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We address the nature of spin transport in the integrable XXZ spin chain, focusing on the isotropic
Heisenberg limit. We calculate the diffusion constant using a kinetic picture based on generalized
hydrodynamics combined with Gaussian fluctuations: we find that it diverges, and show that a self-
consistent treatment of this divergence gives superdiffusion, with an effective time-dependent diffusion
constant that scales as D(¢) ~ ¢'/3. This exponent had previously been observed in large-scale numerical
simulations, but had not been theoretically explained. We briefly discuss XXZ models with easy-axis
anisotropy A > 1. Our method gives closed-form expressions for the diffusion constant D in the infinite-
temperature limit for all A > 1. We find that D saturates at large anisotropy, and diverges as the Heisenberg

limit is approached, as D ~ (A —1)71/2,
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Integrable models play a central role in our under-
standing of quantum dynamics. These models not only
allow exact calculations of otherwise intractable aspects of
many-body dynamics, but also exhibit distinctive phenom-
ena, such as their failure to thermalize from generic initial
conditions [1,2]. Nonequilibrium dynamics, transport, and
entanglement in integrable and nearly integrable models
have been topics of considerable recent interest, from both
theoretical [3—15] and experimental [16—20] points of view.

There are two complementary ways of thinking about
one-dimensional quantum integrable systems: these sys-
tems have stable, ballistically propagating quasiparticles;
they also have a complete set of local and quasilocal
conserved charges [4-6,8], which can be related to the
moments of the quasiparticle distribution. The presence of
ballistic quasiparticles might suggest that transport of the
conserved charges should be ballistic, even at high temper-
ature; however, this is not always the case. In many
systems, such as the isotropic and easy-axis XXZ spin
chains, the Drude weight for certain charges (in this case,
magnetization) vanishes [21-25]. In these cases, the bal-
listic motion of quasiparticles (and thus of energy and
quantum information) coexists with sub-ballistic spin
transport. Depending on the parameters, spin transport
can be either diffusive or superdiffusive [24,26-28].

Direct calculations of transport in interacting integrable
models are challenging; however, the theory of generalized
hydrodynamics (GHD) [29,30] has emerged as a descrip-
tion of the long-wavelength, long-time dynamics of these
systems [29—41]. The main assumption of GHD is that the
system is locally in a generalized Gibbs ensemble, with
parameters that vary smoothly in space. This reduces the
problem of computing dynamics in integrable systems to
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the considerably simpler one of computing thermodynam-
ics in these systems. GHD has been successfully used
to compute Drude weights in integrable models [32,34,
35,39,42], and was recently generalized to account for
Gaussian fluctuation effects [40,41], which give rise to
diffusive corrections [40,41,43—-57] to ballistic quasiparti-
cle motion. However, these diffusive corrections suggest no
obvious mechanism for superdiffusion, which occurs in the
isotropic XXX spin chain [26,27].

The present work offers a self-consistent theory of
superdiffusion in the isotropic limit of the XXZ spin-}
chain. The general XXZ spin chain is described by the
Hamiltonian

H= Y SiS, 4SS+ ASS, (1)

We primarily consider the infinite temperature limit, and
work at half-filling. In this limit, transport coefficients are,
strictly speaking, zero; however, autocorrelation functions
remain well defined, and one can classify the high-temper-
ature limit of transport based on their asymptotics. In the
XXZ model, energy transport is purely ballistic regardless
of A, as the energy current is conserved under the
dynamics. Spin transport, however, depends much more
nontrivially on A [58]. In the easy-plane regime A < 1,
spin transport has a ballistic component, with a Drude
weight that varies nontrivially with A [4,32]. When A > 1,
the spin Drude weight vanishes, so spin transport must be
sub-ballistic. In the easy-axis regime A > 1, spin transport
is believed to be diffusive [24,27,59,60]. Thus an unusual
high-temperature dynamical phase transition takes place in
the XXZ spin chain, between an easy-plane “phase” with a
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nonzero Drude weight, and an easy-axis phase with zero
Drude weight and diffusive transport. The mechanism for
this phase transition is a qualitative change in the character
of the conserved charges as one crosses the isotropic point.

