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—— Abstract

The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-
complete and QMA;-complete problems (for k > 3), respectively, where QMA; is a quantum
generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tract-

able cases, as well as from a parameterized complexity perspective, much less is known in similar
settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to
k-QSAT instances which have a “matching” or “dimer covering”; this is an NP problem whose
decision variant is trivial, but whose search complexity remains open.

Our results fall into three directions, all of which relate to the “matching” setting: (1) We
give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two
clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial
class, which allows us to obtain exponential speedups over brute force methods in some cases by
reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct
a structural graph theoretic study of 3-QSAT interaction graphs which have a “matching”. We
remark that the results of (2), in particular, introduce a number of new tools to the study of
Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from
algebraic geometry; we hope these prove useful elsewhere.
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1 Introduction

Constraint satisfaction problems (CSPs) are cornerstones of both classical and quantum
complexity theory. Indeed, CSPs such as 3-SAT and MAX-2-SAT are complete for NP [13],
and their analogues Quantum 3-SAT (3-QSAT) and the 2-local Hamiltonian problem are
QMA ;- and QMA-complete, respectively [3, 10, 16, 15]. (QMA is Quantum Merlin-Arthur,
a quantum generalization of Merlin-Arthur, and QMA; is QMA with perfect completeness.)
As such CSPs are intractable in the worst case, approaches such as approximation algorithms,
heuristics, and exact algorithms are employed. In this paper, we focus on the latter technique,
and ask: Which special cases of k-QSAT can be solved efficiently on a classical computer?

Unfortunately, this problem appears to be markedly more difficult than in the classical
setting. For example, classically, if each clause ¢ of a k-SAT instance can be matched with a
unique variable v., then clearly the k-SAT instance is satisfiable, and finding a solution is
trivial: Set variable v, to satisfy clause c. (Note that the matching can be found efficiently
via, e.g., the Ford-Fulkerson algorithm [11].) In the quantum setting, it has been known [17]
since 2010 that k-QSAT instances with such “matchings” (also called a “dimer covering” in
physics [17]) are also satisfiable, and moreover the satisfying assignment can be represented
succinctly as a tensor product state. Yet, finding the satisfying assignment efficiently has
proven elusive (indeed, the proof of [17] is non-constructive). In other words, we have a
trivial NP decision problem whose analogous search version is not known to be efficiently
solvable (see, e.g., [2] regarding the longstanding open question of decision versus search
complexity for NP problems). This is the starting point of the present work.

Results and techniques. Our results fall under three directions, all of which are related to
kE-QSAT with matchings. For this, we first define Quantum k-SAT (k-QSAT) [3] and the
notion of a system of distinct representatives (SDR). For k-QSAT, the input is a two-tuple
IT = ({I; = |4 )Xts]};, @) of rank 1 projectors or clauses II; € L£L(C?)®*, each acting non-
trivially on a set of k (out of n) qubits, and non-negative real number « > 1/p(n) for some
fixed polynomial p. The output is to decide whether there exists a satisfying assignment
on n qubits |[¢) € (C?)®", i.e. to distinguish between the cases II;|¢)) = 0 for all i (YES
case), or whether (1| >, I;|1)) > o (NO case). Note that k-QSAT generalizes k-SAT. As
for a system of distinct representatives (SDR) (see, e.g., [12]), given a set system such as a
hypergraph G = (V, E), an SDR is a set of vertices V/ C V such that each edge in e € F is
paired with a distinct vertex v, € V’ such that v, € e. In previous work on QSAT, an SDR
has been referred to as a “dimer covering” [17].

1. Quantum k-SAT with bounded occurrence of variables. Our first result concerns the natural
restriction of limiting the number of times a variable can appear in a clause. For example,
3-SAT with at most 3 occurrences per variable is NP-hard. We complement this as follows.

» Theorem 1. There exists a polynomial time classical algorithm which, given an instance I1
of k-QSAT in which each variable occurs in at most two clauses, outputs a satisfying product
state if 1 is satisfiable, and otherwise rejects. Moreover, the algorithm works for clauses
ranging from 1-local to k-local in size.



M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi

To show this, our idea is to “partially reduce” the k-QSAT instance to a 2-QSAT instance.
We then use the transfer matrix techniques of [3, 18, 4] (particularly the notion of chain
reactions from [4]), along with a new notion of “fusing” chain reactions, to deal with the
remaining clauses of locality at least 3 in the instance.

Although this setting seems unrelated to the open question of computing solutions to
k-QSAT instances with SDRs, we show the following. Denote the interaction hypergraph
G = (V, E) of a k-QSAT instance as a k-uniform hypergraph (i.e. all edges have size precisely
k), in which the vertices correspond to qubits, and each clause ¢ acting on a set of k qubits
S, is represented by a hyperedge of size k containing the vertices corresponding to S,.

» Theorem 2. Let G = (V, E) be a hypergraph with all hyperedges of size at least 2, and
such that each vertex has degree at most 2. Then, G has an SDR.

