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Abstract

We describe a new method of constructing transcendental entire
functions A such that the differential equation w” + Aw = 0 has two
linearly independent solutions with relatively few zeros. In particular,
we solve a problem of Bank and Laine by showing that there exist
entire functions A of any prescribed order greater than 1/2 such that
the differential equation has two linearly independent solutions whose
zeros have finite exponent of convergence. We show that partial results
by Bank, Laine, Langley, Rossi and Shen related to this problem are
in fact best possible. We also improve a result of Toda and show
that the resulting estimate is best possible. Our method is based on
gluing solutions of the Schwarzian differential equation S(F') = 2A for
infinitely many coefficients A.
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1 Introduction and main result

We consider ordinary differential equations of the form

w" + Aw =0, (1.1)
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where A is an entire function. All solutions w are entire functions. The
Wronskian determinant W (wy, we) = wiwy — wjws of any two linearly inde-
pendent solutions w; and wy is a non-zero constant, and a pair (wy, ws) of
solutions will be called normalized if W (wq,ws) = 1.

We recall that the order of an entire function f is defined by
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and the exponent of convergence of the zeros of f by

1
A(f) =inf ¢ A > 0: Z m(z)|z] ™ < o0 zlimsupw
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{2#£0: f(2)=0}

where m(z) is the multiplicity of the zero z, and

n(r,0, f) = Z m(z)

|2|<r

denotes the number of zeros of f in the disc {z € C: |z| < r}. It is well-
known [34, Chapter I, §5] that

AS) < p(f)

for every entire function f.

When A is a polynomial of degree d, then all non-trivial solutions w have
order (d + 2)/2. Some solutions can be free of zeros, but when d > 0, the
exponent of convergence of zeros of the product

E = wW1W2

of any two linearly independent solutions is equal to (d + 2)/2.

We refer to [3, Theorem 1] for a proof of these results, most of which
are classical. In fact, much more precise estimates on the location of the
zeros and the asymptotic behavior of n(r,0,w) can be obtained from the
asymptotic integration method; cf. [23, Section 4.6], [24, Section 5.6] and
[42, Theorem 6.1].

Some special equations of the form (1.1) with transcendental coefficient A,
such as the Mathieu equation, have been intensively studied since the 19-th

2



century, but one of the first systematic studies of the general case of transcen-
dental entire A is due to Bank and Laine [2, 3]. When A is transcendental,
then every solution has infinite order. It is possible that two linearly inde-
pendent solutions are free of zeros; for example, if p is a polynomial, then

1
w” — Z(ezp + )P —2p")w=0 (1.3)

wis(2) = exp (—% (p(z) 4 /0 ) ep(t)dt)) | (1.4)

However, two linearly independent solutions without zeros can occur only
when A is constant, or p(A) is a positive integer or co. More generally, we
have the following result.

has solutions

Theorem A. Let E be the product of two linearly independent solutions of
the differential equation (1.1), where A is a transcendental entire function of
finite order. Then:

(2) If p(A) is not an integer, then

AE) > p(A). (1.5)

(13) If p(A) < 1/2, then \(E) = co.

These results were proved by Bank and Laine [2, 3], except for the case
p(A) =1/2 in (i7) which is due to Rossi [37] and Shen [40].

Based on these results, Bank and Laine conjectured that whenever p(A) is
not an integer, then A(F) = oco. This conjecture raised considerable interest;
see the surveys [21, 32] and references there. Counterexamples were recently
constructed by the present authors [7] who proved the following result.

Theorem B. There is a dense set of p > 1, such that there exist A with
p(A) = AN(E) = p. Moreover, one solution for this A is free of zeros.

This shows that the inequality (1.5) is best possible when p(A) > 1.
Rossi [37] showed that if 1/2 < p(A) < 1, then (1.5) can be improved to the
inequality

_ —— < 2. (1.6)



Here and in the following 1/A(E) = 0 is understood to mean that A\(E) = occ.
Solving the inequality (1.6) for A(E) we obtain A\(E£) > p(A)/(2p(A) —1) for
1/2 < p(A) < L.

