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Abstract

Propensity score weighting is a tool for causal inference to adjust for

measured confounders in observational studies. In practice, data often

present complex structures, such as clustering, which make propensity

score modeling and estimation challenging. In addition, for clustered

data, there may be unmeasured cluster-level covariates that are re-

lated to both the treatment assignment and outcome. When such

unmeasured cluster-speci�c confounders exist and are omitted in the

propensity score model, the subsequent propensity score adjustment

may be biased. In this article, we propose a calibration technique

for propensity score estimation under the latent ignorable treatment

assignment mechanism, i. e., the treatment-outcome relationship is un-

confounded given the observed covariates and the latent cluster-speci�c

confounders. We impose novel balance constraints which imply exact

balance of the observed confounders and the unobserved cluster-level

confounders between the treatment groups. We show that the pro-

posed calibrated propensity score weighting estimator is doubly robust

in that it is consistent for the average treatment e�ect if either the

propensity score model is correctly speci�ed or the outcome follows a

linear mixed e�ects model. Moreover, the proposed weighting method

can be combined with sampling weights for an integrated solution to

handle confounding and sampling designs for causal inference with clus-

tered survey data. In simulation studies, we show that the proposed

estimator is superior to other competitors. We estimate the e�ect of

School Body Mass Index Screening on prevalence of overweight and

obesity for elementary schools in Pennsylvania.
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1 Introduction
A main statistical approach to causal inference is built on the potential outcomes
framework (Rubin, 1974), in which a causal effect is defined as a comparison of the
potential outcomes of the same units under different treatment levels. Observational
studies are often used to infer causal effects in medical and social science studies. In
observational studies, there often is confounding by indication: some covariates are
predictors of both the treatment and outcome. One implication is that the covariate
distributions differ between the treatment groups. Under the assumption of ignor-
able treatment assignment and that all confounders are observed, the causal effect
of treatments can be obtained by comparing the outcomes for units from different
treatment groups, adjusting for the observed confounders. Rosenbaum and Rubin
(1983) further demonstrated the central role of the propensity score, and showed
that adjusting for the propensity score removes confounding bias. An extensive lit-
erature thereafter proposed a number of estimators based on the propensity score,
including matching (Rosenbaum and Rubin, 1985, Stuart, 2010, Abadie and Im-
bens, 2016), weighting (Hirano and Imbens, 2001, Bang and Robins, 2005, Cao,
Tsiatis and Davidian, 2009), and stratification (Rosenbaum and Rubin, 1984, Yang,
Imbens, Cui, Faries and Kadziola, 2016). In particular, propensity score weight-
ing can be used to create a weighted population where the covariate distributions
are balanced between the treatment groups, on average. Therefore, under some
assumptions, the comparison between the weighted outcomes has a causal interpre-
tation; see Imbens and Rubin (2015) for a textbook discussion.

Propensity score weighting has been mainly developed and applied in set-
tings with independently and identically distributed (i.i.d.) data. However, in many
research areas, data often present complex structures, such as clustering. Clus-
tering can be formed in diverse ways. First, clusters are created by experimental
design. The classical examples are given in educational and health studies, where
students are nested in schools (e.g. Hong and Raudenbush, 2006) and patients are
grouped in hospitals (e.g. Griswold, Localio and Mulrow, 2010). Second, clusters
are induced by high-level features, such as common environmental and contextual
factors, shared by individual units (e.g. Li, Zaslavsky and Landrum, 2013). For a
motivating example, we examine the 2007–2010 body mass index (BMI) surveil-
lance data from Pennsylvania Department of Health to estimate the effect of School
Body Mass Index Screening (SBMIS) on the annual overweight and obesity preva-
lence in elementary schools in Pennsylvania. The data set includes 493 schools
(units) in Pennsylvania, which are clustered by two factors: type of community (ru-
ral, suburban, and urban), and population density (low, median, and high). The data
structure is schools nested within high-level of environments.

In this article, we address the problem of estimating the average treatment



effect from clustered data, where the treatment is administered at the unit level, the
covariates are measured at both unit and cluster levels (where cluster-level covari-
ates are cluster characteristics shared by all units within clusters), and finally the
outcome is measured at the unit level. Even if we collect a rich set of unit-level
covariates, there may be unobserved cluster-level covariates that are related to both
the treatment assignment and outcome. This problem is ubiquitous in clustered
data where data are collected sufficiently at the unit level, however insufficient in-
formation is available at the cluster level. In our motivating example, we have
unit-level school covariates including the baseline prevalence of overweight and
obesity and percentage of reduced and free lunch. However, certain key contextual
factors, such as accessibility to and quality of care, socioeconomic and environmen-
tal variables, which can be very different across clusters, are preceivably important
factors for schools implementing prevention screening strategy and children’s obe-
sity rate. Unfortunately, these cluster-specific confounders are not available. When
such unmeasured confounders exist and are omitted in the propensity score model,
the subsequent analysis may be biased.

We make the stable unit and treatment version assumption (SUTVA; Rubin,
1978). Under the SUTVA, potential outcomes for each unit are not affected by
the treatments assigned to other units. This assumption is not uncommon. In our
application, the treatment was implemented school-wise. The potential outcomes
for one school are likely to be unaffected by the treatments implemented at other
schools, and therefore the SUTVA is plausible. However, in other settings, this
assumption may not hold. A classical example is given in infectious diseases (Ross,
1916, Hudgens and Halloran, 2008), where whether one person becomes infected
depends on who else in the population is vaccinated. In this article, we will not
discuss the case when the SUTVA is violated.

The literature has proposed different methods for clustered data. Oakes
(2004) and VanderWeele (2008) used multi-level models for the potential outcomes
to draw causal conclusions in neighborhood effect studies. A series of papers has
proposed various propensity score matching algorithms with multi-level models for
the propensity score; see, e.g., Hong and Raudenbush (2006), Hong and Yu (2007,
2008), Kim and Seltzer (2007), Kelcey (2009), Griswold et al. (2010), Arpino and
Mealli (2011), Thoemmes and West (2011), and Kim and Steiner (2015). Recently,
Li et al. (2013), Leite, Jimenez, Kaya, Stapleton, MacInnes and Sandbach (2015)
and Schuler, Chu and Coffman (2016) examined propensity score weighting meth-
ods to reduce selection bias in multi-level observational studies. Xiang and Tara-
sawa (2015) employed propensity score stratification and multi-level models to bal-
ance key covariates between treatment groups of a cross-state sample of students.
For comparison of the effectiveness of various propensity score strategies; see, e.g.,
Su and Cortina (2009), Griswold et al. (2010) and Eckardt (2012). Among these



works, researchers considered different modeling choices for the propensity score
and outcome, such as generalized linear fixed/mixed effects models. The fixed ef-
fects models create dummy variables for each cluster, regarding the cluster variables
as fixed; while the random effects models use random intercepts for each cluster,
treating the cluster variables as random. Nonetheless, all existing methods require
correct specification of the propensity score and outcome models.

The goal of this article is to develop a novel propensity score weighting
method for causal inference with clustered data in the presence of unmeasured
cluster-level confounders. An important contribution is to provide a robust con-
struction of inverse propensity score weights under the latent ignorable treatment
assignment mechanism; i.e., the treatment-outcome relationship is unconfounded
given the observed confounders and the latent cluster-level confounders. The key
insight is based on the central role of the propensity score in balancing the covari-
ate distributions between the treatment groups. For propensity score estimation, we
then adopt the calibration technique and impose balance constraints for moments
of the observed and latent cluster-level confounders between the treatment groups.
Because the latent cluster-level confounders are not observed, we impose stronger
balance constraints enforcing the sum of weighted treatments equal the cluster size
for all clusters, which imply the exact balance of the cluster-level confounders.
The proposed propensity score weighting estimator is doubly robust (e.g., Robins,
Rotnitzky and Zhao, 1994, Lunceford and Davidian, 2004, Bang and Robins, 2005,
Kang and Schafer, 2007) in the sense that it is consistent for the average treatment
effect if either the propensity score model is correctly specified or the outcome fol-
lows a linear mixed effect model. In general cases, if the conditional mean of the
outcome given the observed confounders and the latent cluster-level confounders
can be well approximated by the power series of confounders, imposing constraints
on these power series can also eliminate confounding biases, and the propensity
score weighting estimator is consistent. The simulation results demonstrate that the
proposed estimator has improved robustness to model misspecification compared
to existing methods.

