

Identification of Surface Sites for Low-Temperature Heterogeneously Catalyzed CO Oxidation on Rh(111)

Rachael Gabrielle Farber, Marie E Turano, and Daniel R Killelea

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.8b03887 • Publication Date (Web): 01 Nov 2018

Downloaded from <http://pubs.acs.org> on November 1, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

is published by the American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Identification of Surface Sites for Low-Temperature Heterogeneously Catalyzed CO Oxidation on Rh(111)

Rachael G. Farber[†], Marie E. Turano, and Daniel R. Killelea*

Department of Chemistry & Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd.,
Chicago, IL 60660.

[†]Present Address: The James Franck Institute and Department of Chemistry, The University of
Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA

Abstract

In heterogeneously catalyzed oxidation reactions on metal surfaces, advantageous oxygenaceous species proffer lower barrier reaction pathways. In order to utilize such reactions better, it is essential to understand what species are present, how they are formed, and under what conditions they are available for reaction. Oxides, adsorbed oxygen, and subsurface oxygen each form on Rh(111) surfaces and thus provide the opportunity to distinguish the contributions of each species to overall reactivity. In an effort to elucidate relevant reaction mechanisms on catalytically active rhodium surfaces, a combination of scanning tunneling microscopy (STM) and temperature programmed desorption (TPD) showed that when subsurface oxygen is present, CO was readily oxidized at the interface between the metallic and oxidic phases at relatively modest temperatures.

Keywords Ultra-high vacuum; Heterogeneous catalysis; Scanning Tunneling Microscopy; Rh oxide; CO oxidation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Introduction

The activity of catalytic surfaces is determined by the chemical species present. To further understand and utilize the complex surface chemistry of solid catalysts, it is crucial to obtain atomistic mechanisms for heterogeneously catalyzed reactions. On metals, different chemical species on inhomogeneous surfaces may arrange themselves in spatially separate phases, each with their own characteristic structure. Surface analysis that distinguishes among these structures and follows their evolution with reaction progress provides the means to connect a specific surface species to a particular reaction. Such a level of detail is achievable using robust surface science studies of single crystal transition metals under ultra-high vacuum (UHV) conditions. Such methods provide highly detailed surface characterization as well as fine control of reagent exposures. Therefore, they are uniquely poised to provide the detailed information necessary to further our understanding of the fundamental chemistry of catalytically active surfaces.

It is first necessary to devise approaches where the surface species found under actual catalytic conditions can be prepared in UHV-compatible fashions, whereupon they can be carefully studied and characterized in manners not feasible under high temperature and pressure conditions. Despite the difference in chemical potentials at the two pressure extremes, such studies are important for understanding the fundamental reactivity of catalytically relevant surfaces. Approaches such as atomic oxygen (AO) plasmas¹⁻² and gas phase AO exposures³⁻⁵ reproduce the oxide surface structures found after high pressure and temperature O₂ preparations.⁶ Such preparation methods established strategies that effectively bridge the “pressure gap”.⁷⁻¹⁰ A significant result for Rh catalyzed reactions has been the discovery that oxide surfaces, in addition to metallic surfaces, are catalytically active and may surpass the

1
2
3 metallic surface in reactivity.¹¹⁻¹⁴ There is, however, still debate on the active phase under
4 reaction conditions.¹⁵⁻¹⁸ In particular, it is unclear how an excess of oxygen, in the form of
5 subsurface oxygen (O_{sub}), alters the reaction mechanism and surface oxygen repopulation.
6
7
8
9

10 An increase in the amount of oxygen on a metal surface may lower the activation energy
11 (E_a) for catalytic oxidation.¹⁹ As we will describe, exposure of Rh(111) to AO resulted in the
12 incorporation of the equivalent of 3.74 monolayers (ML, 1 ML = $1.6 \times 10^{15} O \text{ cm}^{-2}$)³ of oxygen
13 and promoted CO oxidation at reduced temperatures compared to the 0.5 ML (2×1)-O adlayer.
14 However, the exact reaction mechanism at reduced temperatures is unknown. Besides reduction
15 of E_a at elevated O coverages, there were potential geometric effects that may have altered the
16 reactivity of an oxidic surface. For example, when the proper facet of an oxide was accessible to
17 reactants, otherwise unlikely reactions proceed rapidly.^{2, 20} Recently, Liang *et al.*²¹ demonstrated
18 low temperature methane activation on rutile $\text{IrO}_2(110)$ grown on an Ir(100) single crystal.
19 There, the $\text{IrO}_2(110)$ surface exposed coordinatively unsaturated (cus) Ir-O surface pairs that
20 were essential for the observed methane reactivity at low temperatures. Such findings support
21 the role of high oxygen concentrations in lowering energetic barriers and providing advantageous
22 surface and electronic geometries that enable low temperature reactivity on oxygen rich surfaces,
23 such as the Rh(111) crystal in this work.
24
25

26 In this work, the oxidation of CO over highly oxidized Rh(111) surfaces was studied to
27 elucidate the active sites for CO oxidation. A combination of temperature programmed
28 desorption (TPD) and scanning tunneling microscopy (STM) were used to quantify the oxygen
29 coverage (θ_O) on and in the Rh(111) sample and determine surface structure. The oxygenaceous
30 species and their abundances were controlled by the duration of exposure to gas-phase AO and
31

selection of the Rh(111) temperature during AO exposure ($T_{s,AO}$). Depending on the exposure conditions, the surface composition could be varied from being uniformly covered in a (2×1)-O adlayer structure with an $\theta_O = 0.5$ ML,³ or was an inhomogeneous mixture of metallic (2×1)-O and surface oxide (RhO_2) domains with dissolved oxygen atoms in the selvedge of the metal (O_{sub}), demonstrated in previous work.³ The prepared surface was then exposed to CO at either 300 K or 200 K ($T_{s,CO}$). STM images showed the evolution of the Rh(111) surface following CO exposure and subsequent CO oxidation. Degeneration of particular surface domains indicated which domains were more active towards oxidation. The *total* reactivity was determined using TPD to track the oxygen coverage remaining ($\theta_{O,\text{res}}$) on the surface after CO oxidation. In this manner, we have revealed that it is the boundary between the metallic and oxidic surface phases that provided lower barrier reaction pathways for oxidation as well as depletion of O_{sub} .

Experimental

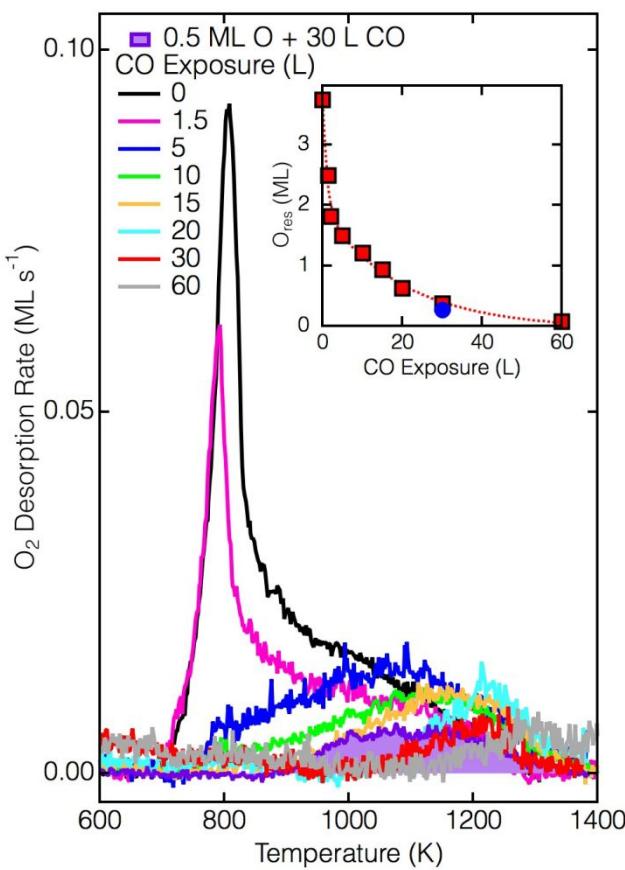
Experiments were performed in a UHV apparatus comprised of a preparation chamber and a scanning tunneling microscope (UHV-STM, RHK Technology, Troy, MI) chamber described previously.⁵ The Pan-style STM was cooled using a closed-cycle He cryostat, enabling imaging at 30 K. The Rh(111) crystal (Surface Preparation Laboratory, Zaandam, NL) was mounted on a Ta sample holder with a type-K thermocouple. The Rh(111) sample was cleaned with repeated cycles of Ar^+ sputtering and annealing at 1300 K. Surface cleanliness was verified with Auger electron spectroscopy (AES), a clean (1×1) low energy electron diffraction (LEED) pattern, and STM imaging of the atomic lattice. AO was generated using a hot Ir filament as previously reported.^{5,22-23} TPD spectra were recorded with a UTI 100c quadrupole mass spectrometer controlled by a homebuilt labVIEW program. Rh(111) exposed to O_2 at $T_s = 350$ K resulted in the saturated (2×1)-O 0.5 ML O_{ad} surface; the integral of the O_2 TPD spectra

