an
expansion in powers of ¢.

THEOREM 5. — Let W in Cgo(IBd (0, L) x T4, C) and V, be the potential given by (1.1). Fix
N >d+4and p =4(d + N)N. If Dy, (A) is the Fredholm determinant defined in (1.7) then
there exists ay, . . .,an—1 holomorphic functions of A € Xy such that uniformly on compact
subsets of X4,

Dy, (A) = ap(A) + %ar(A) + eaz(X) + -+ + eV lay_ (1) + O(eN).
Moreover if Ay and Ay are the potentials defined in Theorem 2 then ag(A) = Dw, (1),
az(A) = =Dwy(A) - Tr ((Id + Kw,y) ™ (= Kw,)? 7 Kn,)
az(A) = =Dw,(A) - Tr ((Id + Kw,) ™ (=Kw,)? K4, ) -

4¢ SERIE - TOME 51 — 2018 — N° 4



SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 869

|)L| ——A ln(s_l)l/(2d+1)

F1GURE 1. The red (resp. black, blue) crosses denote resonances of Wy (resp. Ve,
Vetr,e)- Above the line ImA = B resonances of Veg and V; lie within red disks
of radius ~ 2 centered at resonances of Wy. Resonances of Vetr,s and Ve in these
disks lie within a distance ~ &* from each other. In the middle zone resonances
of V¢ lie within disks of radius ~ 1 centered at resonances of W. Below both curves
ImA =—-Band |A| = -4 ln(e_l)l/(z‘“'l) resonances of Vg, Vegr . and Wy are no
longer correlated.

Here again, we note that a perturbation of a potential W, by a highly oscillatory potential
enjoys similarities with a suitable analytic perturbation of W,. We will make this observation
more precise in §3.2 below.

1.2. Relation with existing work

Our original motivation for investigating highly oscillatory potentials came from
Christiansen [5] where it was shown that certain complex-valued oscillatory potentials
have no resonances at all. The proof there is based on a priori estimates on solutions
of (Id + K¢(A))u = 0. Although real valued potentials have infinitely many resonances—
see [22], [24] and references given there—ideas similar to [5] led us to the absence of resonance
in strips depending logarithmically on the frequency of oscillations (Theorem 1).

In dimension one scattering resonances of potentials of the form (1.1) have been exten-
sively studied. For W with Wy = 0 and V, given by (1.1), Borisov and GadyI’shin investigate
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870 A. DROUOT

in [4] the behavior of eigenvalues of the Schrodinger operator D2 + V. They give a suffi-
cient condition for an eigenvalue to exist for small e. Under this condition they derive an
expansion of the eigenvalue as ¢ — 0. In [3] Borisov refines this result by including poten-
tials that are less regular. These two papers focus on the spectrum and on the eigenvalues
rather than on scattering resonances. Scattering theory for operators of the form D2 + V,
was systematically presented by Duchéne-Weinstein [14]. In that paper the authors study
the behavior of the transmission coefficient of such potentials. They prove that away from
possible poles, the transmission coefficient of V, converges to that of Wy. They give estimates
on the remainder that depend on the regularity of W. The study is later continued in [12]. In
that paper Duchéne, Vukicevi¢ and Weinstein generalize the result of [4] to general poten-
tials V; given by (1.1). They give conditions for the existence of a bound state of V, for small ¢,
whose energy is expressed in terms of an effective potential which is an analytic perturbation
of W().

Also in dimension one, [2] studies in detail the spectrum of Schrédinger operators with
a potential that is the sum of a compactly supported potential and a periodic potential
oscillating at frequency ~ &~1. The paper [13] deals with potentials that are a sum of a
periodic potential Qe perturbed by a term Q, oscillating at frequency ', As ¢ — 0 they
observe the bifurcation of eigenvalues of D2 + Q,, + Q; at distance £* from the edges of the
continuous spectrum of D2 + Q.

In higher dimension the work [17] deals with general perturbations of operators —A + Wj.
The perturbation Vy needs to be small when measured in a suitable space. They show that
simple resonances of perturbed operators depend analytically on V. Although such a result
applies to potentials given by (1.1) it does not yield an expansion of resonances in powers
of & because Vy does not depend smoothly on &.

Let us discuss in more detail the relation between our work specialized to dimension one
and [12]. By a fine analysis of the scattering coefficients, they show that the transmission
coefficient of 1, is equal to the transmission coefficient of the effective potential

Wi (0P

Verr(x) = Wo(x) — 7 Ag(x), Ao(x) =) P

k#0
modulo an error of order ¢3. This remarkable result provided further motivation for our
investigation. One of the main consequences is [12, Corollary 3.7]: in the case d = 1, Wy =0
and for ¢ small enough a ground state emerges from the edge of the continuous spectrum
of D2, with energy A, given by

2
(1.8) A = —? (/ Ao(x)dx) + 0().
R

Theorem 2 refines (1.8). Since the functions u, v of (1.3) are given by u = v = 1/+/2 the
energy of the bound state admits the expansion

&

4 2 5
de=—2 (A Ao(x)dx) - %/RAO(x)dx/RAl(x)dx + 0(&),

and in fact A, is even a smooth function of ¢. In §1.3 we compare numerically the efficiency of
the effective potential Veq . derived here compared to the efficiency of the effective potential
derived in [12].

4¢ SERIE - TOME 51 — 2018 — N° 4



SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 871

Interest in Schrodinger operators with highly oscillatory potentials has grown since the
original version of this work. In [9], we showed the second conjecture of [12]: in dimension
two, if W € C§°(R? x T?, R) satisfies [z W(x,y)dy = 0 and V; is given by (1.1), then
—A + V, admits a unique eigenvalue for ¢ sufficiently small. In addition, this eigenvalue is
exponentially close to 0: it is equal to

4 Wi W_p,
—exp| — , Ao = .
(s o) o X

Again, this echoes Simon’s result [23, Theorem 3.4] for eigenvalues of weakly coupled
Schrédinger operators on the plane.

Dimassi [7] and Dimassi-Duong [8] showed trace formulae and Weyl laws for the operator
—A+¢72V, for any value of d and Wy = 0. The scaling =2 enables them to use semiclassical
methods to analyze the spectral properties of — A+ V. In dimension one, Duchéne-Raymond
[11] studied effective potentials, eigenvalues and eigenstates of —32 + eV, for certain
values of B and for V; real-valued with average zero. The homogenization results are classified
in three regimes: weak coupling (corresponding to B € (2/3, 1)), critical (corresponding
to B = 1) and semiclassical (corresponding to § € (1,3/2)). As of now, it is not clear how
to relate their results to those of [7, §]. In the discrete 1D ergodic setting (i.e., random or
periodic), Klopp [18, 19] and Phong [20, 21] related eigenvalues of Schrodinger operators on
large bounded subsets [-L, L] C Z to resonances of the same operator considered on the
whole Z, in the regime L. — oo. After rescaling, this is a viscosity limit result for discrete
versions of potentials 2V, where V, satisfies Wy = 0.

In a very recent paper [10], we prove stability results for resonances of random versions
of V (with W, non necessarily vanishing), in odd dimensions. We show almost sure conver-
gence of resonances of V; to the resonances of W,. We identify a stochastic and a determin-
istic regime for the speed of convergence. The type of regime depends whether the (stochastic)
low frequency effects due to large deviations overcome the (deterministic) constructive inter-
ference produced by highly oscillatory terms.

In a forthcoming work, we will apply the theory developed here to the derivation of edge
states in dimer and honeycomb structures.

1.3. Numerical results

Let W be the smooth function on R x T! defined by
2

1 —x2
Let V, be given by (1.1) and Ay, A; the potentials defined in Theorem 2. Thanks to a
Matlab simulation whose code was transferred to us by Duchéne, Vukicevi¢ and Weinstein
we computed numerically the transmission coefficients z, of Ve, 7} of Ve}is = Wy —e2Ay (the
effective potential as derived in [12]) and ¢ of V., = Wo — Ao — &> A, (the improved

W(x,y) = exp (— ) Tp—1,17(x) (1 4+ 2cos(x/2 + y)).

effective potential derived here). In Figure 2 we plotted the graphs of |fs — 7 | for different
values of ¢ and j = 1,2. For ¢ > 0.1 neither the approximation of . by 7! nor 12 give
satisfying results. For ¢ € [0.01, 0.1] it is much better but we still cannot see the improvements
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Oscillatory potential for € = 0.4

Error for e = 0.4

0.6
V.
2t Viire | ]
Vi 04r
1 b 4
0f m | 0271 |t5 _ t§|
-2
-1 : : : 0 : : : :
-2 -1 0 1 2 0 0.2 0.4 0.6 0.8 1
x A
Oscillatory potential for € = 0.04 %1073 Error for e = 0.04
3 : , 6 , : :
V.
2 [ ‘/e%f.s
Vi 4
| ) _—
0 J b | 2] te = 1|
t. — 12|
-1 0 : : : :
2 1 0 1 2 0 02 04 06 08 1
x A
Oscillatory potential for € = 0.004 %1078 Error for e = 0.004
. . 8 . . .
2f 6
1t 4t
0f 2t b — |
|t — 2]
-1 : : 0 : : : :
-2 -1 0 1 2 0 0.2 0.4 0.6 0.8 1
T A

FIGURE 2. Oscillatory potential and errors in approximating the transmission coef-
ficient of V. by the transmission coefficient of Ve]ff o for different values of ¢ and
j=12.

induced by choosing V% , instead of VC}T .. For & < 0.01 the approximation of z, by tZ instead
of ! gives better results.

1.4. Plan of the paper

We organize the paper as follows. In §2 we focus on the case Wy = 0 and we prove
Theorem 1. The proof relies mainly on an application of the Lippman-Schwinger principle
combined with integration by parts. In §2.3 we construct a step-like potential V, whose
resonances are zeros of a 2 x 2 explicit determinant. Uniform estimates on this determinant
and arguments from complex analysis show that V, admits a resonance A, ~ i In(g).
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SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 873

In §3 we apply Theorem 5 to prove that resonances of potentials of the form (1.1) admit an
expansion in powers of &. We compute the first terms in the expansion using a trace estimate.
Then we show that resonances of V; are comparable to the one of the effective potential Ve ¢
by comparing two Fredholm determinants. We then prove Theorem 4 using complex analysis
arguments.

The Section 4 consists in the proof of Theorem 5. It is by far the hardest part of the
paper. We first describe how an expansion of the determinant Dy, (1) in powers of ¢ can
be reduced to an expansion on the trace of an operator that takes a complicated form. We
split this operator into two parts in a natural way. By arguments of combinatorial nature
we will prove that the first part is negligible as ¢ — 0 and therefore produces no term in
the expansion of Dy, . We will deal with the second part essentially by deriving an operator-
valued expansion of e’k*/¢Ry(1)e~k*/¢ in powers of &. The operators in this expansion
will produce all the terms in the expansion of Dy . The expression of the coefficients in the
expansion is theoretically traceable directly from the proof. We compute the first few terms.
In dimension one the pole of Rg(1) at A = 0 will cause some trouble. We will overcome these
difficulties by arguments specific to the one-dimensional case but that still rely on trace and
determinant computations rather than on ODE techniques.

1.5. Notation

From now on we drop the subscript £ and we fix L > 0.

Given a function W € Lgo(Bd (0, L) x T4, C), V is the function associated to W by (1.1).
We will use the following notation:

— X is the set equal to C \ {0} when d = 1 and equal to C when d > 3.

— Any time & or F appears in an equation, this equation has two meanings: one for the
upper subscripts, one for the lower one. For instance, f(x) = F1 for £x > 1 means
f(x)=—1forx >1land f(x) =1for—x > 1.

- If x e R, x_ = max(0, —x).

— For x e R", (x) = (1 + |x|?)V/2.

- Ifz e Cand r > 0, D(z, r) denotes the set of w € C with |z —w| < r.

- Ifx e R¢ and L > 0, B¢ (x, L) denotes the set of y € R? with |x — y| < L. T is the
d-dimensional torus R? /(27 Z)4 .

— Let & be a space of functions on an open set % C R¢. We write f € ¥, if f belongs
to ¢/ and has compact supportin % and f € ¢, if forevery p € C§° R, pf € S

— For a potential 9, Res() is the set of resonances of . If A € Res(V), mq(A) is the
geometric multiplicity of A defined by

mao(A) = rank9§l Ro(n)du.

- If $#,, $#, are two Hilbert space, we denote by B(5H#1, S#2) (resp. L1, H))
the space of bounded (resp. trace class) operators from §#; to $#, and by B(5#1)
(resp. Z(&#y)) the space of bounded (resp. trace class) operators from §#; to itself. If

Sy = L*(R4, C) we simply write B = B(H41) and T = L(H).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



874 A. DROUOT

- If £ is a function on R?, f and & f both denote the Fourier transform of f:
_ 7 _ 1 —ix§
FI€ = 7© = Gz [, S

- We define H*(R?) the space of complex-valued functions f with (£)* f(€) € L2(R?).
If s is an integer we define WS (R?) the space of functions with s derivatives in L% (R?)
and we write |-|ws = ||-||s. Similarly Wy (B4 (0, L)) is the space of functions in W* (R?)
with support contained in B4 (0, L).

— For k € Z¢, e'**/¢ denotes the multiplication operator by the function e

— p denotes a smooth function that is 1 on B% (0, L) and 0 outside B (0, L + 1).

— The operator D is —id,. It is a vector-valued operator in dimension d > 1. For
k= (ki,....kg) € Z% k- D is the operator k1 Dy, + -+ + kg Dx,.

— In general if A(1) is a family of operators depending on A we will write A for A(1)
unless there is a possible confusion.

ikx/e
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2. Resonance escaping in the case Wy = 0

In this part we start with preliminary estimates that will be used all along the paper. Then
we prove Theorem 1 and construct in §2.3 an example of potential that proves that this
theorem is optimal.

2.1. Preliminaries

For ¥ € L8°(IB%“’ (0, L), C) we define K ¢ the operator pRg(A) V. We start by the following
preliminary:

LemMA 2.1. — Foralla, B € {0, 1,2}9 with|a|+|B| < 2andforall U € WP'(B7(0, L), C),

C (A>a+ﬁ M|—182L(Imk)_” GZ)”|.B| lfd =1,

p*KyDP| <
jprcop?] ;< C ()P LMD Yy ifd = 3.

The constant C depends on d(supp(%), B2 (0, L)) only.

Such estimates are proved in [15, Theorem 2.1] and follow from Schur’s test. We recall
that X; = Cifd > 3 and X; = C)\ {0}. The following lemma characterizes resonances of a
potential <) via a Lippman-Schwinger equation.

LEMMA 2.2. — Let V € L8°(Bd (0,L),C). A € Xy is aresonance of UV if and only if there
exists 0 # u € L? such that u = —Kqu.
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Proof. — For A € Cifd > 3and A € C\ {0} the operator K is compact. Thus Id+ K ¢ is
injective if and only if Id + K is invertible. For Im A > 1 we can invert Id + Ry(A) <V via
Neumann series. Moreover,

Ry(A) = (Id + Ro(M) V)~ Ro(R) = (Z(—Ro(l) GU)") Ro(2)

n=0

=Y (—K)" + (1 =p) Y (—Ro(}) 60)") Ro(})

n=0 n=1

= (1d+ 1= p) Y (~RoM) V)" (1d + K,») (1d + Ko) ™" Ro(R)

n=1

= [1d+ (1= ) Y (~ReM) V)" = (~Ro(V) Cv)"“) (Id + Ko)™" Ro(A)

n=1

— (Id = (1 = p)Ro() V) (Id —(1d + Ko ™" Kcy) Ro(A).