Importantly, our results are in agreement with some existing findings that
misspecification of the propensity score model may have minor impact on the bias
of the estimator for the average treatment effect (Rubin, 2004). This is especially
true in the matching and stratification algorithm, because the estimated propensity
score is only used to balance the covariate distributions instead of directly in es-
timation. Our results suggest that if both individual and cluster-level confounders
achieve a good balance between the treatment groups, the proposed weighting esti-
mator for the average treatment effect is robust.

Clustered data often arise in survey sampling. In complex surveys, the chal-
lenge is to take design information or design weights into account when developing



propensity score methods for causal inference. The proposed weighting method can
be combined with sampling weights for an integrated solution to handle confound-
ing and sampling designs for causal inference with clustered survey data.

This article is organized as follows. Section 2 introduces the data structure
and assumptions, defines the estimands, and presents existing inverse probability of
treatment weighting estimators for clustered data. Section 3 proposes our estima-
tors. Section 4 presents the main theoretical results. Section 5 extends the proposed
calibration estimator to clustered survey data. Section 6 reports a simulation study
to evaluate finite sample properties of our estimator. Section 7 applies our methods
to investigate the effect of SBMIS on the annual overweight and obesity prevalence
in elementary schools in Pennsylvania. A concluding remark is given in Section 8.
Finally, proofs of the main theoretical results and additional simulation results are
provided in the Appendix.

2 Basic setup

2.1 Observed data structure

To fix the ideas, we first focus on two-level clustered data. The extension to clus-
tered survey data will be addressed in Section 5.

Suppose we have a two-level data structure where at the first level we have m
clusters, and at the second level each cluster i includes ni units. Denote the sample
size by n = ∑

m
i=1 ni. For unit j in cluster i, we observe a p-dimensional vector of

pre-treatment covariates Xi j, which may include the observed individual and cluster
characteristics, a binary treatment variable Ai j ∈{0,1}, with 0 and 1 being the labels
of control and active treatments, respectively, and lastly an outcome variable Yi j.

2.2 Potential outcomes and assumptions

We use the potential outcomes framework (Rubin, 1974). Assume that each unit
has two potential outcomes: Yi j(0), the outcome that would be realized, possibly
contrary to the fact, had the unit received the control treatment, and Yi j(1), the out-
come that would be realized, possibly contrary to the fact, had the unit received the
active treatment. The observed outcome is Yi j = Yi j(Ai j). This notation implicitly
makes the SUTVA (Rubin, 1978) that there is no interference between units and no
versions of each treatment.

Suppose that clusters are random draws from a super-population of clusters,
and that for observations within cluster i, {Ai j,Xi j,Yi j(0),Yi j(1) : j = 1, . . . ,ni} i.i.d.
follow a cluster-specific super-population model. Our goal is to estimate the average



treatment effect, τ = E[n−1
∑

m
i=1 ∑

ni
j=1{Yi j(1)−Yi j(0)}], where the expectation is

taken with respect to the super-population model ξ of all random variables, which
will be specified later. In the binary case, τ is called the causal risk difference.

The fundamental problem is that not all potential outcomes can be observed
for each unit in the sample; only one potential outcome, the outcome correspond-
ing to the treatment the unit actually followed, can be observed (Holland, 1986).
Throughout, we use Z1⊥Z2 | Z3 to denote the conditional independence of Z1 and
Z2 given Z3 (Dawid, 1979). With unstructured i.i.d. data, Rubin (1974) described
the following assumption for identifying the average treatment effect.

Assumption 1 (Ignorability) {Yi j(0),Yi j(1)}⊥Ai j | Xi j.

Assumption 1 indicates that all confounders are included in Xi j.
For clustered data, confounding may vary across clusters and are related to

some cluster-level covariates that are not always observable. In these cases, As-
sumption 1 does not hold. Instead, we assume a cluster-specific latent variable Ui
that summarizes the effect of unobserved cluster-level confounders, and consider
the following modified ignorability assumption.

Assumption 2 (Latent ignorability) {Yi j(0),Yi j(1)}⊥Ai j | Xi j,Ui.

Under Assumption 2, the propensity score becomes pr{Ai j = 1 |Xi j,Ui,Yi j(0),
Yi j(1)} = pr(Ai j = 1 | Xi j,Ui) ≡ e(Xi j,Ui). Moreover, we make the standard posi-
tivity assumption for the propensity score.

Assumption 3 (Positivity) There exist constants e and ē such that, with probability
1, 0 < e < e(Xi j,Ui)< ē < 1.

Remark 1 In our setting, the treatment is assigned at the unit level. Assumption
3 implies that each unit in each cluster has a positive probability to receive either
treatment or control. Therefore, our setting does not apply to the settings with
a cluster-level treatment where all units in one cluster receive one treatment level.
For these settings, we refer the interested readers to Stuart (2007) and VanderWeele
(2008).



Under Assumption 2, we write the joint distribution of {(Ai j,Xi j,Ui,Yi j) :
i = 1, . . . ,m; j = 1, . . .ni} as

m

∏
i=1

f (Ui)
ni

∏
j=1

(
f (Xi j |Ui)

{
f1(Yi j | Xi j,Ui)e(Xi j,Ui)

}Ai j

×
[

f0(Yi j | Xi j,Ui){1− e(Xi j,Ui)}
]1−Ai j

)
,

where fa(· |Xi j,Ui) is a conditional distribution of Yi j(a) given (Xi j,Ui), for a= 0,1.
The literature has considered generalized linear mixed effects models for

fa(Yi j | Xi j,Ui) and e(Xi j,Ui); see, e.g., Arpino and Mealli (2011), Thoemmes and
West (2011), Li et al. (2013). Following the literature, we assume generalized linear
mixed effects models for the outcome and propensity score.

Assumption 4 (Outcome model) The potential outcome Yi j(a) follows a general-
ized linear mixed effects model with a random intercept Ui as

µi j(a) = ga(XT
i jβa +Ui), (1)

where µi j(a) = E{Yi j(a) | Xi j,Ui}, ga(·) is an unspecified inverse link function, and
βa is a p-dimensional vector.

Assumption 5 (Propensity score model) The actual treatment Ai j given (Xi j,Ui)
follows a generalized linear mixed effects model with a random intercept Ui as

e(Xi j,Ui;η) = h(XT
i jη +Ui), (2)

where h(·) is an unspecified inverse link function, and η is a q-dimensional vector
of parameters.

There are two different model specifications regarding the cluster-level con-
founders. The fixed effects model treats Ui as fixed but unknown parameters across
clusters. In this fixed-effects approach, treatment assignment is an ignorable pro-
cess, which complies with Assumption 1 given that Xi j stacks all observed con-
founders and cluster dummy variables. On the other hand, the random effects model
treats Ui as random and i.i.d. drawn from a distribution. The difference between
the two modeling strategies has been addressed in both statistics and econometrics
literature; see, e.g., Baltagi (1995) and Wooldridge (2002). Briefly, there are both
statistical and logical considerations. First, if the number of clusters is relatively
large, the parameter estimates in the fixed effects model are inconsistent (Wallace
and Hussain, 1969). In this case, the random effects approach is preferred. Second,
the fixed effects approach does not make distributional assumptions of the cluster-
level confounders; whereas, the random effects approach assumes that Ui is random
and i.i.d. drawn from a distribution.



2.3 Inverse probability of treatment weighting estimator

To estimate the average treatment effect τ , let ν = (U1, . . . ,Um) denote the vector
of cluster-level confounders. Under (2), the inverse propensity score or probability
of treatment weighting (IPTW) estimator of τ can be expressed as

τ̂IPTW(ν ,η) =
1
n

m

∑
i=1

ni

∑
j=1

{
Ai jYi j

e(Xi j,Ui;η)
−

(1−Ai j)Yi j

1− e(Xi j,Ui;η)

}
. (3)

Under Assumptions 2 and 3, if the propensity score is known, it is straightforward
to verify that τ̂IPTW(ν ,η) is unbiased for τ . Moreover, if it is unknown but depends
only on fixed parameters, τ̂IPTW(ν ,η) with the consistently estimated propensity
score is asymptotically unbiased for τ . The challenge with clustered data is that
τ̂IPTW(ν ,η) may depend on a growing number of unobserved cluster-level con-
founders. To resolve this issue, there are several options:

(i) Weight based on predicted random intercepts; i.e., treat the Ui’s in model (2)
as random intercepts, and predict the propensity score as e(Xi j,Û ran

i ; η̂ ran),
where Û ran

i is the mode of a predictive distribution for Ui given the observed
Ai j and Xi j, and η̂ ran is the maximum likelihood estimator of η .