1
2
3 was used to calibrate subsequent oxygen coverages. AO exposure at $T_{s,AO} = 700$ K resulted in
4 the $\text{RhO}_2/(2\times 1)$ -O surface.¹ TPD spectra from 100-600 K used a ramp rate of 4 K s^{-1} , and
5 tracked desorption of CO and formation of CO_2 during the temperature ramp. TPD spectra from
6 400-1400 K used a ramp rate of 3 K s^{-1} , and tracked $\theta_{O,res}$. No CO or CO_2 desorption from the
7 Rh(111) surface were observed in this higher temperature ramp. All STM images were taken at
8 30 K. TPDs taken after STM imaging were indistinguishable from those where no imaging was
9 performed, indicating that neither background gases accumulated nor did the surface degrade
10 during prolonged STM experiments.²⁴
11
12
13
14
15
16
17
18
19
20

21 Results and Discussion

22

23 The oxidation of CO by adsorbed O atoms (O_{ad}) on Rh(111) is a prototypical reaction for
24 surface-catalyzed oxidation, and therefore has attracted much attention over the years.²⁵⁻²⁸ It is
25 known that O_2 dissociates on Rh(111) until θ_O saturates at 0.5 ML O, resulting in a (2×1) -O
26 adlayer.^{5, 29} Exposure of a (2×1) -O covered Rh(111) surface to gas-phase CO molecules at 300
27 K yielded a (2×2) -O+CO overlayer²⁹⁻³⁰ from CO insertion into the (2×1) adlayer; this structure
28 has been found to retain $\theta_O = 0.5$ ML, with the addition of 0.25 ML CO. Representative TPD
29 spectra of CO_2 and O_2 desorption from the (2×2) -O+CO, prepared by exposing the (2×1) -O
30 Rh(111) to 60 L CO at 300 K, are provided in Figure S1. The CO_2 desorption spectrum shows
31 that CO oxidation did not occur until the surface temperature was above 350 K and $\theta_{O,res} \approx 0.25$
32 ML remained on the surface. As previously reported, quantification of the amount of CO
33 oxidized is not necessarily straightforward,³⁰ and because of experimental restrictions we were
34 unable to directly quantify CO_2 from the TPD spectra. However, because the background for
35 $m/z = 32$ (O_2^+) was much lower, we were able to quantify the amount of *oxygen* consumed in the
36 oxidation reaction using $\theta_{O,res}$, which provided an indicator for the extent of CO oxidation.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 There did not appear to be any differences in the TPD spectra if the CO exposure was done at
4 either $T_{S,CO} = 100$ K or 300 K, both the apparent CO_2 yield and $\theta_{O,res}$ were not appreciably
5 different, indicating that the O+CO overlayer was stable at 300 K on the experimental
6 timescale.³¹ These results showed that in the absence of O_{sub} or the RhO_2 surface oxide, only
7 adsorbed CO was oxidized, and the reaction was limited by the amount of CO adsorbed to the
8 (2×1)-O surface. As we will show, this was not the case when O_{sub} and RhO_2 oxide are present.
9
10
11
12
13
14
15
16
17

18 In a previous publication, we demonstrated that AO readily oxidizes Rh(111), and large
19 amounts (> 5 ML) of O_{sub} were generated beneath comparatively low θ_O (< 0.75 ML) surfaces.³
20 When Rh(111) was oxidized at $T_{s,AO} = 700$ K, brims of RhO_2 formed at the top of step edges, as
21 indicated by a hexagonal moiré pattern of the (8×8) oxide trilayer on top of a (9×9) Rh substrate³,
22
23 in the STM images and LEED patterns. These oxide domains grew with increasing exposure,
24 but covered, at most, half of the surface after a 600 s exposure. Interestingly, the (2×1)-O
25 adlayer covered the rest of the surface, despite the presence of the equivalent of more than 8 ML
26 of oxygen in total ($\theta_{O,\text{total}}$) as indicated by the TPD spectra. For $\theta_{O,\text{total}}$ above 0.5 ML, there was a
27 sharp desorption peak around 800 K in the TPD spectra that grew roughly linearly with AO
28 exposure.³ Yet the surface coverage of the oxidized (2×1)-O/ RhO_2 Rh(111) surface never
29 exceeded $\theta_O \approx 0.66$ ML, as measured using AES, and this coverage correlates well with the
30 mixture of oxide and (2×1)-O. Because the oxygen surface coverage does not account for $\theta_{O,\text{total}}$,
31 the excess O must be present as O_{sub} . O_{sub} are dissolved oxygen atoms in the selvedge of the
32 metal that occupy interstitial spaces, as opposed to the oxygen incorporated into the lattice of the
33 RhO_2 trilayer that happen to reside beneath the layer of Rh atoms. O_{sub} has been previously
34 identified by the telltale sharp desorption peak at 800 K preceding the broad O_{ad} desorption
35 feature from 800 to 1300 K in TPD spectra.^{3, 5, 33-34}
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

We wished to study how the presence of O_{sub} and the RhO_2 oxide affect CO oxidation compared to O_{ad} in the co-adsorbed (2×2) -O+CO structure. To do this, we prepared Rh(111) with high oxygen incorporation, exposed it to CO at $T_{\text{s,CO}} = 300$ K, where little to no reaction was expected to occur, and then used $\theta_{O,\text{res}}$ to quantify CO oxidation. Additionally, STM images obtained after CO exposure were analyzed to determine which portions of the surface were most effected by the oxidation reaction. This information would determine which oxygenaceous phases were relatively more reactive; less reactive phases remain on the surface after desorbing

CO and CO_2 . AO oxidized the Rh(111)

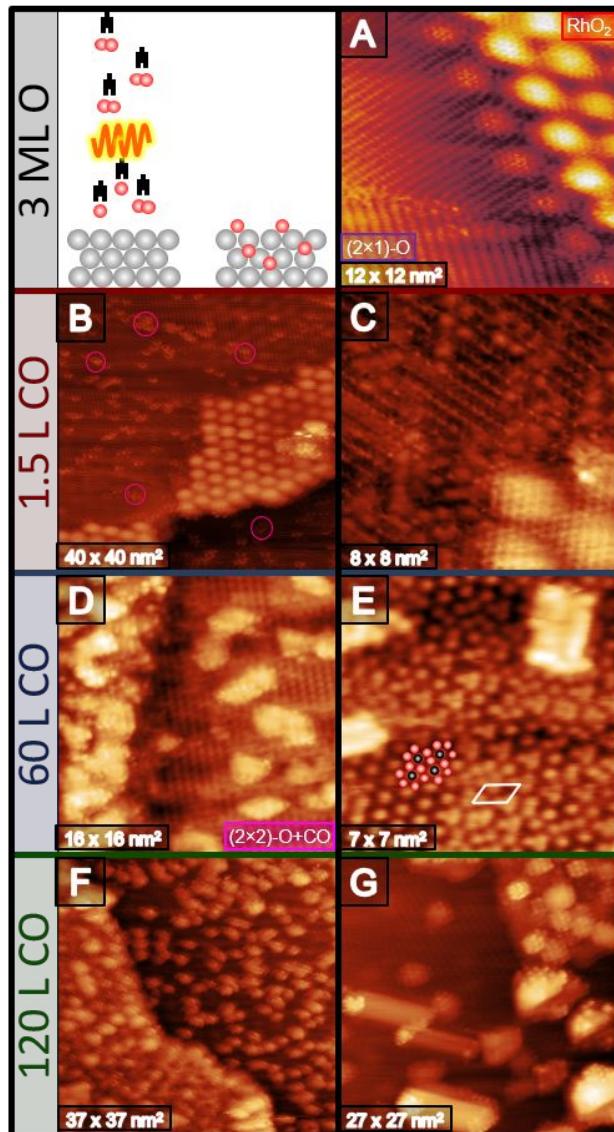
at $T_{\text{s,AO}} = 700$ K, giving $\theta_{O,\text{total}} = 3.74$ ML, as shown by the black trace in Figure 1. However, as shown in Figure 1, simply exposing this surface to CO at $T_{\text{s,CO}} = 300$ K resulted in extensive CO oxidation that rapidly consumed not only the surface O, but O_{sub} as well.