The operator Ry (A) meromorphically continues to C as an operator Lgomp to Hlic while the
operator (Id + K¢)~! meromorphically continues to C as an operator L2 to L2. Thus the

identity
2.1 Ry(A) = Ad— (1 —p)Ro(A) V) (Id —(Id+ Kg)™* KOU) Ro(A)

initially valid for Im A 3> 1 meromorphically continues to all of C. The poles of the RHS are
precisely the set of A such that Id + K ) is not invertible (apart from A = 0 in dimension one)
while the poles of the LHS are the resonances of <. This proves the lemma. O

2.2. Escaping of resonances.

We prove here Theorem 1 in the case d = 1. Assume that (1.2) holds. If A # 0Ois a
resonance of V' then by Lemma 2.2 there exists u such that u = —Kypu and |u|, = 1.1t
satisfies the a priori estimate

2L(ImA)—

(2.2) [ulgr = |Kyvulgr < |Kv| gt L2)lulz < CT|W|m|M|2v

in particular it belongs to H'. The well-known estimate | fg|z1 < |f|g1lglgr (valid in
dimension one) implies by duality that | fg|g-1 < |f|g1/g|g-1. The bound (2.2) yields

(2.3)

lul2 = |Kvulz < [Kp| ga—1,12)| V| g1

(A) eZL(ImA),
A

)2 e4L(Im A)—

<C
- A2

Vig—1|ulgr =C IV ig—11W|oolul2.

To estimate |K,| g(z—1,1,2) we used the adjoint bound i.e., we estimated |K,,(—X)|£(LZ’H1)
thanks to Lemma 2.1. We claim that |V |g-1 < &%|W|xs, where |W |xs = Zk?éo |k |5 | W | s .
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Indeed using that | (§)° I7V7€|2 = |Wg|gs and |V |g—1 = | & I7|2 we have

Vig-1 = |87 D Wi —k/e)

k#0 2
= Y[ E—k/e) € —k/e) W —k/e)
k0
< D HETHE =K/ Lol Wilms
k#0
< Y1)~ k/) Lol Walars < C Y (k/e)™ [Wilms < °|Wxs.
k#0 k#0

In the last line we used Peetre’s inequality: for every ¢+ > 0 there exists C > 0 with
(2.4) (x.y) eR*xRY = (x)7" ()" <Clx—y)".
Now combining ¥ = —Kyu and |u|, = 1 with the estimate (2.3) we get
. (A)2 4L mA)—

1<Ces¢

= TH’V&;

Hence either [A| < 1 and then |A| < c&*/2 for some constant ¢; or [A| > 1 and
ImA < In(CIWR) - = In(e™)
4L LY} '

This proves Theorem 1 for d = 1.

We next prove the theorem in dimension d > 3. In this case the inequality | fg|g1 <
| f1g11g| g1 no longer holds and we must find another way around. Let W such that W, = 0
and (1.2) holds and u # 0 with |u|, = 1 and

(2.5) u=—Kyu=-— Z KWkeik'/su.

k#0
As in the case d = 1 u satisfies the a priori estimate |u|g1 < CeCT™M—|W|,o|ul,. Noting
that

oikele — %[k ) D,eiko/g] where k- D — kiDy, + .|}€.|~|— dexd,

we obtain the commutator identity

e k| Kwe™**/® = Ky, (k - D)e'**/* — Ky e™**/#(k - D).
Consequently,

e k| ‘KWkeik'/su

= |Kw (k- D)™ *uly + | Kyy, ™**/* (k - Dyul,
< |Kw, (k - D)| glul> + |Kw; | 3l(k - D)ul,
< CAEIM D W (11 uly + CeCI™ =W | oo |u g1

< Ce* MO 11 (1 + [W]oo) 2.

(2.6)
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From the second to the third line we used the estimates of Lemma 2.1. From the third to the
fourth line we used (2.2). Sum (2.6) over k € Z% \ {0} to obtain

24
juls = [Kyula = Cee® 001 4 W) | S IV ),
2
It follows that
44
1 < Cee* LU= (1 4 |W|s0) Z% :

k#0
which implies an upper bound on ImA of the required form. This ends the proof of
Theorem 1.

2.3. Construction of an optimal potential

Here we show that the rate of decay of imaginary parts of resonances of V, provided by
Theorem 1 is optimal in dimension 1. We construct a function W with W, = 0 satisfying (1.2)
such that the potential V defined by (1.1) has a resonance A, ~ —i In(¢~!) with ¢ = 7/(2n).
Define W by

W(x,y) = Li-172,1/21(%) (Ljo,x1(¥) — L[—r,00(¥)) -
The k-th Fourier coefficient of W is given by

0 if k is even,

Wex) =4 2 L
ﬁ]l[_l/zyl/z](x) if k is odd.

The function 1(_;/,1/2) belongs to H/273 forall 1/2 > § > 0 and

D kTP Wl grya-s < es Y k| TP < oo,
k#0 k#0

Therefore W satisfies (1.2) for every s € (0, 1/2). The potential V' associated to W by (1.1) is
plotted on Figure 3.

We next characterize resonances of V' as zeros of a certain 2 x 2 determinant.

LeEmMMA 2.3. — Let Ay be the matrix

0 1
2.7) Ay = (il e o)'

Then A # 0 is a resonance of V for e = w/(2n) if and only if D(A) = 0 where

oo () G
—1 1

Here Det(a, b) denotes the determinant of two vectors a, b of C2.
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-1/2

1/2

FIGURE 3. The potential V for ¢ = n/12.

Proof. — We recall that since d = 1, A # 0 is a resonance of V if and only if there exists
a non zero function u € H2_ with
—w +Vu—-2u=0
u(x) = arer* +x > 1

)

see [15, Theorem 2.4]. Using standard uniqueness results for ODEs A # 0 is a resonance of V/
if and only if there exists a € C such that the boundary problem

" +Vu—-22u=0,
2.8) u(=1/2) = 1, u'(~1/2) = —ix,
u(l/2) =a, u'(1/2) = iar
admits a non-zero solution u in H2_. The ODE
—u" +Vu—-22u=0,
u(=1/2) =1, u'(-1/2) = —iA

admits a unique solution u € HZ_. The coefficients of the ODE are constant equal to £1 on
intervals of length 7/(2n). Hence u can be explicitly computed using a matrix exponential.
A direct calculation shows that

u(l/2)\  aon o ajon\t [ ]
22 (u’(l/Z))_(e ) (—M)’

where A4 are the matrices given by (2.7). Putting together (2.8) and (2.9) A # 01is a resonance
if and only if there exists a such that

)y )

that is, if and only if D(A) = 0. This ends the proof. O
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In order to prove that V(2 has a resonance A, ~ —i In(n) we study asymptotics of D(A)
uniform in the region {(A,n) : |A\| = O(In(n))}. By the Baker-Hausdorff-Campbell formula,
there exists a matrix Z, € M,(C) such that % = e4+/"¢A4-/"_Tts asymptotic development
is
Ay + A_ 1

2n 8

n =

S[Ae A+ Y @n )mpm( +. Ao).

m>3
The terms p,, (X, Y) are homogeneous polynomial of degree m in the non-commuting vari-
ables X, Y. The expansion converges as long as |44 | < 2n,|A_| < 2n—see [1]. This is real-
ized as long as |A| = o(/n), hence when A = O(In(n)). It yields
Ay + A-

1 —316
Zn = T + @[A_F,A_] + 0 (}’l )L ) when)L = O(IH(H))

Therefore

Ay + A 1 _
EnZn = &Xp (+T + %[A-Fv A_] + 0 (n 2A6))

= exp (% + %[A+, A_]) (1+ 0 (n229)).

A direct computation leads to

Ay +A- 1 —1/4n 1
AvtA- Vo= (7Y .
2 22 1/4n

The eigenvalues are +v, v = i+/A% — (4n)~2 and therefore

A A_ 1 -0 1 1

Art A s A=A withA=("") and @ = .
2 8n 0 v —v+ @) v+ @dn)!

Another direct computation gives

D(A) = Det(22)Det <eAQ—1 ( 1 ),9—1 (.l )) (1+ 0 (n21°))
—iA iA

/\2 -V
— ((% + 1)2 +(@na)2 e ((% - 1)2 + (4nk)‘2)) (1+0(n722%)

A2V eZiA

= (4 + 0 ((n2)7?) — e (1+o0 (n—ZA—l))) (1+ 0 (n21%))

aslongas A = O(In(n)). In order to investigate the behavior of zeros of D(A) we investigate
first the behavior of zeros of the function f given by

2iA

fO) =4 s

LEMMA 2.4. — The zeros of f are given by AX = i W, (+i/8n), v € Z where W, is the
v-th branch of the Lambert function—see [6]. In particular as n goes to infinity )LT ~ —i In(n).
Moreover, there exists ro (independent on n) such that for all n large enough and 6 € S*,

(2.10) | fAT + roet®)| = 3ry.
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Proof. — The equation f(1) = 0 is equivalent to
Cider =+ L
8n
Therefore zeros of f are given by —i W, (+i/8n). From [6, equation (4.20)] we obtain the

asymptotic A ~ —i In(n). In order to show the lower bound (2.10) we consider r € (0, 1).
We prove some estimates that are uniform in n and @ € S' asr — 0. The identity f ()Lf') =0

yields
+ 0 ere” ’
At prey =44 — ).
S ) 1+ reif /2t
Asr — 0, =1+ rei® + o(r), therefore

i6 i
e ret®(1—27) +o(r)

1— - = -
1+ re’e/kf 1+ re’9/kf

For n large enough we have Afr ~ —i In(n) and thus a fortiori |AT| > 2. This implies

i0

et r/2 4 o(r)
1 — > = 2 .
‘ [T retjaf |~ gz A0

Similarly,
' ereie
+———=| 22+ 0().
1+ re’e/)ti"

Therefore for r small enough
|fOT +re®)| > 4r +o(r) > 3r.

This completes the proof of the lemma. O

For A € dD(AT,rp), f(A) is bounded from below uniformly as n — oo. Hence, for
A € DA, 7o),

2iA

 (4nh)2

44 0 ((n2)7?) (1+0@>221)=fM)(1+0m 3271

=fA)(1+0(n>Inm™")).

This implies that for A € ID(A], ro),

A2e™

> i fQ)(1+0(m?Inm)™") (1 + 0 (n*1nn)%))
AZe—v

=—— 1 (1+ 0 (n*In(n)%)).

DR = —

By Rouché’s theorem this is enough to ensure that for n large enough, D(A) has exactly one
zero on C(AT, ro). This proves that there exists a resonance behaving like —i In(n).
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3. Applications of Theorem 5

Here we consider W € Cg° (B4(0, L) x T¢,C) and V, given by (1.1). We assume that
Theorem 5 holds and we get directly to the applications. We prove that resonances of V,
in compact sets admit a full expansion as ¢ — 0 (Theorem 2); that they can be well
approximated by a small perturbation Vg, of Wy (Theorem 3); and we give a description
of the localization of resonances of V, (Theorem 4).

3.1. Expansion of resonances in powers of ¢

In this paragraph we prove Theorem 2. We start with the case d > 3 or A9 # 0.

Proof of Theorem 2 assuming d > 3 or Ag # 0. — Let Ay be a simple resonance of W,
with A9 #0ifd = 1.For N > d +4and p = 4N(d + N) consider Dy (1) given in (1.7).
This is a holomorphic function of A near Ay. By Theorem 5 it converges to Dy, as & — 0
uniformly on a neighborhood of Ay. Thus by Hurwitz’s theorem Dy has exactly one zero A,
that converges to A¢. It follows that for ¢ small enough and ry small enough A, is the only
resonance of V' on D(Ag, rg).

Define f(A,e) = Dy(A)if e # 0and f(A,0) = Dw,(A) otherwise. By Theorem 5 the
function f is of class C¥~! in a neighborhood of (1, 0). In addition since

of
57 (%0.0) = Diy, (o) # 0
the implicit function theorem implies that the equation f (4, &) = 0 has exactly one solution
in a neighborhood of (¢, 0). Using uniqueness it must be (A, €). It follows that the function
e — Ag is CV~1. As N was arbitrary we conclude that ¢ — A, is C™ for ¢ near 0. Thus for
all N,
Ae=Ao+eci +--+e¥ ey + 0@EY), ¢ eC.

We now derive the values of ¢y, 2, ¢3. Let Ry, (1) be the meromorphic continuation of the
operator (—A—A2+W,)~!. Since A is a simple resonance of W, there existsu € H2_(R?, C),
ve O'(R?,C) such that

iu®u
Rw,(A) = H(A
W()( ) 2 — AO + ( )v
where H(A) : LZ,,,, — H, isafamily of operators holomorphic near 4. Let f beasmooth

compactly supported function on R?. Since Rwy (M) (—A +V =A%) f = f we have
0=(u®v)(—A+V -2 f = (v, (-A+V —A%)f)c@, =iu((-A+V —A%)*U,f)c@,.
Since this is valid for arbitrary f it yields (—A + V — A3)*v = 0. Thus v € HZ2_ and
(=A +V —A3)v = 0 which implies v + Ro(Xo) Wov = 0.
Let ITj be the operator —ip(u ® v)Wy. We claim that the family of operators

Iy
A—2Xo
is holomorphic in a neighborhood of . Indeed since (Id + Kw,)™! = Id — pRw, (1) W
there exists a family of operators B(A) holomorphic near A such that

3.1) (—Kwy)? ™2 (1d + Kw,) ™ —

I

Id+ Kw,) ! =
dd + Kw,) Ry

+ B(A).
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It leads to
ITo
A — %o
= — (1d— (—Kw,)?"%) (1d + Kwy) ' + B(A) = —(1d + - + (—Kwp)? ) + B(D).

(—Kwo)? ™2 (1d + Kw,) ™' = (—Kwp)? 2 (1d + Kwy) ™ — (Id + Kw,) ™' + B()

This is as claimed holomorphic near A¢.

Let A € L>°(B9(0, L), C). We now compute the trace Tr ((—Kw;)? 2(1d + Kwy,) 1K)
modulo a holomorphic function. Since the operator given by (3.1) is holomorphic near A¢
and trace class there exists a function ¢ holomorphic near Ay such that

Tr ((—Kwy)?72(1d + Kw,) 'Ka) = @ + ¢(A).
— Ao
Using [Ty = —ipu ® vWy and v + Ro(Lo)Wov = 0 we get
Tr(IToKa)(Ao) = —i /}Rd p(X)u(x)v(y)Wo(y)Ro(Ao, y, x)A(x)dxdy
=i [ utaw ( [, Rotio.x. y)%(y)v(y)dy) dx
R4 R
=—i / U(xX)A(x)(Ro(Ao)Wov)(x)dx =i / AX)u(x)v(x)dx.
R4 R4

It follows that

(3.2) Tr ((—Kwy)?~2(Id + Kwy) ' Kp) = 7 _iAO (/Rd Auv) + o(h).

Apply the Formula (3.2) to A = £2A¢ to obtain

Dy (A) = Dwy(A) (1 = Tr (—Kw,)?2(d + Kwy) ' K24,)) + O(E)

2
= D, (A) (1 — xl—sxo (/}Rd Aouv) — 82<po()t)) + 0(&%).

Here the function ¢ is holomorphic near Ay and does not depend on ¢. If g is the holomor-
phic function such that g(1)(A — A¢) = Dw,(4) then

(3.3) Dy (L) = g(}) (A — Ao —ig? (/Rd Aouv) -2 — Ao)q)o(x)) + 0(e?).

Note that as ¢ — 0 we have g(A,) — D;VO (o) # 0. Thus specializing the identity (3.3)
at A = A, leads to

0=A, — Ao —i&? (/ Aouv) —&2(Ae — Ao)po(Ae) + O(&?).
R4
Since A, — g = O(g) and @g(Ae) — @o(Ag) as & — 0 we obtain

3.4 Ae = Ao +ie? (/ Aguv) + 0(e%).
R4

This recovers the result of [12].
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Now to get the second order correction we apply (3.2) successively to A = &2Aq and
A = g3A ;. The same operations as in the previous paragraph lead to

Dy (A) = Dw,(X) (1 = Tr (—Kwo)?2(Id + Kwy) ' Ke2pg1e3a)) + Oe%)

=g (A —do—i (/Rd (2A0 + &A1) uv) — (A= L0)(E%0o(A) + 83g01(k))) + 0(eh

for a function ¢; holomorphic near A¢. Here again specialize this identity at A = A, and use
g(/‘{a) — g(ko) 7'é 0 to obtain

0= —Ao—i (/ (%Mo + A1) uv) — (Ae — 20) (%00 (Ae) + 301 (Ae)) + O(eh).
R4

This time by (3.4) we know that A, — 1o = O(g?). It follows that

Ae = Ao + P82 (/ Aouv) +igd (/ Aluv) + 0(s%).
R4 R4

This proves the theorem. O
In the case L9 = 0 and d = 1 we use the following refinement of Theorem 5:

LEMMA 3.1. — Let W belong to C°([—L, L}x T, C) and V be given by (1.1). There exists
an entire function hy satisfying the following:
(1) Ao is a resonance of V of multiplicity m if and only if it is a zero of hy of multiplicity m.
(1) There exists hq, ..., hy—1 such that locally uniformly on C
hy(X) = Adw, (1) (1= Tr ((Id + Kwy) "' Ka)) + e*ha() + -+ + eV Thy 1 (1) + 0(M),
where dw,(A) = Det(Id + Kw,) and A is the potential given by

Wi W_y Wi (DW_y
A=82A0+83A1=822 5 —2832¥.

k#0 k#0
We defer the proof of Lemma 3.1 to §4.6. The proof of Theorem 2 in the case Ay = 0 and
d = 11is the same as in the case d # 1 or ¢ # 0 using Ay instead of Dy and we skip the
details. We end this part with a version of Theorem 2 for resonances Ao of Wy with higher
multiplicity.