(ii) Weight based on estimated fixed intercepts; i.e., treat the Ui’s in model (2) as
fixed intercepts, and estimate the propensity score as e(Xi j,Ûfix

i ; η̂fix), where
Ûfix

i and η̂fix are maximum likelihood estimators.

Let τ̂IPTW(ν ,η) in (3) be denoted as τ̂ran or τ̂fix when the propensity score is pre-
dicted under option (i) or estimated under option (ii), respectively. The two ap-
proaches suffer several drawbacks. First, to obtain τ̂ran often involves numerical
integration, which can be computationally heavy. Second, the predicted value of
the propensity score does not guarantee the balance of covariate distributions be-
tween the treatment groups, due to the shrinkage of random intercepts toward zero.
Lastly, it is well-known that under (2), τ̂fix is not consistent as m increases, be-
cause when treating Ui as fixed, the number of parameters has an order similar to m
(Skinner et al., 2011).

3 Proposed methodology
To motivate our estimation of the propensity score, we note

E
{

A
e(X ,U)

(
X
U

)}
= E

[
E
{

A
e(X ,U)

| X ,U
}(

X
U

)]
= E

{(
X
U

)}
, (4)



and

E
{

1−A
1− e(X ,U)

(
X
U

)}
= E

[
E
{

1−A
1− e(X ,U)

| X ,U
}(

X
U

)]
= E

{(
X
U

)}
. (5)

Equations (4) and (5) clarify the central role of the propensity score in balancing the
covariate distributions between the treatment groups in the super-population. For
simplicity of exposition, let ei j be the propensity score for unit j in cluster i, and
let êi j be the corresponding estimate. We consider the propensity score estimate to
satisfy the following constraints:

m

∑
i=1

ni

∑
j=1

Ai j

êi j
Xi j =

m

∑
i=1

ni

∑
j=1

1−Ai j

1− êi j
Xi j =

m

∑
i=1

ni

∑
j=1

Xi j, (6)

ni

∑
j=1

Ai j

êi j
=

ni

∑
j=1

1−Ai j

1− êi j
=

ni

∑
j=1

1 = ni, (i = 1, . . . ,m). (7)

Note that (6) is the empirical version of (4). The empirical version of (5) is
m

∑
i=1

ni

∑
j=1

Ai j

êi j
Ui =

m

∑
i=1

ni

∑
j=1

1−Ai j

1− êi j
Ui =

m

∑
i=1

ni

∑
j=1

Ui, (8)

which however is infeasible because the Ui’s are unobserved. Instead, we impose
(7) which implies (8), without the need to observe the Ui’s.

To obtain the propensity score estimate that achieves (6) and (7), we use the
calibration technique in the following steps:

Step 1. Obtain an initial propensity score estimate ê0
i j under a working propensity

score model, e.g. a logistic linear mixed effects model. This in turn provides
an initial set of inverse propensity score weights, W0 = {di j : i = 1, . . . ,m; j =
1, . . . ,ni}, where di j = 1/e0

i j if Ai j = 1 and di j = 1/(1− e0
i j) if Ai j = 0.

Step 2. Modify the initial set of weights W0 to a new set of weights W= {αi j : i =
1, . . . ,m; j = 1, . . . ,ni} by minimizing the Kullback-Leibler distance (Kull-
back and Leibler, 1951) of W0 and W:

m

∑
i=1

ni

∑
j=1

G(αi j,di j) =
m

∑
i=1

ni

∑
j=1

αi j log
αi j

di j
, (9)

subject to (6) and (7). By the Lagrange Multipliers technique, the minimizer
of (9) subject to (6) and (7) is

αi j(λ1,λ2) =
niAi jdi j exp(λ T

1 Xi jAi j)

∑
ni
j=1 Ai jdi j exp(λ T

1 Xi jAi j)

+
ni(1−Ai j)di j exp{λ T

2 Xi j(1−Ai j)}
∑

ni
j=1(1−Ai j)di j exp{λ T

2 Xi j(1−Ai j)}
, (10)



where (λ1,λ2) is the solution to the following equation

Q̂(λ1,λ2) =

(
Q̂1(λ1,λ2)

Q̂2(λ1,λ2)

)
=

(
n−1

∑
m
i=1 ∑

ni
j=1
{

Ai jαi j(λ1,λ2)−1
}

Xi j

n−1
∑

m
i=1 ∑

ni
j=1
{
(1−Ai j)αi j(λ1,λ2)−1

}
Xi j

)
= 0. (11)

Step 3. Obtain the propensity score estimate as

êi j = αi j(λ̂1, λ̂2)
−Ai j{1−αi j(λ̂1, λ̂2)}−1+Ai j .

Finally, our proposed IPTW estimator is

τ̂IPTW =
1
n

m

∑
i=1

ni

∑
j=1

{
Ai jYi j

êi j
−

(1−Ai j)Yi j

1− êi j

}
. (12)

Remark 2 (Calibration) Calibration has been used in many scenarios. In survey
sampling, calibration is widely used to integrate auxiliary information in estima-
tion or handle nonresponse; see, e.g., Wu and Sitter (2001), Chen, Sitter and Wu
(2002), Särndal and Lundström (2005), Kott (2006), Chang and Kott (2008) and
Kim, Kwon and Paik (2016). In causal inference, calibration has been used such
as in Constrained Empirical Likelihood (Qin and Zhang, 2007), Entropy Balancing
(Hainmueller, 2012), Inverse Probability Tilting (Graham, Pinto and Egel, 2012),
and Covariate Balance Propensity Score of Imai and Ratkovic (2014). Chan, Yam
and Zhang (2015) showed that estimation of average treatment effects by empiri-
cal balance calibration weighting can achieve global efficiency. However, all these
works were developed in settings with i.i.d. variables and they assumed that there
are no unmeasured confounders. Our article is the first to use calibration for causal
inference with unmeasured cluster-level confounders.

Remark 3 (Distance function) In Step 2 of the calibration algorithm, different
distance functions, other than the Kullback-Leibler distance, can be considered.
For example, if we choose G(αi j,di j) = di j(αi j/di j− 1)2, then the minimum dis-
tance estimation leads to generalized regression estimation (Park and Fuller, 2012)
of the αi j’s. If we choose G(αi j,di j) =−di j log(αi j/di j), then it leads to empirical
likelihood estimation (Newey and Smith, 2004). We use the Kullback–Leibler dis-
tance function, which leads to exponential tilting estimation (Kitamura and Stutzer,
1997, Imbens, Johnson and Spady, 1998, Schennach, 2007). The advantage of using
the Kullback-Leibler distance is that the resulting weights are always non-negative.



Also, with Kullback-Leibler distance, the calibration constraint (7) can be built into
a closed form expression for the weights, and thus avoiding solving a large number
of equations. This reduces the computation burden greatly, when there is a large
number of clusters.

Remark 4 (Nonparametric methods) It is worth commenting on the existing ro-
bust nonparametric methods and the advantages of our estimator. In the i.i.d. data
setting, many nonparametric and machine learning methods have been proposed to
capture the complex relationship of different variables without parametric assump-
tions, such as generalized boosted regression, causal trees, random forest, and neu-
ral networks. Indeed, many studies have shown the superiority of these methods
to the parametric propensity score estimation; see, e.g., McCaffrey, Ridgeway and
Morral (2004), Setoguchi, Schneeweiss, Brookhart, Glynn and Cook (2008), Lee,
Lessler and Stuart (2010), Pirracchio, Petersen and van der Laan (2014). However,
these data-driven methods assume that all confounders are observed, and there-
fore they can not handle unobserved cluster-level confounders, unlike our proposed
method.