One might expect the diffusion constant to diverge as one
approaches A =1 from the easy-axis side, as indeed it
does: a rigorous lower bound can be derived for the spin
diffusion constant, and this lower bound diverges as A — 1,
indicating that transport at the isotropic point must be
superdiffusive [27]. The nature of transport at the isotropic
point has not yet been explained theoretically, however.
The numerical evidence on high-temperature spin transport
indicates that spin diffusion is anomalous; small spin
imbalances appear to spread with the length-time scaling
x ~ 1?3 [26]. Note that superdiffusion in this translation-
invariant system must involve conceptually different
mechanisms from phenomena such as Levy flights, which
typically rely on disorder [61]. Indeed, the numerical
evidence [26] suggests diffusive behavior but with a
rescaled time coordinate: i.e., the shape of the magnetiza-
tion front is an error function in the appropriately scaled
variables.

Our main result here is a derivation of this exponent 2/3
using ideas from GHD and its Gaussian corrections. We
analyze the spreading of an initially localized “packet” of
spin density. The packet spreads through the ballistic
motion of quasiparticles, which (for A > 1) are an infinite
family of “strings” (magnons and bound states thereof)
parametrized by a variable s called the string length [62].
When A > 1, spreading is dominated by short strings
because the longer ones are immobile (as explained below).
As A — 1, strings at all scales begin to contribute to
transport, as first noted in Ref. [27]. At the isotropic point,
on a given timescale ¢ the dominant contribution is from the
longest strings that are mobile on that timescale. This leads
naturally to a time-dependent diffusion constant, and thus
to superdiffusion.

Dressed magnetization fluctuations.—The basic mecha-
nism for diffusion in the easy-axis regime is easiest to
describe for |A| > 1 at relatively low temperatures in the
ferromagnetic regime for the Hamiltonian (1). (However,
the result itself applies generally, as we will see below.)
Consider a snapshot of a typical thermal state; it will consist
of alternating 1-spin and | -spin domains of varying sizes.
Most of these domains are immobile on short timescales at
large A, as the only energy- and spin-conserving processes
are those in which the entire domain collectively moves,
and these occur at high orders in perturbation theory.
Dynamics is dominated instead by rare short domains,
for instance, a single 1 spin in a large | -spin domain. The 1
spin can propagate freely within the domain; it then
propagates into the neighboring domain through a process
where it is converted into a | spin [63]. As this excitation
(which is a magnon) propagates ballistically through the
sample, it spends half its time as an 1 spin and half as a |
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FIG. 1. Spin diffusion constant D in the easy-axis phase A > 1
as a function of A. The diffusion constant diverges in the
anisotropic limit, leading to superdiffusion with D(z) ~ t'/3.
Inset: Propagation of a magnon in the large |A|, low temperature,
ferromagnetic limit. The magnon is initially a minority | spin in
an 1-spin domain; it is then transmitted into a | -spin domain as a
minority 1 spin. On average, therefore, the magnon is neutral at
half-filling, giving rise to a vanishing spin Drude weight.
However, its effective magnetization fluctuates, leading to dif-
fusive spin transport coexisting with ballistic spreading of energy
and, presumably, quantum information.

spin; on average, therefore, the magnon carries no mag-
netization. Thus it contributes to ballistic energy transport
but not ballistic spin transport. (See inset of Fig. 1.)