Thus, Theorem 1 resolves the open question of [17] for k-QSAT instances with SDRs in
which (1) each variable occurs in at most two clauses and (2) there are no 1-local clauses.
((2) is necessary, as allowing edges of size 1 easily makes Theorem 2 false in general.)

2. On parameterized complexity for Quantum k-SAT. Our next result, and the main con-

tribution of this paper, gives a parameterized algorithm? for explicitly computing (product

state) solutions for a non-trivial class of k-QSAT instances. As discussed in Section 3, this
algorithm in some cases provides an exponential speedup over brute force diagonalization.
At the core of the algorithm is a new graph theoretic notion of transfer filtration of type

b for a k-uniform hypergraph G = (V, E), for fixed b > 0. Intuitively, one should think of b

as denoting the size of a set of b qubits which form the hard “foundation”’ of any k-QSAT

instance on G. With the notion of transfer filtration in hand, our framework for attacking
k-QSAT can be sketched at a high level as follows.

1. First, given a k-QSAT instance IT on G with transfer filtration of type b, we “blow-up” II
to a larger, decoupled instance I (Decoupling Lemma, Lemma 9). The decoupled nature
of TI'T makes it “easier” to solve (Transfer Lemma, Lemma 17), in that any assignment
to the b “foundation” qubits can be extended to a solution to all of IIt. This raises the
question — how does one map the solution of II* back to a solution of II?

2. We next give a set of “qualifier” constraints {h,} (Qualifier Lemma, Lemma 19) acting
on only the b foundation qubits, with the following strong property: If a (product state)
assignment v to the b foundation qubits satisfies the constraints {hs}, then not only can
we extend v via the Transfer Lemma to a full solution for II™ as in Step 1 above, but we
can also map this extended solution back to one for the original k-QSAT instance II.

Once the framework above is developed, we show that it applies to the non-trivial family of

k-QSAT instances whose k-uniform hypergraph G = (V, E) has a transfer filtration of type

b=|V|—|E|+ 1. This family includes, e.g., the semi-cycle, tiling of the torus, and “fir tree”

(full version). Our main result (Theorem 23) says the following: For any k-QSAT instance II

on such a G and whose constraints are generic (see Section 3), computing a (product state)

solution to IT reduces to solving for a root of a single univariate (see Remark 25) polynomial

P — any such root (which always exists if the field K is algebraically closed) can then be

extended back to a full solution for II.

The key advantage of this approach, and what makes it a parameterized algorithm, is the
following — the degree of P, and hence the runtime of the algorithm, scale exponentially only
in b and a “radius” parameter r of the transfer filtration. Thus, given a transfer filtration

3 Roughly, parameterized complexity characterizes the complexity of computational problems with respect
to specific parameters of interest other than just the input size (e.g. the treewidth of the input graph).
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where b and r are at most logarithmic, finding a (product state) solution to k-QSAT reduces
to solving for a single root over C for a single univariate polynomial h; of polynomial degree,
which can be done in polynomial time [25, 24]. Indeed, in Section 3 we give a non-trivial
family of k-uniform hypergraphs, denoted Crash, for which our algorithm runs in polynomial
time, whereas brute force diagonalization would require exponential time.

Conveniently, even when the foundation b and radius r are superlogarithmic, our algorithm
still gives a constructive proof that all k-QSAT instances satisfying the preconditions of
Theorem 23 have a (product state) solution. In particular, in Corollary 27, we observe that
such hypergraphs must have SDRs, and so we constructively reproduce the result of [17] that
any 3-QSAT instance with an SDR is satisfiable (by a product state) (again, assuming the
additional conditions of Theorem 23 are met).

Finally, although this result stems primarily from tools of projective algebraic geometry
(AG), the presentation herein avoids any explicit mention of AG terminology (with the
exception of defining the term “generic” in Section 3.3) to be accessible to readers without
an AG background. A brief overview of the ideas in AG terms is given in the full version.

8. A study of 3-uniform hypergraphs with SDRs. Our final contribution, which we hope guides
future studies on the topic, is to take steps towards understanding the structure of all 3-QSAT
instances with SDRs, particularly when |E| = |V|. Unfortunately, this seems a difficult task
(if not potentially impossible, see “finite characterization” comments below). We first give
various characterizations involving intersecting families (each pair of edges has non-empty
intersection). We then study linear hypergraphs (each pair of edges intersects in at most
one vertex), which are generally more complex. (For example, the set of edge-intersection
graphs of 3-uniform linear hypergraphs is known not to have a “finite” characterization
in terms of a finite list of forbidden induced subgraphs [19].) We study “extreme cases’
of linear hypergraphs with SDRs, such as the Fano plane and “tiling of the torus”, and
in contrast to these two examples, demonstrate a (somewhat involved) linear hypergraph
we call the iCycle which also satisfies the Helly property (which generalizes the notion
of “triangle-free”). A main conclusion of this study is that even with multiple additional
restrictions in place (e.g. linear, Helly), the set of 3-uniform hypergraphs with SDRs remains
non-trivial. To complement these results, we show how to fairly systematically construct
large linear hypergraphs with |E| = |V| without SDRs. We hope this work highlights the
potential complexity involved in dealing with even the “simple” case of 3-QSAT with SDRs.