The main result of this paper shows that (1.6) is also best possible.

Theorem 1.1. For every p € (1/2,1) there ezists an entire function A of
order p such that the differential equation (1.1) has two linearly independent
solutions whose product E satisfies

L_FL—Q (17)
p(A)  NE) T '

Moreover, \(E) = p(E) and one of the solutions of (1.1) is free of zeros.

We note that our method also allows to construct coefficients A of pre-
assigned order p(A) € [1,00) such that (1.1) has two linearly independent
solutions whose product has finite order, with one solution having no zeros;
see Corollary 1.2 below.

The main idea in the proofs of this and subsequent results is to glue func-
tions associated to the differential equation (1.1) for different coefficients A.
Unlike in [7], where two functions are glued, it is now required to glue in-
finitely many functions, which creates substantial additional difficulties; see
section 2 for a detailed description of the method.

An entire function E is called a Bank-Laine function if E(z) = 0 implies
that E'(z) € {—1,1}. We call a Bank—Laine function special if E(z) = 0
implies that F'(z) = 1. It is known that the product of two normalized
solutions of (1.1) is a Bank-Laine function and all Bank-Laine functions
arise in this way. If w; has no zeros, the corresponding Bank—Laine function
is special. It follows from (1.6) and equation (2.2) below that p(E) > 1 for
every transcendental Bank—Laine function F; see [41, Theorem 1].

Many authors studied Bank-Laine functions (see the surveys [21, 32]),
but it was open until [7] whether there exist Bank-Laine functions of non-
integer order — except for those corresponding to a polynomial coefficient A
of odd degree, whose order is half an integer. Theorem 1.1 gives a complete
answer to the question asked in [2] what the possible orders of Bank—Laine
functions are. In fact, prescribing p(A) € (1/2,1) in (1.7) is equivalent to
prescribing p(E) € (1,00) in (1.7). Since the exponential function is a special
Bank—Laine function of order 1, we obtain the following result.

Corollary 1.1. For every p € [1,00) there exists a special Bank—Laine func-
tion of order p.



A major difference between the functions A and E constructed in the
proof of Theorem B in [7] and the functions constructed in the proof of
Theorem 1.1 is that the functions in [7] have “spiraling” behavior; that is,
we have E(y1(t)) — 0 and E(y2(t)) — oo as t — oo on certain logarithmic
spirals v, and ~s.

In contrast, one can show that the functions A and F constructed in the
proof of Theorem 1.1 have completely regular growth in the sense of Levin
and Pfluger; see [34, Chapter 3]. More precisely, we have the following result.

Theorem 1.2. The functions A and E in Theorem 1.1 can be chosen such
that

1 .
—log|A(re”)| ~ log

5 ~rfcos(pl) forl|f] < (1— 6)% (1.8)

1
[E(re?)|
while, with o = p/(2p — 1),

log | E(—re®)| ~ 17 cos(af) for |0] < (1 — 5)21 (1.9)
g

and )
T

. o _
|A(—re)| ~ Zr% > for 0] < (1— 5)20 (1.10)

uniformly as r — oo, for any € > 0.

Since the set of rays of completely regular growth is closed [34, Chapter 3,
Theorem 1], it follows that functions A and E satisfying the conclusions of
Theorem 1.2 have indeed completely regular growth.

In [5] and various subsequent papers the differential equation (1.1) is stud-
ied under suitable hypotheses on the asymptotic behavior of the coefficient A.
In particular, the following result was obtained in [5, Theorem 1].

Theorem C. Let A be a transcendental entire function of finite order with

the following property: there exists a subset H of R of measure zero such that
for each 8 € R\H, either

(1) r=N|A(re?)| — oo as r — oo, for each N >0, or
(i) [;"r|A(re?)|dr < oo, or

(1i1) there exists positive real numbers K and b, and a nonnegative real num-
ber m, all possibly depending on 6, such that (n + 2)/2 < p(A) and
|A(re®)| < Kr™ for all r > b.