We now give an argument for spin transport being
diffusive in this model [27,64]. We first present the argu-
ment in a less general but more elementary form. Consider
an excess of spin initially localized at the origin; to compute
the spreading of the spin at later times, we track the mean-
squared “dipole moment” (p?) = ((mx)?) with m the
magnetization [note that this term comes from regarding
the spin as a charge, and is not related to the physical
magnetic dipole moment]. A magnon moves (to leading
order) with a well-defined velocity v, so

(p?) = v’ (m?). (2)

On average, as we have noted, there is no magnetization so
(m) = 0. However, by central limiting arguments, the
region through which the spin propagates on this timescale
has O(v/vt) more 1 domains than | domains. Thus, the
magnetization varies as (m?) ~ 1/|vt|, giving us the result
that

(p?) ~olt. (3)

implying spin diffusion with a diffusion constant ~|v|.
Spin  diffusion constant—This elementary picture
remains qualitatively correct everywhere in the |A| > 1
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regime: spin transport can be understood in terms of light
strings moving through stationary heavy strings, as there is
a hierarchy of timescales. However, going away from the
|A| > 1 limit requires some nontrivial steps: the magnons
are at high density, so cannot be treated as being dilute;
also, magnon strings of all lengths are mobile. These issues
can be addressed using GHD [29,30]: we assume that
quasiparticles are in local equilibrium in an appropriate
generalized Gibbs ensemble, and evaluate the dressed
quasiparticle dispersion and quasiparticle distribution func-
tion using data from the thermodynamic Bethe ansatz
solution. Many of the results we will use here are presented
in the Supplemental Material of Ref. [27]. We work at half-
filling (S, = 0), infinite temperature, and set A > O—the
sign of A is irrelevant at infinite temperature [62]. Under
these assumptions, each string can be addressed separately,
and the full dipole moment is a sum over s strings, as
follows [35,42]

(p?) = 122/61”%(”)29.;(”)[1 = 05 (w)][my(h, W) (4)

Here, the discrete index s runs over s-string quasiparticles,
and u denotes the rapidities of the quasiparticles; p,(u) is
the density of that species of quasiparticle, 6,(u) their
occupation number, v, (u) their effective velocity
[29,30,65], and my; is the (dressed) magnetization of a
quasiparticle in a state that is & away from half-filling.
Essentially all the terms entering Eq. (4) are thermody-
namic data, for which tractable Bethe ansatz results exist in
the limit of infinite temperature. Note that we focused on
the thermal fluctuations of the dressed magnetization and
ignored the subleading fluctuations of the effective quasi-
particle velocity [41] since the velocity fluctuations multi-
ply the average dressed magnetization, which vanishes at
half-filling. Thus the leading fluctuation effect comes from
fluctuations of the local background magnetization through
which the quasiparticle is propagating. We expect
(p*) to be related to the spin diffusion constant as
((p*)/(m*)) = 2Dt with (m?) =} the spin susceptibility
at infinite temperature.

We now proceed to simplify Eq. (4) at infinite temper-
ature, using a Bethe ansatz result [27]

B 1 . 1(S+1)4
my(h)! =g (s + D) =GN

(5)

with & an effective small magnetic field felt by the
quasiparticle over its finite trajectory |v,(u)f|. A key step
here is that we choose to measure magnetization fluctua-
tions over a distance |v,(u)t|; once this is chosen, the
quantitative value of the variance follows from being at
infinite temperature.

The justification for averaging over a distance |v,(u)?| is
ultimately physical: the particle moves ballistically whereas

(per previous rigorous results) spin is transported sub-
ballistically; therefore, the motion of the background spin
configuration is parametrically slower than the motion of
the quasiparticle, and can thus be treated as frozen.
Consequently, the quasiparticle only experiences back-
ground fluctuations out to the distance to which it has
moved. This feature is an important distinction between the
present problem and that of quasiparticle front diffusion:
there both the quasiparticle and its environment were
moving ballistically, so one instead had to work with
velocity differences rather than just velocities [40,41]. It
is also a crucial distinction between our approach and that
of Ref. [27], where the aim was to find a lower bound and
therefore the averaging was always done over the largest
meaningful distance scale in the problem, namely, the Lieb-
Robinson velocity [66].

From this step onwards, the argument is straightforward.
We use that p, (1) = 0,0 (u), where p'*'(u) is a density of
states factor, to rewrite Eq. (4) as

s 4
0t =3 [l -0) 5 o

This yields a diffusion constant given by
D=5 30100+ 1* [ dupt(wlustwl. ()
9 N

where we have used the fact that 6, = [1/(1 + s)?] is
independent of the rapidity u at infinite temperature [62].