9

Discussion, previous work and open questions. Regarding our parameterized algorithm,
our notions of transfer filtrations and blow-ups apply to any instance of k-QSAT (and
thus also? k-SAT), including QMA ;-complete instances. (For example, every k-uniform
hypergraph has a trivial foundation obtained by iteratively removing vertices until the
resulting set contains no edges. A key question is how small the foundation and radius
of the filtration can be chosen for a given hypergraph, as our algorithm’s runtime scales
exponentially in these parameters.) More precisely, our techniques in Section 3, up to and
including the Qualifier Lemma, apply to arbitrary k-QSAT instances. The main question is
when local solutions to the qualifier constraints (which act only on b out of n qubits) can

4 For the special case of k-SAT, note that it is not a priori clear that having a transfer filtration with a
small foundation suffices to solve the system trivially. This is because the genericity assumption on
constraints, which k-SAT constraints do not satisfy, is required to ensure that any assignment to the
foundation propagates to all bits in the instance. Thus, the brute force approach of iterating through
all 2° assignments to the foundation does not obviously succeed.



M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi

be extended to global solutions to the entire k-QSAT instance. We answer this question
affirmatively for the non-trivial class of k-QSAT instances which satisfy the preconditions
of Theorem 23 (e.g. the semi-cycle, fir tree, crash, and any k-uniform hypergraph with
b=|V|—|E|+1), obtaining polynomial to exponential speedups over brute force in Section 3.

Moving to previous work, Quantum k-SAT was introduced by Bravyi [3], who gave an
efficient (quartic time) algorithm for 2-QSAT, and showed that 4-QSAT is QMA;-complete.
Subsequently, Gosset and Nagaj [10] showed that Quantum 3-SAT is also QMA;-complete,
and independently and concurrently, Arad, Santha, Sundaram, Zhang [1] and de Beaudrap,
Gharibian [4] gave linear time algorithms for 2-QSAT. The original inspiration for this paper
was the work of Laumann, Lauchli, Moessner, Scardicchio and Sondhi [17], which showed
existence of a product state solution for any k-QSAT instance with an SDR. Thus, the decision
version of k-QSAT with SDRs is in NP and trivially efficiently solvable. However, whether
the search version (i.e. compute an explicit satisfying assignment) is also in P remains open.
The question of whether the decision and search complexities of NP problems are the same
is a longstanding open problem in complexity theory; conditional results separating the two
are known (see e.g. Bellare and Goldwasser [2]).

Regarding classical k-SAT, as mentioned above, in contrast to k-QSAT, solutions to k-SAT
instances with an SDR can be trivially computed. As for parameterized complexity, classically
it is a well-established field of study (see, e.g., [5] for an overview). The parameterized
complexity of SAT and #SAT, in particular, has been studied by a number of works, such
as [26, 6, 23, 7, 22, 21, 8], which consider parameterizations including based on tree-width,
modular tree-width, branch-width, clique-width, rank-width, and incidence graphs which
are interval bipartite graphs. Regarding parameterized complexity of Quantum SAT, as far
as we are aware, our work is the first to initiate a “formal” study of the subject; however,
we should be clear that existing works in Quantum Hamiltonian Complexity [20, 9] have
long implicitly used “parameterized” ideas (e.g. in tensor network contraction, the bond
dimension can be viewed as a parameter constraining the complexity of the contraction).

We close with open questions. Which ideas from classical parameterized complexity be
generalized to the quantum setting? We develop a number of tools for studying Quantum
SAT — can these be applied in more general settings, for example beyond the families of
k-QSAT instances considered in Theorem 23?7 The “parameter” in our results of Section 3
involves the radius of a transfer filtration — whether a transfer filtration (of a fixed type b) of
minimum radius can be computed efficiently, however, is left open for future work. Similarly,
it is not clear that given b € N, the problem of deciding whether a given hypergraph G has a

transfer filtration of type at most b is in P. We conjecture this latter problem is NP-complete.

Finally, the question of whether solutions to arbitrary instances of k-QSAT with SDRs can
be computed efficiently (recall they are guaranteed to exist [17]) remains open.

Organization. Section 2 gives an efficient algorithm for 3-QSAT with bounded occurrence
of variables, and introduces the notion of transfer matrices (which are generalized via
transfer functions in Section 3). Our main result is given in Section 3, and concerns a new
parameterized complexity-type approach for solving k-QSAT. Our structural graph theoretic
study of hypergraphs with SDRs, and any omitted proofs, are deferred to the full version.

Notation and basic definitions. For complex Euclidean space X, £(X) denotes the set of
linear operators mapping X to itself. For unit vector |[¢)) € C?, the unique orthogonal unit
vector (up to phase) is denoted [¢p1), i.e. (¥|yt) = 0.

38:5
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» Definition 3 (Hypergraph). A hypergraph is a pair G = (V, E) of a set V (vertices), and a
family E (edges) of subsets of V. If each vertex has degree d, we say G is d-regular. When
convenient we use V(G) and E(G) to denote the vertex and edge sets of G, respectively. We
say G is k-uniform if all edges have size k.