Figure 1. O_{res} (ML) TPD spectra for a $\theta_{O,\text{total}} = 3.74$ ML Rh(111) surface exposed to various exposures of CO (L) at $T_{\text{s,CO}} = 300$ K. Inset - integrated TPD values for O_{res} . Blue circle corresponds to O_{res} from 0.5 ML O + 30 L CO.

Figure 1 shows O_2 desorption TPDs taken after various exposures of the heterogeneous RhO_2 , (2×1) -O, and O_{sub} Rh(111) crystal with $\theta_{O,\text{total}} = 3.74$ ML. The TPDs clearly show that the amount of oxygen remaining on the Rh(111) surface dropped precipitously with CO exposure. Even after a modest

1
2
3 CO exposure of 1.5 ML (which would not even saturate the (2×1)-O adlayer), only half of the
4 initially deposited 3.74 ML of oxygen remained ($\theta_{O,res} = 1.8$ ML) . This was in sharp contrast to
5 (2×2)-O+CO, where, following a 30 L CO exposure, 0.25 ML adsorbed CO reduced the initially
6 deposited 0.5 ML O to 0.25 ML O during the TPD ramp. For longer CO exposures, $\theta_{O,res}$
7 decreased, roughly exponentially, until it was difficult to detect O₂ desorption above the m/z =
8 32 background of the chamber. The dramatic decrease in $\theta_{O,res}$ from 3.74 ML to below detection
9 limits showed that the heterogeneous Rh(111) surface was significantly more reactive than the
10 (2×1)-O adlayer. Even though O_{sub} was stably absorbed up to 700 K (as shown in TPD
11 experiments), it was rapidly consumed during CO exposures significantly lower than its
12 desorption temperature, which should be correlated to O_{sub} having sufficient thermal energy to
13 emerge to the surface. The fact that O_{sub} was removed suggests that it was mobile at 300 K and
14 emergent O atoms were highly reactive.
15
16

17
18
19 Comparison of the apparent CO₂ yields from the $\theta_{O,total} = 3.74$ ML to the $\theta_{O,total} = 0.5$ ML
20 (2×1)-O surface (Table S1) showed the amount of CO₂ desorbing during the TPD increased,
21 despite the dramatic decrease in $\theta_{O,res}$. This suggests that the CO coverage at 300 K was greater
22 than 0.25 ML when $\theta_{O,total} = 3.74$ ML. This would have been possible if the surface area of the
23 metal increased because of surface reconstruction during the CO exposure, or CO formed a
24 higher coverage surface structure. It appears that $\theta_{O,res}$ and the CO₂ yield are indications of two
25 separate processes. Low-temperature CO oxidation, which depletes O_{sub}, occurred *during* the
26 exposure and accounted for the decrease in $\theta_{O,res}$. Therefore, any CO₂ yield in the post-exposure
27 TPD results from reaction between CO (*ad*) and oxygen on the surface. The $\theta_{O,res}$ was whatever
28 was left behind after CO oxidation both during CO exposure and of adsorbed CO during the TPD
29
30


1
2
3 experiment. This was supported by the finding that CO₂ yield was unchanged for 30 L and 60 L
4 CO exposures (Table S1) although $\theta_{O,res}$ decreased by 0.18 ML. Although we were unable to
5 quantify the amount of CO₂ formed during exposure, we were able to at least qualitatively
6 estimate the CO coverages from post-exposure STM images and support the notion that most of
7 the oxygen was reacted during exposure. The activation energy for desorption (E_{des}) of CO on
8 Rh(111) is between 134 and 167 kJ mol⁻¹, and CO desorbs at roughly 330 K.³⁵ Alternatively,
9 CO₂ was only seen to physisorb on Rh(111) as the surface temperature approached 80 K, above
10 which it promptly desorbed.³⁶ Because CO binds more strongly to the Rh surface than CO₂, it
11 was reasonable that CO molecules remained adsorbed at 300 K while any CO₂ formed during the
12 CO exposures rapidly desorbed and was not detected in TPD experiments.
13
14

15 Because structure determines reactivity, tracking the structural evolution of the O+CO
16 covered Rh(111) surface via STM, as pioneered by Winterlin and Ertl,³⁷⁻³⁹ elucidates the surface
17 sites and species reactive in lower temperature CO oxidation as we observed. Following AO
18 exposure, resulting in $\theta_{O,total} = 3.74$ ML, the surface displayed the hexagonal RhO₂ moiré along
19 the step edges and (2×1)-O domains on the terraces, displayed as parallel lines along the surface
20 (Figure 2A). Previous work by Gustafson *et al.*³² suggested that RhO₂ forms along step edges
21 due to oxygen penetration of the crystal at defect sites. As the oxygen concentration increased,
22 growth of the RhO₂ single-layer oxide was observed. It appears that the oxide grew out from the
23 edge on the upper terrace, and although the oxide domains increase with AO exposure, we did
24 not observe completed RhO₂ domains. Additionally, significant O_{sub} forms along with the oxide,
25 and the remaining terraces are covered with the metallic (2×1)-O adlayer; an STM image of the
26 oxidized surface is shown in Figure 2A. The remaining panels in Figure 2 are STM images
27 obtained after increasing CO exposures where T_{s,CO} = 300 K. Figure 2B and 2C are STM images
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

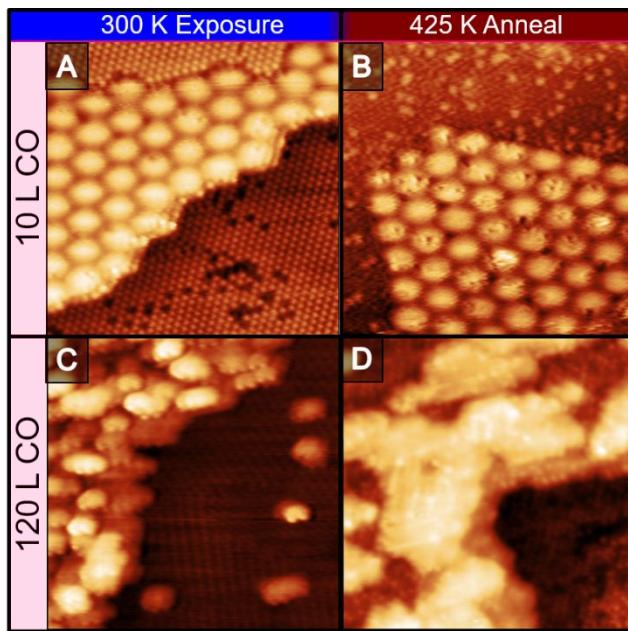
1
2
3 taken after a 1.5 L CO exposure, where the TPD data in Figure 1 indicated that $\theta_{O,res} = 2.49$ ML.
4
5

6 Both STM images show that CO incorporated into the (2×1)-O adlayer, forming small, isolated
7
8

9 (2×2)-O+CO patches. In addition, some
10 disruptions along the boundary between
11 the RhO₂ oxide and the (2×1)-O adlayer
12 were observed. The contrast between
13 the (2×1)-O adlayer and the RhO₂ is
14 clear. Where CO seems to be randomly
15 dispersed throughout the striped (2×1)-O
16 domains, highlighted by the bright pink
17 circles in Figure 2B, the oxide seems to
18 be unaffected, aside from some bright
19 features around what appears to be a
20 defect in the oxide. CO only weakly
21 adsorbs on Rh oxide surfaces, and thus
22 little sticks,^{12, 17} therefore CO exposure
23 only disrupted the RhO₂ moiré at defect
24 sites, as indicated by the large cluster of
25 adsorbates in Figure 2B. Further
26 imaging of the sample following CO
27 exposure showed triangular features on
28 the moiré pattern but not on the bare
29 RhO₂ surface (Figure S2). These
30

47
48 **Figure 2.** STM images after $T_{s,AO} = 700$ K and $T_{s,CO} = 300$ K for various CO exposures. A) RhO₂ 243
49 mV, 301 pA; B) 1.5 L CO, 170 mV, 370 pA; C) 1.5
50 L CO, 414 mV, 260 pA; D) 60 L CO, -180 mV, -1.38
51 nA; E) Cartoon of (2×2)-O+CO adlayer and unit cell
52 of dense CO adlayer on Rh(111), 1.04 V, 490 pA;
53 F) 120 L CO, -280 mV, -0.96 nA; G) 400 mV, 175
54 pA.
55
56
57
58
59
60

triangular structures protrude from the surface, and their lateral spacing remains consistent with the spacing for RhO_2 .³² Protrusions seen along the step edges and defect sites of the moiré suggest that either CO adsorbed or, perhaps reacted away some oxygen, preferentially at these undercoordinated positions.¹⁶ While previous work has suggested that oxygen is replenished by oxygen from RhO_2 during the course of CO oxidation,¹² we saw that the surface composition was essentially unchanged (aside from some CO insertion) after the 1.5 L CO exposure in Figure 2B and 2C in which approximately 1 ML of oxygen was consumed. There must be another source of oxygen: O_{sub} . The terraces remained covered in coexisting domains of the (2×1)-O adlayer and the surface oxide and in any case the surface oxide alone could not account for the approximately 1 ML of O that was removed during the CO exposure. If that were so, the areas of the oxide brims on the terraces would have been significantly reduced; this was not the case. Emergent O_{sub} replenished any surface O reacted during the CO exposure; this supply of O retained the two surface phases. Because it was unlikely that O_{sub} could have regenerated the oxide at 300 K, and the lack of changes to the (2×1)-O domains, the reaction likely took place at the boundary between the two phases. O_{sub} spilling onto the surface maintained the oxygen surface coverage and accounted for the disruptions observed along the boundary.