Let E be the product of two linearly independent solutions of (1.1). Then
AE) = 0.

We note that the condition (n 4 2)/2 < p(A) in (i) is sharp by the
example (1.3) with the solutions (1.4).

Since n > 0 we see that (i7) can be satisfied only if p(A) > 1. However,
the proof in [5] shows that in (¢i¢) one may replace p(A) > (n + 2)/2 by
p(E) > (n+ 2)/2. Using (1.6) and noting that p(E) > A(E) we thus also
obtain a result for 1/2 < p(A) < 1. A short computation yields the following.

Proposition 1.1. Let A be a entire function satisfying 1/2 < p(A) < 1.
Then the conclusion of Theorem C holds when the condition (n+2)/2 < p(A)
in (ii7) is replaced by n < p(A)/(2p(A) —1).

Note that the latter condition is equivalent to

n+ 2 p(A)
1 R ST
> S T =2

so for p(A) < 1 this is indeed a weaker condition. It follows from (1.10) that
this modified condition is best possible.

We denote the lower order of an entire function f, which is defined by
taking the lower limit in (1.2), by u(f). Huang [25] showed that Theorem A,
part (ii), and (1.6) hold with p(A) replaced by u(A). We note that for the
function A constructed in the proof of Theorem 1.1 we have u(A) = p(A).

Toda [44] showed that Theorem A and (1.6), and in fact their refinements
obtained by Huang, can be strengthened if the set {z € C: |A(z)| > K}
has more than one component for some K > 0. Let N be the number of
such components. Toda [44, Theorem 3] proved that if pu(A) < N/2, then
A(E) = oo. Moreover, for N/2 < pu(A) < N the inequality (1.6) can be

improved to
N 1

p(4) " AE) =
Toda actually showed that these results hold for the number N of unbounded
components of the set {z € C: |A(z)| > K,|zP} if p, K, > 0. Note that for
f(z) = 2N +exp(2Y) the set {z € C: |f(2)| > K} is connected for all K > 0
while {z € C: |f(2)] > 4]2|¥*1} has N unbounded components.
We sharpen Toda’s inequality and show that the result obtained is best
possible.



Theorem 1.3. Let A be an entire function, N > 2 and p, K, > 0. Suppose
that the set {z € C: |A(z)| > K,|z|P} has N unbounded components and
let E be the product of two linearly independent solutions of the differential
equation (1.1). Then u(A) > N/2 and if n(A) < N, then

NN (1.11)
u(A) — AE) ~ '

We note that if u(A) = N, then we may have A(E) = 0 by the examples
given in (1.4).

Theorem 1.4. Let N € N and p € (N/2,N). Then there exists an entire
function A satisfying p(A) = p(A) = p such that {z € C: |A(z)| > K,|z|P}
has N unbounded components for p = 2Np/(2p — N) — 2 and large K, and
such that the differential equation (1.1) has two linearly independent solutions
whose product E satisfies

N N
TR 12

Moreover, \(E) = p(E) and one of the solutions of (1.1) is free of zeros.
One immediate corollary is the following result.

Corollary 1.2. For every p € (1/2,00) there exists an entire function A
satisfying w(A) = p(A) = p for which the equation (1.1) has two linearly
independent solutions wy and wy such that wy has no zeros and \(wsy) < oo.

Acknowledgment. We thank Jim Langley and Lasse Rempe—Gillen for helpful
comments.