4 Main results
To discuss the asymptotic properties of the proposed estimator, we assume that the
cluster sample sizes satisfy the condition that min1≤i≤m ni→ ∞ and sup1≤i≤m ni =

O(n1/2). To show the double robustness of the proposed estimator τ̂IPTW, we distin-
guish two cases and indicate different roles of calibration in estimation. We provide
a heuristic argument below and relegate the technical details to the Appendix.

First, consider the case when the initial propensity score model is correctly
specified. The weighting estimator with the initial propensity score estimates is then
consistent for the average treatment effect. In this case, the role of calibration is to
improve estimation efficiency by incorporating additional covariate information.
This role of calibration has been demonstrated extensively in the survey literature
(e.g., Deville and Särndal 1992) to modify the initial design weights to incorporate
known auxiliary information.

Second, consider the case when the outcome models are linear mixed effects
models:

E
{

Yi j(a) | Xi j,Ui
}
= XT

i jβa +Ui + ea,i j,

where the ea,i j’s are independent with E(ea,i j | Xi j,Ui) = 0, for a = 0,1. In this
case, the role of calibration is to balance the confounders between the treatment
groups for reducing the selection bias. We note that êi j does not depend on outcome



variables, and therefore under Assumptions 2, 4 and 5, êi j⊥Yi j(1) | Xi j,Ui. Then,
we have

E

{
1
n

m

∑
i=1

ni

∑
j=1

(
Ai j

êi j
−1
)

Yi j(1)

}
=

1
n

m

∑
i=1

ni

∑
j=1

E
[(

Ai j

êi j
−1
)

E
{

Yi j(1) | Xi j,Ui
}]

= E

{
1
n

m

∑
i=1

ni

∑
j=1

(
Ai j

êi j
−1
)(

XT
i jβ1 +Ui

)}
= 0, (13)

where the last equality follows by the constraints (6) and (7). Using Assumption 2
and (13), it follows

E

(
1
n

m

∑
i=1

ni

∑
j=1

Ai j

êi j
Yi j

)
= E

{
1
n

m

∑
i=1

ni

∑
j=1

Ai j

êi j
Yi j(1)

}
= E

{
1
n

m

∑
i=1

ni

∑
j=1

Yi j(1)

}
. (14)

Similarly, we establish

E

(
1
n

m

∑
i=1

ni

∑
j=1

1−Ai j

1− êi j
Yi j

)
= E

{
1
n

m

∑
i=1

ni

∑
j=1

Yi j(0)

}
. (15)

Combining (14) and (15), we have E(τ̂IPTW) = τ, which yields the unbiasedness
of τ̂IPTW. Under standard regularity conditions specified in the Appendix, we show
that τ̂IPTW is consistent for τ .

In general cases, if the conditional mean of the outcome given the observed
confounders and the latent cluster-level confounders can be well approximated by
the power series of confounders, imposing constraints on these power series can
also eliminate confounding biases, and the propensity score weighting estimator is
consistent.

We derive the asymptotic distribution of τ̂IPTW in the following theorem and
relegate the proof to the Appendix.

Theorem 1 Suppose that Assumptions 2, 3, and the regularity conditions specified
in the Appendix hold. Suppose further that the cluster sample sizes ni, for i =
1, . . . ,m, satisfy the condition that min1≤i≤m ni→ ∞ and sup1≤i≤m ni = O(n1/2). If
the outcome model (1) is a linear mixed effects model or the propensity score model
(2) is correctly specified, the proposed propensity score weighting estimator in (12),
subject to constraints (6) and (7), satisfies

V−1/2
1 (τ̂IPTW− τ)→N (0,1),



in distribution, as n→ ∞, where V1 = var
(

n−1
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)
,
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2Xi j},
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]
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,

B2 = E
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∗
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,

and (λ ∗1 ,λ
∗
2 ) satisfies E{Q̂(λ ∗1 ,λ

∗
2 )}= 0 with Q̂(λ1,λ2) defined in (11).

The asymptotic result in Theorem 1 allows for variance estimation of τ̂IPTW.
We now discuss variance estimation. Let τ̂i j = αi j(λ̂1, λ̂2){Ai j(Yi j− B̂T

1Xi j)− (1−
Ai j)(Yi j− B̂T

2Xi j)}+(B̂1− B̂2)
TXi j, where

B̂1 =
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∑
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ni
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,

B̂2 =
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.

Let τ̂i = n−1
i ∑

ni
j=1 τ̂i j and V̂i = (ni−1)−1

∑
ni
j=1(τ̂i j− τ̂i)

2. The variance estimator can
be constructed as

V̂ (τ̂IPTW) =
1
n

{
1

m−1

m

∑
i=1

(τ̂i− τ̂IPTW)2 +
1
m

m

∑
i=1

V̂i

}
.



5 Extension to clustered survey data
In this section, we extend the proposed propensity score weighting estimator to
clustered survey data. Consider a finite population FN with M clusters and Ni units
in the ith cluster, where N = ∑

M
i=1 Ni denotes the population size. We assume that in

the finite population, {Ai j,Xi j,Yi j(0),Yi j(1) : i = 1, . . . ,M; j = 1, . . . ,Ni} follows the
super-population model ξ as described in Section 2. We are interested in estimating
the population average treatment effect τ = E[N−1

∑
M
i=1 ∑

Ni
j=1{Yi j(1)−Yi j(0)}].

We assume that the sample is selected according to a two-stage cluster sam-
pling design. Specifically, at the first stage, cluster i is sampled with the first-order
inclusion probability πi = pr(i ∈ SI), where SI is the index set for the sampled clus-
ters. Let πi j = pr{(i, j) ∈ SI} be the second-order inclusion probability for clusters
i and j being sampled. At the second stage, given that cluster i was selected at the
first stage, unit j is sampled with conditional probability π j|i = pr( j ∈ SII | i ∈ SI),
where SII is the index set for the sampled units. The final sample size is n=∑i∈SI ni.
The design weight for unit j in cluster i be ωi j = (πiπ j|i)

−1, which reflects the num-
ber of units for cluster i in the finite population this unit j represents. We assume
that the design weights are positive and known throughout the sample. Also, let
πkl|i = pr{(k, l) ∈ SII | i ∈ SI} be the second-order inclusion probability for units k
and l being sampled given that cluster i was selected. The second-order inclusion
probabilities, πi j and πkl|i, are often used for variance estimation.

For clustered survey data, if the propensity score e(Xi j,Ui) is known, we can
express the IPTW estimator of τ as

τ̂IPTW =
1
N ∑

i∈SI

ni

∑
j=1

ωi j

{
Ai jYi j

e(Xi j,Ui)
−

(1−Ai j)Yi j

1− e(Xi j,Ui)

}
. (16)

Let Eξ and Ep denote expectation under the super-population model and the sam-
pling design, respectively. It is easy to verify that

E(τ̂IPTW) = Eξ{Ep(τ̂IPTW)}

= Eξ

[
1
N

M

∑
i=1

Ni

∑
j=1

{
Ai jYi j

e(Xi j,Ui)
−

(1−Ai j)Yi j

1− e(Xi j,Ui)

}]
= τ.

In practice, because the propensity score e(Xi j,Ui) is often unknown, (16) is
not feasible. To estimate the propensity score, we now require the propensity score



estimate êi j satisfy the following design-weighted moment constraints

∑
i∈SI

ni

∑
j=1

ωi j
Ai j

êi j
Xi j = ∑

i∈SI

ni

∑
j=1

ωi j
1−Ai j

1− êi j
Xi j = ∑

i∈SI

ni

∑
j=1

ωi jXi j, (17)

ni

∑
j=1

ωi j
Ai j

êi j
=

ni

∑
j=1

ωi j
1−Ai j

1− êi j
= Ni, (i ∈ SI). (18)

These moment constraints (17) and (18) are the sample version of (4) and (5), re-
spectively.