Figures 2D and 2E show STM images taken after exposing the 3.74 ML O Rh(111) surface to 60 L CO exposure at $T_{\text{s,CO}} = 300$ K. The increased CO exposure, where $\theta_{\text{O,res}} = 0.07$ ML, resulted in much more pronounced changes to the surface than seen after the 1.5 L CO exposure. Little remained of the RhO_2 moiré domain near the step edges, and those areas were now completely consumed by disordered clusters. Additionally, instead of isolated small patches on the terraces, the (2×1)-O adlayer was largely supplanted by the (2×2)-O+CO adlayer. Islands of raised clusters, likely CO stuck on metallic Rh, were also scattered about the terrace. Line

1
2
3 profiles of the internal structure of the disordered clusters on the remnants of RhO₂ domains
4 (Figure S3) were consistent with CO bound directly to Rh in a ($\sqrt{3} \times \sqrt{3}$)R30° overlayer.⁴⁰
5
6 Intermixed with the (2×2)-O+CO adlayer, trimers formed four membered unit cells (Figure 2E).
7
8 These features agree with previous work showing dense CO adlayers on Rh(111).⁴¹ As the
9 surface was covered in the (2×1)-O and RhO₂ oxygen domains before CO exposure, the oxygen-
10 depleted domains of ($\sqrt{3} \times \sqrt{3}$)-CO and dense CO structures (Figure 2D and 2E) indicated that
11 nearly *all* oxygen was removed during CO exposure. Because the amount of residual oxygen is
12 so low (0.07 ML O_{res}), it was likely that all the O_{sub} had been depleted, and any further changes
13 to the surface were simply more CO sticking.
14
15

16
17 The STM images in Figure 2F and 2G show the 3.74 ML O Rh(111) surface after a 120 L
18 CO exposure. This CO exposure gave $\theta_{O,res} < 0.07$ ML, and the STM images show that the
19 surface was completely covered in bright clusters and the (2×2)-O+CO adlayer (Figure 2F) with
20 no evidence of surface oxide or (2×1)-O. The clusters were dispersed throughout the terraces
21 regardless of distance from a step or defect, and the periodicity of the spacing in the bright
22 clusters was ($\sqrt{3} \times \sqrt{3}$)R30° with respect to Rh(111), consistent with CO bound directly to metallic
23 Rh. This surface was entirely denuded of oxygen, aside from the O atoms locked up in the
24 (2×2)-O+CO domains. Because of the excess of CO (on the bare metal patches), nearly all O
25 will oxidize CO in the TPD experiment, leaving behind a vanishingly small amount of residual
26 oxygen, as indicated by the TPD traces in Figure 1. Extensive reconstruction of the surface, such
27 as seen following CO exposure, was consistent with reconstruction seen following extensive
28 oxidation cycles on Rh nanoparticles.⁴² In the present study, the presence of O_{sub} and the
29 boundary between RhO₂ and (2×1)-O domains provided low-barrier pathways for CO oxidation
30
31

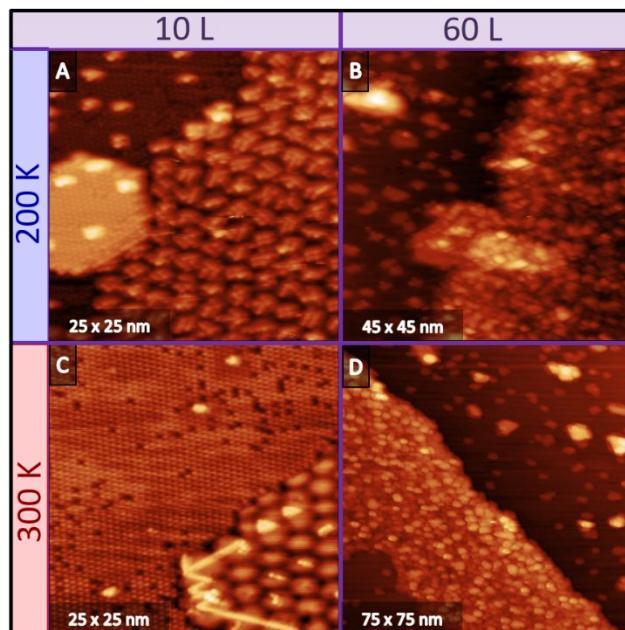
which consumed all oxygen not bound in the stable (2×2)-O+CO adlayer, and left the surface with bare metallic patches and metallic islands, likely remnants of the oxide domains.

In Figure 2, aside from the STM image of the initially prepared oxidized Rh(111) surface (Figure 2A), CO was adsorbed to the surface, as well as whatever oxygen that would go onto react with CO (*ad*) during the TPD ramp. It would be helpful to remove CO (*ad*) to determine how the surface would be changed by CO oxidation during the TPD ramp; furthermore, once CO (*ad*) was removed, any oxygen remaining on the surface would be the residual oxygen quantified in Figure 1. Figure 3 shows a set of STM images of $\theta_{O,\text{total}} = 3.74$ ML Rh(111) surfaces after 10 L and 120 L CO exposures, and annealing at 425 K to remove all CO (*ad*). Because the onset of CO (*ad*) oxidation was ≈ 400 K (Figure S1),^{33,35} annealing at 425 K drove the reaction to completion, leaving behind the residual oxygen, which then allowed determination of the structural consequences of CO exposure and oxidation on the oxidized Rh surface. As shown in Figure 3A, following a 10 L CO exposure at $T_{s,CO} = 300$ K, the terraces were covered in the (2×2)-O+CO adlayer, and the moiré showed some disturbances at defects and along the step edges. Following the 425 K anneal, the (2×2)-O+CO adlayer was no longer present on the terrace (Figure 3B) because CO (*ad*) was oxidized and desorbed during the TPD ramp, leaving behind the residual O_{ad}. The ordered (2×2)-O+CO domains were replaced by some brighter patches amid regions of what appeared to be (2×2)-O domains in Figure 3B. However, the oxide areas behaved differently. The moiré had several depressions following the 425 K anneal (Figure 3B), but the surface oxide was clearly not perturbed to the extent of the (2×1)-O adlayer. These STM images show that the RhO₂ oxide was unreactive during both the CO exposure and subsequent oxidation of CO (*ad*) with modest CO exposures. Also, the terraces where the metallic (2×1)-O was changed to (2×2)-O+CO by the CO exposure behaved as if there were no

Figure 3. STM images ($20 \times 20 \text{ nm}^2$) of CO+O/Rh(111) after exposure at $T_{s,\text{CO}} = 300 \text{ K}$ and post-anneal at 425 K, A) 0.65 V, 430 pA; B) -170 mV, -0.74 nA; C) 0.54 V, 300 pA; D) 0.82 V, 305 pA.

were unchanged, the reaction must have taken place along the boundary between the two phases, where O_{sub} could access the surface, with some contributions from defects on the oxide, because only those locations are perturbed by the CO exposure.