2 Background and underlying ideas

2.1 The Schwarzian derivative and linear differential
equations

To every differential equation (1.1) the associated Schwarzian differential
equation is given by

ol / 1/ F" 2 o 3 [ F" 2
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The expression S(F) is called the Schwarzian derivative of F'. The general
solution of (2.1) is F' = wq/w; where w; and wq are linearly independent
solutions of (1.1). A pair (wq,wsy) can be recovered from F' by the formulas

1 F? F
'LU% = F, w% = F, and FE = W1We = ﬁ

It follows that F’ = W (wy,wq)/w? is free of zeros, and evidently all poles
of F' are simple. So F' is a locally univalent meromorphic function. If L
is a fractional-linear transformation, then S(L o F') = S(F). On the set
of all locally univalent meromorphic functions we introduce an equivalence
relation by saying that F} ~ F, if F; = L o Fy for some fractional-linear
transformation L. Then the map F' +— A = S(F')/2 gives a bijection between
the set of equivalence classes of locally univalent meromorphic functions and
entire functions A.

All these facts were known in the 19-th century; see, e.g., Schwarz’s col-
lected papers [39, pp. 351-355], where he also discusses the work of Lagrange,
Cayley, Riemann, Klein and others in this context. For a modern exposition,
see [38, IV.2.2] or [31, Chapter 6.

We will need some facts about Bank—Laine functions. First of all, we note
that the Schwarzian S(F') can be factored as S(F) = B(F/F")/2, where

£ £ 2 1

So the general solution of the differential equation B(E) = 4A, that is, the
equation
E" (E\* 1
4A = —2— — | —=. 2.2
E + (E ) E? (2:2)

is a product of a normalized pair of solutions of (1.1). In particular, the
general solution F is entire when A is entire, which implies that the general
solution is free from movable singularities. All such second order equations
linear with respect to the second derivative were classified by Painlevé, Fuchs
and Gambier; see, e.g., Ince’s book [28, Chapter XIV] for this classification.

The fact that the general solution of (2.2) is the product of a normalized
pair of solutions of (1.1) seems to be due to Hermite (see [22] or [48, p. 572])
and can be found already in Julia’s collection of exercises [29, Probleme no.
33, pp. 193-201] and Kamke’s reference book [27, Entry 6.139]. However,



the importance of this equation for the asymptotic study of A and E was
shown for the first time by Bank and Laine in [2, 3].

We have seen that for every locally univalent function F', the quotient
F/F' is a Bank-Laine function, and all Bank-Laine functions arise in this
way. Zeros of a Bank—Laine function F are zeros and poles of F', and F is
special if and only if F' is entire.

We keep the following permanent notation: (w;,ws) is a normalized pair
of solutions of (1.1), the quotient F' = wy/w; is a solution of S(F) = 2A4,
and F = wywe = F/F" is a solution of (2.2).

2.2 Description of the method

In this section we describe the underlying ideas of our construction. The
formal proofs of our results in sections 3—5 are independent of it. On the other
hand, an expert in conformal gluing and the inverse problem of Nevanlinna
theory may want to read only this section.

Our approach consists of constructing F' by a geometric method (gluing),
and then recovering the needed asymptotic properties of A and E. This
idea was used for the first time by Nevanlinna [35] and Ahlfors [1]. Nevan-
linna solved a special case of the inverse problem of value distribution theory
by using the asymptotic theory of the differential equation (1.1) with poly-
nomial coefficients. Ahlfors showed that the same results can be obtained
by geometric methods, without appealing to the differential equation (1.1).
These two papers initiated a long line of research which culminated in the
solution of the inverse problem for functions of finite order with finitely many
deficiencies by Goldberg [18, 19]. Further development of these ideas led to
the complete solution of the inverse problem by Drasin [14]. The connection
with differential equations was not used in this research after [35].