To obtain the propensity score estimate that achieves (17) and (18), we use
the calibration technique in the following steps:

Step 1. Obtain an initial propensity score estimate ê0
i j under some working propen-

sity score model, e.g. a logistic linear mixed effect model, each unit weighted
by the design weight ωi j. This in turn provides an initial set of inverse propen-
sity score weights, W0 = {di j : i = 1, . . . ,m; j = 1, . . . ,ni}, where di j = 1/e0

i j
if Ai j = 1 and di j = 1/(1− e0

i j) if Ai j = 0.
Step 2. Modify the initial set of weights W0 to a new set of weights W= {αi j : i =

1, . . . ,m; j = 1, . . . ,ni} by minimizing ∑
m
i=1 ∑

ni
j=1 ωi jαi j log(αi j/di j), subject

to (17) and (18). By Lagrange Multiplier, αi j can be obtained as

αi j(λ1,λ2) =
NiAi jdi j exp(λ1Xi jAi j)

∑
ni
j=1 ωi jAi jdi j exp(λ1Xi jAi j)

+
Ni(1−Ai j)di j exp{λ2Xi j(1−Ai j)}

∑
ni
j=1 ωi j(1−Ai j)di j exp{λ2Xi j(1−Ai j)}

, (19)

where (λ1,λ2) is the solution to the following equation

Q̂(λ1,λ2) =

(
Q̂1(λ1,λ2)

Q̂2(λ1,λ2)

)
=

(
N−1

∑i∈SI ∑
ni
j=1 ωi j

{
Ai jαi j(λ1,λ2)−1

}
Xi j

N−1
∑i∈SI ∑

ni
j=1 ωi j

{
(1−Ai j)αi j(λ1,λ2)−1

}
Xi j

)
= 0. (20)

Step 3. Obtain the propensity score estimate as

êi j = αi j(λ̂1, λ̂2)
−Ai j{1−αi j(λ̂1, λ̂2)}−1+Ai j .



Finally, our proposed IPTW estimator is

τ̂IPTW =
1
N ∑

i∈SI

ni

∑
j=1

ωi j

{
Ai jYi j

êi j
−

(1−Ai j)Yi j

1− êi j

}
. (21)

In the above procedure, the design wights are used in both the propensity score
estimates and the weighting estimator.

We now consider the asymptotic property of τ̂IPTW in (21). We use an
asymptotic framework, where the sample size n indexes a sequence of finite pop-
ulations and samples (Fuller, 2009; Section 1.3), such that the population size N
increases with n. In addition, we have the following regularity conditions for the
sampling mechanism.

Assumption 6 (i) The first-order inclusion probability πiπ j|i is positive and uni-
formly bounded in the sense that there exist positive constants C1 and C2 that do
not depend on N, such that C1 ≤ πiπ j|iNn−1 ≤C2, for any i and j; (ii) the sequence
of Horvitz-Thompson estimators ŶHT = N−1

∑i∈SI ∑
ni
j=1 ωi jyi satisfies varp(ŶHT) =

O
(
n−1) and

{
varp(ŶHT)

}−1/2
(ŶHT− Ȳ ) |FN →N (0,1), in distribution, as n→

∞, where Ȳ = N−1
∑

M
i=1 ∑

Ni
j=1 yi is the population mean of Y , and the reference dis-

tribution is the randomization distribution generated by the sampling mechanism.

Sufficient conditions for the asymptotic normality of the Horvitz-Thompson esti-
mators are discussed in Chapter 1 of Fuller (2009).

Theorem 2 Suppose that Assumptions 2–6, and the regularity conditions specified
in the Appendix hold. Suppose further that the cluster sample sizes Ni, for i =
1, . . . ,M, satisfy the condition that min1≤i≤M Ni→ ∞ and sup1≤i≤M Ni = O(N1/2).
If the outcome model (1) is a linear mixed effects model or the propensity score
model (2) is correctly specified, the proposed propensity score weighting estimator
in (21), subject to constraints (17) and (18), satisfies

V−1
2 (τ̂IPTW− τ)→N (0,1),

in distribution, as n→ ∞, where V2 = var
(
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)
,
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∗
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∗
2 )Ai j(Yi j−BT

1Xi j)+BT
1Xi j}

−{αi j(λ
∗
1 ,λ

∗
2 )(1−Ai j)(Yi j−BT

2Xi j)+BT
2Xi j},
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and (λ ∗1 ,λ
∗
2 ) satisfies E{Q̂(λ ∗1 ,λ

∗
2 )}= 0 with Q̂(λ1,λ2) defined in (20).

For variance estimation of τ̂IPTW, let τ̂i j = αi j(λ̂1, λ̂2){Ai j(Yi j − B̂T
1Xi j)−

(1−Ai j)(Yi j− B̂T
2Xi j)}+(B̂1− B̂2)

TXi j, where
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Let τ̂i = ∑
ni
j=1 π

−1
j|i τ̂i j and

V̂i =
ni

∑
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∑
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πkl|i

τ̂ik
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The variance estimator can be constructed as

V̂ (τ̂IPTW) =
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.



6 Simulation studies
We conduct two simulation studies to evaluate the finite-sample performance of
the proposed estimator, assessing its robustness against model misspecification in
Section 6.1 and the robustness against omitting a unit-level confounder in Section
6.2.

6.1 Robustness against model misspecification

We first generate finite populations and then select a sample from each finite pop-
ulation using a two-stage cluster sampling design. In the first setting, we specify
the number of clusters in the population to be M = 10,000, and the size of the
ith cluster size Ni to be the integer part of 500× exp(2+Ui)/{1+ exp(2+Ui)},
where Ui ∼N (0,1). The cluster sizes range from 100 to 500. The potential out-
comes are generated according to linear mixed effects models, Yi j(0)=Xi j+Ui+ei j
and Yi j(1) = Xi j + τ + τUi + ei j, where τ = 2, Xi j ∼N (0,1), ei j ∼N (0,1), Ui,
Xi j, and ei j are independent, for i = 1, . . . ,M, j = 1, . . . ,Ni. The parameter of
interest is τ . We consider three propensity score models, pr(Ai j = 1 | Xi j;Ui) =
h(γ0 + γ1Ui +Xi j), with h(·) being the inverse logit, probit and complementary log-
log link function, for generating Ai j. We set (γ0,γ1) to be (−0.5,1), (−0.25,0.5)
and (−0.5,0.1) for the above three propensity score models, respectively. The ob-
served outcome is Yi j = Ai jYi j(1)+(1−Ai j)Yi j(0). From each realized population,
m clusters are sampled by Probability-Proportional-to-Size (PPS) sampling with
the measure of size Ni. So the first-order inclusion probability of selecting cluster
i is equal to πi = mNi/∑

m
i=1 Ni, which implicitly depends on the unobserved ran-

dom effect. Once the clusters are sampled, the ni units in the ith selected cluster
are sampled by Poisson sampling with the corresponding first-order inclusion prob-
ability π j|i = nezi j/(∑

Mi
j=1 zi j), where zi j = 0.5 if ei j < 0 and 1 if ei j > 0. With

this sampling design, the units with ei j > 0 are sampled with a chance twice as
big as the units with ei j < 0. We consider four combinations of m and ne: (i)
(m,ne) = (50,50); (ii) (m,ne) = (100,30), representing a large number of small
clusters; (iii) (m,ne) = (30,100); and (iv) (m,ne) = (5,100), representing a small
number of large clusters.

In the second setting, all data-generating mechanisms are the same as in the
first setting, except that the potential outcomes are generated according to logistic
linear mixed effects models, Yi j(0) ∼ Bernoulli(p0

i j) with logit(p0
i j) = Xi j +Ui and

Yi j(1) ∼ Bernoulli(p1
i j) with logit(p1

i j) = Xi j + τ + τui. Moreover, in the 2-stage
cluster sampling, π j|i = nezi j/(∑

Mi
j=1 zi j), where zi j = 0.5 if Yi j = 0 and 1 if Yi j = 1.



With this sampling design, the units with Yi j = 1 are sampled with a chance twice
as big as the units with Yi j = 0.

We compare four estimators for τ: (i) τ̂simp, the simple design-weighted
estimator without propensity score adjustment; (ii) τ̂fix, the weighting estimator in
(3) with the propensity score estimated by a logistic linear fixed effects model with
fixed cluster intercepts; (iii) τ̂ran, the weighting estimator in (3) with the propen-
sity score estimated by a logistic linear mixed effects model with random cluster
intercepts; (iv) τ̂IPTW, the proposed estimator with calibrations (17) and (18).