Although the oxide is essentially unchanged, the disruptions to the moiré suggest that some CO oxidation was occurring at defects on the oxide. Presently, we are unable to distinguish the relative CO oxidation contributions from boundary and oxide defect sites, but some insight arises by combining the observations from the STM images with what is known about oxide surface chemistry. As shown in work by Lewandowski *et al.*,⁴³ depressions in oxide films following oxidation reactions are indicative of fully reduced regions, and agree with Mars and van Krevelen (MvK) reaction mechanism for catalytic oxidation.⁴⁴ Additionally, the


O_{sub} or oxide present; the STM images show a similar surface as would result if the entire surface were only (2x2)-O+CO. Although $\theta_{\text{O},\text{res}}$ dropped to 1.2 ML, indicating about 2.5 ML O were reacted away *during* the CO exposure, the oxide persisted and the metallic domains were unaltered at $T_s = 300 \text{ K}$ following CO exposure. Clearly, the reduction in $\theta_{\text{O},\text{res}}$ did not come from the surface species, instead its decrease represents the depletion of O_{sub} . Again, because the oxide and metallic domains

1
2
3 depressions found on the surface oxide following CO exposure and annealing supports that CO₂
4 was produced during the CO exposure and, through a MvK reaction mechanism, CO was
5 abstracting the oxygen from either surface or lattice bound oxygen, depleting the surface of
6 oxygen and generating depressions in the oxide film, consistent with work done by Zhou *et al.*⁴⁵
7
8⁴⁶ While the observed surface evolution is in agreement with MvK reaction mechanism on the
9 oxide, oxidation along the oxide/(2×1)-O boundary appears to be dominant until O_{sub} is depleted
10 as indicated by the conservation of the surface oxide at 10 L CO exposure and the disruptions
11 along the (2×1)-O/moiré domain boundaries at modest CO exposures.
12
13

14
15 When the CO exposure was increased to 120 L at T_{s,CO} = 300 K, as shown in Figure 3C,
16 the STM image showed extensive CO adsorption, and as discussed previously, little oxygen
17 remained on the surface. The terraces were significantly covered by domains of the (2×2)-
18 O+CO with dispersed bright islands. The top of the step edges, where the oxide was before CO
19 exposure, was entirely disrupted by raised clusters of dense CO/Rh adlayers. When this surface
20 was annealed to 425 K (Figure 3D), the bright clusters along the step edge evolved to several
21 large islands where linear patterns were evident. The terrace was also covered in patches of
22 hexagonally arranged adsorbates and smaller depressed, dark regions. If CO only reacted at
23 higher temperatures after adsorption, then the surface evolution would be invariant for all CO
24 exposures; the surface would be saturated with CO in either case. The difference between the 10
25 L and 120 L CO exposure surfaces following a 425 K anneal suggests that the surface was
26 changing during the course of the CO exposure, therefore more CO consumed O. Additionally,
27 the (2×1)-O adlayer and oxygen at domain boundaries was reacted by smaller CO exposures and
28 the surface oxide was consumed after longer CO exposures. Our results are in agreement with
29 Gustafson *et al.*,¹⁷ who showed the (2×1)-O phase to be more active than the surface oxide
30
31

1
2
3 during CO oxidation. However, as reported previously,¹² although the metallic terraces were
4 more reactive, O atoms migrating from the oxide at elevated temperatures provided a steady
5 supply of O for CO oxidation. However, our CO exposures were performed at 300 K, where
6 surface bound O was less mobile than the previous work done at 375 K.¹² Furthermore, the
7 persistence of the oxide suggests that, although it is eventually consumed, the lag in its
8 destruction was because there was another source of oxygen: O_{sub}. Once O_{sub} was depleted, then
9 the oxide was attacked by CO. Again, we are presently unable to determine the relative rates of
10 oxidation on oxide defects and along the boundary, this is an issue we will be pursuing in the
11 future.
12
13

14 Finally, the extent of CO oxidation at decreased T_{s,CO} was considered. In order to
15 determine the lower temperature limit of CO oxidation, we repeated CO exposure to the oxidized
16 surface at T_{s,CO} = 200 K and compared the results to identical CO exposures done at T_{s,CO} = 300
17 K (Figure 4). For each 10L exposure

55 **Figure 4.** STM images of oxidized Rh(111)
56 following CO exposure at T_{s,CO} = 300 K and 200 K.
57 A) -1.22 V, -0.92 nA; B) -0.85 V, -0.70 nA; C) 450
58 mV, 400 pA; D) 0.54 V, 300 pA.

59 (Figure 4A and 4C), the terraces were
60 covered in the (2×2)-O+CO adlayer, and
61 Figure 4A shows an island of what was
62 surface oxide moiré completely covered
63 in the (2×2)-O+CO adlayer. In addition,
64 this island of surface oxide also had
65 some bright clusters forming, similar to
66 those seen in Figure 2 and 3, suggesting
67 surface evolution at temperatures well
68 below the CO oxidation reaction

1
2
3 temperature. Figure 4A shows regular, linear decoration interrupting the hexagonal moiré
4 pattern at 200 K. Alternatively, the surface oxide in Figure 4C shows very few adsorbates.
5
6 Rather, there are sparse, bright adsorbates along the surface oxide/(2×1)-O boundary, and on
7 some oxide defects. The relative number of defects at 200 and 300 K suggests that the lower
8 surface temperature allowed for CO to adsorb to the surface oxide without the presence of
9 extensive defects. Therefore, at lower temperatures, CO adsorption to the surface oxide was
10 favorable, despite the reduced interaction with CO at elevated temperatures. For the 60L CO
11 exposure (Figure 4B and 4D), clusters replaced the surface oxide, and islands began to form on
12 the terrace as seen previously (Figure 2 and 3). The similar structural evolution of the surface
13 following CO exposure at $T_{s,CO} = 200$ K and 300 K indicates low temperature CO oxidation was
14 occurring, but as was seen in Figure 3, there was no discrimination between surface sites at
15 higher CO exposures.
16
17

30 Conclusion

31

32
33 In this study, we demonstrated O_{sub} provides the means for low temperature CO oxidation
34 on highly oxidized Rh(111) surfaces with a mixture of (2×1)-O and RhO_2 domains. STM images
35 showed little changes to the surface after modest CO exposures where a dramatic decrease in the
36 amount of oxygen was observed. CO was seen to adsorb along the (2×1)-O and RhO_2 domains,
37 and along (2×1)-O domain boundaries. This suggests that the reaction occurred along the
38 interfaces of the co-existing domains at 300 K and below, and O_{sub} replenished the reacted
39 oxygen. Prolonged CO exposures consumed all O_{sub} and reacted away the oxide starting at
40 defect sites. Additionally, we have demonstrated that at 200 K, CO was bound to the surface
41 oxide at modest exposures, and the surface undergoes reconstruction during the exposure at 200
42 K. This suggests that, while the metallic O_{ad} phase may be important at elevated temperatures
43
44

1
2
3 for CO oxidation, control of the sample temperature can activate CO oxidation on the surface
4 oxide. The importance of increased oxygen concentration for lowering the activation energy for
5 oxidation has been demonstrated and confirms the key roles of surface oxide and subsurface
6 oxygen in catalytic oxidation, in addition to the metallic O_{ad} phase.
7
8
9
10
11
12
13
14

15 ASSOCIATED CONTENT

16
17

18 **Supporting Information.** Supporting information is provided as a separate document and
19 contains supporting TPD data, image line profiles, and STM images (.doc). This information is
20 available free of charge on the ACS Publications website.
21
22
23

24 **Corresponding Author**

25

26 *Tel.: (773) 508-3136. E-mail: dkillelea@luc.edu.
27
28

29 **Author Contributions**

30

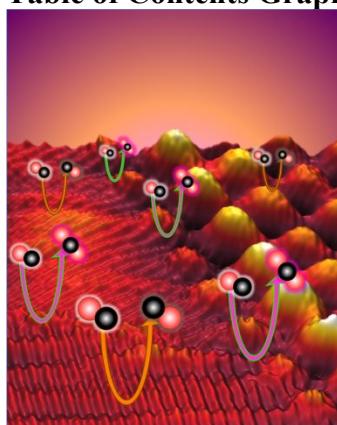
31 The manuscript was written through contributions of all authors. All authors have given
32 approval to the final version of the manuscript.
33
34