» Definition 4 (Cycle, Semicycle, Chain [14]). A k-uniform hypergraph G = (V, E) is a cycle
if there exists a sequence S = (v1,v2,...,v;) € V! for [ > n such that (1) v € S for all v € V,
(2) forall 1 <i <1, e = {vi,vit1,...,vi+x—1} are distinct edges in F, where indices are
understood modularly. The length of the cycle G is m =1[. If instead 1 <i <l —k+ 1 and
vy = v (v1 # v;), we obtain a semicycle (chain) of length m =1 —k + 1.

2 Quantum SAT with bounded occurrence of variables

Transfer matrices, chain reactions, and cycle matrices. To study 3-QSAT with each
qubit occurring in at most two constraints, we first recall transfer matrix tools from the
study of 2-QSAT [3, 18, 4]. For any rank-1 constraint II; = [¢)¢| € L((C?)®*), consider
Schmidt decomposition [¢) = alag)|bo) + Blai)|b1), where |a;) € (C?)®* 1) lives in the
Hilbert space of the first k — 1 qubits and |b;) € C? the last qubit. Then, the transfer matrix
Ty : (C?)®F~1 1 C2 is given by Ty, = B|bo){a1| — a|b1){ao|. In words, given any assignment
|¢) to the first k — 1 qubits, if T}y |¢) € C? is non-zero, then it is the unique assignment to
qubit k (given |¢) on qubits 1 to k — 1) which satisfies II;.

In the special case of k = 2, transfer matrices are particularly useful. Consider first a
2-QSAT interaction graph (which is a 2-uniform hypergraph, or just a graph) G = (V, E)
which is a path, i.e. a sequence of edges e; = (v1,v2),e2 = (v2,v3),...,€m = (Um_1, V) for
distinct v; € V, and where edge e; corresponds to constraint |¢;). Then, any assignment
|¢) € C? to qubit 1 induces a chain reaction (CR) in G, meaning qubit 2 is assigned Ty, |}),
qubit 3 is assigned Ty, Ty, |¢), and so forth. If this CR terminates before all qubits labelled
by V receive an assignment, which occurs if Ty, |¢’) = 0 for some ¢, this means that constraint
i (acting on qubits ¢ and 7 + 1) is satisfied by the assignment |¢’) to qubit ¢ alone, and
no residual constraint is imposed on qubit ¢ + 1. Thus, the graph G is reduced to a path
€it1,---,€m. In this case, we say the CR is broken. Note that if G is a path, then it is a
satisfiable 2-QSAT instance with a product state solution.

Finally, consider a 2-QSAT instance whose interaction graph G is a cycle C' = (vq, ...,
Umg1) with m. Then, a CR induced on vertex v; with any assignment [) € C? will in
general propagate around the cycle and impose a consistency constraint on v;. Formally,
denote To = Ty, -+ Ty, € L(C?) as the cycle matriz of C. Then, if the cycle matrix is not
the zero matrix, it be shown that the satisfying assignments for the cycle are precisely the
eigenvectors of Te. (If To = 0, any assignment on v; will only propagate partially around
the cycle, thus decoupling the cycle into two paths.) Thus, if G is a cycle, it has a product
state solution.

Here, when we refer to “solving the path or cycle”, we mean applying the transfer matrix
techniques above to efficiently compute a product state solution to the path or cycle.

k-QSAT with bounded occurence of variables. We now prove Theorem 1.

Proof of Theorem 1. We begin by setting terminology. Let IT be an instance of k-QSAT
with k-uniform interaction graph G = (V, E). For any clause ¢, let Q. denote the set of qubits
acted on ¢, i.e. Q. is the edge in G representing c. We say c is stacked if Q. is contained in
another clause @, i.e. if 3¢’ # ¢ such that Q. C Q.. For a qubit v, we use shorthand |v) to
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denote the current assignment from C? to v. For a clause c, |c¢) denotes the bad subspace of
¢, i.e. clause c is given by rank-1 projector I — [c)(c|. The set of clauses vertex v appears in
is denoted C,. For any assignment |v), let S|,y = {(v|c) | c € C\,} C Uf;ol C?', where recall
¢ can be a clause on 1,...,k qubits, and we assume (v| acts as the identity on the qubits
of ¢ which are not v. Thus, S,y is the set of constraints we obtain by taking the clauses in
Cy, and projecting down qubit v in each clause onto assignment |v) (i.e. clauses in S|,y do
not act on v). Our algorithm will satisfy that the only possible element of C in S,y is 0,
obtained by projecting a constraint |c) € C? onto its orthogonal complement to satisfy it;
thus, assume without loss of generality that S, C Uf;ll C?'. Finally, two 1-local clauses
le), |’y € C? conflict if |c) and |¢) are linearly independent.