Table 1 shows biases, variances and coverages for 95% confidence intervals
from 1,000 simulated data sets. The simple estimator shows large biases across
difference scenarios, even adjusting for sampling design. This suggests that the
covariate distributions are different between the treatment groups in the finite pop-
ulation, contributing to the bias. τ̂fix works well under Scenario 1 with the linear
mixed effects model for the outcome and the logistic linear mixed effects model for
the propensity score; however, its performance is not satisfactory in other scenar-
ios. Moreover, τ̂fix shows the largest variance among the four estimators in most of
scenarios. This is because for a moderate or large number of clusters, there are too
many free parameters, and hence the propensity score estimates may not be stable.
For τ̂ran, we assume that the cluster effect is random, which reduces the number of
free parameters. As a result, τ̂ran shows less variability than τ̂fix. Nonetheless, both
τ̂fix and τ̂ran cannot control the bias well. The proposed estimator shows small bias
and good empirical coverage across all scenarios. Notably, to compute τ̂IPTW, we
used a working model, a logistic linear model, to provide an initial set of weights.
When the true propensity score is probit or complementary log-log model, τ̂IPTW
still has small biases. This suggests that our proposed estimator achieves improved
robustness compared to the existing weighting estimators.

6.2 Robustness against omitting a unit-level (higher moment of)
confounder

The data generating mechanisms are the same as in Section 6.1, except that in the
potential outcomes and the treatment assignment models, we use a squared covari-
ate instead of the original covariate. Now, for the potential outcomes models, we
have in the first setting, Yi j(0) = X2

i j +Ui + ei j and Yi j(1) = X2
i j + τ + τUi + ei j,

where τ = 2, Xi j ∼N (0,1), ei j ∼N (0,1), Ui, Xi j, and ei j are independent, for
i = 1, . . . ,M, j = 1, . . . ,Ni; while in the second setting, Yi j(0)∼ Bernoulli(p0

i j) with
logit(p0

i j) = X2
i j+Ui and Yi j(1)∼Bernoulli(p1

i j) with logit(p1
i j) = X2

i j+τ +τui. For
three propensity score models, we now have pr(Ai j = 1 | Xi j;Ui) = h(γ0 + γ1Ui +



X2
i j), with h(·) being the inverse logit, probit and complementary log-log link func-

tion, for generating Ai j. We set (m,ne) = (50,50). In the proposed method, the
calibration condition (17) is imposed only for the first moment of Xi j. This repre-
sents the case of omitting a unit-level confounder.

Table 2 shows biases, variances and coverages for 95% confidence intervals
from 1,000 simulated data sets. The proposed estimator τ̂IPTW does not control
bias well in some scenarios, similar to all other estimators. This is in line with the
consensus in the causal inference literature that all unit-level confounders, including
higher moments if present, must be properly controlled for in order to obtain a
consistent causal effect estimator.

7 An application
Ethical approval: The conducted research uses an existing de-identified dataset and
is not considered as human subject research by the authors’ institutional review
board. We examine the 2007–2010 BMI surveillance data from Pennsylvania De-
partment of Health to investigate the effect of School Body Mass Index Screening
(SBMIS) on the annual overweight and obesity prevalence in elementary schools in
Pennsylvania. Early studies have shown that SBMIS has been associated with in-
creased parental awareness of child weight (Harris, Kuramoto, Schulzer and Retal-
lack, 2009, Ebbeling, Feldman, Chomitz, Antonelli, Gortmaker, Osganian and Lud-
wig, 2012). However, there have been mixed findings about the effect of screening
on reducing prevalence of overweight and obesity (Harris et al., 2009, Thompson
and Card-Higginson, 2009). The data set includes 493 schools in Pennsylvania.
The baseline is the school year 2007. Previous studies (e.g. Peyer, Welk, Bailey-
Davis, Yang and Kim, 2015) have shown that two high-level contextual factors are
strongly associated with school policies for SBMIS: type of community (rural, sub-
urban, and urban), and population density (low, median, and high). Therefore, we
cluster schools according to these two factors. This results in five clusters: rural-
low, rural-median, rural-high, suburban-high, and urban-high, with cluster sample
sizes n1 = 33, n2 = 118, n3 = 116, n4 = 84, and n5 = 142, respectively.

Let A = 1 if the school implemented SBMIS, and A = 0 if the school did
not. In this data set, 63% of schools implemented SBMIS, and the percentages of
schools implemented SBMIS across the clusters range from 45% to 70%, indicat-
ing cluster-level heterogeneity of treatment. The outcome variable Y is the annual
overweight and obesity prevalence for each school in the school year 2010. The
prevalence is calculated by dividing the number of students with BMI> 85th by
the total number of students screened for each school. Therefore, the outcome was



measured for each school. For each school, we obtain school characteristics in-
cluding the baseline prevalence of overweight and obesity (X1), and percentage of
reduced and free lunch (X2).

For a direct comparison, the average difference of the prevalence of over-
weight and obesity for schools that implemented SBMIS and those that did not is
8.78%. This unadjusted difference in the prevalence of overweight and obesity ig-
nores differences in schools and clusters. To take the cluster-level heterogeneity of
treatment into account, we consider three propensity score models: (i) a logistic lin-
ear fixed effects model with linear predictors including X1, X2, and a fixed intercept
for each cluster; (ii) a logistic linear mixed effects model with linear predictors in-
cluding X1, X2, and a random intercept for each cluster; (iii) the proposed calibrated
propensity score. Using the estimated propensity score, we estimate the average
treatment effect τ by the weighting method.

Table 3 displays the standardized differences of means for X1 and X2 be-
tween the treated and control groups for each cluster and the whole population,
standardized by the standard errors in the whole population. Without any adjust-
ment, there are large differences in means for X1 and X2. For this specific data set,
the three methods for modeling and estimating the propensity score are similar in
balancing the covariate distributions between the treated and control groups. All
three propensity score weighting methods improve the balance for X1 and X2. Table
4 displays point estimates and variance estimates based on 500 bootstrap replicates.
The simple estimator shows that the screening has a significant effect in reducing
the prevalence of overweight and obesity. However, this may be due to confounders.
After adjusting for the confounders, the screening does not have a significant effect.
Given the different sets of assumptions for the different methods, this conclusion is
reassuring.

8 Discussion
We provide a doubly robust construction of inverse propensity score weights by
imposing the exact balance of unit- and (observed and unobserved) cluster-level
covariate distributions between the treatment groups. When either the treatment as-
signment is correctly specified or the outcome follows a linear mixed effects model,
we show that consistent estimation of the average treatment effect is possible. Our
simulation examines the robustness property of the proposed estimator under vari-
ous data generating mechanisms. The results suggest that if all confounders in the
linear predictors of the treatment and outcome models (including all higher mo-
ments) achieve a good balance between two treatment groups, the proposed estima-
tor is robust. The balance conditions help to satisfy the underlying latent ignorable



treatment assignment assumption, and may be particularly useful in the case where
not sufficient cluster-level confounders are available. In this case, misspecification
of the propensity score model has little impact on the bias of the causal effect esti-
mator.

Moreover, our simulation results also indicate that robustness may not hold
in the case where higher moments of unit-level confounders are present however are
omitted in the balance constraints. This is similar to the case when there are unmea-
sured unit-level confounders. We therefore emphasize that unbiased estimation of
the average treatment effect requires that all unit-level confounders be sufficiently
controlled for.

It is well known that the IPTW estimator is sensitive to near-zero values of
the estimated propensity score (e.g. Robins, Sued, Lei-Gomez and Rotnitzky, 2007,
Kang and Schafer, 2007, Cao et al., 2009). Our proposed estimator prevents the oc-
currence of extreme values of weights through the calibration constraints where the
weights within each cluster are positive and sum to the cluster sample sizes. There-
fore, it is unlikely that some units receive extremely large weights that dominate.

We have focused on two-level data with a binary treatment and the average
treatment effect over the full population in this article. Our proposed method can
be easily generalized to many other scenarios not discussed here, such as multi-
level data, multiple treatments (Yang et al., 2016) or other causal estimands, e.g.,
the average causal effects over a subset of population (Crump, Hotz, Imbens and
Mitnik, 2006, Li, Morgan and Zaslavsky, 2017, Yang and Ding, 2018), including
the average causal effect on the treated.