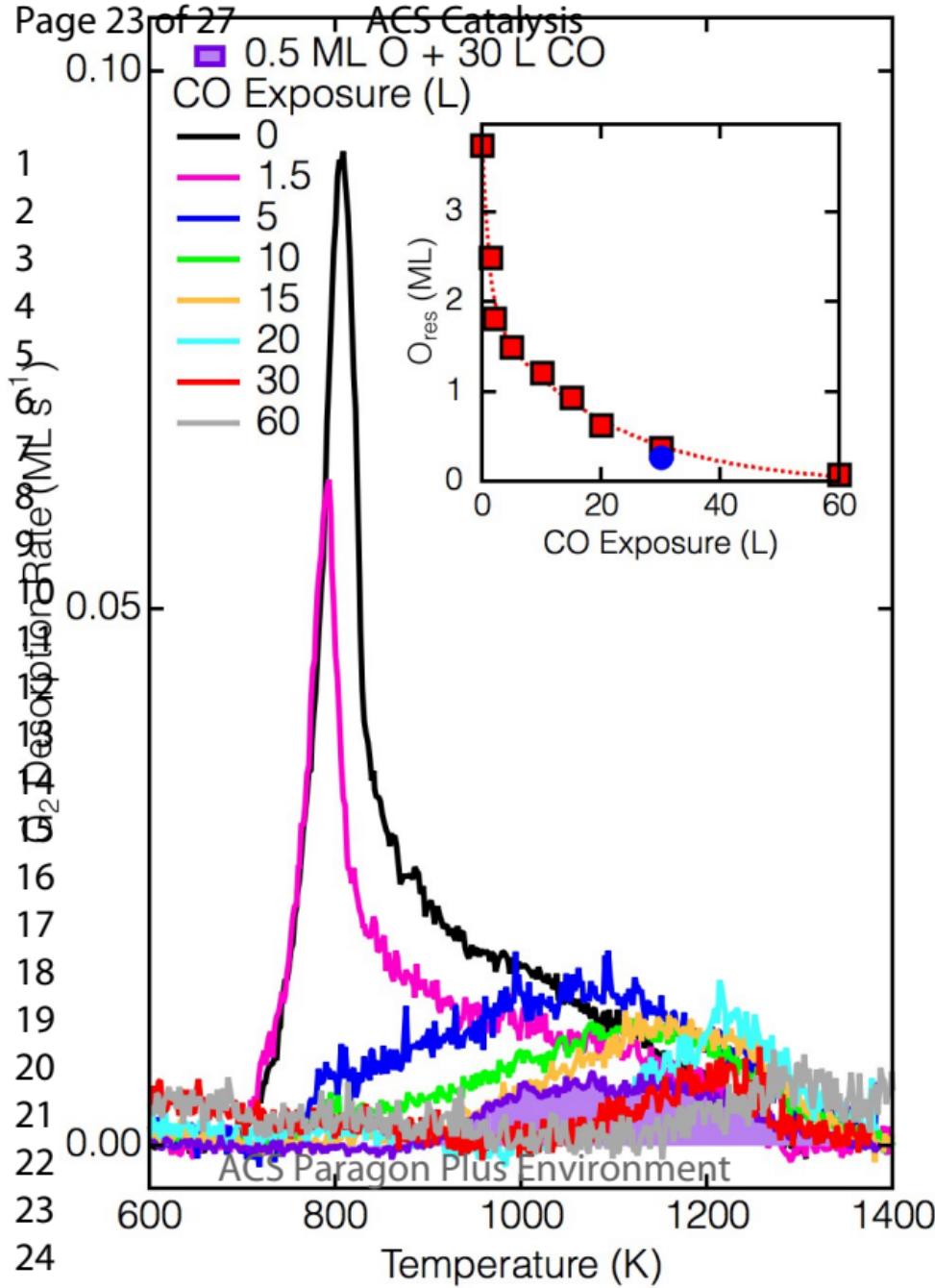
35 **Acknowledgement**

36

37 Acknowledgement is made to the Donors of the American Chemical Society Petroleum
38 Research Fund for partial support of this research through Grant PRF #54770-DNI5. We also
39 wish to acknowledge partial support from the National Science Foundation (CHE-1800291).
40 This work was also supported by the College of Arts and Sciences at Loyola University Chicago.
41 R. G. Farber thanks The Arthur J. Schmitt Foundation for support during this work. We also
42 wish to thank Dr. Kevin Gibson for valuable discussions.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4


References


- 5 (1) Devarajan, S. P.; Hinojosa Jr., J. A.; Weaver, J. F. STM Study of High-Coverage
6 Structures of Atomic Oxygen on Pt(111): p(2×1) and Pt Oxide Chain Structures. *Surf. Sci.* **2008**,
7 602, 3116-3124.
- 8 (2) Weaver, J. F. Surface Chemistry of Late Transition Metal Oxides. *Chem. Rev.* **2013**, *113*,
9 4164-4215.
- 10 (3) Farber, R. G.; Turano, M. E.; Oskorep, E. C. N.; Wands, N. T.; Iski, E. V.; Killelea, D. R.
11 The Quest for Stability: Structural Dependence of Rh(111) on Oxygen Coverage at Elevated
12 Temperature. *J. Phys. Chem. C* **2017**, *121*, 10470 – 10475.
- 13 (4) Derouin, J.; Farber, R. G.; Turano, M. E.; Iski, E. V.; Killelea, D. R. Thermally Selective
14 Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure. *ACS Catal.*
15 **2016**, *6*, 4640-4646.
- 16 (5) Derouin, J.; Farber, R. G.; Killelea, D. R. Combined STM and TPD Study of Rh(111)
17 Under Conditions of High Oxygen Coverage. *J. Phys. Chem. C* **2015**, *119*, 14748-14755.
- 18 (6) Gustafson, J.; Westerström, R.; Mikkelsen, A.; Torrelles, X.; Balmes, O.; Bovet, N.;
19 Andersen, J. N.; Baddeley, C. J.; Lundgren, E. Sensitivity of Catalysis to Surface Structure: The
20 Example of CO Oxidation on Rh Under Realistic Conditions *Phys. Rev. B* **2008**, *78*, 045423.
- 21 (7) Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning Tunneling Microscopy (STM) at
22 High Pressures. Adsorption and Catalytic Reaction Studies on Platinum and Rhodium Single
23 Crystal Surfaces. *Catal. Lett.* **2006**, *107*, 131-141.
- 24 (8) Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu,
25 Q.; Stoltz, D.; Canas-Ventura, M. E.; Verdoes, G.; van Spronsen, M. A.; Bergman, M.; Crama,
26 L.; Taminiau, I.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M. The ReactorSTM:
27 Atomically Resolved Scanning Tunneling Microscopy Under High-Pressure, High-Temperature
28 Catalytic Reaction Conditions. *Rev. Sci. Instrum.* **2014**, *85*, 083703.
- 29 (9) Salmeron, M.; Schlogl, R. Ambient Pressure Photoelectron Spectroscopy: A New Tool
30 for Surface Science and Nanotechnology. *Surf. Sci. Rep.* **2008**, *63*, 169-199.
- 31 (10) Goodman, D. W. Correlations Between Surface Science Models and "Real-World"
32 Catalysts. *J. Phys. Chem.* **1996**, *100*, 13090-13102.
- 33 (11) Reuter, K.; Scheffler, M. Composition, Structure, and Stability of RuO₂(110) as a
34 Function of Oxygen Pressure. *Phys. Rev. B* **2001**, *65*, 035406.
- 35 (12) Lundgren, E.; Gustafson, J.; Resta, A.; Weissenrieder, J.; Mikkelsen, A.; Andersen, J. N.;
36 Kohler, L.; Kresse, G.; Klikovits, J.; Biederman, A.; Schmid, M.; Varga, P. The Surface Oxide
37 as a Source of Oxygen on Rh(111). *J. Electron. Spectrosc. Relat. Phenom.* **2005**, *144*, 367-372.
- 38 (13) Freund, H. J. The Surface Science of Catalysis and More, Using Ultrathin Oxide Films as
39 Templates: A Perspective. *J. Am. Chem. Soc.* **2016**, *138*, 8985-8996.
- 40 (14) Kim, S. M.; Qadir, K.; Seo, B.; Jeong, H. Y.; Joo, S. H.; Terasaki, O.; Park, J. Y. Nature
41 of Rh Oxide on Rh Nanoparticles and Its Effect on the Catalytic Activity of CO Oxidation.
42 *Catal. Lett.* **2013**, *143*, 1153-1161.
- 43 (15) Gao, F.; McClure, S.; Chen, M.; Goodman, D. W. Comment on "Catalytic Activity of the
44 Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions". *J. Phys. Chem. C*
45 **2010**, *114*, 22369-22371.
- 46 (16) Gustafson, J.; Westerstrom, R.; Balmes, O.; Resta, A.; van Rijn, R.; Torrelles, X.;
47 Herbschleb, C. T.; Frenken, J. W. M.; Lundgren, E. Catalytic Activity of the Rh Surface Oxide:
48 CO Oxidation over Rh(111) under Realistic Conditions. *J. Phys. Chem. C* **2010**, *114*, 4580-4583.

