On the number of solutions of some
transcendental equations

Walter Bergweiler and Alexandre Eremenko*

Dedicated to Dima Khavinson on the occasion of his 60th birthday

Abstract

We give upper and lower bounds for the number of solutions of the
equation p(z)log|z| + ¢(z) = 0 with polynomials p and q.

1 Introduction and main result

Holomorphic functions are sense-preserving. This allows, for a holomorphic
function f and ¢ € C, to estimate the number of solutions of the equation
f(2) = ¢ from above by the topological degree. This method does not work
when f is just smooth, or real analytic, unless f is sense-preserving. For the
equation

z = f(2), (1)

where f is holomorphic, a remarkable argument combining topological de-
gree considerations with Fatou’s theorem from holomorphic dynamics was in-
vented by Khavinson and Swiatek [8]. In this paper f was a polynomial; later
the argument was extended to rational f by Khavinson and Neumann [6].
The latter result found an important and unexpected application in astron-
omy. For transcendental meromorphic f the equation (1) was considered in
2, 3, 5], motivated by certain applications. For a description of the method
initiated in [8] and its applications to astronomy we also refer to the sur-
vey [7].

This paper is a part of our efforts to understand the scope of applicability
of the method. The following question was asked on Math Overflow [12]. Let
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p and ¢ be coprime polynomials of degrees m and n, respectively, with at least
one of the polynomials non-constant. How many solutions can the equation

p(2)log|z] +q(z) =0 (2)
have?

Theorem. The number N of solutions of equation (2) satisfies
max{m,n} < N < 3max{m,n} + 2m. (3)

The proof of the upper bound, given in section 2, combines the com-
putation of a topological degree with Fatou’s theorem as in the paper [§]
mentioned above. The difference of our argument in comparison with pre-
vious applications of the method is that we transform (2) to an equation
with infinitely many solutions, but it is still possible to obtain the desired
estimate.

The computation of the topological degree also yields the lower bound,
but only if solutions are counted with multiplicities. In order to obtain a
lower bound for the number of distinct solutions we study the curves where
the rational function ¢/p is real.

In section 3 we give examples to show that the estimate is sharp, at least
for many values of m and n.

Acknowledgment. We thank the referee for helpful suggestions.

2 Proof of the theorem

We put
2q(2)
f(z) =
&) p(2)
and rewrite our equation (2) as
2q(2)
g(2) :=log |z + f(2) = log || + =52 = 0.
(2) 1= log =+ £(2) = log |+ 2%

The function ¢ is a continuous map of the Riemann sphere C into itself,
satisfying ¢(0) = g(oc0) = oo.

We recall the definition of the topological (or Brouwer) degree; see [13,
Chapter 11, §2] or [10, §5]. A value w is regular for g if for all solutions z of
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the equation g(z) = w the map ¢ is continuously differentiable near z and
the Jacobian determinant J,(z) does not vanish. Then

degg= > sgnJy(2)

z€g~1(w)

is the topological degree of g. This definition does not depend on w. (We
note that e.g. in [4, §§1-2] the topological degree is introduced for functions
on bounded domains, but this could be achieved by considering g as map
from {z € C: |f(z)| < R} onto {z € C: |z| < R} for some large R.)

Taking w = ir with large real r we find max{n — m,0} preimages near
oo and m preimages near the poles. Since

To(2) = lg:(2)* = lg=(2)]”
N |
2 + ()| — [z (4)

(1L +=f ()~ 1)

R

and since |f’(z)] tends to oo as z tends to a pole and, if n > m, is bounded
away from 0 as z tends to oo, we see that J,(z) > 0 at all these preimages,
provided r has been chosen sufficiently large. So with

d := max{m,n} = m + max{n —m,0}

we have deg g = d.
For w € C we denote by N,, the number of solutions of

9(2) = w ()

so that N = Ny. Suppose first that w is a regular value of g. We denote
by Nt and N~ the numbers of solutions of (5) where J,(2) is positive and
negative, respectively. Then

Nt —-N- =d (6)
by the definition of the topological degree.
We put
() ==



and note that if z satisfies (5), then z also satisfies
k(z) :==h(z) =z =0. (7)

Note that the set of solutions of (5) is, in general, not equal to but only
contained in the set of solutions of (7). The equation (7) can have infinitely
many solutions; for example this is the case for the equation z = e*/z.