THEOREM 6. — Assume that W belongs to C§° (B4 (0, L)xT?, C) and that A is a resonance
of Wo with multiplicity m. Then in a neighborhood of Ao the potential V; has exactly m
resonances A g, . . ., Am e for € small enough. In addition for every j € [1,m]and N > d + 4,

Aje = Ao+ 282 ™ +cjae® ™ 4o+ oy N TVM L O™, ¢, € C.
Proof. — Let Ao € X, be a resonance of W, of multiplicity m > 1. Fix N > d + 4
and p, Dy given by Theorem 5. Since locally uniformly on C we have Dy (1) — Dw,(4),
by Hurwitz’s theorem the function Dy has exactly m zeros (counted with multiplicity)

converging to A¢. These zeros admit a Puiseux expansion: there exists c1,1, ..., cm N—1 Such
that the zeros A1 ¢, ..., A, of Dy near A are given by

A/j’g = Ao + 81/m0j’1 + -+ 8(N_1)/ij’N_1 + O(EN/m).

Now since Dy (1) = Dw,(A) + O(g?), ¢j,1 = 0. In the case Ao = 0 in dimension one the
proof can be modified by considering &y instead of Dy . This proves Theorem 6. O
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3.2. Derivation of an effective potential

In this part we prove Theorem 3. We start by giving a few preliminaries concerning trace
class operators and Fredholm determinant. The reader can consult [15, Chapter B] for a
complete introduction. The singular values of a compact operator X : &/ — &/ are defined
as the nonincreasing sequence s; (X) = A; ((X*X)'/2). In particular so(X) = | X| B(gm- The
singular values satisfy two remarkable inequalities. If Y is another compact operator then
for every j, ¢,

Sj+e(X +7Y) < 5;(X) + s¢(Y),
$i(XY) < 55 (X)se(Y).
We say that a compact operator X is trace class if the sequence s; (X) is summable. The trace
class norm of X denoted by | X | is the sum of the series. If X trace class we can define the
trace of X and the Fredholm determinant Det(Id + X). This determinant vanishes if and

only if Id 4+ X is not invertible. Recall that X84 = C ford > 3, X; = C\ {0} and that

LEMMA 3.2. — Let Vin LB (0, L), C). Uniformly on {Im A > 1} and locally uniformly
onXg,s;(Ky) <C| V0o j 2. Consequently if p > d is an integer the operator Kf;) is trace
class and locally uniformly in X, uniformly in {ImA > 1}, |K% | s < C|V|%.

Proof. — We combine [15, Equation (B.3.9] with Lemma 2.1. This gives:
5 (Kv) < Cj 21 |(D)? Kol g < C|Vleo /.

This estimate works both locally uniformly on X; and uniformly on {Im A > 1}. In order to
prove that the operator K fz)) belongs to < for p > d it suffices to prove that the sequence of
singular values s; (K fy) is summable. Using the properties of the singular values,

o0 o0 o0 o0
D si(KD) < pd spi(KD) < p Y si(Ko)? < ClWIL Y 7271
j=0

j=0 j=0 J=0

Since p > d the series converges and the lemma follows. O

This lemma implies that for U € L>® (B¢ (0, L), C) the Fredholm determinant

z2 (—z)P7!
Dqg(A) = Det(Id + V(K g)), ¥Y(z)=({1+z)exp|—z+ 5 + — ) 1
p —
is well defined when A € Xy;—see [23, Lemma 6.1]. It is an entire function of A for d > 3 and
is a meromorphic function of A with a pole at A = 0 for d = 1. We now show the seemingly
unknown:

LEMMA 3.3. — Let Wy, A € L®[B4(0,L),C). If p > d and Dwy+en is the Fredholm
determinant given by (1.7) then there exists by, by, ... holomorphic functions of A € X4 such
that locally uniformly on X4,

o0
Dwy+en(A) = ij (A)e’.
i=0
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In addition bo(A) = Dw,(A) and
bi(1) = Dy () - Tr (1 + Kwy) ™ (=Kwy) K ) -

Proof. — Let Wy, A € L>®°(B4(0, L), C). By [23, Theorem 3.3]if p > d and ¥ is given by
(1.6) the determinant (g, 1) — Dyw,+ea(A) = Det(Id + W(Kw,+ea)) is an entire function
of ¢ (with A € X, fixed) and a holomorphic function of A on X; (with ¢ fixed). Thus by
Hartogs’s theorem it is analytic on C x X ;. Write a power expansion of Dy, .a as follows:
Dwyten(X) = Y ve o ba(L)e". Since

b (/\) 19" DW()+£A

! deh |e=0(A)
the function b, is holomorphic on X;. We next identify the coefficients bo(A) and by (1).
Fix m > d and assume that A € D(A¢, 1), ImAy > 1. By Lemma 2.1 and Lemma 3.2,

m

d
|KW0+8A}j — ‘KW()-H?A 3 |KW()+8A|2Z = |)L|m_d .

It follows that the series
o0 Km
Z (_1)m Wo+eA
m=p m
converges absolutely in Z for Im A >> 1 and in addition

Km
Wo+eA

(3.5) Dy 4en(A) = exp Z( R ( ,

see [23, Theorem 6.2]. If d = 1 then Tr(Kw,+ea) = Tr(Kw,) + €Tr(K ). We now obtain a
first order Taylor expansion of Tr (KI’,I”,O te A) for m > d. Using the binomial expansion, the
cyclicity of the trace and the Taylor-Lagrange inequality,

Te (K§ 1 en) = Tr (K3) + meTe (K3 Kn) + 1),

(3.6) | PTr (K3 o)
lrm(e)| < 5 sup ——————+
&’ €[0,¢] g2

().

We claim that |r,,(¢)|] < &2 for Im A large enough. The function ¢ + Tr (KWO te A) is
holomorphic and satisfies
m

=<

()’>m—d
when ImA > 1. Therefore the Cauchy estimate for derivatives of holomorphic functions
shows that |y, (e)| < C™e? (A)m_d (IWooo + |Aloo)™ when Im A > 1. This proves the claim.
(3.6) implies then

|m—d

d
{TI' (K£’1VQ+SA)| = |K£In’0+aA|z|KIr/nVo+gA 7 [Wo + 8A|Z’o.

o0 Tr ( K7, o0
Z( pyn ot/ (X WWA) = Z(—l)m—(mw°> +o 3 (—1)"Tr (Kj ' Ka) + O(?)

m=p m=p

00 Tr (K%O)
= Z _1)'"T — €T ((—Kw,)? " (1d + Kwp) "' Ka) + O(e).

m=p
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when Im A > 1. The following determinant asymptotic follows: for Im A large enough,

0 T (K3, )
Dwyen(d) = exp = 3 (=" —=5 4 €Tr (~Kw)”~ (1d + K) ™' Kn) + O(?)
m=p

= D, (1) (1 + eTr ((—Kwp)? 7' (1d + Kwy) "' Ka)) + O(€2).

Thus by(A) = Dw,(A) and by (1) = Dy, (A)Tr ((—Kw,)? ' (Id + Kw,) ' Ka) for Im A >> 1.
Since the functions by, b1 are holomorphic by the unique continuation principle these iden-
tities must also hold on X;. This ends the proof of the theorem. O

We are now ready to prove Theorem 3. It is the special case m = 1 of

THEOREM 7. — Let Vog = Wy + €2Ag + €3 A1 were Ao, A1 where defined in Theorem 5.
Let pie be a family of resonances of Vege with multiplicity m. For every ¢ > 0 there exist m
resonances counted with multiplicity A1 g, ..., Am,e of Ve such that

|Aje — el = O(*™).

Conversely let A¢ be a family of resonances of Ve with multiplicity m. For every ¢ > 0 there exist
m resonances counted with multiplicity (1 ¢, . .., km,e Of Vesr,e Such that

[Aje — 1jel = 0(34/m)-
Proof. — Assumed > 3. Fix N =d +4, p = 4N(d + N) and Dy given in Theorem 5.
Let Vo = Wy — e2Ag — €3 A . By Theorem 5,
(3.7) Dy = Dy (1) (1 + Tr (Ad + Kwo) ™' (—Kwy)? 2 K_g2p-e34,)) + O(Y).

Define )¢ the Fredholm determinant

(27!
Do) =Detlid + y (Ko, @) =ewp (2 ) v

The Fredholm determinants D¢ defined in (1.7) and )< are related through

_Kop—1
HEE) Do

Do(A) = exp (
Therefore (3.7) implies Dy (1) =
(Tr((—KWO)p_l)
exp| ——————=
p—1
Lemma 3.3 leads to

) Dwy(A) (1+ Tr (Ad + Kwy) ™ (—Kwo)? > K_2p,-e34,)) +O(e%).

Tr((—Kwy)? ™)

Dy () =exp ( —

) DrX) + (),

where Ve = Wy —e2Ag —&3A ;. Consider now i, a bounded family of resonances of Vg of
multiplicity m. As u, is bounded there exist C, r such that for every A € D(u,, r),

‘exp (—Tr((_KWo)P_l)

(3.8) —

) Dra)

> ClA — pel™.
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Let y, = 0D(us, ce*/™). If ¢ is small enough then by (3.8) for every A € v,

Tr((—Kw,)?~ ") o (Tr((—KWo)p_l)
-1 P —1

<

Dvay—ap( )a@ngm

)wwmw

By Rouché’s theorem this implies that 1 and Vg have the same number of resonances inside
the disk D (i, ce*/™). The proof of the convert part is similar and we omit it. This proves
Theorem 7 away from the resonance 0 in dimension one.

We now concentrate on d = 1. In this case by Theorem 5 and Lemma 3.3 the function &y

of Lemma 3.1 satisfies 1y (1) = Ady,;(A) + O(e*) locally uniformly on X,. The functions
hy and dy,; are both entire. By a Cauchy formula, if A € D(0, 1) then

1 Ad d
hy() = —— Ver ()1t
271 Jam(o,2) n—A
and this holds uniformly on D(0, 1). Thus the estimate hy (1) = Ady, (1) + O(e*) holds
locally uniformly on C. The end of the proof is the same as in the case d > 3. O

+0(Y

3.3. Uniform description of the resonant set

Here we prove Theorem 4. Let W € Cg° (B4 (0, L)xT¢,C) and V associated to W by (1.1).
Fix B > 0. We first localize resonances of V' that are above the line ImA = —B. According
to (2.1) the set of resonances of V in X is the set of A such that the operator Id + Ky (1) is
not invertible on L2. Thus if A € X is a resonance then |Ky| g > 1. Since for InA > —B,
|Kv|g < C|V]|se?LB /||, for & small enough resonances of V and Wy in the half plane
Im A > —B all belong to a same disk ID(0, p). By Theorem 5,

Dy (L) = Dw, (L) + O(e?) uniformly on D(0, p).
As Dw, has no zero on dID(0, p) we have

1 Dy, 1 Dy, (1)

L , da.
2mi Jano,p) Dv(A) 27 Jamo,p) Dwy(A)

Therefore Wy and V have the same (finite) number of resonances on D(0, p) for ¢ small
enough. By Theorem 6 there exists ¢ > 0 such that these resonances belong to

C. = U D (Ao, csz/’”WO(AO)) .

Ao€Res(W),
Im )Loz—B

Now assume that A € Res(V) satisfies ImA < —B and that A does not belong to the
set &, defined in (1.5). This means

re U ]D)(Ao,(/\o)_d_l>.

Ao€Res(W),
Im /\,05—3

Then (see the proof of [15, Theorem 3.49]):

|(1d + KWO)_1|$ < CWX T
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We now reproduce the proof of Theorem 1 for d > 3. Since A € Res(}) there must exist

u € L? with u = —Kyu. In particular u belongs to H' with |u|g1 < CeCI™V=|W | |ul,.
The equation u = —Kyu is equivalent to
u=—(d+Kw)  Kyu=—(1d+Kw) Y Kwe'*/u,
k#0

where Vy(x) = > k40 Wk (x)etk*/2 Asin the proof of Theorem 1, we perform an integration

by parts on the term Ky, e’¥*/*u:

k .
] K e*leu = Koy, (k - D)e**/u — K e**/*(k - Dy,

This yields
||

?|KWk€ik'/€u|2 < C2EImD— 1wl July + Ce2EIm D= Wy | solut| 1.

Using the a priori bound on |u|g1 and summing over k # 0 we obtain

W
|Kyul, < CeeHImD= || Z IWelh [ul>.
k20 Ld
It follows that
2d+l Wy
jul2 = |0 + Kigy) ™ Kygu], < Coe? 0= (5] |k|||1 2

k#0

Since u # 0, this implies a lower bound on || of the form |A| > A—C In(e~")"/@4+D Thus
A belongs to the set &), defined in (1.5). This ends the proof of Theorem 4.

4. Proof of Theorem 5

We now get to the core of the paper: the proof of Theorem 5. We first explain the ideas. If
Dy is the determinant given by (1.7) we can write formally

Dy (X) = exp <— Z (_;)m Tr (KI’Z’)) .
m=p

It order to prove Theorem 5 it seems necessary to obtain an expansion in powers of ¢
of Tr(K7}). For a potential V' given by V(x) = > ;.74 Wi (x)ek*/¢ then Tr(Ky;) can be
decomposed as a sum of terms of the form

m
Tlky.....km] =Tr [ [] Kw,, etkisle

j=1
where k1, ... .k, € 74 . We now explain how to obtain an expansion for T'[kq, ..., k;,]. We
say that the sequence ky, .. ., ky, is constructive if k1 +- - -+k,, = 0 and destructive otherwise.

We use this terminology for the following reason. In the case of a destructive sequence the
behavior of the oscillatory terms e'%/*/¢ imply [T/, e’*/*/¢ — 0 weakly as ¢ — 0—one
sometimes say that the interference between oscillatory terms is destructive, which explains
the above terminology. We will prove that in this case T[ky, ..., k] is of order O(¢") and
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thus produces no term in the expansion provided by Theorem 5. Now if ky,...,k, is a
constructive sequence let R(£§) = (§2 — A?)~! so that formally Ry(1) = R(D). Using the
commutation relation e ~#%*/¢ De'k*/¢ = D + k /e, we have

m m
@1 Tl kn] =Te| [T oR(DYW, e | = Te | [ ] pR(D + 0 /2) W, | .

j=1 j=1
where 0, = k;j + -+ + k,,. We note that there are no more oscillatory terms in the
second line of (4.1). An expansion of T'[ky, ..., k] follows then from an operator-valued

expansion of the operator R(D + o;/¢), which in turn follows from an expansion of the
function R(§ + o0;/¢). The terms in this expansion are specifically created by the constructive
interference between oscillatory factors e?k¢*/¢.

4.1. Preliminaries on Fredholm determinants

We start by giving a formula for general Fredholm determinants as infinite series.
Consider X,Y two trace class operators on L2 and assume that Id + X is invertible.
Define the Fredholm determinant

D(p) = Det(Id + X + uY).

This is a holomorphic function of the variable u, satisfying the bound | D(u)| < e/Xlz+ul¥lz,
Expand it in power series: there exists a sequence w, (X, Y) such that

S n

(42) D(w =Y S (x.7).

n=0

The terms w, (X, Y) are given by the n x n determinant

71 n—1 0 ...0
n 171 n—2...0
4.3) (X, Y)=Det(d+ X)| : . . e,
Tl - o a1
T Tyel ... T2 71

where 7; = Tr (((Id + X)~'Y)”)—see [23, Theorem 6.8].