)

Algorithm A. Let IT satisfy the conditions of our claim. We repeatedly “partially reduce’
IT to a 2-QSAT instance, and use the transfer matrix techniques outlined above to solve this
subproblem. Combining this with a new notion of fusing CRs, the technique can be applied
iteratively to reduce k-local constraints to 2-local ones until the entire instance is solved.
Note: If a CR on a path is broken by a transfer matrix T, on edge (u,v), i.e. Ty|u) =0, we
implicitly continue by choosing assignment |0) on v to induce a new CR on the path.

1. While there exists a 1-local constraint ¢ acting on some qubit v:
a. If ¢ conflicts with another 1-local clause on v, reject. Else, set |v) = |c) € C2. Set®

Cy = S}y, and remove v from II.

2. While there exists a qubit v appearing only in clauses of size at least & > 3:
a. Set |v) = |0) and C, = S),). Remove v from II.

3. While there exists a 2-local clause:
a. If there exists a stacked 2-local clause ¢, i.e. ¢/ # ¢ such that Q. C Q. :

i. If Q. = Q. , remove the qubits ¢ acts on, and set their values to satisfy ¢ and ¢’.

ii. Else, Q. C Q. Thus, ¢ is kK'-local for 3 < k' < k. Set the values of the qubits in
Q. so as to satisfy ¢. This collapses ¢’ to a (k' — 2)-local constraint on Q. \ Q..
A. If ¥ — 2 =1, then ¢’ has been collapsed to a 1-local constraint on some vertex

v € Qo \ Q., creating a path rooted at v. Set v so as to satisfy ¢/, and use a CR

to solve the resulting path until either the path ends, or a k”-local constraint is

hit for 3 < k” < k’. In the latter case (Figure 1, Left), the £”-local constraint is

reduced to a (k" — 1)-local constraint and we return to the beginning of Step 3.

b. Else, pick an arbitrary 2-local clause ¢ acting on variables vy and vo. Then, vy (ve) is
the start of a path hy (ha) (e.g., Figure 1, Middle).

i. If the path forms a cycle from v; to ve, use the cycle matrix to solve the cycle.
Remove the corresponding qubits and clauses from II.

ii. Else, set v; and ve so as to satisfy ¢. Solve the resulting paths hy (he) until a
k’-local (k”-local) constraint Iy (l2) is hit for 3 < k' <k (3 < k” < k). If both I;
and [9 are found:

A Ifl; =1y (i.e. ¥ = k") and ¥’ — 2 = 1, then fuse the paths h; and hs into a

new path beginning at the qubit in 3 which is not in h; or he (Figure 1, Right).
Iteratively solve the resulting path until a &’-local constraint is hit for 3 < k&’ < k.

4. If any qubits are unassigned, set their values to |0).

In the full version, we prove correctness, run algorithm A on a sample input, and discuss
its general applicability to an entire family of non-trivial 3-QSAT instances. |

5 Note there is one “global copy” of each clause c¢ that is “shared” by all C,.
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Figure 1 (Left) Solving the path rooted at v via CR satisfies clauses (vi,v2) and (vz, v3), and
projects clause (vs, v4,vs5) onto a 2-local residual clause on (v4,vs). The CR then stops. (Middle)
Letting ¢ denote the clause on (v2,v3), vz is the start of path (v2,v1,...), and vs is the start of path
(vs,v4,...). (Right) Inducing CRs on v; and v7, we assign values to vs and vs. This collapses 3-local
clause (v3,v4,v5) into a 1-local clause on v4 with a unique satisfying assignment, which induces a
new CR starting at v4. Thus, two CR’s are “fused” into one CR.

3 Quantum SAT and parameterized algorithms

We next develop a parameterized algorithm for computing an explicit (product state) solution
to a non-trivial class of k-QSAT instances (Theorem 23). Although the inspiration stems
from algebraic geometry (AG), we generally avoid AG terminology to increase accessibility
(see the full version for an overview in AG terms).

3.1 The transfer type of a hypergraph

» Definition 5. A hypergraph G = (V, E) is of transfer type b if there exists a chain of
subhypergraphs (denoted a transfer filtration of type b) Go C G; C --- C G,, = G and an
ordering of the edges F(G) = {FE1,..., By} such that

E(GZ) = {E], . ;Ez} for each i € {0, - ,m},

[V(G;)| <|V(Gi—1)| + 1 for each i € {1,...,m},

[V(Go)| = b, where we call V(Gg) the foundation,

5. and each edge of G has at least one vertex not in V(Gp).

In other words, a transfer filtration of type b builds up G iteratively by choosing b vertices
as a “foundation”, and in each iteration adding precisely one new edge F; and at most one
new vertex. If a new vertex is added in iteration i, condition (3) says it must be in edge E;
added in iteration q.

ol I\ .

» Example 6 (Running example). We introduce a hypergraph G to serve as a running
example in this section. Let V(G) = {1,2,3,4} with edges E; = {1,2,3}, Ey = {1,2,4},
Es = {1,3,4} and E4 = {2,3,4}. By Definition 4, G is a 3-uniform cycle. Consider
hypergraphs Go, G1, G2, G5 such that V(Gy) = {1,2}, V(G1) = {1,2,3}, V(G2) = V(G3) =
V(G4) = V(G), E(Gy) = 0 and E(G;) = {E\,...,E;} for j = 1,2,3. Then Gy € G; C
G2 C G3 C G4 = G is a transfer filtration of type 2, G is a chain, and G3 is a semicycle.