Since
, e_f(z)—"_w ,
W (z) = _T<1 +2f'(2)) (8)
the Jacobian of k is given by
|6—2f(z)+2w|

Jo(z) =W (2)] =1 = [1+zf' (=) - 1.

|2

If z is a solution of (5), then |z|> = exp(—f(2) +w) and thus
Je(2) = L+ 2f' () — 1. (9)

We deduce from (4) and (9) that the Jacobians J,(z) and Ji(z) have the
same sign for z satisfying (5).
Thus
N~ <n~,
where n~ is the number of solutions of k(z) = h(z) —Z = 0 with negative
Jacobian. For these solutions we have |h/(z)| < 1, so they are exactly the
attracting fized points of the antiholomorphic function h(z).

As already mentioned in the introduction, we will use Fatou’s theorem
from complex dynamics. This theorem relates attracting fixed points to sin-
gular values. To define singular values, we note that the essential singularities
of h are the poles of f. We consider h as a map from C\ f~!(c0) to C. If h is
not locally injective at a point ¢ € C\ f~*(c0), then c is called a critical point
and h(c) is called a critical value. In general, the set of critical points consists
of the zeros of the derivative and the multiple poles, but since our map h has
no multiple poles, we only have to consider the zeros of /. A value a € C
is called an asymptotic value of h if there is a path v: [0,1) — C\f~'(c0)
such that v(t) tends to one of the essential singularies of h as t — 1 while
h(7v(t)) — a as t — 1. The singularities of the inverse function of h, or
singular values for short, are the critical and asymptotic values of h.



They play an important role in complex dynamics. The generalized Fa-
tou theorem says that the basin of attration of an attracting fixed point of
a holomorphic (or antiholomorphic) function contains a singular value. In
particular, the number of attracting fixed points of a holomorphic (or anti-
holomorphic) function does not exceed the number of singular values; see [11,
Lemma 8.5] for rational functions, [1, Lemma 10 (i)] for functions which are
meromorphic in C except for a compact, totally disconnected set (and thus
in particular our function h), and [3, p. 2914] for a version for self-maps of a
Riemann surface (which also applies to our function h).

The number of singular values of h is easy to estimate. By (8), the
critical points of h are the zeros of 1 + zf(z) in C, so there are at most
max{m+n,2m} = d+m of them. The asymptotic values of h can be only 0
and oo. If f(0) # oo, then h(0) = co. Otherwise, 0 is an essential singularity
of h. Moreover, if f(co) # oo, then h(co) = 0, while co is an essential
singularity of h if f(co) = co. In any case we see that 0 and oo either form a
periodic cycle of period 2 for h, or they are essential singularities or mapped
to essential singularities of A. In any case, they do not contribute to the
count of attracting fixed points. Thus

N - <n <d+m.

Combining this with (6) we find that the number N, of solutions of (5)
satisfies

Ny, =N'+N"=2N"+d<2(d+m)+d=3d+2m. (10)

This proves the upper estimate in (3) if 0 is a regular value of g.
To deal with the case that 0 is not regular we use the following lemma
proved in [2, Proposition 3].

Lemma. Let D be a region in C and let g: D — C be harmonic. Suppose
that there exists M € N such that every w € C has at most M preimages
under g. Then the set of points which have M preimages is open.

We show that our function g satisfies the hypothesis of this lemma for a
suitable domain D. In order to do this we note that if z satisfies (5), then z
is a fixed point of the function

Q‘Hh(m).



This function is holomorphic in C except for singularities at 0 and the poles
of f. So the solutions of (5) form a discrete set. Since the solutions of (5)
do not accumulate at 0, co or a pole of f, we conclude that (5) has only
finitely many solutions, for each w € C. We thus have N,, < oo also if w
is not regular; that is, for each w € C the function g has only finitely many
w-points. In order to apply the lemma we still have to show that the number
of w-points is uniformly bounded by some M € N, at least after restricting
to a suitable domain D.