The IPTW estimator is not efficient in general. Semiparametric efficiency
bounds for estimating the average treatment effects in the setting with i.i.d. random
variables were derived by Hahn (1998). He showed that the efficient influence func-
tion for the average treatment effect depends on both the propensity score and the
outcome model. An important implication is that combining the propensity score
model and the outcome regression model can improve efficiency of the IPTW esti-
mator. For clustered data, because the data are correlated through the random clus-
ter variables, the efficiency theory established for the i.i.d. data is not applicable.
It remains an interesting avenue for future research to develop the semiparametric
efficiency theory for clustered data.
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Appendix.

Regularity conditions and proof of Theorem 1
We formulate the proposed estimator as a Z-estimator (e.g., van der Vaart, 2000),
which invokes the standard Z-estimation theory to show the asymptotic properties.
Write τ̂IPTW(λ1,λ2) = n−1

∑
m
i=1 ∑

ni
j=1 αi j(λ1,λ2)Yi j, where αi j(λ1,λ2) is defined in

(10). The proposed estimator is τ̂IPTW(λ̂1, λ̂2), where (λ̂1, λ̂2) satisfies Q̂(λ̂1, λ̂2) =
0, where Q̂(λ1,λ2) is defined in (11). Define Q(λ1,λ2) = limn→∞ E{Q̂(λ1,λ2)},
and define (λ ∗1 ,λ

∗
2 ) that satisfy Q(λ ∗1 ,λ

∗
2 ) = 0. Denote A∼= B as A = B+oP(n−1/2),

where the reference distribution is the super-population model, as n→ ∞.
We impose the following regularity conditions.

Condition A1 Q̂(λ1,λ2)→ Q(λ1,λ2) in probability uniformly for (λ1,λ2) ∈B as
n→ ∞, and there exists a unique (λ ∗1 ,λ

∗
2 ) ∈B such that Q(λ ∗1 ,λ

∗
2 ) = 0;

Condition A2 ∂ τ̂IPTW(λ1,λ2)/∂ (λ T
1 ,λ

T
2 ) and ∂ Q̂(λ1,λ2)/∂ (λ T

1 ,λ
T
2 ) are continu-

ous at (λ1,λ2) ∈B almost surely;

Condition A3 The matrix

E
{

∂ Q̂(λ ∗1 ,λ
∗
2 )

∂ (λ T
1 ,λ

T
2 )

T

}
= E

[
1
n

m

∑
i=1

ni

∑
j=1

αi j(λ
∗
1 ,λ

∗
2 )

{
1−

αi j(λ
∗
1 ,λ

∗
2 )

ni

}
Ai jXi jXT

i j

]

is invertible;

Condition A4 E||Xi j||3 < ∞, E|Yi j(0)|3 < ∞, and E|Yi j(1)|3 < ∞.

The convergence in Condition A1 is uniform convergence. That is, given
ε > 0, there exists n0 = n0(ε) such that pr

{
|Q̂(λ1,λ2)−Q(λ1,λ2)|> ε

}
≤ ε holds

for all n≥ n0 and (λ1,λ2) ∈B. A sufficient condition for the uniform convergence
is that |αi j(λ1,λ2)| < M for all (i, j) and (λ1,λ2) ∈ B, where M is a constant.
Condition A4 specifies moment conditions for the central limit theorem. Conditions
A1–A4 are standard regularity conditions on Z-estimation; see, e.g., van der Vaart



(2000). However, the regularity conditions may be difficult to check in practice.
We give an extreme example where a certain condition is violated. For example, if
two covariates in X are perfectly correlated, then Condition A3 fails to hold. Aside
from extreme cases, the regularity conditions are often satisfied for the models we
are considering and reasonable choices of covariates in practice.

Under Conditions A1–A4, using the standard linearization technique, we
obtain

τ̂IPTW(λ̂1, λ̂2) ∼= τ̂IPTW(λ ∗1 ,λ
∗
2 )

−E
{

∂ τ̂IPTW(λ ∗1 ,λ
∗
2 )

∂ (λ T
1 ,λ

T
2 )

}
E
{

∂ Q̂(λ ∗1 ,λ
∗
2 )

∂ (λ T
1 ,λ

T
2 )

}−1

Q̂(λ ∗1 ,λ
∗
2 )

≡ τ̂IPTW(λ ∗1 ,λ
∗
2 )−BT

1Q̂1(λ
∗
1 ,λ

∗
2 )−BT

2Q̂2(λ
∗
1 ,λ

∗
2 ). (A1)

First, consider the case when the initial propensity score model is correctly
specified and consistently estimated. We have e0

i j
∼= ei j and λ ∗1 = λ ∗2 = 0. This is

because with λ ∗1 = λ ∗2 = 0, limn→∞ E{Q̂(λ ∗1 ,λ
∗
2 )}= 0. We now evaluate the terms

in (A1) further. We express τ̂IPTW(0,0) as

n−1
m

∑
i=1

ni

∑
j=1

αi j(0,0)Yi j

= n−1
m

∑
i=1

ni

∑
j=1

di jAi jYi j

n−1
i ∑

ni
j=1 di jAi j

−n−1
m

∑
i=1

ni

∑
j=1

di j(1−Ai j)Yi j

n−1
i ∑

ni
j=1 di j(1−Ai j)

= n−1
m

∑
i=1

ni

∑
j=1

di jAi jYi j(1)
n−1

i ∑
ni
j=1 di jAi j

−n−1
m

∑
i=1

ni

∑
j=1

di j(1−Ai j)Yi j(0)
n−1

i ∑
ni
j=1 di j(1−Ai j)

∼= n−1
m

∑
i=1

ni

∑
j=1

e−1
i j Ai jYi j(1)

n−1
i ∑

ni
j=1 e−1

i j Ai j
−n−1

m

∑
i=1

ni

∑
j=1

(1− ei j)
−1(1−Ai j)Yi j(0)

n−1
i ∑

ni
j=1(1− ei j)−1(1−Ai j)

∼= τ, (A2)

where the third line follows by the consistency assumption, the forth line follows
by the assumption that the initial propensity score model is correctly specified,
and the last line follows by the strong law of large numbers and the condition of
min1≤i≤m ni→ ∞. Also, following the similar argument, we obtain

Q̂1(0,0) = n−1
m

∑
i=1

ni

∑
j=1

{
Ai jαi j(0,0)−1

}
Xi j ∼= 0, (A3)

Q̂2(0,0) = n−1
m

∑
i=1

ni

∑
j=1

{
(1−Ai j)αi j(0,0)−1

}
Xi j ∼= 0. (A4)

Combining (A1)–(A4), we obtain τ̂IPTW(λ̂1, λ̂2)∼= τ.



Second, consider the case when the outcome follows a linear mixed ef-
fects model. We do not assume that the initial propensity score model is correctly
specified, and therefore λ ∗1 and λ ∗2 in (A1) are not necessarily zero. Conditions
A1–A4 ensure that (A1) is consistent for some parameter. We have shown in Sec-
tion 4 that the proposed estimator is asymptotically unbiased for τ . It follows that
τ̂IPTW(λ̂1, λ̂2)∼= τ .

To derive asymptotic variance formula, continuing (A1), we obtain

τ̂IPTW(λ̂1, λ̂2) =
1
n

m

∑
i=1

ni

∑
j=1

{
αi j(λ

∗
1 ,λ

∗
2 )Ai j(Yi j−BT

1Xi j)+BT
1Xi j

}
−1

n

m

∑
i=1

ni

∑
j=1

{
αi j(λ

∗
1 ,λ

∗
2 )(1−Ai j)(Yi j−BT

2Xi j)+BT
2Xi j

}
=

1
n

m

∑
i=1

ni

∑
j=1

τi j,

where

τi j =
{

αi j(λ
∗
1 ,λ

∗
2 )Ai j(Yi j−BT

1Xi j)+BT
1Xi j

}
−
{

αi j(λ
∗
1 ,λ

∗
2 )(1−Ai j)(Yi j−BT

2Xi j)+BT
2Xi j

}
.