» Remark 7. Let G be a hypergraph with transfer filtration Gy C G; C --- C G, = G
of type b. Order the edges of G so that E(G;) = {E1,...,E;} Vi € {1,...,m}. Since by
construction each edge contains at least one vertex not in V(Gy), there exists a function r :
{1,...,m} = {0,...,m — 1} such that r(i) < i and |E; \ V(G,))| = 1foralli e {1,...,m}.

» Example 8 (Running example). Let G be the 3-uniform cycle of Example 6. Then one can
choose r: {1,2,3,4} — {0,1,2,3} with 7(1) =r(2) =0, r(3) =1 and r(4) = 1.

As the first step in our construction, we show how to map any k-uniform hypergraph G of
transfer type b to a new k-uniform hypergraph G’ of transfer type b whose transfer filtration
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Figure 2 For the hypergraph on the left, consider the transfer filtration with foundation Gy =
{v1,v2}, and we iteratively add edges {vi,v2,v3}, {v1,v2,v4}, and {v1,v3,v4}. The Decoupling
Lemma maps this hypergraph to the one on the right, decoupling the intersection on vertex vs. The
surjective function p “undoes” the decoupling by mapping v1, vz, v3 to themselves, and v4, vs to v4.

must add a vertex in each step (this follows directly from the relationship between |V (G)|
and |E(G)| below). This has two effects worth noting: First, G’ is guaranteed to have an
SDR. Second, it decouples certain intersections in the hypergraph, as illustrated in Figure 2.
For clarity, in the lemma below, for a function p acting on vertices, we implicitly extend its
action to edges in the natural way, i.e. if e = (vy,v9,v3) then p(e) = (p(v1), p(v2), p(v3)).

» Lemma 9 (Decoupling lemma). Given a k-uniform hypergraph G of transfer type b, there

exists a k-uniform hypergraph G of transfer type b with |E(G)| + b vertices and a surjective

function p : V(G) — V(G) such p(E) € E(G) for every E € E(G).

Proof. (Sketch) Let Gy C G; C --- C Gy, = G be a transfer filtration such that V(Gy) =
{1,...,b}, E(G;) ={FE1,...,E;} forevery i > 1 and let r : {1,...,m} = {0,...,m — 1} as
in Remark 7. By Remark 7, there is a surjection p : {1,...,m + b} — {1,...,n} such that
p(i) =iforallie {1,...,b} and {p(i)} = E;i_s\V(Gri—p)) foralli € {b+1,...,b+m}. For
each j € {1,...,m+b},let j = min(p~*(p(j))) and E;={i+ brU{j|jep 1 (Ei\pi+b)}
for each i € {1,...,m}. Setting V(@;) = {1,...,b} and E(a) = {Fy,...,E;} for each
i1 ={0,...,m} we obtain a transfer filtration GoCG1C - CGm=0Gof type b satisfying
the requirements of the claim. |

» Example 10 (Running example). Let G be the 3-uniform cycle of Example 6. The proof of
Lemma 9 (full version) produces a 3-uniform hypergraph G with vertices {1,2,3,4,5,6} and
edges Fy = {1,2,3}, s = {1,2,4}, E5 = {1,3,5}, B4 = {2,3,6}, and surjective function p :

{1,2,3,4,5,6} — {1,2,3,4} defined by p(1)=1,p(2) =2, p(3) =3, p(4) = p(5) = p(6) = 4.

This choice is not unique: setting E; = {2,4,6} and p(6) = 3 also satisfies Lemma 9.

One of the “parameters” in our parameterized approach will be the radius of a transfer
filtration, defined next. The concept is reminiscent of radii of graphs, and roughly measures
“how far” an edge is from the foundation of b vertices with respect to the filtration.

» Definition 11 (Radius of transfer filtration). Let G be a hypergraph admitting a transfer
filtration Go C --- C G,, = G of type b. Consider the function (whose existence is
guaranteed by Remark 7) 7 : {0,...,m} — {0,...,m — 1} such that 7(0) = 0 and r(4) is the
smallest integer such that [E; \ V(G,;))| = 1 Vi € {1,...,m}. The radius of the transfer
filtration Gy C - C G, = G of type b is the smallest integer 8 such that r?(i) = 0 for all
i€{1,...,m} (r” denotes composition of r with itself 3 times). The type b radius of G is

the minimum value p(G,b) of 8 over the set of all possible transfer filtrations of type b on G.
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» Example 12 (Running example). For G the 4-cycle from Example 6, since function r
described in Example 8 is non-constant and r(r(¢)) = 0 for all ¢ € {1,2,3,4}, the transfer
filtration of Example 6 has radius § = 2.

3.2 The main construction

Let W be a two dimensional vector space over a field K. To discuss k-local constraints
and product state solutions to k-QSAT instances, we now set up somewhat more general
terminology than is standard in the literature. While this level of generality is natural given
the geometric nature of our construction, for simplicity one may set K = C and identify W
with C2 if desired.