We denote by N, (D) the number of w-points of ¢ in a domain D. We
choose a bounded domain D containing all solutions of the equation g(z) = 0
such that the closure of D does not contain 0 or a pole of f. By the choice of
D we then have N = Ny(D). If ¢ € D is such that J,(¢) # 0, then ( clearly
has a neighborhood U, such that N, (U;) < 1 for all w € C. Moreover, it
follows from results of Lyzzaik [9, Theorems 5.1 and 6.1] that if ( € D with
Jy(¢) = 0, then there exist a neighborhood U, of ¢ and M, € N such that
Ny(Ue) < M, for all w € C. (The results of Lyzzaik give precise information
about the value M, but this is irrelevant for our purposes.) Since D can
be covered by finitely many neighborhoods U;, we deduce that there exists
M € N such that N,(D) < M for all w € C. We may assume that M has
been chosen minimal. Then the set of all w € C with N, (D) = M is a
non-empty open subset of C by the lemma. This implies that there exists a
regular value w with N,,(D) = M. Combining this with (10) we thus have

N = No(D) € M = Ny(D) < N, < 3d + 2m.

This shows that the upper estimate in (3) also holds if 0 is not a regular
value.
To prove the lower estimate in (3) we put

g(z) 1
F(z) = o) 5f(2)-
So F'is a rational function of degree d. If F' has no real critical values, the
preimage of R under F is a union of d disjoint curves in C. The start and
end point of such a curve are (not necessarily distinct) poles. If F(o0) is
finite and real, then at least one and possibly several of these curves pass
through oc.

If F' has real critical values, we consider these curves for the function
I — ie instead of F', for some small positive . Taking the limit as ¢ — 0 we
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find that F~!(R) is still the union of d curves 71, . .., 74, with each ~; starting
and ending at a pole of F', but now these curves are not disjoint anymore.

Indeed, let wy € R be a critical value of F, say wg = F'(29) where zy € C
with F’(z9) = 0. Let L be the multiplicity of the wg-point zg; that is,
L = min{k € N: F®) (%) # 0}. Then there exist L curves passing through
z9, and we may assume that the curves are numbered so that this is the
case for the curves vi,...,7,. Choosing parametrizations v;: I; — C with
intervals I; we thus have v;(t;) = 2 for some ¢; € I;. We may assume that
the parametrizations ; are chosen such that F'(v;(t)) increases with ¢. The
directions of the curve v; at the point z, are given by the one-sided derivatives
yé(t;t) of v; at t;. The left and right derivative are related by

arg v;(t)) = argv;(t;) + % — . (11)
Moreover, for a suitable permutation o € S;, we have
argv;(t}) = QWZ(j> —« (12)
where o = arg F(9)(z).
We now consider the function
Gj: ;= R, G;(t) = F(;(t)) + log [ ;(t)]. (13)

Noting that there are poles p;r and p; such that v;(t) — pj as t — sup I
while v;(t) — p; ast — inf I; we can deduce that G(t) — oo ast — sup [}
or t — inf I, respectively. This is clear if p; # 0 and pj # 00, but it also
follows if p; = 0 or pj = oo, since then F(7;(t)) tends to +oo faster than
log 1,1

Thus there exists s; € I; such that G; changes its sign from — to + at s;;
that is, there exists § > 0 such that G,(s) < 0 for s; — 0 < s < s; while
Gj(s) > 0 for s; < s < s; + 9. It follows that

Gi(s;) >0 and G(s]) > 0. (14)

If v, passes through oo, which can happen only if F(co) is finite and real,
then F'(z) — log|z| is negative for all z on this curve of sufficiently large
modulus. This implies that 7;(s;) € C and hence z = ;(s;) is a solution of
our equation (2). If all the points v;(s;) are distinct we thus have d solutions.
This is clearly the case if none of the points ~,(s;) is a critical point.
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Suppose now that zy = 7,(s;) is a critical point for some j. Using the
notation above we thus have j € {1,...,L} and s; = t;.

Noting that
75 (1)

5(1)

d
S log [7;(t)] = Re

and F'(zp) = 0 we then have

)

Gy(t5) = P tg(e)) + Re o

H(E
— F’(zo)vg(t;t) + Re —%( J )

20
+
_ge i)

20

Put § = arg zp. In view of (14) the last equation yields that

cos(arg¥j(tf) — ) >0 and cos(arg~j(t;) — ) > 0. (15)

Since

cos(argyj(t;) — ) = cos (argvé(tj) - % +7— ﬁ)

= —cos (arg’y;(tj) - % - B)

by (11) we deduce from (12) and (15) with § = a 4 [ that
2 ' 2 ]
os( 7“2(]) — 9) >0 and cos( 7o (j) - 9) < 0. (16)

L L

Since in an interval of length 27 there is only point where the cosine changes
its sign from — to + there exists at most one value o(j) € {1,...,L} that
satisfies (16). We conclude that if z is a critical point of F', then zy = ~,(s;)
for at most one value of j. Altogether we see that the points v;(s;) are all
distinct so that our equation has at least d = max{m,n} solutions. This
completes the proof of the theorem.