Here we use this connection in the opposite direction to [35]: we construct
a locally univalent map geometrically, use a form of the uniformization theo-
rem to obtain F', and then derive asymptotic properties of A and E. There is
a subclass of locally univalent maps with especially simple properties: there
exists a finite set X such that

F:C\F'(X)—=C\X

is a covering. The set of meromorphic functions with this property (not
necessarily locally univalent) is called the Speiser class and denoted by S;



it plays an important role in holomorphic dynamics [6, 17, 20] and in the
general theory of entire and meromorphic functions [13, 19, 15]. We only use
the case when X = {0,1,00}. To visualize functions of class S one employs
a classical tool, line complexes; see [19, Section 7.4] and [36, §11.2]. Consider
a graph I'y embedded in the sphere C with two vertices, x =i and o = —i,
and three edges connecting the two vertices and intersecting the real line
exactly once, in the intervals (—o0,0), (0,1) and (1, 00), respectively. It is
convenient to make this graph symmetric with respect to the real line.

The preimage I' = F~1(T) is called the line complex. Its vertices are
labeled by x and o, and faces are labeled by 0,1, 00, according to their
images. Two line complexes are equivalent if there is a homeomorphism of
the plane sending one to another, respecting the labels of vertices and faces.
In figures like Figure 1 we draw one representative of the equivalence class,
usually not the true preimage of Iy under F'. The function F is defined
by the equivalence class of its line complex up to an affine change of the
independent variable.

It is clear that I' is a bi-partite connected embedded graph, in which
every vertex has degree 3. If F' is locally univalent, then the faces (that
is, the components of C\I') can be either 2-gons or oo-gons. Here 2-gons
correspond to a-points of F' with a € {0,1,00} and oco-gons to logarithmic
singularities of F'~!. Every bipartite connected graph with vertices of degree 3
embedded to the plane is a line complex of some function F' of class & with
X =1{0, 1,00}, meromorphic either in the unit disk or in the plane.

Our functions F will correspond to the class of line complexes shown
in Figure 1. They are parametrized by doubly infinite sequences of non-
negative integers ({x)rez, showing the numbers of —x =o— links on the
vertical pieces between the infinite horizontal branches. The faces are labeled
by their images. Zeros of F' correspond to 2-gons on the vertical part of the
boundaries of faces labeled oo and poles to the 2-gons on the vertical parts
of the boundaries of faces labeled 0. So our function f is entire if and only
if £, = 0 for all odd k.

Example 2.1. F(z) = e corresponds to £, = 0, —oo < k < oo.

Example 2.2. F(z) = P(e*)e®”, where P is a polynomial of degree d, such
that F'is locally univalent, corresponds to the line complex with ¢, = d when
k is even and ¢, = 0 when k is odd. To see what this polynomial P might be,
we differentiate to obtain F’(z) = (P'(e*) + P(e*))e*e®”. This can be free of
zeros when P'(w) + P(w) = cw?, which easily implies that, up to a constant
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Figure 1: Sketch of the line complex corresponding to ¢y = £4+1 = 0,
lio=1,013=0, {14 = 2, and 15 = 0. The encircled labels indicate
to which logarithmic singularities the faces correspond. The graph I'g
is shown on the right.
factor,
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P(w) = Z(_l)]Tv
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a partial sum of e™".

We remark that a simple computation using (2.1) shows that the coeffi-
cient A corresponding to F' is given by

The case that A in (1.1) has the form A(z) = R(e*) with a rational function
R has been thoroughly studied (see, e.g., [4, 12]) but we shall not use these
results.

Ezample 2.3. F(z) = R(e*)e®, where R is a rational function. For F' to be
locally univalent we need R'(w)+ R(w) = w?/Q?*(w) where Q is a polynomial
with distinct roots. Then R = P/Q where P'Q—PQ'+ P(Q = cwP. Assuming
deg P = m, deg@ = n and P(0) = Q(0) = 1 we conclude that p = m + n,
and P/Q is the (m,n)-Padé approximation of e~*. For this case £, = n when
k is even and £, = m when k is odd.

In all these examples F' is periodic and the Bank—Laine function £ =
F/F" is of order 1. In Examples 2.1 and 2.2, the Bank—Laine function is
special.

To obtain different orders of E, we consider functions F' whose line com-
plex has a non-periodic sequence (¢;). We restrict ourselves to entire func-
tions F' and special Bank-Laine functions E, with 5,1 = 0,

bo=my+m_y, Llop=mp+mpy, Logp=m_p+m__, k>0,

where (my)rez\ {0y is a sequence of non-negative integers.