Superdiffusion for A = 1.—The nature of the solution
depends crucially on the s dependence of v(u). For A > 1,
large-s strings have exponentially suppressed velocities and
thus do not contribute to the dipole moment; the integral
and the sum over s converge and give a well-defined
diffusion constant. For A = 1, however, the maximum
velocities fall off slowly with s as 1/s, leading to an
algebraic decay of the integral

[ w2~ 5. Q

Meanwhile, for large s, 0, ~ 1/s. Plugging in the expres-
sions for these quantities we end up with a summand that
has no s dependence to leading order, and thus to an
apparently divergent diffusion constant that scales as
D ~s*, with s* a cutoff on the number of strings
(s < s*). Anomalous diffusion is a consequence of the
way this divergence gets cut off. Our argument that led to
Eq. (6) assumed that the ballistic motion of a string was
faster than the rearrangement of its surroundings. However,
this assumption must clearly fail at a given time ¢ for
sufficiently heavy strings. We proceed as follows. First, we
will assume that spin diffuses anomalously, with an
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anomalous exponent a, i.e., that D(z) ~ t*. We will then
compute a self-consistently.

Assuming an exponent «, we find that our assumption of
primarily ballistic motion breaks down for strings such that
for which v, ~1/s < /Dt = t(14%)/2 the anomalous dif-
fusion distance. We must therefore separate our sum at s* ~
11=%)/2 into two parts. The first part consists of light strings
up to s*; the second consists of yet heavier strings. The first
set of terms, plugged into D ~ t* ~ s*, immediately gives

=(1-a)/2=>a=1/3. 9)

This exponent can also be recovered by recognizing that the
expression (5) is only valid for s < A~ ~ /v,7. Using the
characteristic scaling v, ~ 1/s, this yields s < s* ~ /3 in
agreement with the previous argument.

To complete this treatment we need to account for the
heavy strings, s > s*. These strings move ballistically but
slowly, so that v, < /D(t)t. Thus the net magnetization
they experience on timescale ¢ is set, not by their ballistic
motion, but by the anomalous diffusion length scale of the
background spin environment, x(f) = \/D(t)t ~ */>.
Therefore, the characteristic net magnetic field heavy
strings feel is s independent, and is given by
hheavy(t) ~ 1//x(t) ~1/s* > 1/s. Thus, strings with s >
s* have a dressed magnetization that is effectively their bare
magnetization s, and each heavy string individually gives a
ballistic contribution to (p?). The integral over the rapidity
now scales as [ dup®(u)vy(u)* ~ (1/s%) [27], and the
occupation number 6, is exponentially suppressed as e™*"
for such heavy strings. This implies that the contribution of
heavy strings to (p?) is convergent at large s, and is
dominated by strings with s ~ s*, which move ballistically
over a distance ~#%/3. The contribution of each such string
to (p?) scales as 1>7%/3 = */3, consistent with the regime
s < s*. The contributions from light strings s < s* and
heavy strings s > s* are of the same magnitude. We
therefore conclude that the diffusion constant scales as

D(t) ~t'/3. (10)

This expression is our main result. It predicts that spin is
transported over a distance >/ in a time . This power-law
behavior has been observed in numerical studies [26], and
has remained a mystery until now.

Easy-axis phase A > 1.—We now turn to the implica-
tions of our argument for transport in the easy-axis phase of
the XXZ chain away from the isotropic point. First, we
discuss the vicinity of the isotropic point, A — 1*. Here,
the sum over strings is cutoff exponentially at the scale
s* ~ 1/n, where n = cosh™'(A). Since the diffusion con-
stant goes as s*, it follows that it diverges as D ~ 1/v/A — 1
near the isotropic limit. For A > 1, our analysis would

predict a crossover from anomalous to normal diffusion on
a timescale that scales as * ~ (A — 1)7%/2,

Our expressions Egs. (6) and (7) were derived under mild
assumptions that are valid throughout the easy-axis regime.
Thus, they can be used to derive analytic expressions for the
infinite-temperature ~ diffusion constant for A > 1.
Extracting an analytic expression for the spin diffusion
constant has remained a long-standing open problem in the
field, which the kinetic approach allows us to address.