3 Examples

We give several examples to show that the estimates in our theorem are best
possible. More specifically, Examples 1 and 2 show that the upper bound
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is sharp if m = 0 or n = 0. Example 3 deals with the case n < m, thus
generalizing Example 2. Examples 4 and 5 show that the upper bound is
sharp if n = 2m or n = 3m. Finally, Example 6 shows that the lower bound
is sharp for all m and n.

Ezample 1. For p(z) = 1 and ¢(z) = 2log2 - (1 — z) the equation (2) has
the positive solutions 1/2 and 1, and there is one negative solution £ by the
intermediate value theorem. Computation shows that £ ~ —0.191666. This
shows that the upper bound in the theorem is sharp for m = 0 and n = 1.

Considering
1, .. 2log2
(=) = —a(=") =

(1—2")

with n > 2 instead of ¢ we see that the upper bound is sharp for m = 0 and
arbitrary n € N.

Indeed, for any n-th root of unity w the equation log |z|+¢,(z) = 0 has the
solutions w, w/ /2 and w m e™/™ so that there are 3n solutions altogether;
that is, the equation

2log 2

log |z| + (1-2")=0

has 3n solutions.

Ezample 2. For p(z) = 82+1 and ¢(z) = 6log 2 the equation (2) has the three
positive solutions 1/16, 1/8 and 1/4, and two negative solutions & » by the
intermediate value theorem. The numerical values are & ~ —1.471293 and
& ~ —0.0106199. Similarly as in the previous example we see by considering
pm(z) = m p(z™) with m > 2 instead of p that the upper bound in our result
is sharp for n = 0 and arbitrary m € N; that is, the equation

6log 2

| ——— =0 17
og || + m(8zm + 1) (17)

has 5m solutions.

Example 3. The previous example can be perturbed as follows. Choose a
polynomial ¢ of degree n < m which is close to 1 on a compact set containing
all bm solutions of (17). As all solutions of (17) are non-degenerate, the
inverse function theorem will guarantee that the number of solutions of

6log2 q(2)

252 qE)
m(8zm + 1)

log || +



is at least bm when ¢ is sufficiently close to 1. This shows that the upper
estimate in the theorem is best possible for all n < m.
An explicit example with m = n is

2" =1
1 =3log2——.
og |2 08 n(zm +1)
When n = 1 this equation has 5 real solutions: the positive solutions 1, 2
and 1/2, as well as two negative solutions by the intermediate value theorem,
which can be computed to be & ~ —11.770347 and & ~ —0.0849592. Making
the change of the variable z — 2™ we see that (4) has 5n solutions.

(18)

Example 4. Take a = 0.015, and consider the equation
z—1
z+1

log |z] =3log2- (1 —a(z—1)) (19)
This is a small perturbation of (18) with n = 1. Again z = 1 is clearly
a solution and one can check that it has 4 further real solutions near the
solutions of (18). Moreover, the intermediate value theorem yields that it
has one more negative solution. The numerical values of these 6 real zeros
&1,...,& are at & ~ —58.249375, & ~ —20.915701, & ~ —0.0826000, &, ~
0.466285, &5 = 1 and & =~ 1.780021.

Let f be the right hand side of (19). Then f has two real critical points
x1 ~ —12.718930 and x5 ~ 10.718930 with critical values y; ~ 2.935272 and
Yo A 1.473143.

This shows that there is a curve « in the upper half-plane with endpoints
x1 and xo on which f is real. As log|z;| &~ 2.543091478 < y; and log |z5| &~
2.372011 > ys we conclude that the equation (19) must have a solution
in the upper half-plane and, by symmetry, another one in the lower half-
plane. Numerically these two solutions are {75 ~ —5.705306 £ 10.732819:.
Altogether the total number of solutions of (19) is thus 8.

Making the change of variable z + 2™, we obtain an equation with
n = 2m having 8m = 3 - 2m + 2m solutions. This shows that the upper
estimate in the theorem is exact when n = 2m.