The construction of a function F' corresponding to such a line complex
can be visualized as follows.

Consider the strips

I, ={z+iy: 2n(k — 1) <y < 2nk}.
Let §% be the bordered Riemann surface spread over the plane, which is the

image of this strip under the function

z

Gmy, (Z) = Pmk (ez)ee )

w

where P, (w) is the partial sum of the Taylor series of e™" of degree 2my,

as in Example 2.
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All these Riemann surfaces have two boundary components which project
onto the ray (1,400) € R. We glue them together along these rays, in the
same order as the strips II; are glued together in the plane. The result-
ing Riemann surface § is open and simply connected. Our function F' in
Theorems 1.1 and 1.2 is the conformal map from C to §.

Of course, the uniformization theorem by itself is not sufficient: one has
to know that § is conformally equivalent to the plane. Moreover, we need
to know something about the asymptotic behavior of F' to make conclusions
about the order of E = F/F’" and A = B(FE).

So we do the following. Consider the piecewise analytic function g defined
by ¢(2) = gm, (z) for z € II;. Each boundary component of the strip IIj is
mapped by g homeomorphically onto the ray (1,+00). We shall study the
homeomorphisms ¢;: R — R defined by gpm,+1(¢x(x)) = gm,(x). We will
see that these homeomorphism are close to the identity on the positive real
axis and thus it is easy to glue the restrictions of these functions to the half-
strips {z € II;: Rez > 0} to obtain a quasiregular map U defined in the
right half-plane. (For technical reasons we will actually use the functions
U, (2) = Gm, (2 + Sm,,) instead of gy, (2), for certain constants s,,,.) The
homeomorphisms ¢y, are close to the linear map = — (2myq1+1)z/(2my+1)
on the negative real axis. In the left half-plane we therefore consider vy,, (2) =
Upm,, (2/(2my, 4+ 1)) instead of u,,, and find that it is easy to glue restrictions
of these maps to horizontal half-strips of width 27(my + 1). This way we
obtain a quasiregular map V defined in the left half-plane.

We then precompose the maps U and V' with appropriate powers and glue
the resulting functions to obtain a quasiregular map G. The quasiconformal
dilatation Kg of G will satisfy the condition

K, —1
&dm‘ dy < 0. (2.3)
|z[>1 z? + y2

Then the theorem of Teichmiiller-Wittich-Belinskii [33, §V.6] will guarantee
the existence of a homeomorphism 7: C — C with

T(z) ~ 2z asz— 00, (2.4)

such that G = F o 7 for some entire function F'. The property (2.4) and
explicit estimates for the ¢, will give sufficient control of the asymptotic
behavior of F' to prove the conclusions of Theorems 1.1 and 1.2.
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To achieve (2.3) one needs a good control of the homeomorphisms ¢y, as
r — oo and as k — oo. This is achieved by using Szeg6-type asymptotics of
the partial sums of the exponential which we prove in section 3.

To prove Theorem 1.4, we need a locally univalent function F whose
asymptotic behavior is similar to Fy(2"V), where Fy is the locally univalent
function constructed in Theorem 1.1. Of course, Fy(2") has a critical point
at 0 and thus is not locally univalent. So the idea is to proceed as follows.
First we prepare a function F; which is similar to Fjy, but maps the real line
onto (0, 1) reversing the orientation (so it is decreasing on the real line). In
fact, the construction would work with F; = 1/Fp, but then the resulting
function F' would have poles so that the Bank—Laine function £ = F/F’
would not be special. Then we glue Fy(z") and F;(2") in a suitable way.

To carry out the construction, we will actually work with the quasiregular
maps Gg and G arising in the construction of Fj and Fj, instead of Fj and
Fy themselves. Then we consider regions Cj;, for j = 1,...,2N, which are
contained in the sectors {z € C: 7(j —1)/N < arg z < 7j/N} and which are
asymptotically close to these sectors; cf. Figure 2.