» Definition 13. A function H; : W™ — K is k-local if there exists a subset F; =
{i1,...,ir} € {1,...,n} and a nonzero functional H} : W®* — K such that H;(vy,...,v,) =
Hf(viyy ® -+ ®wy,) for all vy,...,v, € W, i.e. H; acts non-trivially only on a subset of
k indices. A collection H = (Hy,..., H,,) of k-local functions Hy,..., H, : W" — K is
k-local. The corresponding subsets E; (i.e. on which H; acts non-trivially) are the edges of a
hypergraph G with vertices {1, ...,n}, the interaction graph of H. The product satisfiability
set of k-local collection H is the set Sy of all (vy,...,v,) € W™ such that v; # 0 for all
ie{l,...,n}and H;(v1,...,v,) =0forall j € {1,...,m}.

» Remark 14. Consider an isomorphism # between W and its dual WV that to each v € W
assigns a functional v# € WV such that v*(v) = 0. For instance, if a basis {wy,wa} for W is
chosen then we may define § by setting ((ajw; 4 agws)?)(byw; + bows) = a1by — agb; for all
a1,as2,b1,bs € K. Given any vq,v9 € W, U?(vg) = 0 if and only if I\ € K such that Avy = v;.
» Definition 15. For N € Z*, the Fibonacci numbers of order N are the entries of the
sequence (F,gN)) such that FT(N) = Fr(]_vl) +... +F£f])\, forallr > N, F](V]\i)l =1and F,gN) =0
for all r < N — 2. Note that there exists [27] a monotonically increasing sequence () with
values in the real interval [1,2) such that, for each N > 1, FY < Yy as r — 400.

» Definition 16. A function f on W' with values in a K-vector space has degree (dy, ..., d;) if
fqvr, ..., o) = /\‘111 . -x\f’f(vl, ...,u) for every Aq,..., N\ € K and every vq,...,v, € W.

Applying the Decoupling Lemma to an input k-uniform hypergraph G with transfer type
b, we obtain a k-uniform hypergraph G of type b with m = n — b, for m and n the number
of edges and vertices, respectively. The next lemma shows that G is “easier to solve” in that
any global (product) solution to the k-QSAT system can be derived from a set of assignments
to the b foundation vertices, and conversely, any (product) assignment to the latter can be
extended to a global (product) solution.

» Lemma 17 (Transfer Lemma). Let H = (Hy,...,H, ) be a k-local collection of functions

H; : W™ — K whose interaction graph is a k-uniform hypergraph of transfer type b. There

exist non-zero (non-constant) functions, “transfer functions” g1,...,gn : Wb — W, s.t.:

1. (Global to local assignments) If (v1,...,v,) € Sg (recall v; # 0 by definition of Sy ) there
exist nonzero A, ..., A\, € K such that, Vi € {1,...,n}, \jv; = gi(v1,...,0p).

2. (Local to global assignments) For any nonzero vy, ...,v, € W there exist Vpt1,...,0, € W
such that (vy,...,v,) € Sy and v; = g;(v1,...,vp) for every i such that g;(vy,...,vp) # 0.

3. (Degree bounds) g; has degree (di1,. .., di) such that d;j < Fi(b) forall j € {1,...,b}.

Proof. (Sketch) We sketch the proof in the case b = 2 and k = 3. Define g;(vi,v2) = v1
and go(v1,v2) = vg. Assume Gy C G; C --- C G2 = Gp is a transfer filtration of type
b, V(G;) = {1,...,i+ 2} for all ¢ € {1,...,n —2}. Assume E(G;) = {E1,...,E;} with



M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi

E;, = {i, il,ig} for some 47,45 < i. We construct transfer functions inductively as follows.
First define (gZ (v1,v2))(v) = HF 5(gs, (v1,v2) @ gi, (v1,v2) ® v) for all v1,vy, v € W. Then,
given an isomorphism # between W and WV as in Remark 14, define g; : W2 — W such that
(gi(vy,v2))t = gg (v1,vp) for all v1,v9 € W. The properties of transfer functions stated in the
lemma are proved by straightforward induction. We leave the details to the reader. <

» Example 18 (Running example). Let H = (Hi, Ho, Hs, H4) be a 3-local collection of
functions H; : W% — K whose interaction graph is the 3-uniform chain G described in
Example 10 (obtained by plugging the 4-cycle G of Example 6 into the Decoupling Lemma).
For clarity, H; is defined on hyperedge Ei, where the order of vertices in each edge is fixed by
the transfer filtration chosen; in particular, use ordering E, = (1,2,3), Ey= (1,2,4), Es =
(1,3,5), B4 = (2,4,6) with foundation {1,2}. The proof of Lemma 17 constructs transfer
functions g1,...,gs : W2 — W which give assignments to qubits 1 through 6, respectively,
as follows. Fixing a basis {wq,ws} of W: ¢1(v1,v2) = v1,g2(v1,v2) = vo,g3(v1,v2) =
Hik(vl X V2 X wz)wl — Hf(vl X v2 X wl)wg,g4(vl, 1}2) = H;(Ul R v ® wg)wl — HS(UI R v ®
wi)ws, g5(vi,v2) = H3(v1 ® g3(vi,v2) ® wa)wy — H3(v1 ® g3(vi,v2) @ wy)wa, ge(v1,v2) =
Hi(v2 ® ga(vi,v2) @ we)wy — Hi(v2 ® ga(vi,v2) @ wi)wa.