The integral in Eq. (7) can be computed analytically for
any A = coshn > 1. This allows us to find a closed-form
expression for the diffusion constant

2 smh n Z
s=1

s
[smh s sinhn(s +2)|

(11)

The diffusion constant as a function of A is plotted in
Fig. 1. At large anisotropy A > 1 one can evaluate the sum
explicitly, as only the s = 1 string contributes in that limit.
We find

4
lim D = — ~0.4244, 12
Jim D = (12)

consistent with numerical results [59,60] and with the
bound found in Ref. [27].

Discussion.—Our results were derived specifically for
spin diffusion in an infinite-temperature state, but our
prediction of superdiffusion with D(¢) ~ ¢'/3 for the iso-
tropic Heinsenberg chain can be readily extended to any
nonzero temperature 7 > 0 using the results of Ref. [27].
Our kinetic approach to compute the diffusion constant in
the easy-axis regime can also be generalized to any
temperature; in particular, it would be interesting to recover
the predictions of Refs. [45,46,49] at low temperature.

Our predictions for (super)diffusion are directly testable
in ultracold atomic experiments [67]. However, many
numerical studies of the XXZ model work with a different
setup, in which the left and right halves of a system are
initialized at different values of magnetization, and the spin
current through the middle of the system is measured [26].
For thermal systems these procedures are equivalent;
however, showing that this remains the case in the present
setting requires further justification. When the bias oy is
sufficiently small [26], this is straightforward. A quasipar-
ticle traveling for a time ¢ picks up an average magneti-
zation ~téu, with a sign that depends on which half of the
system it is in, in addition to its fluctuations. Thus the
magnetization picks up a drift in addition to its (normal or
anomalous) diffusion, just as a conventional diffusive
particle would. The case of larger o can also be addressed
using the present framework, but requires a detailed
analysis of the y dependence of the dressed magnetization;
this will be addressed elsewhere. Our argument requires
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nonvanishing thermal fluctuations, and does not apply to
zero-entropy initial states [39,68—70].

Note that the mechanism for superdiffusion described
above in integrable systems is quite different from that in
random classical systems. The fact that the spin front
observed numerically is a rescaled error function [26] and
not, e.g., a Lévy flight, might suggest that the dynamics of
the dipole moment on timescale ¢ is dominated by the
random walk associated with the strings that have the
largest dipole moments on that timescale. The kinetic
approach here can be extended to compute higher moments
(p"), and thus the full shape of the magnetization front;
however, unlike (p?), higher moments will also involve
fluctuations of the quasiparticle velocities. We defer a
detailed treatment of this question to future work.

While we focused on the overall spread of the initial spin
packet, an interesting question for future work is the nature of
the spin structure factor C(x, ) = (6°(x, 1)6%(0,0)) more
generally. Even though contributions from large, heavy
strings do not affect the overall size of the wave packet, they
might affect the shape of C(x, ¢) near the origin, and can
potentially dominate the local autocorrelation function,
leading to anomalous behavior [71]. The form of this
structure factor, and thus of the frequency and wave vector
dependent conductivity in the hydrodynamic limit, can, in
principle, be understood using the kinetic approach outlined
here, and is a promising subject for future study.

Finally, we remark that an implication of our theory is
that operator spreading should presumably remain ballistic,
with diffusive broadening [41], in the XXX model: the
quasiparticle trajectories do not change their character at
the isotropic point; instead, the unconventional physics is
due to anomalous fluctuations of the magnetization along
these trajectories.
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Note added.—Recently, Ref. [72] appeared on arXiv. While
Ref. [72] does not address superdiffusion, the authors use
their previous approach [40] to evaluate the spin-diffusion
constant in the easy-axis (“gapped”) phase. The numerical
evaluation of the formula of Ref. [72] is in perfect agree-
ment with our analytic result (11).
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