LEMMA 4.1. — Lets > 0and assume that (D)* X and (D)’ Y, initially defined as operators
from L? to H™S, are trace class operator on L*. Then
(4.4) |0n(X.Y)| < [(D) Y (D) [PV X1l

Proof. — Firstnote that since (D)™ € Band (D)° (X +uY) € £ we can use the cyclicity
of the determinant to get

Det(Id + X + uY) = Det(Id + (D)* (X + uY) (D)™).
Therefore

[Det(Id + X + pY)| < exp(| (D) X (D) |z + |ul[ (D)’ Y (D)™ |2).
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This proves that Det(Id + X + uY) is an entire function of order 1. Therefore by Cauchy
estimates the coefficients w, (X, Y) must satisfy (4.4). This completes the proof. O

4.2. Reduction to a trace expansion

We now start the proof of Theorem 5. Fix N > d +4and p = 4(d + N)N. Let W
in C(;"’(IB%d (0,L) xT¢,C), V, Vy € C(‘)X’(Rd, C) be given by
Wix.y) = Y W)™, V(x) = Wo(x) + Vy(x). Va(x) = Y Wi(x)e' /e,
kezd k+#0
We define |W|zs = Y jcza ||Wklls. This quantity is finite for every s > 0.
Let X and Y be the trace class operators given by
X = V(Kw,), Y =W(Ky)-—VY(Kw,),
4.5 2 —z)p~1
(*+3) W) = (4 yexp (24 2 —eep T )
2 p—1
The expansion (4.2) yields

o0
Dy(A)=Det(ld+ X +Y) = > i'w,, (X,Y).
n

n=0 """

We now reduce this exact infinite expansion to a finite expansion modulo a term of
order O(e2"). We recall that X; = Cifd > 3 and X; = C \ {0}.

LEmMA 4.2. — Locally uniformly on X4, we have

N
Dy() =) %w,,(x, Y) + 0(*).

n=0 "
Proof. — 1t is enough to show that the coefficients w, (X, Y) satisfy the inequality
(4.6) lwn (X, Y)] < (Ce?)"

for all n > 0. Because of (4.4) it suffices then to estimate |Y |4. Recall that the first p — 1
derivatives of W vanish at 0 and write a power series expansion of W as
1 d™w

Y(z) = Z amz™, = s (0).
m=p '

Since the function W is entire of order p — 1 and type (p —1)~! the coefficients a,, satisfy the
estimate

4.7) lam| < C (m~memY @D < Cnl2 /)t (=D

—see for instance [25]. Next write

1 d 1 o m—1
Y = W(Ky) — ¥ (Kw,) = fo 77 Y Kworev)di = /O Y am Y Kiyypuv, Kv Ki Loy .
£=0

m=p
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This yields

(D)* (W(Ky) — ¥(Kwy)) (D)

1 o m—1 -1 m—t-1
= /0 Z . Z ((D)2 Kwy+tv, (D)_z) (D)? Kwy:v, Ky, <(D)2 Kwotv, <D>_2) dt.
m=p {=0

The singular values of (D)? Kwy+tv, (D)2 are bounded as follows:
5 ((D)? Kwiear, (D)) = (D) K|35 (pAD)?) = CIWloosy (D)%)

To estimate s; (,o ( D)_z) we note that as the singular values of an operator X are the square
roots of the eigenvalues of XX *,

B LN\ 1/2 LN\ 1/2 '_
(4.8) 5 (p(0)2) =2, ((D)*p) " =5 (p(2)*p) T =)
In the last line we used [15, (B.3.9)]. It follows that s; ((D)2 Kwy4ev, (D)~ ) < C|W|ej 4.
In addition using the commutation relation

eikb/s — %[(k . D)7eiko/g], (k . D) _ lexl + '|k|+ dexd i

we obtain
Ky (D) | 3 = K, (D) 31 (D) Vi (D) |
<Z|K |$| D)~ ZWkeiko/s(D)_2|$
k0
= Z |k|2 |J3| (D)~ —2 Wil(k - D), [(k - D),eik'/s]] (D)_z P
k0
< Ce2|W| .

4.9)

Consequently,
{—1 m—{—1
S(m—2); (((D)2 Kwoy+1vy (D)_2> (D)? Kwy+v, Ky, (D)2 ((D)2 Kwoy+1vy (D)_2) )

<s (D2 K 0y2)" (D) K Ky, (D)2

<s; ({D)” Kwy+tvy (D) | (D))" Kwy+tvi| 31 Kvy (D)7 |
< Cm82|W|gé_1|W|sz_2(m_2)/d.

Sum over £ € [0,m — 1], j > 0 and note that m > p > d + 2 to obtain the bound

<m*C™2|W | W 4.
%z

Z ( KW0+tVﬂKVnKW0+tVﬁ <D>_2

This yields

o
(D) (W(Ky) = W(Kw)) (D)2| = 37 mPlam| €™ WL W22 = €6
m=p
where the series indeed converges because of the decay of the coefficients «,, proved in (4.7).
This ends the proof of the lemma. O
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We now show that Theorem 5 can be reduced to the following key result:

LEMMA 4.3. — Let X, Y be given by (4.5) and & x be the holomorphic continuation of the
operator Det(Id + X)(Id + X) ™! given in Appendix A. There exist N functions cg,cy,...CN—1
holomorphic on X4 such that forall1 <a < N,

Tr((FxY)?) = o) + 1) + -+ ¥ Tey1 () + 0E™).
This holds uniformly locally on Xg4.

Assuming that this lemma holds Theorem 5 is only a consequence of a complex analysis
argument resumed in

LEMMA 4.4. — Let E = C or C \ {0}, So be a discrete subset of E. Also let
(A,e) = f(A,¢),g(A,e) two functions such that f(-,¢), g(-, &) are meromorphic with poles
in So and such that h(-,¢) = f(-,e)g(:, &) is holomorphic on E. Assume moreover that locally
uniformly on E \ So we have

fOue) = fo) +efih) + -+ eV fy1 () + 0EN)

(4.10) _
g(h.e) = go() +eg1(V) + - + eV gy 1 () + O(eM),
where fo,g0,..., fn—1,&N—1 are meromorphic functions of A € C. Then there exist holomor-
phic functions hy, . .., hy—1 on E such that uniformly locally on E,
(4.11) h(h, &) = ho(A) + eh(A) + -+ eV Thy_ (V) + O(N).

Proof. — First note that (4.10) and the fact that # = fg imply that the expansion (4.11)
holds for A away from Sy. It remains to show that the functions /; are holomorphic on E
and that the expansion holds locally uniformly on E. We first note that locally uniformly
on E \ Sop,

1) = tim LIS == )
£—>0 gl
where by convention f_; = 0. A uniform limit of holomorphic functions is holomorphic;
thus by an immediate recursion fy,..., fxy—1 must be holomorphic on E. The poles of the f,
are then a subset of the poles of f and thus they all belong to Sy. The same holds for the
poles of g,. Consequently the poles of the &, belong to Sy. Let n minimal so that 4, has
a singularity at a point A9 € So. For r small enough A¢ is the unique singularity of &,
on D(Ag, 2r). For every ¢ > 0, the function
h(,e) —ehy —--—&" Th,_,

81’1
is holomorphic on D(Ag,2r). Ase — 0, H,(A,¢) = O(1) and H,(X,8) — hy,(1), both
holding uniformly locally in D(Ag, 2r) \ {A¢}. By the maximum principle there exists M > 0
such that for every A € D(Ag, r) \ {Ao},

|hy(A)| = lim |Hy(A,e)| <limsup sup |Hu(u,e)| < M.
§—>0 e—>0  pedD(Ao,r)

Hn('v 8) =

Therefore 4, is uniformly bounded in a neighborhood of A and its singularity is removable.
It follows that all the /; are holomorphic on E. Now to prove that (4.11) holds uniformly
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locally on E we recall that it already holds uniformly locally on E \ Sy. Now if 1¢ € Sy and
r > 0is such that D(Ag,r) C E and dD(Ag,r) C E \ So then Cauchy’s formula shows

1 h 1 h e eN Ty oV
hoy = -1 (1) = _56 o) +---&" " Thy_1(p) + O(e )du
27i Japa,ry 4— A 271 Jap(a,r) n—A
= ho(A) + -V Ty (1) + O(eM),
with convergence realized uniformly in D(A, r). This ends the proof. O

Proof of Theorem 5 assuming Lemma 4.3.. — By Lemma 4.2 it suffices to prove that for
every n € [0,N], w,(X,Y) admits an expansion in powers of ¢ at order N. By (4.3),
wp (X, Det(Id + X)Y) is a finite combination of terms of the form Tr((¥ xY)%),1 <a < N.
Thus by Lemma 4.3, w, (X, Det(Id 4+ X)Y) has an expansion of the form

(4.12) op (X, Det(Id + X)Y) = fo(A) + ef/i(A) + -+ eV fy1(X) + O(eY).

Here the convergence holds locally uniformly on X,. In addition,

wn(X,Y) wn (X, Det(Id + X)Y).

1
~ det(Id + X)»
Now apply Lemma 4.4 to the case £ = X4, So = Res(Wp), f = det(Id + X)™ and
g = wy(X,Det(Id + X)Y). The meromorphic function f does not depend on ¢ and its
poles in E are exactly the resonances of Wy. The function g is holomorphic on E, depends
on ¢ and admits an expansion given by (4.12). The product 2z = fg is then meromorphic; by
(4.6) it is locally uniformly bounded on E and consequently it is holomorphic on E. Thus
wy (X, Y) admits an expansion in powers of ¢ at order N and Theorem 5 follows. We will
compute the first few terms in §4.5 below. O

The next sections are devoted to the proof of Lemma 4.3. We first simplify the expres-
sion Tr (T xY)?).

LEMMA 4.5. — Fora € [1,N], Tr((J x Y)?) can be written modulo O(g") as a finite sum
of expressions of the form Te( x Fn, -++ & x Fn,) where 1 <nj <2N — 1 and

o0 1 dmw
@13 Fu=Yom Y. Ky Ky Kp' KK, om = ——(0).

T om!
m=p Lo++Ln+n=m ml dz™
This holds uniformly locally on X4.

Proof. — Fix 1 < a < N and define F¢ = (D) K¢ (D)". Using the cyclicity of the
trace,

Tr((TxY)) =Tr (T x Y9
X' = Det(Id + W(Fw,)Ad + ¥(Fw,) ", ¥V = U(Fy) — Y(Fw,)-
Define

@14)  Emn= > EFv I Fv By Fn= Y tmEmn.
m=p

Loty +n=m
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The index n has the following significance: &, is the sum of monomials in Ew,,
JEVu with exactly n factors equal to J&Vn. Using the power series expansion of ¥ and
Y' = ¥(KLy)— ¥(HLw,) we obtain

Y=Y am(Fwo + Fv)" = Y amFigy = D tm (Ema++ Emm) =Y F -
m=p n=1

m=p m=p

We claim that

= 0(eV).
Z

> I

n=2N

(4.15)

In order to prove this start by fixing £y, ...,¢, with £y + --- + ¢, + n = m > p. Since
Fv, appears exactly n times in the product J@f,{}o Ko, C%fﬁo’ 'y, p%lu'}o we have

(4.16) ni (Fy Fvy -+ Hiy Hv, Hiy) = 55 (R | Koo 5™

We now prove some estimates on s; (C%Vu)' On one hand by the same argument as in (4.9)
we have

si(vy) < | vyl 3 < 1(D) Ko (D) | 3+ [{D)™" V(D) " |3 < CelW|z1.
On the other hand by arguments similar to (4.8) we have
si(Fvy) < (D) Ky, | 3 5i(p (D)) < C[Wleoj /7.

Interpolating both inequalities yields s;(Fy,) < Ce'/2[W|,1 /24 Coming back to
(4.16) we obtain

4 Lp— Ln .
4.17) Smj (561490 Ky, - ‘%Wo 1 Ly, C%Wo) < Cm|W|’£18”/2j n/@d)
Since n > 2N > 2d + 2 the RHS of (4.17) is summable. Summation over j leads

4 _ 14
| K, o, -+ Hrty ! Fov, Hiy

, SmeCIW]z)"
Consequently if £, , is given by (4.14) then for n > 2N
m N m
(4.18) |8m,n|z§m< )8 (C|W]z)™.
n
The claim (4.15) follows then from (4.18) and the estimate (4.7) on oyy,:

> Fa

n=2N

Z Um (8m,2N + e+ 8m,m)

m=p

z Z

N .- m m oo m
<e mzzpm|am|(c|w|zl) ((2N)+ +<m))

(e9)
<&V Z mom|RC W 21)™ = O(eM).

m=p
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It follows that we can write Y’ as a the sum of a finite combination of the operators ¢, with
1 <n < m and a small error in Z:

0o 2N—-1
Y=Y Fn= D Fn+ Ozle™).
n=1 n=1

Therefore Tr((& x/Y’)?) is modulo O(¢") a finite sum of expressions of the form

Tr(gX’(ynl "'gX’C?na)a

where | < n; < 2N — 1. Nowas X = (D) 'X'(D), F, = (D) &, (D), and
Tr((T x YN = Tr((J x Y)?, this completes the proof of the lemma. O

To sum up we have proved that Theorem 5 holds if Lemma 4.3 holds, that is if for
a € [1,N], Tr((& x Y)%) admits an expansion in powers of e. In addition Lemma 4.3 holds
ifforalln; € [1,2N — 1], Te( x Fn, -+ I x Fn,) admits an expansion in powers of ¢.

We write the operator F,, given in (4.13) in the following form:

00 m
(419) F, = Z Z U (l_[ KWk{eikz-/s) ’
m=p {

p k[}Eé’ﬁ,’ (=1

where &7 is the collection of sequences d-tuples (k1, . . ., kn), with exactly n non-vanishing
terms. Because of the conclusion of Lemma 4.5 we can restrict our attention to operators F,
withn < 2N —1.Forn < 2N —1andm > p the sequences of &’ :’n have much more vanishing
terms than non vanishing terms. This will allow us to use some arguments of combinatorial
nature. The expansion of F,, given by (4.19) leads to

oo

a a mj .
[[9xF, = > > [Tem, @x [ Kw eiere
J=1 =1 ¢

M Ma=P felie Syl e ki STE, VT

where
(4.20)
[eS) a m; .
_ ik]e/e
c@nl,...,na = Z Z Ham_,- gX 1_[ KWk_l,-e ¢ ,
M Ma=P (ke ye Sl s o kST, V= =t
ki +-+kg, #0
o) a m; .
ik]e/e
Cnina = Z Z H“m./gXHKWk./e e
— . 14
M Ma=P (ke ye Sl s o kY ST, V= =1
kletkd, =0

In the next subsection we estimate the trace of the operator 0y, ... 1, -
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4.3. Destructive interaction

The main result of this part is the following:

LEMMA 4.6. — For1 <a < N andny,...,ng €[0,2N —1] let Dy,
operator given by (4.20). Then locally uniformly on X4,

Tr (Cc/)nlvn,"u) = O(SN)-

n, be the trace class

.....

We start with a few definitions. Let {k;};<¢<, a sequence of d-tuples in Z¢ of length v. We
say that {k¢}1<¢<y 1s constructive if it satisfies k; 4 --- 4+ k, = 0 and destructive otherwise.

Roughly speaking, we will see in Lemma 4.10 below that the terms Tr (]—[Z:1 KWke etkes/ 8)

associated with destructive sequences {k;} are negligible, i.e., are of order V. This is
due to destructive interference between oscillatory terms e’*¢*/¢. Similarly, we will see in
Lemma 4.14 that if {k; } is constructive, the constructive interference between the oscillatory

ikge/e

terms e produce an expansion of Tr (]_[ZZI KWkeeik‘f’/ "“) in powers of ¢. These are

responsible for the terms a; &/ in the expansion of Dy (1).

The treatment of terms associated with destructive sequences is difficult and requires
certain preliminaries of combinatorial nature. A sequence of d-tuples {k¢};<¢<, 15 said to
be admissible if

(i) Itis destructive.
(i) It starts and ends with at least N vanishing terms.