”

Thus far, we have seen how combining the Decoupling and Transfer Lemmas “blows up
an input k-QSAT system II to a larger “decoupled” system IItT which is easier to solve due
to its decoupled property. Now we wish to relate the solutions of I back to II. This is
accomplished by the next lemma, which introduces a set of “qualifier” constraints {h,} with
the key property: Any solution to {hs} can be extended to one for I, and then mapped
back to a solution for II. Importantly, the qualifier constraints act only on the b foundation
vertices, as opposed to all n vertices!

» Lemma 19 (Qualifier Lemma). Let H = (Hy, ..., Hy,,) be a k-local collection of functions
H; : W" — K whose interaction graph is a k-uniform hypergraph of transfer type b such
that m > n —b. Then there exist non-zero (non-constant) functions, called qualifiers,
hi, o s hm—ntb WP 5 K and 7 W™ — WP such that

1. hs( (Su)) =0 forallse{1,...,m —n+b};

2. hg has degree (ds1,...,dsp) fwzth dsr < 2F((é bytbr1 VS € [m+b] and Vr € [b].

Proof. (Sketch) We sketch the proof in the case b = 2. Given a transfer filtration Gy C

- C Gy, = G of type 2 and radius p(G 1,2), the Decoupling Lemma yields a hypergraph
Gu G and a surjection p. Note that Gy is the interaction graph of a k-local collection
H = (Hy,...,H,) of functions H; : W™+2 — K such that H* H} for each i € {1,...,m}.
Let A : W* — W™*2 be such that A(vy,...,v,) = (V1,...,Umy2), Where v; = vp(i) for
all i € {1,...,m + 2}. In particular (vi,...,v,) € Sy if and only if A(vy,...,v,) € Sg.
Applying the Transfer Lemma to é; yields transfer functions gi,...,gm42 : W2 — W.
Borrowing notation from the proof of Lemma 9, let {i1,...,%m—nt2} be the subset of all
i€ {l,...,m+2} suchthati < i. Foreachs € {1,...,m—n+2}, define qualifier h, : W? — K
such that hg(vy,v9) = (ggs (v1,v2))(gs. (v1,v2)) for all vy, vy € W. If (vy,...,v,) € Su, then
for every s € {1,...,m —n + 2} there exists Aigs i, €K such that \i v,y = 9i, (v1,v2)
and /\“vp(z ) = Gis (vi,v2). Therefore hy(vi,v2) = Ai N\ vp(l (Vp(i,)) = 0 for every s €
{1,. -n+ 2} Upon defining 7 as the composition of A w1th the projection onto the
ﬁrst two entrles, this proves the first statement of the lemma. The second statement follows
from the Transfer Lemma. <

» Remark 20. To recap, the construction in the proof of Lemma 19 implies that to solve
the k-QSAT instance II, we: (1) Apply the Decoupling Lemma to blow up II to decoupled
instance IIT. (2) Apply the transfer functions from the Transfer Lemma to vy, ..., v, to
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obtain a solution on all m + b vertices for II'". Crucially, the qualifier constraints ensure that
all decoupled copies of a vertex v receive the same assignment. (3) Map this solution back
to one on n vertices for II by “merging” decoupled copies of vertices.

» Example 21 (Running example). Let H = (H;, Ho, H3, Hy) be a 3-local collection of
functions H; : W* — K whose interaction graph is the 3-uniform cycle of transfer type
2 from Example 6. If p is chosen as in Example 10, then the two qualifier functions are
hi(vy,v2) = (gg(v171}2))(g4(vl,v2)) of degree (3,2) and ha(vy,v2) = (gé(vl,UQ))(gg('Ul,'UQ)) of
degree (2,3), where g3, g4, g5, g¢ so that ds, <3 <10 = 2F5(2) for each s,7 € {1,2}.

3.3 Generic constraints

Remark 20 outlined the high-level strategy for computing a (product-state) solution to an
input k-QSAT system II. For this strategy to work, however, we require an assignment to
the foundation of the transfer filtration which (1) satisfies the qualifier functions from the
Qualifier Lemma, and (2) causes the transfer functions g; from the Transfer Lemma to output
non-zero vectors. When are (1) and (2) possible? We now answer this question affirmatively
for a non-trivial class of k-QSAT instances, assuming constraints are chosen generically.

» Remark 22 (Generic constraints). The set of k-local constraints H on k-uniform interaction
hypergraph G is canonically identified with the projective variety Xg(K) = (P2"~1(K))™.
(See also [17].) We say a property holds for the generic constraint with interaction graph
G if it holds for every k-local constraint on a Zariski o