Example 5. This example is again a small perturbation of the previous ex-
ample. As there we take a = 0.015, put b = 0.00185 and and consider the
equation

z—1
241

log|z| =3log2- (1 —a(z—1))- (1 —-0b(z—1)) (20)
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The equation has 7 real solutions, 6 of which correspond to the solutions
of (19). The numerical values are & ~ —198.8150, & ~ —176.4617, & ~
—17.8054, &4 =~ 0.08289, &5 =~ 0.4704, & = 1 and &7 =~ 1.8020. Denoting
by f the right hand side of (20) we see that f has two critical points near
those found in the previous example, and there is a curve connecting these
points in the upper half-plane on which f is real. On this curve we then have
a solution of (20). Together with its complex conjugate this yields the two
solutions &g g ~ 8.6167 &= 10.26541.

Moreover, f has one critical point at xqg ~ —234.2572, and we have
f(zo) < log|zg|. This yields that there exists a curve in the upper half-
plane connecting zy with co on which f is real. This curve then contains a
solution of (20). Together with its complex conjugate we obtain the solutions
&10,11 ~ —234.2803 + 43.62444.

Altogether we thus have 11 solutions. The change of variable z — 2™
then yields an equation with n = 3m having 11m = 3 - 3m + 2m solutions.
Thus the upper estimate in the theorem is exact when n = 3m.

Ezxample 6. Let p and ¢ be polynomials of degrees m and n, respectively.
Suppose that F(z) = ¢(z)/p(z) € C\R for |z| < 1. If F(c0) € C\{0},
assume in addition that F'(oco) ¢ R. It is clear that polynomials p and ¢
with these properties exist. In fact, if pg and ¢y are polynomials satisfying
po(0) # 0 and ¢o(0) # 0, then there exists ¢ € R such that p(z) = e*py(d2)
and ¢(z) = €"?qy(dz) have the above properties for all small positive 4.

We show that if ¢ is a large positive number, then the equation

cp(z)log |z] + cq(2) = 0

has max{m,n} solutions. This shows that the lower bound in our theorem
is best possible.

As before we put d = max{m,n}. For 1 < j < d we choose the curves
v;: I; — C as in the proof of the theorem. Since F(z) € C\R for |z] < 1 we
find that the curves ~; are contained in {z: |z| > 1} U {oo}. Since F' has no
real critical values, we have

|F'(z)] >0 if z€ Cand F(z) € R.

Suppose first that j is such that the curve «; does not pass through oco. For
a sufficiently large positive constant ¢ we then can have

e[ F'(;(8)] >

1
forte I.. 21
M@ e (21)

11



Note that this also works if co is an endpoint of v; since then F(oo) = oo.
Let G, ; be defined as in (13), with F replaced by cF’; that is,

G I = R, Gy(t) = eF(v;(1)) + log [ (1)l
We deduce from (21) that

vt oy
L5 = 01 (P00 - ) >0

Hence G, ; is increasing and thus G, ; has exactly one zero.

Suppose now that 7, passes through oo, say 7;(t;) = co. Noting that
F(00) = F(v;(t;)) ¢ R if F(oo) € C\{0}, by our choice of p and ¢, we see
that F'(co) = 0. Next we note that as it approaches oo, the curve v, is
asymptotic to a ray from the origin. In fact, it is not difficult to show that

G, (1) = e (1,()}(1) + Re

L(t L(t
Reryj()w 7‘7()‘ ast—>tj,t<tj.
vit) ()
In particular, there exists s; € I; with s; < t; such that
/
(2
Re%() >0 fors; <t <t
75(t)
Since F'(v;(t)) increases with ¢ we have
d

i F(u() = F'(3;()7(t) 2 0.
The last two inequalities imply that
G, ;(t) >0 fors; <t <ty (22)
On the other hand, for ¢t € I; with ¢ < s; we have
F(y;(t) < F(v(t5)) <0.
This implies that if ¢ is sufficiently large, then
CF(y(t)) < —log |y (t)] for t < s (23)

It follows from (23) and (22) that G, j(t) < 0 fort < s; and that G is strictly
increasing in [s;,t;]. Moreover, G, ;(t) > 0 for ¢t > ¢, since F'(v;(t)) increases
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with ¢ and F(v;(t;)) = 0 and since 7; does not intersect {z: |z| < 1}. Thus
G.; has exactly one zero also in this case.

Altogether we see that G.; has exactly one zero for each j € {1,...,d}.

Thus the equation c¢F(z) + log|z| = 0 has exactly d zeros, from which the
conclusion follows.
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