A sequence {k;}1<¢<,s With exactly y non-vanishing terms is said to be good if

(1) It is admissible.
(i) vV<N+ Ny+ 1
A subsequence of consecutive d -tuples of an admissible sequence {k;}; <¢<, is said to be good
if it takes the form {k¢};41<¢<4+v for some ¢, v" and if the sequence {k¢44}1<¢<y is good.
A cyclic permutation of {k;}1<¢<, 1s a sequence equal to

kp+1,--- kv k1, ... kL)

for some L > 0. We will use below the following version of the pigeonhole principle.
Let {k¢}1<¢<v @ sequence with exactly y non-vanishing terms. If v > N(y + 1), there exists
a subsequence of {k¢};<¢<, made of N consecutive vanishing d-tuples. The next lemma is a
combinatorial result allowing us to extract good subsequences of consecutive d-tuples out
of admissible subsequences.

LEMMA 4.7. — Every admissible sequence {k¢}1<¢<, admits a good subsequence of consec-
utive d-tuples.

Proof. — We prove this lemma by recursion on v. We can start with v = 2N + 1: there
are no admissible sequences of length less or equal than 2/N. Any admissible sequence with
length 2N + 1 has at least one non-vanishing term and therefore it is a good sequence. We
now fix v > 2N + 2 and we assume that all admissible sequences of length strictly less than v
admit a good subsequence of consecutive d-tuples. Let {k¢};<¢<, be an admissible sequence
with y non-vanishing terms.
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Ifv < N + yN + 1 then {kg}1<¢<v is good. Therefore we assume that we have
v >N + yN + 2. Consider the subsequence of minimal length of consecutive d-tuples
starting at k1, containing at least one non-zero term and ending with N zeros: (k1, ..., k).
Let y’ be the number of non-zero terms in this subsequence. Since this sequence is of minimal
length the pigeonhole principle implies v/ < N + y'N + 1. Hence if ky + --- + kv 7 0 then
this subsequence is good and therefore we are done.

Otherwise the sequence {kg¢},/—n11<¢<y 1S admissible. Indeed it starts and ends with
N zeros and it is destructive since k; +---+ kv = 0and k; +--- 4+ k,, # 0. Therefore we can
apply the induction hypothesis: it admits a good subsequence of consecutive d-tuples. This
completes the recursion and the proof. O

LEmMMA 4.8. — Let {ky}1<¢<y be an admissible sequence. Then locally uniformly on X4,

v v
l—[ KWkleikzo/s < Cu2 (l—[ ||Wk4||2v) SN.
B

=1 i=1

4.21)

This lemma is the key to prove Lemma 4.6. Roughly speaking, to prove (4.21), we must
realize certain integration by parts at specifically chosen places. Each time we integrate by
parts, we win a factor ¢ but we decrease the order of [],_, Kw, e'ke*/¢ by one (as a pseu-
dodifferential operator). Starting and ending with N zeroes ensures that after performing
N integrations by parts, the resulting operator will still be a pseudodifferential operator of
sufficiently small order. We start with a preliminary result:

LEMMA 4.9. — The operator 191(A) = Kqo(A) — Ko(—A) is a smoothing operator. In
addition there exists a constant C such that uniformly in A € C\ D(0, 1),

(4.22) (D2 =2V 1| = € PN 2 g,

Proof. — The operator 9,1 () is smoothing as the kernel of the operator Ro(1) — Ro(—1)
is given by the smooth function
)kd_2

i / ei)t(w,x—y)dw
2 (27T)d_1 sd—1 ’

see [15, Theorem 3.4]. In order to prove the estimate (4.22) we note that by the product rule
for derivatives the operator (D% — A2)N [ 9,1(A) 18 a finite sum of operators of the form

(x,y) =

i Ad—2+t
2 (2m)d-1
where ¢t € [0,2N], o is multi-integer with entries in [1, d] and of length || < 2N — ¢ and
x € {D#p, |B| < 2N}. The operators of the form (4.23) have kernel given by

(4.23) XD*(Ro(A) = Ro(=1)) V.

i d—2+t o AWy
(x,y) — EWX(X) (Dx /Sd_l ey da)) () V().

We have D2e!M =) (x) = o A1lei@*=7) where w, is by definition wq, - - W, . Hence,

(4.24) ‘(ij / e"“w"—ﬂdw) (x)
Sd—l

<C (A)|O¢| ol Tm Allx—yl
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uniformly on C\ D(0, 1). Since y and % are compactly supported the 3-norm of operators
of the form (4.23) can be estimated by Schur’s lemma and the bound (4.24). Recalling that
t + || < 2N itleads to

Poyd—2+t
;&Tﬂ)“mom —Ro(-M) V| = Clxloo (AN F4 2HMH| o,
B
To conclude it suffices to recall that the operator (D? — A2)¥ I, 1(1) is a finite sum of
operators of the form (4.23). This completes the proof of (4.22). O

Proof of Lemma 4.8.. — We divide the proof in three main steps.
1. Fix M > 1. We first show that

v v
1_[ KWkKeikeo/E < Cv2 (A)V (l_[ ”WkZHZv) SN, ImA € [1, M],
t=1 (=1

(4.25)

B
uniformly on the set {1 : ImA € [1, M]}. Let R(§,1) = (§2 — A?)~! and

A(k,X) = R(D + k/e, 1) = e 7K/ Ry(1)eik*/2.
Define oy = k¢ + --- + k,. The commutation relation e~*%*/¢ Deik*/e = D 4 k /¢ shows
K, €1/ Ky, e™v*/¢ = pA(0, 1) Wi, e™1°/° 4(0, M) Wipe™2%% - A(0, Wy, e/
= el p A (01, ) Wi, A(02, Wi, -+ A(0p, M) Wi, .

Now define Tj—; = A(0j,A)--- Aoy, A) for j € [1, v]. Since we are working in the half plane
{Im X > 1} the operator T is well defined and bounded from H~2=/) to L2. It admits a
bounded inverse 77! from L2 to H~>"=/). Thus, for j € [I,v — 1], A(0;,A) = Tj—1T; " as
an operator on L2, This yields

KWkl oikie/e .- K, oikve/s — eialo/spTO (T1_1Wkl T1) ...(Tv—_l1 Wi, _, Tv—l) Wi,

(4.26) , o
= epTo | [] 77" Wi, T | Wk, -
j=1

The estimate (4.21) for ImA € [1, M] follows then from a bound on |Tj_1ij Ti| g and a
bound on |Ty| 5. We start with the bound on | 7| 3. Since this operator is a Fourier multiplier
we have

|Tol.3 = sup |[ [ RGE +05/e. )]

geRd j=1

We reduce this estimate for ImA € [1, M] to an estimate for A = i. For § € R¢ and
Im A € [1, M] we have |(§2 4 1)/(§2 — A?)| < C (). It implies

(E+o;/e)*+1

sup |[ [ R +0j/e. 1) =$s;§g]1:[1|R(§+oj/s,i)|. o 012

gerd | ;g

v

< (€ () sup [T +05/6)).

ger? |
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Since the sequence {k;};<¢<, is admissible we have oy = --- = oy #Oand oy =+ =
oy = 0. Thus the sequence {0y} <¢<y—1 starts with N equal non-vanishing terms and ends
with N vanishing terms. Peetre’s inequality (see Equation (2.4)) implies

v

sup H<$+UJ-/5)_2 < sup
£eRd =1 EeRrd

(€ +o01/8) 2N (£) 72N | < cve?N.

It follows that for A € [1, M], |To| g < C” (A)V el
We next estimate |Tj_1Wij|$, forany k € Z¢ and j € [0, v — 1]. We show that
4.27) T Wi Tyl < €V I Willag-)
using a descendent recursion on j. If j = v —1then 7; = A(o) for some o € Z4 . Thus
A(0) ™' Wi A(0) = Wi + Wi, (D + 0/¢)* = A*]A(0)
= Wi + (D?>Wi)A(0) + 2(DWy) - (D + o /) A(o).
The operator A(c) = e '9*/¢Ry(1)e'*/¢ is bounded on L? with uniform bound when
ImA > 1. The operator (D + o/g)A(0) = e '9*/*DRy(1)e’?/® is also bounded on L? with

uniform bound when Im A > 1 as DRy (1) is bounded on L? with uniform bound. Therefore,
for a constant C that depends only on d,

(4.28) |A(0) " Wi A(0)] g < C W2
We can assume without loss of generality that
(4.29) C>1+4+4(0)|lg+2((D +0/e)A(0)| 3.

The bound (4.28) proves the case j = v—1 of (4.27). Now assume that (4.27) holds for some
J € [1,v — 1] and let us prove that it also holds for j — 1. Write Tj_; = A(0)7T; for some o
so that

T AW Ty = T, ' A(o) ™' W A(0)T;
=T (Wi + (D*Wi) A(0) + 2(DWi) - (D + 6/6)A(0)) T;
= (I7'WiTy) + 2 (T, " (DW)T;) - (D + 0/2) A(o) + (T; ' (D*Wi)T;) A(o).
Therefore the bounds follows from the recursion hypothesis applied to the operators
T Wi Ty, TN (D?Wi)Tj and T, ' (DW) T we get
T\ WiTj-1| g < CV/ 1 Wiclaw—j) + 2C " IIDWic |2y - (D + 0/€) A(0)] 3
+ C D Wicl2w-)|4(0)] 3

< C" Wi ll2g=j+1)-

1] 4

In the last line we specifically used (4.29). This ends the recursion and thus the proof of (4.27).
The estimate (4.25) follows then from the identity (4.26), and the bounds on |T i_l Wi T;| 3,

[To| 3-
2. We show that an estimate similar to (4.25) holds for ImA € [—-M, —1]. Write K¢)(A) =
I0(A) + 19,1(A) where I90(1) = Ko(—2A) and I9,1(A) was defined in Lemma 4.9. This
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yields
[T&w ™= 30 [Tiw, e
=1 €1,..-,6p €{0,1}Y £=1

Fix a sequence €y, ..., €, € {0, 1}". If all the ¢; vanish, then

v v
[T iwe,cc@e™e*® = T K, (=R e/,
=1 =1
AsIm(—A) € [1, M] we can bound the norm of this operator by directly applying (4.25). Now
assume that at least one of the ¢y isequal to 1. Theindexes £, ..., {; withey, = -+ = ¢, =1
split the sequence k1, ..., k, in s + 1 subsequences of consecutive d -tuples, of the form

(4.30) Kiv.o k1), (kg ki) oo (ke k).

At least one of these subsequences is destructive. Let us assume that it is the first one.
Then (ky, ..., k¢ —1) is destructive and starts with N zeros. It does not necessarily end with
N zeros. Write

v
1_[ IWk[,eg (A)eikzo/é‘

4.31)
=1 2
{1—1 v
= 1_[ KWke (_k)etke'/a ]I,sz1 1 (A)elkﬁ o/e l_[ ]sz < (/\)e’k”/g
=t 3 [t=ti+1 2

The second factor of the RHS of (4.31) can be controlled by the estimates of Lemma 2.1:

% v
[T e < T] CulWi,lo
{=t1+1 g t=a+t
for a constant Cys depending on M. We deal next with the first factor in the RHS of (4.31).
Let y € CSO(IB%d (0, L)) be equal to 1 on supp(p) and define K,(A) = xRo(A)y. Since
ImA < —1, K,(—A)N(D? — 1%)N p = Id. It follows that

£—-1
[T &w, R e | 1w, a@yet /e
1
{=1 3B
l1—1
(4.32) = || TT &we, 0™ | Ky (=0)N (D% =22 ¥ plw, 1(2)
€=1 c%)
{1—1
< || TT &, e e/ | Ro-nN| - |0% =22V b, 1) -
Z=1 $
The same arguments used to show (4.25) yield that for Im A € [1, M],
l1—1 ) l1—1
1_[ KWkg (—/\)elk[’./s Kp(—l)N < Cel (/\)Zl 1_[ ”Wk(”2v SN
(=1 3 =1
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By Lemma 4.9, |(D? — )@)I\Urwkl1 11 = (AN 2L, o for Im A € [-1,—M].
Coming back to (4.32) and putting these bounds together we obtain
£-1 £
1—[ KWk@ (_l)eik(./g Iszl,l(A)eikzl./s < Cl% (A)€1+2N+d o2LITm Al 1—[ IIWkéllzv N
=1 3 (=1

By (4.31) we conclude that if the first sequence among (4.30) is destructive we have
44
2
< Cll\)l <A)v+2N+d eZL\Im/U l_[ ”Wkg ||2v SN
B =1
uniformly for A with ImA € [—1,—M]. In the case where the first subsequence among
(4.30) is not destructive we know that at least one of the subsequence in (4.30) is destructive.
This subsequence might not start nor end with N vanishing term. Here again using that the
operator /1 () is smoothing we can overcome this difficulty. We skip the additional details.
It leads to the bound

%
l_[ Isz €0 (A)eikp/s
(=1

v 4

i 2 AN +2d
1_[ IWkl,Eg(/\)elke./E < C}l‘i[ (A)H— + e4L|ImM 1_[ ||Wkg||2U SN
(=1 B (=1

Sum the bound (4.33) over €1, ..., €, € {0, 1}” to get that when Im A € [-1, —M],

v v
i 2 N+2d
1_[ KWkK elk@o/e < C[:JJ ()L)v+4 +2 e4L|ImM (l_[ ”Wk[”Zv) SN
=1 B £=1

3. We conclude the proof by a complex analysis argument. The estimates (4.25) and (4.34)
show that (4.21) holds locally for |[Im A| > 1. Thus it remains to show that it holds locally
for [ImA| < 1. Fix u, v € L? and consider

AY - ikye/
f(l) = (A n 2l')2v+4N+2d <l_[ KWk@e 4 Su, v>.
(=1

(4.33)

(4.34)

This function is holomorphic and uniformly bounded for | Im A| < 1: by Lemma 2.1,

mA| <1 = |[f)]<C (1‘[ |Wk[|oo) Jul vl

(=1
In addition, (4.25) and (4.34) are uniform estimates on the edge of the strip:

)
(4.35) mA| =1 = [f()]<C” (1‘[ ||sz||2v) &N ulavlo.
=1

Therefore by the three lines theorem the function f satisfies (4.35) for all A with |ImA| < 1.
Taking the supremum over u,v € L? shows that (4.21) holds for | Im A| < 1. This ends the
proof of the lemma. O

Lemma 4.8 is somehow unsatisfying. The bound (4.21) involves a constant C"? and the
norm ||Wg|l2v. Both C"? and Wk l2y grow too fast as v — oo. The proof of the next
result, which refines Lemma 4.8, specifically uses the relation between good and admissible
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sequences given in Lemma 4.7: every admissible sequence admits a good subsequence of
consecutive d-tuples.

LEMMA 4.10. — Let {k¢}1<¢<y be a destructive sequence with exactly y non-vanishing
terms. Let s = 2(N +yN + 1). If v > (2N + 2d)(y + 1) then locally uniformly on Xg4

v
Tr (H KWk[eike'/s)

{=1

v
2
< VN T Wi s
(=1

If moreover the sequence {kg}1<¢<, starts and ends with N + d zeros then locally uniformly
on X4

v
2
(4.36) < VN T Wi ls-

7, =1

v
ikge/e
l_[ Ksze
=1

We recall that N is fixed. Because of Lemma 4.5, we will only care about sequences {k; }
with at most 2N —1 non-vanishing term. Hence, we will apply Lemma 4.10 with a parameter s
of the lemma at most 2(N + (2N — 1)N + 1). It follows that, in practice, the constant
cs’ [To= | Wk, ||s in the LHS of (4.36) will not be growing too fast.