Figure 2: Sketch of the domains C; for N = 3.
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For z € C; we define G(z) = Gi(p;(z")) with some quasiconformal
map ¢, and k € {0,1} depending on j. In fact, we will have G(2) = Gi(2")
in a large subdomain D; of C}. Actually, we will take k = 1 for j = 1 and
j =2N and k = 0 otherwise.

By construction, G will map dC; homeomorphically onto one of the inter-
vals (0, 1) and (1, 400) of the real line. It remains to define a locally univalent
quasiregular function in the complement of Ujfl C; which has these bound-
ary values. In particular, this map will tend to one of the values 0, 1 and co
in the strips between the C;. These values are encircled in Figure 2.

The question whether a locally homeomorphic extension of F' to the com-
plement of U?fl C; with these boundary values exists is a purely topological
problem. This is solved in section 5.3. However, we also need the extension to
be quasiregular, with dilatation satisfying (2.3). This is achieved by choosing
an appropriate shape of the C; near infinity in section 5.2. Composing the
quasiregular map G obtained with a quasiconformal map 7 satisfying (2.4)
will give our entire function F.

We conclude this section with some general remarks and references. Func-
tions f € S are determined by their line complexes labeled by the singular
values up to an affine change of the independent variable. It is an important
problem to draw conclusions about asymptotic properties of f from the line
complex. First of all one has to be able to determine the conformal type of
the Riemann surface defined by the line complex [47]. But once the type is
determined, one wants to know the asymptotic characteristics like the order
of growth, deficiencies, etc. Teichmiiller [43] stated the general problem as
follows:

Gegeben sei eine einfach zusammenhdangende Riemannsche Flache 20 -
ber der w-Kugel. Man kann sie bekanntlich eineindeutig und konform auf
den Finheitskreis |z| < 1, auf die punktierte Ebene z # oo oder auf die volle
z-Kugel abbilden, so daff w eine eindeutige Funktion von z wird: w = f(z).
Die Wertverteilung dieser eindeutigen Funktion ist zu untersuchen.

Dies ist ein Hauptproblem der modernen Funktionentheorie.

This problem has been intensively studied in connection with the inverse
problem of value distribution theory [49, 26, 19].

In recent times there is a revival of interest to these questions, which is
mainly stimulated by questions of holomorphic dynamics. In this connection,
we mention recent remarkable contributions by Bishop [9, 10, 11].
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3 Proof of Theorem 1.1

3.1 Preliminary results

Lemma 3.1. Let v > 1. Then there exists a sequence (ny) of odd positive
integers such that the function h: [0,00) — [0,00) which satisfies h(0) = 0
and which is linear on the intervals 2w (k — 1),2wk| and has slope ny, there
satisfies

h(z) =27 + O(z"%) + O(1) (3.1)
as x — 0.

Moreover, the function g: [0,00) — [0,00) defined by h(g(x)) = 27 satis-

fies

g(z) =2 +O0(=") + O(a' ") (3-2)

and
Jd@)=1+0( ) +0(@'") (3.3)

as x — 0o, where ¢’ denotes either the left or right derivative of g.

Finally,
ng = v(2mk)" + O(k72) + O(1) (3.4)

as k — oo.

Proof. We set h(0) = 0 and choose kq so that
(27k)” — 2n(k — 1)) > 4w for k > k. (3.5)

Such a kj exists because v > 1.

For k < ko we set ny = 1. Suppose that k > ko, and h(27(k — 1))
is already defined. Then we define h(27k) := 27py, where pj, is a positive
integer of opposite parity to h(2w(k — 1))/(27) minimizing |(27k)Y — 27py|.
There are at most two such p, and when there are two, we choose the larger
one. Then we interpolate h linearly between 27 (k — 1) and 27k. Evidently,
with this definition,

|h(2mk) — (27k)7| < 2. (3.6)

Next we show that h is strictly increasing. Using (3.5) and (3.6) we have
h(2rk) > (2nk)” — 27 > (2m(k — 1))” 4+ 27 > h(2w(k — 1)).