Therefore, var(τ̂IPTW) = var(n−1
∑

m
i=1 ∑

ni
j=1 τi j), denoted as V1.

To establish the asymptotic normality of τ̂IPTW, we use the central limit the-
ory for dependent variables (Hoeffding, Robbins et al., 1948, Serfling, 1968). Let
var(τi j) = σ2

τ and cov(τi j,τik) = ντ for j 6= k. Arrange the τi j’s in a n-length se-
quence {τ11, . . . ,τ1n1 ,τ21, . . . ,τmnm}. To simplify the notation, let the kth random
variable in this sequence be denoted by τk, for k = 1, . . . ,n. We now consider such
sequences {τk : k = 1, . . . ,n} are indexed by n. By Condition A4, the absolute
central moments E|τk−E(τk)|3 are bounded uniformly in k. Moreover, by the as-
sumption of sup1≤i≤m ni = O(n1/2), we then have var(∑a+n

k=a+1 τk)∼ nA2, uniformly
in a, as n→∞, where A2 is a positive constant. Following Serfling (1968), these are
typical criterion for verifying the Lindeberg condition (Loève, 1960), and therefore
V−1/2

1 (τ̂IPTW− τ)→N (0,1), in distribution, as n→ ∞.

Regularity conditions for Theorem 2
For the clustered survey data, we now write τ̂IPTW(λ1,λ2) = N−1

∑i∈SI ∑
ni
j=1 ωi j

×αi j(λ1,λ2)Yi j, where αi j(λ1,λ2) is defined in (19). The proposed estimator is
τ̂IPTW(λ̂1, λ̂2), where (λ̂1, λ̂2) satisfies Q̂(λ̂1, λ̂2) = 0, where Q̂(λ1,λ2) is defined in



(20). We assume Conditions A1– A4 holds with the new definitions of τ̂IPTW(λ1,λ2),
αi j(λ1,λ2), and Q̂(λ1,λ2).
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Table 1: Simulation results: bias, variance (×10−3) and coverage (%) of 95% con-
fidence intervals based on 1,000 Monte Carlo samples; the outcome is linear and
logistic linear mixed effects model and the propensity score is logistic, probit or
complementary log-log (C-loglog).

(m,ne) (50,50) (100,30) (30,100) (5,100)
bias var cvg bias var cvg bias var cvg bias var cvg

Scenario 1: Linear outcome & Logistic propensity score
τ̂simp -0.37 22 27.4 -0.38 12 8.7 -0.38 35 42.3 -0.38 228 55.1
τ̂fix -0.01 36 95.6 0.00 21 95.6 -0.01 42 95.2 -0.01 298 82.0
τ̂ran 0.14 26 90.2 0.21 14 64.6 0.07 37 94.7 0.07 263 87.1
τ̂cal 0.01 26 94.5 0.02 11 95.1 0.00 33 95.6 0.00 245 93.3

Scenario 2: Linear outcome & Probit propensity score
τ̂simp -0.29 16 34.4 -0.08 9 2.3 -0.22 30 65.6 -0.30 162 58.0
τ̂fix 0.08 35 90.3 -0.10 19 4.5 0.12 69 90.4 0.07 341 82.5
τ̂ran 0.24 28 73.9 -0.07 16 29.9 0.21 60 85.5 0.15 303 86.7
τ̂cal 0.01 22 94.9 0.01 11 95.4 0.00 33 94.6 0.00 252 95.1

Scenario 3: Linear outcome & C-loglog propensity score
τ̂simp -0.21 20 62.0 -0.21 10 41.2 -0.22 30 65.6 -0.21 240 65.0
τ̂fix 0.12 48 88.8 0.12 36 82.7 0.12 69 90.4 0.13 445 80.6
τ̂ran 0.29 38 69.1 0.36 22 32.5 0.21 60 85.5 0.22 441 84.6
τ̂cal 0.00 21 95.3 0.00 10 95.1 0.00 33 94.6 -0.01 248 94.1

Scenario 4: Logistic outcome & Logistic propensity score
τ̂simp -0.11 100 9.1 -0.11 540 0.5 -0.11 160 20.5 -0.11 9 62.9
τ̂fix -0.11 44 0.3 -0.11 38 0.1 -0.11 39 0.1 -0.11 3 30.6
τ̂ran -0.09 33 1.3 -0.08 21 0.5 -0.10 34 0.3 -0.10 2 45.8
τ̂cal 0.01 74 96.3 0.01 55 95.2 0.01 74 95.9 0.01 5 94.4

Scenario 5: Logistic outcome & Probit propensity score
τ̂simp -0.08 58 13.1 -0.08 34 2.3 -0.08 81 25.3 -0.07 5 65.9
τ̂fix -0.10 93 6.9 -0.10 85 4.5 -0.10 73 3.8 -0.10 5 50.5
τ̂ran -0.08 67 23.0 -0.07 48 29.9 -0.09 61 8.3 -0.09 4 67.0
τ̂cal 0.01 89 94.7 0.01 65 95.4 0.01 84 95.0 0.01 6 95.4

Scenario 6: Logistic outcome & C-loglog propensity score
τ̂simp -0.06 0.3 3.2 -0.06 0.2 1.0 -0.06 0.2 3.7 -0.06 2 62.0
τ̂fix -0.05 0.5 44.6 -0.05 0.5 43.6 -0.05 0.5 43.0 -0.05 3 76.8
τ̂ran -0.03 0.5 95.4 -0.03 0.4 97.3 -0.03 0.4 92.8 -0.03 3 93.4
τ̂cal -0.01 0.7 95.5 0.00 0.6 95.8 -0.01 0.7 95.2 0.00 5 95.9



Table 2: Simulation results: bias, variance (×10−3) and coverage (%) of 95% con-
fidence intervals based on 1,000 Monte Carlo samples; the outcome is linear and
logistic linear mixed effects model and the propensity score is logistic, probit or
complementary log-log (C-loglog).

1 2 3
Scenario Linear outcome Linear outcome Linear outcome

Logistic PS Probit PS C-loglog PS
bias var cvg bias var cvg bias var cvg

τ̂simp -0.84 34 2.5 -0.88 22 0.6 -0.66 28 4.6
τ̂fix 0.00 52 95.2 -0.06 87 92.7 0.59 121 47.8
τ̂ran 0.11 41 95.7 0.08 72 96.7 0.67 91 33.8
τ̂cal -0.02 31 94.7 -0.08 42 93.9 0.33 39 84.0

4 5 6
Scenario Logistic outcome Logistic outcome Logistic outcome

Logistic PS Probit PS C-loglog PS
bias var cvg bias var cvg bias var cvg

τ̂simp -0.14 0.84 1.1 -0.13 0.52 0.2 -0.12 0.22 0.0
τ̂fix -0.10 0.80 8.9 -0.11 1.79 21.4 -0.01 0.86 93.9
τ̂ran -0.08 0.60 15.0 -0.09 1.28 32.4 0.01 0.71 99.3
τ̂cal 0.00 0.81 95.5 -0.01 1.08 95.7 0.06 0.78 86.1

Table 3: Balance Check
simple fixed random calibration

Cluster 1 1.68 -0.22 0.68 0.20
Cluster 2 1.21 0.10 -0.41 0.10

X1 Cluster 3 1.75 -0.02 0.99 0.02
Cluster 4 0.86 -0.04 -1.05 0.02
Cluster 5 -0.36 0.37 -1.39 0.33

Whole Pop 1.28 -0.02 -0.02 0
Cluster 1 0.48 0.02 0.30 0.03
Cluster 2 0.43 0.13 -0.01 0.14

X2 Cluster 3 0.73 0.01 0.46 0.02
Cluster 4 0.18 -0.08 -0.34 -0.07
Cluster 5 -0.57 -0.39 -1.53 -0.44

Whole Pop 0.39 -0.003 -0.001 0



Table 4: Results: estimate, variance estimate (ve) based on 500 bootstrap replicates,
and 95% confidence interval (c.i.)

estimate ve 95% c.i.
simple 8.78 2.11 (5.94, 11.63)
fixed 0.47 0.44 (-0.83, 1.77)

random 0.52 0.44 (-0.77, 1.82)
calibration 0.53 0.39 (-0.71, 1.76)
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