Proof. — First note that since v > (2N + 2d)(y + 1) by the pigeonhole principle there
exists a cyclic permutation (in the sense described above) of {k;} that starts and ends with N +
d zeros. Using the cyclicity of the trace we can assume that the sequence {k;} starts and ends
with N +d zeros. In particular we are reduced to prove (4.36). Since the sequence {k;} is now
admissible it admits a good subsequence of consecutive d-tuples {k¢},+1<¢<v/+q. Without
loss of generality g > d. Write

ﬁ KWke eles/e = li[ Ksz elkesle ﬁ KWke ethesl
=1 7 (=1 7 |[{=d+1 3
v+q v
) H KWk@ elesle 1_[ KWk(@ ethee/e
{=q+1 B {=v'+q+1 B

For A in compact subsets of X; the first, second and fourth factor are estimated by
Lemma 2.1. The third factor is controlled by (4.21). It leads to

v v/+q

; 72

1_[ KWkZelkzO/e < cvty 8N l_[ |Wk€|oo 1_[ ||Wke||2u
(=1 7 l<q, {>v'+q+1 {=g+1
%
2
< N TT Wi ls-
(=1
This completes the proof of the lemma. O

With this refinement in mind we are now ready for the proof of Lemma 4.6.
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Proof of Lemma 4.6. — We divide the proof in 5 main steps.

l.Leta € [I,N]and ny,...,n, € [1,2N — 1]. The function z + (1 + W(z))~!is
meromorphic with a simple pole at z = —1. Write a Taylor expansion of z > (1 + W(z))™!
atz =0:

(Id + ()™ = Py(z) + 22N T2 pp (2).

Here Py is a polynomial of degree 2N +2d —1 and py is a holomorphic function on C\{—1}.
The pole at —1 is of multiplicity one. Away from resonances of W,

(Id + W(Kwy)) ™" = Py (Kwy) + Kyt pw (Kwy) Kyt

The operator By, = Det(Id + W (Kw,))pn (Kw,), well defined on C \ Res(Kw,), extends to
an entire family of operators by Appendix A. Let us write & y = Py + P;, where

(4.37) Po = Det(Id + W(Kw,)) - Py (Kwy),  P1 = Kj'® - Bw, - Kyt

Fixmy,...,mgs > pandforeach1 < j <aasequence{kj} € é”m],withk%—}----%-kfna # 0.
Wedefiney =ny +---+ngandv =my +---+mg. Using I x = Py + P, we get

w( [T [T e ) = % ([T [T, oo
=1

€1,...€4€{0,1}2 j=1

In the following steps we study separately the terms of the RHS sum, depeding on the value
ofe€r,...,€q4 €{0,1}2,

2. Assume that ¢y = --- = ¢, = 0. Then

HCG/ HKW etk’O/e _ 1_[ jDOHKW etk /e
J=1 =1

The sequence {k{} is destructive, v > pa > 2(N +d)-2Na and 2Na > y + 1. This implies
v > 2(N +d)(y + 1). Hence for s = 2(N 4+ 2N3 + 1) we have s > 2(N + yN + 1). The
assumptions of Lemma 4.10 are satisfied thus

v
1_[ (y)o l_[ KW elkgo/s < CvgN 1_[ ”Wk(”S
j=1

{=1

for a constant C depending only on N, d and |Wp|eo.

3. Assume that exactly one of the €1, ..., ¢, € {0, 1}¢ is equal to 1. Using the cyclicity of
the trace we can assume without loss of generality that €; = 1. Hence

l_[ Cej l_[ KW ezk -/s
=1
mi 1 a
=Tr | Bw, Kpy (H KWkle’k@'/8> [] HKW eikiele K+
4
=1 (=1

Jj=2
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Using (4.36) we obtain again

l_[ Ce H KW ek /e
=1

m
ikle °
< |Bw,l g - Kvlli:d (H KWk} ettt /€> l_[ Po l_[ KW etk ele K%:d
=1 Jj=2 Z

The second factor in the second line is a finite sum of terms studied in Lemma 4.10. Conse-
quently we obtain the bound

v
]‘[ C, ]‘[ KW eikiele || < VeV By | T 1w ls-
j=1 {=1

4. Assume that 2 or more terms among ¢y, ..., €, € {0, 1}% are equal to 1. Using a circular
permutation we can assume without loss of generality that €; = 1. Let us prove the following
statement: there exists two indexes ji, j» € [1, a] such that

J1Z7<J2 :
1<t<m;

(if) €; = Ofor all j in the 1nterva1 (J1, J2).

(i) the sequence {k’ } is destructive;

We process by recursion on a. If @ = 2 this is obvious: either the sequence {kl}}lfgfml or
the sequence {k%}lfgfmz is destructive. Now assume that the statement holds true for all
a’ <a—1.Let us prove it for a. Let j, be the smallest index with €, = 1 and jo > 1. Then
: iV 1<J<J
either the sequence {k} }, ;2" Oj
the sequence {k; {E’;ﬂ"/ is destructive and so we can apply the recursion hypothesis to it.

This proves the above claim.

1s destructive and we are done, or it is constructive. But then

Again using a circular permutation we can assume that j; = 1. Hence

a m; .
ikl e/e
[T¢ [T&w, e™
j=1 =1 ¢

my J2— m;
N+d . . N+d
< |BW0| 2( + )(1—[ zk /e) 1—[ HKW ezk /e ng(o +d) |BWO|$
(=1 j=2 (=1 “ 7
mj,
l_[KW elk ./8 1_[ CGJ HKW elk 0/8
(=1 k J=ja+2 (=1 ¢ 2

The first line is a finite sum of terms estimated by Lemma 4.10. The second line is controlled
by the standards bounds of Lemma 2.1. It leads to

v
(4.38) ]_[ Ce, ]_[ Kw,, ekl || < e T W, s
=1

j=1
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5. Points 2, 3, 4 show that (4.38) holds for all sequences €1, ..., €, € {0, 1}%. Summing this
estimate over all possible €1, ..., €, to get

a m; . v
e

(4.39) | [[Ix]] Kije’kz = eV TT Wi lls-

j=1 =1 ¢ =1
The last step of the proof is to sum the bound (4.39). Recall that

%) a mj .
e
$nl ----- ng — Z Z Hamj 9XHKijelk€ /e
M Ma=P (e S RGeS, =T =1

kl+tkg,, #0
where &7, is the set of sequences of length m with n non-vanishing terms. Hence

|Te (D .oona)|

00 a m; .
i1
S Z Z |aml ..-ama| Tr 1_[ gX 1_[ Kij e”(g‘/s
_ . _ 4
M Ma=P (ke Syl ... k§IeSHd,, J=1 t=1
ki+tkg,, #0
0 my+-+mgq
N R
<s Z |0t + - O, |C™1 Ma Z H IZAR
MesMa=Pp kPESH, s s kYeSHE, 451
ki ++kg, , #0
o0
<&V DT amy e, |CTIETEa W T = N (@(C W | 20))°
mi,....,mq=p

where we recall that |W|zs = Y i cja || Wk|ls and @ is defined with ®(z) = Z,O,f:p | ot |2™.
Since @ is entire, ®(C|W|zs) < oo. Hence Tr( D, ....n,) = O(g™) which completes the
proof. O
4.4. Constructive interaction

In this paragraph we prove the following lemma:

LEmMMA 4.11. — Forl <a < N andny,...,ng € [1,2N —1]let Cy, ... n, be the trace class
operator given by (4.20). There exist @y, . .., pN—1 holomorphic functions on X such that

Tt (Cny..ona) = o) + 6010 + -+ + ¥ Ton—1 (1) + O(")
locally uniformly on X ;.

As we will see, the terms &/ @; (A) arise from constructive interference between the terms
¢’ki o /e. The first step in the proof of Lemma 4.11 is an operator valued expansion
for e7ike/e Ky, etke/e:

LEMMA 4.12. — For every n > 0 there exists some operators Ay, ..., Ay—1, Ry with
(4.40) e Ky e = Ao+ 4 & T Apy + &Ry,
depending on k, and such that :
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(i) A; is a pseudodifferential operator of order j — 2 that maps locally supported functions
to compactly supported functions. It does not depend on ¢ and there exists C such that

S+] < N, k EZd = |Aj|$(Hs+j,HS) < C”Wk”N

(i1) R, is a pseudodifferential operator of order n — 1 and maps locally supported functions
to compactly supported functions. It depends on & and uniformly in ¢ near O and there
exists C such that

s+n+1=<N keZ! = |Rl gus+ntt sy < ClWilln.

Proof. — For k = 0 there is nothing to prove. Thus we assume k # 0. In Appendix B we
prove that if R(£,1) = (§2 — A2)~! then

(4.41)
=y ] ] u TalEA,0)
R(E+k/e2) = j;efp,--z(s,x) T P2 D)+ puo (B D)+ T

Here the p; (£, 1) are polynomials in § and A of degree at most j in £, depending uniformly
on k/|k|?; and r,(£,A,¢) is a polynomial in £ and A of degree at most n 4+ 1 in £ and
whose coefficients depend smoothly of . Since the dependence in k is uniform in k/|k|?, it
is uniform for k € Z4 \ 0. It follows that

(5. A, ¢)
()"
Since e~**/¢ Deik*/¢ = D + k /¢ we have for Im A > 0,
emike/e Ro(A)eikele = (D + k/e)? — AZ)
Therefore the expansion (4.41) implies that for ImA > 0,

(4.42) sup  sup = O(1) uniformly as ¢ — 0, k € Z¢.

kezd\0 EeR4

-1

n—1 i

ke e g/

ek Ry (Ve RelE = Zij-z(m +&" (Pn—2(D) + epn-1(D) + Ro(AM)ra(D, £)) .
j=2

This identity extends analytically to X; and yields

ekl gy etRE = Ao 4o 4 T Ay + 'R,
1
Ao=4,=0, 4A; = prj_z(D)Wk for j € [2,n —1],
Ry = p (Pn—2(D) + epp—1(D) + Ro(A)rn(D, €)) Wy.

The operators A; are pseudodifferential of order j —2 and map locally supported functions
to compactly supported functions. For Im A > 0 the operator Ky, (1) is pseudodifferential;
the operator Kw, (1) — Kw, (—A) is smoothing. Hence Ky, (1) is pseudodifferential for all
A€ X4. As

e—iko/sKWkeiko/s —Ag—-— Sn_lAn—l

Sn

and the RHS is pseudodifferential SR, must also be pseudodifferential. To evaluate its order
we note that p,_»(D) (resp. p,—1(D)) is a differential operator of order n — 4 (resp. n — 3)
and that r,, (D) is a differential operator of order n + 1. Thus Ro(A)r,, (D) maps H" ! to H?
and R, must be of order n — 1. To prove the required bounds, we note that for s < N, the

Ry =
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multiplication operator u — Wi u from H* to itself has norm bounded by || Wy || 5 . Therefore
fors+j <N,
|Aj| gs+i msy < Clpji—2(D)| geas+i ms) Wil gers+i ms+iy < CllWelln-

Again, the constant is uniform in k € Z¢ \ 0 because p; (€, 1) depends uniformly on k/|k|.
This proves (i). Now we prove (ii). For s + n + 1 < N the bound (4.42) implies that the
operator r, (D, ¢) (which is a differential operator) satisfies the bound

lrn (D, &)| gas+n+1 gsy = O(1) uniformly as & — 0.

Let y € C(‘,”(]B%d (0, L)) with y = 1 on supp(y). The operator pRo(A) y maps H® to itself.
Consequently, uniformly as ¢ — 0

|PR0(A)rn (D» S)Wk | B(HS+n+1 [ s)
< [pRoM) x| B(ars 1) 17 (D, €) Wil gas+ntt grsy = O(IWalw)-

The operators pp,—2(D)W; and pp,—1(D)W; do not depend on & and are bounded
from HS*t"*+1 to H*. This shows (ii) and completes the proof of the lemma. O

Now we prove the same kind of expansion for product of operators of the form (4.40).

LeEMMA 4.13. — Let {ky}1<¢<v be a sequence of d-tuples in Z4 . There exist some operators

ﬂ()a"‘a ﬂN—la (‘??/N Wllh

v
(4.43) eTio1e/e (H KWkeeikeo/s) = Ao+ + N1 I 1+ &N Rows

=1

where o1 = k1 + -+ + k, and

() oA, is a pseudodifferential operator of order j — 2 and maps locally supported functions
to compactly supported functions. It does not depend on € and

v
s+ <N = |l gustims < C T W lln.
{=1
(i) R is a pseudodifferential operator of order N — 1 mapping locally supported functions
to compactly supported functions. It depends on & and uniformly in & near 0,

v
s <=1 = | Rn|gus+N+1 gs)y < C” l_[ ZANE
=1

This lemma is important when o; = 0—in this case, the sequence {k,} is constructive. It
produces an operator-valued expansion of [[;_; K We, etkes/s In Lemma 4.14 below, we will
explain how to pass to the trace in (4.43). This will generate terms of order ¢/, j > N, that
will appear later in the expansion of Dy (1) in powers of &. We refer to §4.5 for the instructive
computation of the first few terms.
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Proof. — We prove this lemma by recursion. For v = 1itis the result of Lemma 4.12. Now
assume that Lemma 4.13 holds true for all sequences {k;} of length less or equal to v — 1.
Let {k;} be a sequence of length v. Define 0, = k> + --- + k, so that

v v

e—icn-/s l_[ KWke eikgt/e — (e—iclo/eKWkl eiolo/s) . <e—i020/8 1_[ KWk[ eikgO/e) )
t=1 =2

Using the recursion hypothesis we have

v
(e—iOIO/sKWkleiUIO/e) . (e—i02°/5 1_[ KWkleikgO/a)

(=2
— (e—icrl-/aKWkleialo/e) C%O NS SN_l (e—iolo/eKWkleialo/s> (%N—l

LN (e—ialo/sKWkleialo/s) Ron-
We expand below e*71*/¢ Ky, ¢1*/¢ at order N — j as given by Lemma 4.12:
(4.44) e Ky @ = Ao+ edy 4+ eV T T ANy + VTR
It leads to
& (e—iolo/aKWkleialo/s) A =&l Ao Ty + -+ eV VAn 1 Ty + Ry ST
The operator A,/ ¢#Z; has order j' =2+ j —2 = j'+ j —4 < j' + j — 2 and in the above

expression it is weighted with a term /7. Moreover if s + j + j < N then

%
|Aj'ﬂj|$(ys+j/+j,HS) = |Aj’|(,73(Hs+.//,Hs)|c%j|c%>(1.1s+j/+./,1-1s+-i/) =C’ 1_[ “Wke”N~
=1

The remainder Ry ; ¢#/; hasorder N — j —1+ j —2 = N —3 < N — | and satisfies

IRN—j Ajl gean+i+s msy < [RN—jl gas+n—i+1 msyl il gun+1+s gN+1+5—5)
v
<c’ 1_[ IZA S
=1

The term e_"‘”‘/@KWk1 eto1e/e R is of order N — 3 < N — 1 and satisfies

e—zalo/eKWklemlo/s (%N’ < ‘e—ml-/sKWklemlo/a |0%/N|J6’(HS+N+1,HS)

BHSTNFLHs) ™ B(H*,H*)

v
<C" [T, v
=1

This proves that the lemma holds for all sequences of length v. This completes the recursion
and ends the proof. O

The expansion of Lemma 4.13 implies a trace expansion as follows:
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LeEMMA 4.14. — Let {k;}1<¢<y be a constructive sequence with y non-vanishing terms.
Assume that v > N(y + 1). Then there exists ag,ay, . ..,an—1 holomorphic functions on X4
such that locally uniformly on X4, |aj(A)| < C* [Tj—y | Wk, |ln and

v v
Tr (l_[ Kszeik@'/E) —ao(V) —ear(V) + - — eV lay W) < eV CU T T Wi, I
=1 =1
Proof. — Since v > N(y + 1), there exists a subsequence of {k;};<¢<, made of N consec-

utive vanishing d -tuples. Using the cyclicity of the trace we can assume that k,_y 41 = -+ =
ky = 0. The sequence k1, ..., k,—_py is constructive. Therefore we can apply Lemma 4.13 to
obtain the expansion

v—N

l_[ I(VWke(,’ik‘Z./‘E = (%() + -+ SN_I (%N—l + SN %N.