- (17) Gustafson, J.; Balmes, O.; Zhang, C.; Shipilin, M.; Schaefer, A.; Hagman, B.; Merte, L. R.; Martin, N. M.; Carlsson, P. A.; Jankowski, M.; Crumlin, E. J.; Lundgren, E. The Role of Oxides in Catalytic CO Oxidation over Rhodium and Palladium. *ACS Catal.* **2018**, *8*, 4438-4445.
- (18) Gustafson, J.; Westerström, R.; Balmes, O.; Resta, A.; van Rijn, R.; Torrelles, X.; Herbschleb, C. T.; Frenken, J. W. M.; Lundgren, E. Reply to “Comment on ‘Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions’”. *J. Phys. Chem. C* **2010**, *114*, 22372-22373.
- (19) McClure, S. M.; Lundwall, M.; Yang, F.; Zhou, Z.; Goodman, D. W. CO Oxidation on Rh/SiO₂/Mo(112) Model Catalysts at Elevated Pressures. *J. Phys. Chem. C* **2009**, *113*, 9688-9697.
- (20) Bian, Y.; Kim, M.; Li, T.; Asthagiri, A.; Weaver, J. F. Facile Dehydrogenation of Ethane on the IrO₂(110) Surface. *J. Am. Chem. Soc.* **2018**, *140*, 2665-2672.
- (21) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-Temperature Activation of Methane on the IrO₂(110) Surface. *Science* **2017**, *356*, 299-303.
- (22) Derouin, J.; Farber, R. G.; Heslop, S. L.; Killelea, D. R. Formation of Surface Oxides and Ag₂O Thin Films with Atomic Oxygen on Ag(111). *Surf. Sci.* **2015**, *641*, L1-4.
- (23) Umemoto, H.; Kusanagi, H. Catalytic Decomposition of O₂, NO, N₂O, and NO₂ on a Heated Ir Filament to Produce Atomic Oxygen. *J. Phys. D: Appl. Phys.* **2008**, *41*, 225505.
- (24) Kolb, M. J.; Farber, R. G.; Derouin, J.; Badan, C.; Calle-Vallejo, F.; Juurlink, L. B. F.; Killelea, D. R.; Koper, M. T. M. Double-Stranded Water on Stepped Platinum Surfaces. *Phys. Rev. Lett.* **2016**, *116*, 136101.
- (25) Matsushima, T.; Matsui, T.; Hashimoto, M. Kinetic Studies on the CO Oxidation on a Rh(111) Surface by Means of Angle-Resolved Thermal Desorption. *J. Chem. Phys.* **1984**, *81*, 5151.
- (26) Jaworowski, A. J.; Beutler, A.; Strisland, F.; Nyholm, R.; Setlik, B.; Heskett, D.; Andersen, J. N. Adsorption Sites in O And CO Coadsorption Phases on Rh(111) Investigated by High-Resolution Core-Level Photoemission. *Surf. Sci.* **1999**, *431*, 33-41.
- (27) Hopstaken, M. J. P.; Niemantsverdriet, J. W. Structure Sensitivity in the CO Oxidation on Rhodium: Effect of Adsorbate Coverages on Oxidation Kinetics on Rh(100) and Rh(111). *J. Chem. Phys.* **2000**, *113*, 5457-5465.
- (28) Krenn, G.; Bako, I.; Schennach, R. CO Adsorption and CO and O Coadsorption on Rh(111) Studied by Reflection Absorption Infrared Spectroscopy and Density Functional Theory. *J. Chem. Phys.* **2006**, *124*, 144703.
- (29) Marchini, S.; Sachs, C.; Wintterlin, J. STM Investigation of the (2×2)O and (2×1)O Structures on Rh(111). *Surf. Sci.* **2005**, *592*, 58-64.
- (30) Kizilkaya, A. C.; Gracia, J. M.; Niemantsverdriet, J. W. A Direct Relation between Adsorbate Interactions, Configurations, and Reactivity: CO Oxidation on Rh(100) and Rh(111). *J. Phys. Chem. C* **2010**, *114*, 21672-21680.
- (31) Schwegmann, S.; Over, H.; DeRenzi, V.; Ertl, G. The Atomic Geometry of the O and CO+O Phases on Rh(111). *Surf. Sci.* **1997**, *375*, 91-106.
- (32) Gustafson, J.; Mikkelsen, A.; Borg, M.; Lundgren, E.; Kohler, L.; Kresse, G.; Schmid, M.; Varga, P.; Yuhara, J.; Torrelles, X.; Quiros, C.; Andersen, J. N. Self-Limited Growth of a Thin Oxide Layer on Rh(111). *Phys. Rev. Lett.* **2004**, *92*, 126102.
- (33) Gibson, K. D.; Killelea, D. R.; Sibener, S. J. Comparison of the Surface and Subsurface Oxygen Reactivity and Dynamics with CO Adsorbed on Rh(111). *J. Phys. Chem. C* **2014**, *118*, 14977-14982.

- 1
2
3 (34) Gibson, K. D.; Viste, M.; Sanchez, E. C.; Sibener, S. J. High Density Adsorbed Oxygen
4 on Rh(111) and Enhanced Routes to Metallic Oxidation Using Atomic Oxygen. *J. Chem. Phys.*
5 **1999**, *110*, 2757-2760.
6
7 (35) Campbell, C. T.; White, J. M. The Adsorption, Desorption, and Reactions of CO and O₂
8 on Rh. *J. Catal.* **1978**, *54*, 289-302.
9
10 (36) Freund, H. J.; Roberts, M. W. Surface Chemistry of Carbon Dioxide. *Surf. Sci. Rep.*
11 **1996**, *25*, 225-273.
12
13 (37) Rößler, M.; Geng, P.; Wintterlin, J. A High-Pressure Scanning Tunneling Microscope for
14 Studying Heterogeneous Catalysis. *Rev. Sci. Instrum.* **2005**, *76*, 023705.
15
16 (38) Wintterlin, J. "Scanning Tunneling Microscopy Studies of Catalytic Reactions" In
17 *Advances in Catalysis*, Academic Press: Cambridge, MA USA, 2000; Vol. 45, pp 131-206.
18
19 (39) Zambelli, T.; Wintterlin, J.; Trost, J.; Ertl, G. Identification of the "Active Sites" of a
20 Surface-Catalyzed Reaction. *Science* **1996**, *273*, 1688-1690.
21
22 (40) Thiel, P. A.; Williams, E. D.; Yates, J. T.; Weinberg, W. H. The Chemisorption of CO on
23 Rh(111). *Surf. Sci.* **1979**, *84*, 54-64.
24
25 (41) Cernota, P.; Rider, K.; Yoon, H. A.; Salmeron, M.; Somorjai, G. Dense Structures
26 Formed by CO on Rh(111) Studied by Scanning Tunneling Microscopy. *Surf. Sci.* **2000**, *445*,
27 249-255.
28
29 (42) Nolte, P.; Stierle, A.; Jin-Phillipp, N. Y.; Kasper, N.; Schulli, T. U.; Dosch, H. Shape
30 Changes of Supported Rh Nanoparticles During Oxidation and Reduction Cycles. *Science* **2008**,
31 *321*, 1654-1658.
32
33 (43) Lewandowski, M.; Groot, I. M. N.; Shaikhutdinov, S.; Freund, H. J. Scanning Tunneling
34 Microscopy Evidence for the Mars-Van Krevelen Type Mechanism of Low Temperature CO
35 Oxidation on an FeO(111) Film on Pt(111). *Catal. Today* **2012**, *181*, 52-55.
36
37 (44) Doornkamp, C.; Ponec, V. The Universal Character of the Mars and van Krevelen
38 Mechanism. *J. Mol. Catal. A: Chem.* **2000**, *162*, 19-32.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table of Contents Graphic