{=1
Here ¢77; is pseudodifferential of order j — 2 and does not depend on ¢ and Ry is pseu-
dodifferential of order N — 1 and satisfies the bound

v
| RN ganv+1,12) < CY l_[ Wi, I~
=1

All these operators map locally supported functions to compactly supported functions.
Asky_ny4+1 =--- =k, = 0 we obtain

v
(4.45) [ Kwe, e*e = oKy, + -+ V" An-1Kiy, + " R Kiy,-
£=1
We recall that N > d. The operators ¢7; KIQV,O haveorder j —2—2N <—-2-N <-2-d
therefore they are trace class. The operator R n K{}ﬁo has order —N —1 < —d hence it is also
trace class. It satisfies the bound

v
| Ron Ky | geei=n 12y < | RN | gav+1,12) Ky | gcen—n vty < C° H Wi, lIn-

(=1
By [15, Equation (B.3.9)] this implies
v
| Rov Kiyyl2 < | Row K| gemi—n 12y < C° l_[ Wi, lIn-
(=1
Taking the trace of both sides of (4.45) yields
Tr (ﬁ Kw, eik‘5°/8) —Tr (O%OK%O) — =N (Q%N_IKI],IV/O) <eNev ﬁ Wi, I -
£=1 (=1

This gives the required expansion. We now need to prove the estimate on the coefficients
ayp, ...,ay—1 appearing in the expansion. By [15, Equation (B.3.9)] and the estimate (i) of
Lemma 4.13,

|Tf(c%jK11/1V/O)| < |(%jK111[v/0|fZ < C|c%jK{4V/0|f/3(H—N,L2)

v
N
< ClH;|l g 12| Ky gca—n . avy < C” l—[ Wi, v
=1
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This completes the proof. O

Fixa € [I, N]and ny,...,n, € [1,2N — 1]. The operator Cy,
linear combination of operators of the form

n, defined by (4.20) is a

.....

a m; .
A i
(4.46) Lkl =T Tx [ Kw e e,
j=1 =1 ¢
where
(1) Forevery j € [1,_a],n_1j > p.
(ii) The sequence {k; }};’Z 55;/ is constructive.

(iii) Forevery j € [1,a], the sequence {kz }1<t<m; has n; non-vanishing terms.

In order to prove Lemma 4.11 we prove an expansion for operators of the form (4.46) where
{k]} satisfies (i), (ii), and (iii). We fix s = 2(N +2N? + 1).

LEMMA 4.15. — Let L[kZ] be an operator of the form (4.46) where {kg} satisfies (i), (ii),
and (iii) above. Then there exist bo[k}]]. ....bn-1[k]] holomorphic functions on X g4 such that
locally uniformly on X4 we have |b; [k‘é]| <C'[li=: Wi, |ls and

a m;

(4.47) )Tr (L[kg]) — bolk{]+ -+ — bN_l[kZ]sN_l‘ =¥ TT T s

j=lt=1

Proof of Lemma4.11. — Fixa € [1,N],ny,...,ng € [1,2N —1] and klf satisfying (i), (i1),
and (iii) above. Let y = n; + --- + n, be the number of non-vanishing terms of {kej +. We
divide the proof below in 5 main steps.

1. Write &y = Py + P, where Py, JP; were given in (4.37). Then

a m; ) a m; )
Tr (L[k{]) =Tr l_[ Tx 1_][ KWkg eikiele | — Z Tr l—[ C., 1—][ KW% oikiele
=1 =1

j=1 eleaclO e \j=1

We recall that since {kz } has y < (2N — 1)a non-vanishing terms and length v > pa we have
v > N(y + 1). Fix a sequence ¢; € {0, 1}“. In order to prove the lemma it suffices to prove
that the term

a m; )
(4.48) T []C [ KWkZelkl]-/s
j=1 (=1

admits an expansion in powers of ¢ at order N.

2. Assume that ¢, = --- = ¢, = 0. Recall that P, is the product of the scalar
det(Id + W(Kw,) with the operator Py (Kw,)—which is polynomial in Ky,. Hence, in the
case €7 = - = ¢, = 0, (4.48) is a finite sum of terms studied in Lemma 4.14. These all

admit an expansion in powers of ¢ and thus so does (4.48).
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3. Assume that €; has at least one non-zero term. Without loss of generality €; = 1. The
indexes /i, ..., jr such that €; = 1 split the sequence (k{,....k,, .k7.... kg )intor + 1
subsequences of consecutive d-tuples

1

(4.49) (k‘,...,k,{ljl),..., (kir, .. k2 ).

Koy,
Assume that each of the subsequences in (4.49) is constructive.

Then since P, = Kélv,:d Bw, Kélv,:d we can write (4.48) as the trace of a product of
operators of the form

Je41—1 mj
(450) BWOKN+d 1_[ CGJ l_[ KW elk O/SKN+d
J=Jt {=1 ¢
By Lemma 4.13, the operator
Ji1—1 m; ;
K‘I}[V/:—d 1_[ Cej 1_[ KW ezk ./EKN+d
J=Jt {=1

admits an operator-valued expansion in powers of . Thus so does the operator (4.50).
Multiplying these expansions over ¢ = 1,...,r leads to an operator-valued expansion for
the operator

l_[ Ce/ 1_[ KW elk o/s
=1

in the spirit of Lemma 4.13. Taking the trace and adapting the proof of Lemma 4.14 shows
that (4.48) admits an expansion in powers of &.

4. Assume that at least one of the sequences in (4.49) is destructive. Without loss of

enerality (k1,..., k771 is destructive. Since P11 =K N+d Bw, K N+d (he operator
g y i o B wy p

J1 m;j
(4.51) Kyt T] 2o [ 1 Kw,, A oA

j=1 (=1

appears as one of the factors in the product

l_[ Cej l_[ KW elk o/s

j=1

In addition since Py is the product of the scalar det(Id + W(Ky,)) with Py (Kw,)—which
is polynomial on Ky, —it is associated with a destructive sequence, that starts and ends with
N + d zeros. Consequently Lemma 4.10 applies and yields

K%O-l-d 1_[ l_[ KW elk 0/8 KN+d < CV+S2 N l_[ l_[ ” / ”S

Jj=1 7 j=14=1
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This yields the estimate:

a mj .
ik’ e
T ([Tcy T]&w,, e /s)
=1

J=1

N+d
< ‘KWO Bw,

J1 mj )
N+d ikje/e N+d
2 Ky T1 yDOHKWkée ¢ Ky,

j=1 t=1 7z

mjl-H

. a m; .

N+d ik 1 e/g ikl o/s

"BWOKWO ’£ I1 Kw jipae [T ¢ l_[Kije ¢
(=1 ¢ g li=i+2 (=1 ¢

2 @
=C N T[T IW s

j=14=1

B

This shows that such sequences €1, .. ., €, induce negligible contributions.

5. Points 2, 3, 4 include all the possible values of €1, . . ., €;. The expansion (4.47) follows
now from a summation over €q,...,¢, € {0, 1} of the expansions obtained in Points 2,3.
This ends the proof. O

We are now ready to prove Lemma 4.11.

Proof of Lemma 4.11. — Let us recall that fora € [1, N]and ny,...n, € [1,2N — 1] the

operator Cp, ,...n, is defined by
o .
cnl sssss ng — Z Olml ”'ama Z L[k[{]
M Ma=p {kiYe Sy or (kISR

kel 4otk =0

Here L[k({ ] is given by (4.46), &, is the set of sequences of length m with n non-vanishing
terms and ay, = W (0)/m!. The proof consist in showing that the sum of the expansions
of Tr(L[k}]) provided by Lemma 4.15 is convergent. By Lemma 4.15,

o0

S ey g 3 ’Tr (L[ké])—bo[kZ]-|--.._bN_l[k€J]8N—1‘
Mo Ma=p kiyesnt s o ki3esht,,
kltetkf, , =0
fore) a m;
<N Z ot * Ot | Z cmittma 1_[ 1_[ W, |15
M Ma=p KEYESmy or (R YESTEG J=ri=t
k}+-tkd, =0
o0
<V YT oy e [CTE W RN = o N(@(C W 20))°,
my,....mqg=p
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where we recall that [Wzs = Y ;cza [Wills and ®(2) = Y07 lam|2z™. It follows that

Tr(Ch,,...n,) has an expansion given by
o0
Tr(Coyvng) = OEN) + D oy rtm, Y bolk]] 4+ by k1N
M1sMMa=p tkiyespl s o ke snd,,
kl+-+kg,, =0
=go+-+&" ono1 + O@EY),
where
o0 .
Q= Yy lm, > bilk]].
M1seeestMa=p keSS o kST,
k! tkd, =0
This ends the proof. O
Since

Jj=1
the combination of Lemma 4.5, Lemma 4.6 and Lemma 4.11 proves Lemma 4.3. This in turn
shows that Dy (1) admits an expansion in powers of €. In the next section we conclude the
proof of Theorem 5 by computing explicitly the first few coefficients in the expansion.

4.5. Computation of coefficients in the expansion

Here we compute the expansion of Dy up to order O(e*). The coefficients that appear
are holomorphic functions of A. Hence it suffices to compute them for ImA > 1 and to
extend the obtained expression to C by the unique continuation principle. Let N > d + 4
and p = 4N(d + N).If Im A is large enough then |K¥ |4 < 1. In this case the series

In(l +W(Ky) =— > %

m=p
converges in Z. This implies that for Im A > 1

(4.52) Dy () =exp (_ Z (=)™ Ir (nIf{/ﬂ)) _
m=p

Hence, to obtain an explicit expansion of Dy (1) at order &4, it suffices to obtain an expansion
of Tr (K?) at order &*, for ImA > 1.

Let us expand Tr(K7}) in the different modes k;:

m
4.53)  Te(Kp) = Y Tlki....kml. Tlki.....kn] =Tr ]’[KWk_jeikﬂ/E
Kiyeens km j=1

We now fix a sequence {k;} with length m > p and we aim to obtain an explicit expan-
sion of T[ky, ..., kn] at order ¢*. Because of the conclusion of Lemma 4.5, T[ky, ..., kn]
contribute to O(&*) in the sum (4.53) unless the sequence {k;} has y < 2N —1 non-vanishing
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terms. We note that m > 2(N + yN + 1). Hence, if k1 4 - -+ + k;, # 0, the sequence {k; } is
admissible, and Lemma 4.10 shows that

[Tk, ... k]|

m
ikje/e
Tr HKij_e 7
J=1

m
= "N [T W llse s =2(N +yN +1) <8N2.
j=1
Hence, terms T'[ky, ..., ky] with ki + --- + k,, # 0 or more than 2N — 1 non-vanishing k;
contribute to O(g*) in (4.53).

We now focus on constructive sequences {k; } with at most 2N —1 non-vanishing terms. We
m lk/ ./8

follow the construction of the expansion of Tr (]_[j=1 K Wi, € ), as explicitly mentioned

in the proof of Lemma 4.14. We first perform a cyclic permutation of {k; } so that the resulting
sequence ends with N vanishing d-tuples. The next step in the construction of Lemma 4.14

is an expansion of ]—[;-"Zl Kij eki*/¢ as realized in Lemma 4.13. We first write
m ) m
(4.54) I1 Kw,, e'*1°1e = T pR(D + 0y /&)W, .
ji=1 j=1

where R(£,1) = (§2 — A?)~!. The expansion of R(§ + o/, A) given in Appendix B induces

2 Wi, 3 2
(455) pR(D + O'j/S)ij =& b'j_|2 + OC%(HH‘“,HS)(S ) =& 0]'
for an operator 0; : H*** — H* whose norm is uniformly bounded in ¢, A in compact sets
and o # 0. Assume first that 2 or more of the o; are non-zero, say o;,,0;, with j; < j»
maximal—in particular o; = 0 for j; < j < j,. Since {k;} ends with N zeroes, we can
assume j, < m — N. We perform the expansion (4.55) for the operators pR(D + 07, /¢) W,
and pR(D + 0}, /¢) W, in the product (4.54):

m J1—1 J2—1
l—[ Kw, oikiele — g4 l—[ pR(D + 07 /)Wy, | - Oy, - l_[ Kw,, |- 0, - K%Q‘]z.
j=1 Jj=1 J=j1+1

We can now bound the trace with the trace-class norm, itself controlled by the H~¢ — L?
norm:

m m
|Tky,-.. km]| = |Tr l_[ Kij oikiele < l_[ Kij oikiele

Jj=1 Jj=1 BH—4,12)
J1—1 J2—1
<e*|| [T pR@ +ai/e)Wi; |- Cii | ] Kwi, |- 0
Jj=1 J=j1+1 B(HS,L?)
‘ m—jz
Wo B(H—4 H8) "

The first factor is uniformly controlled bounded because of the properties of the 0; and
because the R(D + o;/¢) are uniformly bounded on L?; and the second factor is bounded
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because Km 245 a pseudodifferential operator of order —2(m — j,) < —2N < —d — 8.

Hence, when two or more of the o; are non-zero and {k;} ends with N zeroes,

m
l_[ Kij eikj./e = 0(84)-
j=1

It remains to consider sequences {k; } that ends with N zeroes and that have at most one

non-vanishing o;. Such sequences must be cyclic perturbations of (—k,k,0,...,0). Hence,
without loss of generalities, we can assume that {k; } is the sequence (—k, k., 0, ..., 0) for some
k # 0 and get

Tlky,... km] =Tr ﬁ Kije"k-/'/E = Tr (Kw_, R(D + k/e)Wi K7 %) .
j=1
Because of Appendix B, we know that
(4.56) PR(D +k/e)W; = ¢ IZ/IIZ 283% + O gegsts gy (€*).
It suffices to use the same techinque as earlier to obtain

g2 - 3
Tlky, ..., ’"]_|k|2 r (K2 Kw_ Wie) — |k|4

Summing over k and counting the multiplicity m of sequences of the form (—k, k,0,...,0)
due to cyclicity, we conclude that

Tr (K, > Kw_ (k - DYWi) 4+ O(e*).

Te(K}) = Tr(Ky, )+ml§)|k|2 r (Ko 2 Kw_ W)

—ZmZ |k|4 r (K2 Kw._, (k - D)Wi) + O(e*).
k#0

This yields the value of the first four coefficients in the expansion of Dy (4). It is in practice
possible to use this method to compute all the other coefficients a4, ...,ay—1 given by
Theorem 5.

4.6. The case Ay = 0 in dimension one

In this part we prove Lemma 3.1. Thus we assume d = 1. For A # 0 the operator Kq is
trace class. This allows us to define doy(A) = Det(Id + K¢). By [15, Theorem 2.6], the
function A > Adq(A) is entire. It is related to the modified Fredholm determinant D) by
the identity

p—1
(4.57) Aexp( Z( yn KD GU)) Doy(A) = Adoy(d).

If ¢ is a meromorphic function with a pole at 0 we write ¢ = Y, ., Bnz™ and we define
sing(p) the meromorphic function sing(¢)(z) = >, .o Bmz™. We recall that A is the
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potential given by
Wi W_y Wi (DW_y)
(4.58) A =e2Ao+ 3N :8ZZT—ZS3ZT-
k#0 k0

LEMMA 4.16. — Letd = 1and N > 4. For everym > 2 there exists a holomorphic function
m : C\ {0} — C with the following:

(i) sing(t,) = sing(Tr(K7})).
(i1) Locally uniformly on C \ {0},

tm(A) = Tr(Kjy ) + mTe(Kj2Kp) + -+ + O(eN).
Proof of Lemma 3.1 assuming Lemma 4.16. — Let p = 4N(N + 1) and set

tm(A
hy () = xexp( Z( pym )) Dy (),
where D q)(A) is the determinant defined in (1 .7). Equation (4.57) implies that

p—1 m
Ay () = hy () exp (z(_l)mw) |

m=1
The function
p—1

tm(A) — Tr(KI)
>y

is entire thanks to point (i) of Lemma 4.16. Consequently resonances of V' (counted with
multiplicity) are exactly zeros of iy (counted with multiplicity).

We next show that the function 4y has an expansion in powers of ¢ on all of C. For that
we use Lemma 4.4 with Sy = {0}, £ = C,

f(A.e) = Aexp( Z( l)mtm(k)) , gA,e) = Dy(A).

Both f, g are meromorphic on C and thelr only pole is at 0. They both admit an expansion
away from {0} by Lemma 4.16 for f and by Theorem 5 for g. Their product hy = fg is
entire. Consequently sy admits an expansion of the form

hy(A) = ho(A) + ehi(A) + -+ eV Thy_1(A) + 0(eN)

that holds locally uniformly for A in C. We next compute the first few terms in this expansion.
Because of (ii) in Lemma 4.16 and of Theorem 5 we have

hy(3) =xexp< Z( 1)’"”"“) Dy ()

= Adw, (1) exp (— 3 (—l)mTr(K{J”,OKA)) (1=Tr(d + Kwo) "' K5 2Kw)) + O(e*)

m=0
= Adw, (1) (1 — Tr((dd + Kw,) "' Ka)) + O(e*).
This ends the proof of Lemma 3.1. O

We next prove Lemma 4.16. We start with a preliminary lemma:
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LEmMA 4.17. — Letk € Z\{0} and ¢ : R — C be a smooth compactly supported function.
Let pn be the polynomial defined by

pn(X) =21 +2X +3X*+---+ (N + DXV).
Then for every N > 2,

e\ N
(4.59) <CN (7)ol

/R o) | x|dx — & (py—3(eD/ K)p) (0)

where the constant C depends only on the support of .
Proof. — By rescaling ¢ to ¢/ k we see that it suffices to prove the lemma in the case k = 1.
Define
1ol = [ geolriar. Tl = 7 [ e egtmsencoax
By an integration by pais ‘
Il = —e (Jle] + I[Dg]) .
Jlp] = & (29(0) — J[Dg]) .
Consequently,
(4.60) I[p] = & (—2¢(0) + 2J [Dg] + I[D?¢]).
We prove by recursion: for every n > 0
4.61)  Ilg] = e(pa(—eD)p)(0) + "2 I[(=D)" 2] — "2 (n +2)J [(=D)"*¢],

where p, = —2(1+2X +3X2?+---+ (n + 1)X"). For n = 2 this holds by Equation (4.60).
Now assume (4.61) holds for some n. Then

Il¢] = &[pn(=eD)p)(0) + "> (=T [(=D)""2¢] + I[(=D)""¢])
— "3 (n 4+ 2) (2[(= D) 9](0) + J[(—D)"2p])
= [ pns1(=eD)@](0) + "3 I[(=D)* 3] — "3 (n + 3)J [(=D)" 2],
where ppi1 = pn — 2(n + 2)x™T1. This ends the recursion. Equation (4.59) follows from

(4.61) and the estimate |[7[DV ¢]| < Cellglly+1. [J[DV¢]| < Cell@ln+1. O

Proof of Lemma 4.16. — In dimension one the kernel of the free resolvent Ry (1) is given
by Ro(A, x, y) = ie"*=21/(21). We decompose it as follows:

RoGh,x ) = X2 4w -y,
. .
Jod,x —y) = %cos(Mx —yD. fik,x—y) = _Slrzlibtx_ y)|’|)

The functions fy and f; are both smooth on C x R. This induces a decomposition of Kq)(1)
given by

Kod) = Eqod) + E9,1(4),

A’, —
fO( X_y) GU(y), Eop’l()t,x,y)Zp(X)f1(A,X—J’)|X—y|GU(y)'

EGU,E()MXJ’):IO(X) A
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Thus K(A) is the sum of a smoothing operator Eqo(A) with a pole at A = 0 and of an
operator Eq;(A) which is not smoothing but has no pole. We now define

Tr(K}) — Te(EfR,) + Te(Ef, ) +mTe(Ep3Eny) ifm >3,

4.62 tm(A) =
(462 m(4) Tr(K3) + Te(EY, ) — Tr(EE ) itm =2,

where A is the potential given by (4.58). Since Tr(E%O’I) =Tr(Ey) + mTr(E%O_j EA,1)and
Tr(Ef, ;) — Tr(E},,) are both entire function of A we have sing(t,,) = sing(Tr(K7})). It
remains to show that the function ¢,, satisfies the expansion given by (ii). Write

m
Tr(K}) = Z Tr 1_[ Eve;
j=1

€1,...,m€{0,1}"

m
=Tr(EV) + D o T HEij’Gjeik_/-/e

Kisyeskm  €1...,€m€{0,1}7 Jj=1
€] Em=

We first claim that for every N and locally uniformly on C \ {0},

m
(4.63) > > T\ [ Emqe™ ) = ceViwigy.
ki4-+km#0  €]....6me{0,1}7 Jj=1
€em=0

Fix a sequence €;,...,6, € {0,1}" with ey - -+ - €, = O0and ky,...,k,, € 7Z with
ki + -+ 4+ km # 0. There exists jo with €, = 0. Using the cyclicity of the trace we can
assume without loss of generality that jo = 1. Letn = m — €1 — - - - — €,,. Using the explicit
expression of the kernel of the operators E ¢ we have

m

m
Tr 1—[ Ew,, Gt = A_n/ Je; (= xj—D)|x; — xj—1 |9 W, (x))e! 75 e dx; | doxy,

]=1 rRM ]=1

where by convention xo = x,,. The substitution x; = y; + --- 4+ y;, j € [1,m] and the
explicit expression of the kernels of Eq ¢ and Eq,; yield

m

Tr | | EWk/- ,Ejeikj./s = Ain/ €i01yl/s](y1)dy1,
. - R
Jj=1

whereo; =kj 4+ -+ km,z =y + -+ + ym—1 and

m
(1) = W, 1) /1; oGy [T e G 19 Wi 1+ 4 e oy
=2

The function y; — I(y;) is smooth and compactly supported. Since o1 # 0 N integrations
by parts give the estimate

m
<CeM |1y = CeV [T IW4, v
j=1

f ' T/E I (y1)dxy
R

4¢ SERIE - TOME 51 — 2018 — N° 4



SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 919

Therefore

m
Z Z Tr 1—[ Ew,, ikio/e

ki+-+km#0 €1....,e;m€{0,1}" j=1
€m=0

m
<ce¥ Y [T liv = CeMiwiyn,
kisekm J=1
where we recall that |[W |z~ = ) ;cza ||Wklls. This proves (4.63).
We next show that the function

m
Z Z Tr l—[ Eij € elkiee

ki+++km=0 €;...,6€{0,1}" j=1
€1 €m=0

admits an expansion in powers of ¢. It suffices to prove that for any fixed sequence {¢; } with
€1 = 0 the function

m
(4.64) Z Tr ]_[Eij,e_,eikf'/e

k1 etk =0 j=1

admits an expansion in powers of €. Fix kq, ..., k, withky +--- + k,, = 0. We define Fj,—;
and Fs,s € [1, m — 2] recursively as follows:

Fun 11, o Ym—1) = fR Jo(z + Ym)fem (Ym)ka i+ + Ym)ewmym/g|ym|emd)’m
Fo (i, ys—1) = fR Jes (J’s)WkS 1+ Fy)Fs(n, ..o J’s)emsyS/ab’sFSdst
where z = y + - -+ + ym—1. Let Fy()) be given by

m
Fo0) = Tr | [T B,y | =277 [ Wi B,
j=t R

We prove recursively that Fy,_;, F;—a, ..., Fi, Fy admit an expansion in powers of . The
fact that F,,_; admits an expansion in powers of ¢ is a consequence of Lemma 4.17. The
coefficients are smooth functions of yy,..., yu—1. The recursive formula defining F,,_»
shows that F,—, also admits an expansion in powers of ¢ whose coefficients are smooth
functions of yi,..., ym—2. The same recursive scheme shows that Fy,_s,..., Fy admit an
expansion in powers of €. The sum over ky, ...,k with k1 + - -- + k, = 0 of the coefficients
converge (we skip the details) and we conclude that (4.64) admits an expansion in powers of e.
Finally we sum over all sequences {¢;} with at least one vanishing term and we use (4.63) to
deduce that

tm(A) = Te(KY) + Tr(Efy, ) — Te(EY ) + SmpomTr(Egy 1EA 1)

m
= > Tr | [] Evie; | + SmpamTr(ER TEAL) + Tr(ER, 1)

€1,..,6m €{0, 1}, J=1
€] em=0

admits an expansion in powers of €.
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To end the proof we must compute the first terms in the expansion of the function #,,. We
fix N = 4 and work modulo O(e*). The only sequence {k; } that can generate non-negligible

terms is (0, ..., 0, —k, k) up to cyclic permutation—see §4.5. We fix {¢;} and we estimate
m—2
S| | TT Ewoes | Ew romre ™" Ew e’/
k0 j=1

Assume that m > 3 and define G by

G(A,yl,...,ym_l)

= > Waln+ z)/ Fo(z + Ym) fem Gm)Wie (01 + 2 + y)e 8 8|y [ dyps,
k#0 R

where we recall that z = y, + -++ + y,—1. We first deal with the case €, = 1. This implies
fen (0) = f1(0) = —1/2. Apply Lemma 4.17 to obtain the asymptotic

GO m) = Y (5) AEW01 + Wi +2)
k#0
e\3
—2) () HEW-k(1+2)DWiO (1 +2)
k#0
~2 3 () MW + Wi +2) + 06,
k#0

Since } .o Wi Wi/ k3 = 0 we can remove the last term that appears in the expansion of G
and write G(A, y1, ..., Vm—1) = fo(z2)A(y1 +z) + O(g*). This expansion combined with the
inverse substitution y — x variables yields

m—2
Z Tr l_[ EW(),Ej EW,k,Em_le_ik./sEWk,leik./E + 0(84)
k#0 j=1
m—2
= oa [ Aot | [T Aoy 0t Waon +++- 4 )
k#£0 R= j=2
*Sem—1 Ym=1)A(Z)dy1dym—1
m—2
= Zx_n/ 1 [T fe 07 = vi-Dlxs = xj-119 Wolxj)dx;
k#£0 RM™EA =1
: fem_l (Xm—1 — Xm—2) A(xXm—1)dx1dxm—1
m—2
=Tr l—[ EWo,ej EA,em,1
ji=1

This gives an estimate of G in the case €, = 1. In the case €, = 0 the kernel of Eyw, ¢ is
smooth and we can integrate by parts by parts to obtain G(A, y1,..., ym_1) = O(*).
Summing these estimates of G over all possible values of €1, ..., €,_1, €, and using the
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cyclicity of the trace yield

m m
Z Tr l—[ Eve | — Z Tr 1_[ Ewg.e;
j=1 =1

€155 em€{0,1}" €155 €m€{0,1}" J
€] -€m=0 €] Em=
m—2
E E —ike/e ike/e 4
=m Tr 1_[ EWO’G_/' EW—ksem—le / EWkaéme / + 0(8 )
€1,5.-,€m€{0,1}" k#0 j=1
€1-€m=0
m—2
4
=m > T\ I Ewee | Encpr | + 0.
€1 50005 em€{0,1}" j=1
€1 €m=0, €m=1

Recall that #,,(A) is given by (4.62) to conclude that

m
tm(X) = Yoo T[] Ewee | + TH(ER, 1)
€1,...,€m€{0,1}7 Jj=1
€1 €m=0

m
+ Z Tr 1_[ EV,GA,' + mTr(E%O_,%EA,l)

€1,.,€m€{0,1}" Jj=1
€1 -€m=0
m—2
= Tr(K",‘"/O) +m Z Tr l_[ Ewoe; | Enem— | T+ 0(c*)
€1,er€m€{0,1}7 Jj=1

€1em=0, em=1

= Tr(Kyy,) +mTr (Kj 2 Ka) 4 O(e*).
We finally deal with the case m = 2. If €1, €5 € {0, 1} then
TI. (EW,k,em_l e—ikO/SEWk’em eiko/é‘)
= ?te‘“z_zf Jer (02) fe, OD Wi D) Wi (01 + 2)|y2 | T2e™2/2 dy, dy, .
R
If €, +¢, is even then one can integrate by parts many times in y, and obtain O(g*). Otherwise
€1+ € = land f, fo, = fofi1. In particular f, f1(0) = 1/(4i) and (fo f1)'(0) = 0. This

yields

Z Z Tr(Ew_y ’em—le_ik./sEWksfm e'kele)

€1,€2, €1€2=0k#0

=273 /R W—k()’l)A;fo(yz)fl(yz)wk(yl + y2)|y2le™2/ ¢ dy,dy
k#0

= 2k§0 o7 [ Wk ((2)2 e -2 (5)’ DWk(yo) dy, + 0(e*)

= 2Tr(Kp) + O(e*).
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Together with (4.63) this gives t,(1) = Tr(K%VO) + 2Tr(Kp) + O(g*). This completes the
proof of the lemma. O

Appendix A

Analytic continuation of some Fredholm operators

Let T'(A) be a holomorphic family of trace-class operators on a Hilbert space. In finite
dimension, the operator det(Id + T'(1))(Id + T(A))~!, defined away from the poles of
(Id 4+ T(1))~!, extends to an entire family of operators known as the comatrix of Id + 7'(1).
In infinite dimension a similar statement holds:

LEmMMA A.1. — Consider $# a Hilbert space, U0 an open connected subset of C and T (L)
a holomorphic family of trace class operators for A € °U. Assume that 1d + T (Lo) is invertible
for some Ay € U. Then the family of operators

T (A) =Det(Id + T(L)Ad + T (1)) !

initially defined for A away from the poles of (Id + T (1)) ™! extends to a holomorphic family of
operators on U. Moreover,

(A.1) | T W) g < Det (Id + (T(A)*T()L))l/z) < 2Tz,

Proof. — The proof uses the Gohberg-Sigal theory of residues—see [15, Appendix C.4].
By analytic Fredholm theory, (Id+ 7' (1))~! defines a meromorphic family of operators with
poles of finite rank. Fix u € %/ a pole of (Id + T'(1))~! and A in a punctured neighborhood
of u. We can write

N

Id+T7®) =) (Ho + ) = Hm) U2(R),

m=1
where Uy (1), U(A) are holomorphic families of invertible operators, k,, > 1, I1,, has rank 1
form > 0, I1,, 1,y = §pm [y, rank(Id — T1) < oo. Therefore

N
(1d+TO)™ = U0 (Ho +> G- u)—”mnm) Uiy

m=1

The holomorphic function A — Det(Id + T'(1)) has a zero at u, of multiplicity Zfzzl Km—
see [15, equation (C.4.7)]. It follows that the operator &/ (1) can indeed be analytically
continued at A = p with

0 ifN >1

T (n) = { Det(gci—;)Tm(/\)) |A=MU2(M)_1H1U1(“)_1 ifN = 1.

The first bound in (A.1) follows from [15], (B.4.7). For the second one, note first that
Det (Id + (T TM))Y 2) < exp (‘(T(z\)*T(A)) z) .

1/2
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Finally we note that
52 (T T@)'"?) =57 (TW)") 25 TN <57 (TR,

(T TO)'?| =2 sy (T T)?) 22) s (T = 2T
j=0

J=0

This concludes the proof. O

Appendix B
Expansion of R(A, & + k/¢)

In this appendix we study the Taylor development of rational functions of the form
F(e) = (1 + ae + be?)™!. Such functions are analytic for small values of & and therefore
there exists uy € C with F(e) = ijo uje’. Since F(e)(1 + ae + be?) = 1, the uy must
satisfy the recursion relation

ug = 1,
uy = —a,
uj =—au;_; —buj_,.

For ¢ small enough the Taylor development of F takes the form

J—1 0o
F(e) = Zu,sj +rye), rj(e) = Zujs-i.
Jj=0 j=J

We have moreover

oo
(1 +ae + be?) Z uje’
j=J

(14 as + be*)ry(e)

o0
=uye’ + MJ+18]+1 +auge’ T+ Z (uj +auj_y + buj_y)e’
j=J+2
= MJEJ + MJ+18J+1 + auJ£J+1.

Consequently for small values of ¢,

Uy +ujri1et+auje g
1 +ae+ bs?

J—1
F(e) = Zujsj +
Jj=0

and this identity extends meromorphically to all of C. If @ and b are polynomial of respective
degree 1 and 2 in a parameter £ then by an immediate recursion u; is a polynomial of degree
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at most j in £. In particular, (4.41) holds:
&2 1

RE+k/e) = ——
TR = P T ek /K + 2@ — 22 k]P
5 J—1
:8_ W, Uy +UJ1E+aUE J
e ;O“fs +1_zgk-g/|k|2+82(§2—A2)/Ikl28

J—1
— Z Uj—2 Uujs—1 & Uj-1 j41  Ug tujrietauje g
|k |2 |k |? (E—k/e)> =A%

Because of the recursion formula defining the u;, their dependence in k depends uniformly
on k/|k|? and |k|~2—hence uniformly on k/|k|? only. The first terms in this expansion are
given by

&2 Y- 452_A2+484(k,§)2

RE+ KO =0 =2 e —¢ e e

+ 0(°).
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