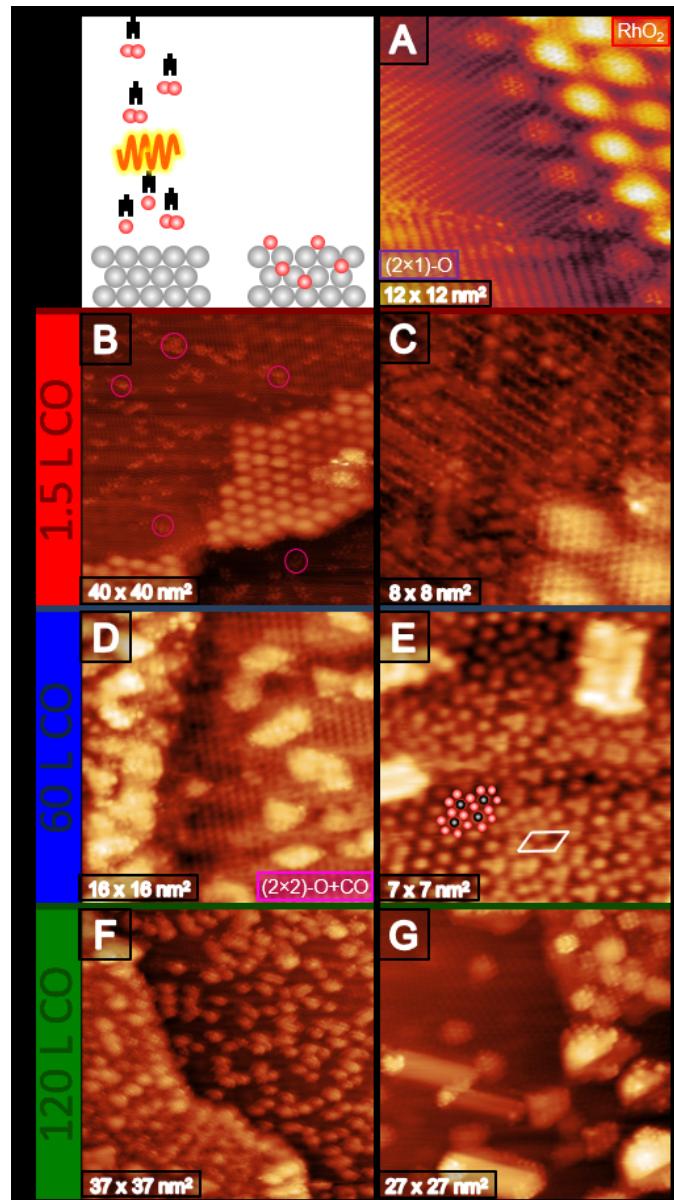
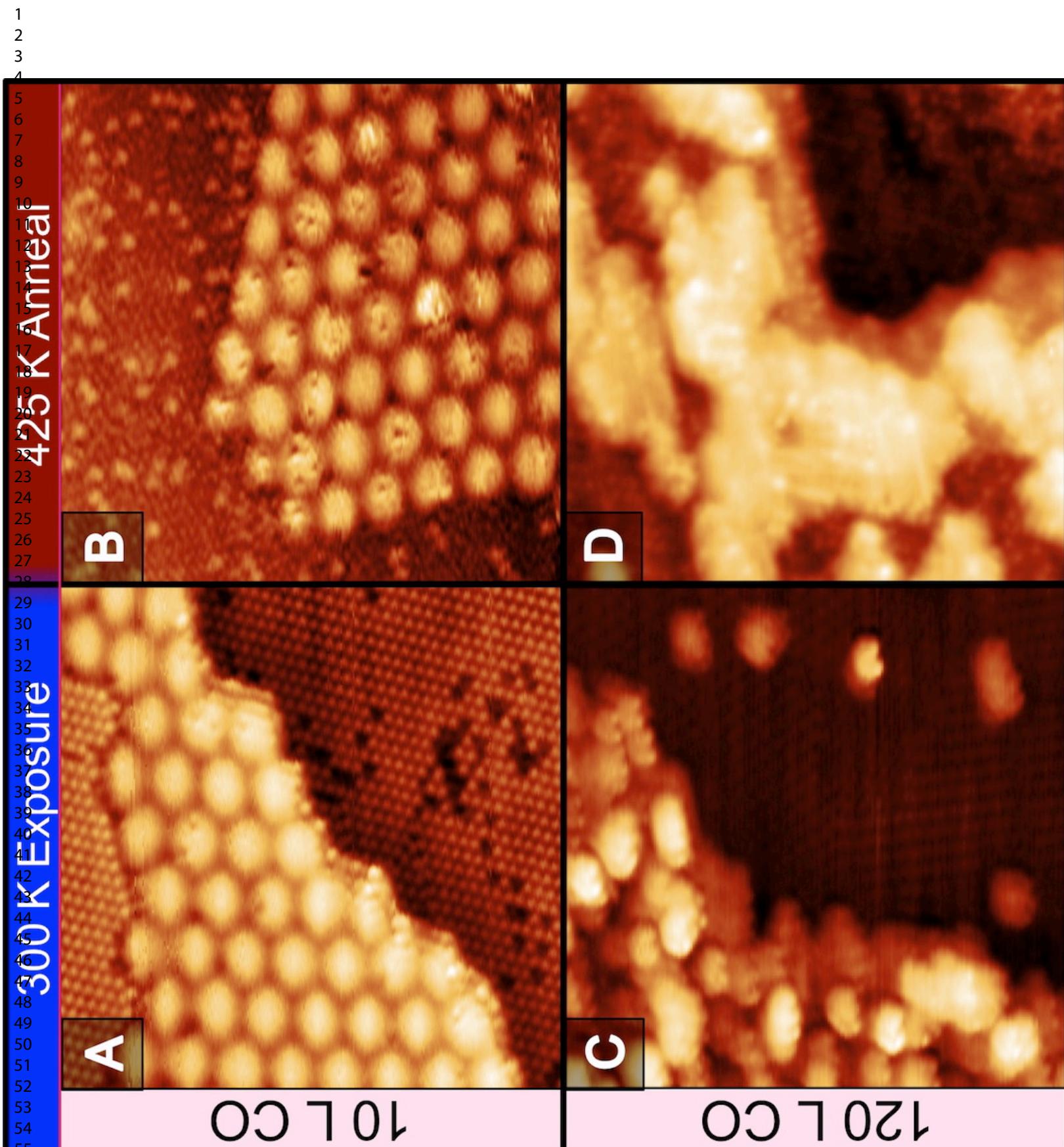



Figure 2. STM images after $T_s, AO = 700$ K, $T_s, CO = 300$ K for various CO exposures. A) RhO_2 243 mV, 301 pA; B) 1.5 L CO, 170 mV, 370 pA; C) 1.5 L CO, 414 mV, 260 pA; D) 60 L CO, -180 mV, -1.38 nA; E) Cartoon of (2×2) -O+CO adlayer and unit cell of dense CO adlayer on Rh(111), 1.04 V, 490 pA; F) 120 L CO, -280 mV, -0.96 nA; G) 400 mV, 175 pA.

86x154mm (150 x 150 DPI)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10 L

60 L

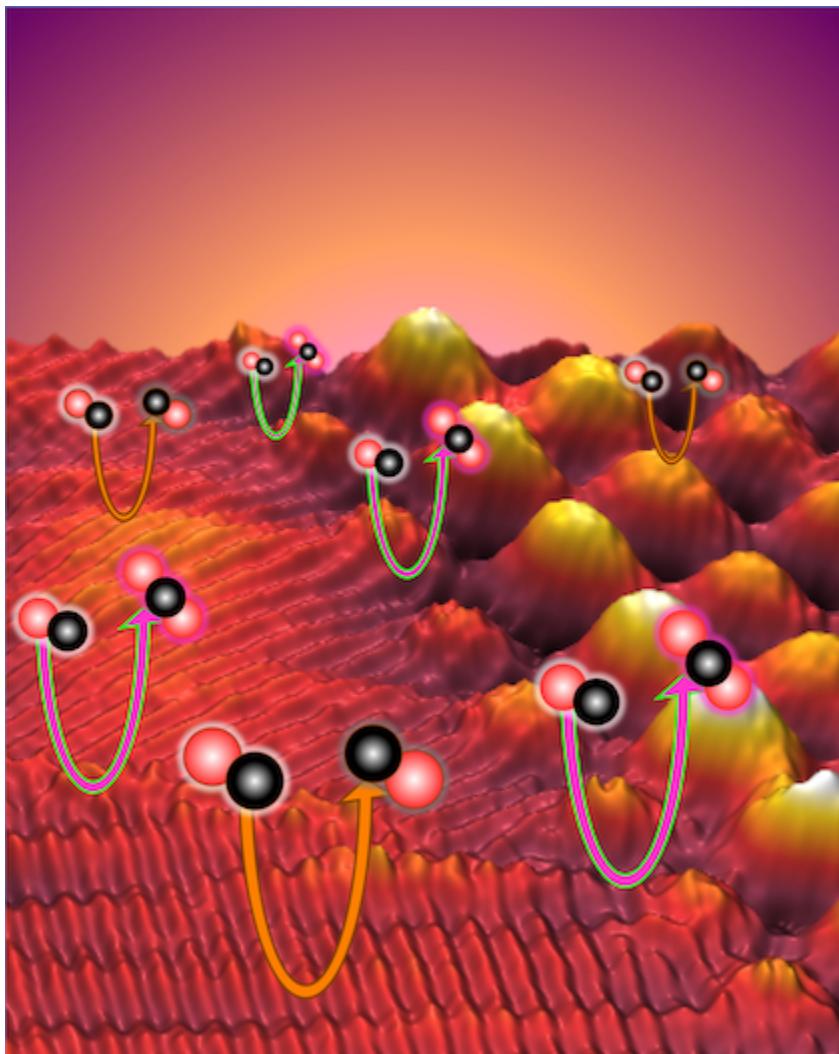
A

25 x 25 nm

B

45 x 45 nm

C


25 x 25 nm

D

75 x 75 nm

200 K

300 K

TOC Image

35x44mm (300 x 300 DPI)