So h is strictly increasing, and its slopes n; are positive odd integers.
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To prove that the function h satisfies (3.1), we note first that h(27k) =
(2mk)Y 4+ O(1) by construction. For 0 <t < 1 we have

@r(k+1)) —t2r(k+ 1)) — (1 — t)(27k)”
= (2mk)" (L+~t/k —t(1+~/k) =1+t +O(k™?)) = O(k" )

as k — 00, so the straight line connecting the points (27k, (27k)”) and
(2m(k + 1), (2m(k + 1))7) deviates from the graph of the function = — 27
between the points k and k+ 1 by a term which is O(k7~2). This yields (3.1).

To prove (3.2) we note that (3.1) implies that g(z) = z(1 4 d(x)) where
d(z) — 0. Using (3.1) again we see that

27 = h(g(x)) = 27(1+6(x))" + O(z7"2) + O(1)
=17 (1 + vo(x) + O(é(w)Q)) + 0273 + 0(1)

as x — oo. This yields
276(x) = O(x72) + O(1),

from which (3.2) follows.
Similarly we see that

B (z) =~v2"" 4+ 0(x7%) + O(1)
and thus
W(g(x)) =727 (146(2)) 7 + 0@ 7%) + O(1) = 727" + O(277%) + O(1).
Hence

A 1

g(z) = @) =17 06 1 O =140 Y +0(@'),

which is (3.3).
Finally, by construction we have
h(2mk) — h(2m(k — 1))  (27k)” — (2n(k — 1))~

o = 1
1k 2T 2 + O( )’

from which (3.4) easily follows. O
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For m > 0 we will consider the Taylor polynomial

Pulz) = D155

of e7# and the functions

and
gm(2) = hy(€7) = Pp(€®) expe®.

We shall need some information about the asymptotic behavior of h,, and g,,.

Lemma 3.2. Let m € N and put n =2m + 1. Let y > 0. Then
log(hm(y) — 1) = —logn! 4+ y +nlogy — log<1 + %) + R(y,n)

where 94
Y
|R(y,n)| < ———
n(n+y)
forn > 24.

The slightly weaker result that R(y,n) = O(1/n), uniformly in y, can
be obtained from the work of Kriecherbauer, Kuijlaars, McLaughlin and
Miller [30]. The above estimate is better for small y, which is advantageous
for our purposes.

In terms of g,, the estimate of Lemma 3.2 takes the form

xT

log(gm(x) — 1) = —logn! + €* + nx — log(l + %) + R(e",n). (3.7)

Proof of Lemma 3.2. By the formula for the error term of a Taylor series we

have
1

eﬂ—Rawz—@EﬁAQ%@—w%ﬁ
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and thus

hm(y) —1=

1
 (2m+1)!

1 Y y—t de _ 1 Y de
—(Qm)! i e’y —t) t_—(Qm)! i e"u ™ du

Y
(enyerl _/ e u2m+1du)
0

— —ey 2m+1 1 — / eufy <_) du
(2m + 1)! Y ( 0 Yy

1 1
— = Ly,2m+l 1 — y(s—1) 2m+1d )
em+ 1) ( y/O e s 5)

Since n = 2m + 1 we thus have

log(hm(y) — 1) =

where

1
I:I(y,n):/ eVl gn s,
0

Since logs < s — 1 for s > 0 we have

1 1
1
I Z/ eylogss”dSZ/ sty = ——
0 0 y+n+1

For an estimate in the opposite direction we use that

logs>s—1—(s—1)

for s > 1/2.

With 6 = min{1/2,1/,/y} and n =1 — 6 we write

y+n+1

51)

-/,
J e
I

I + Is.

1
eV gnds — / evlossgn g
0

eylogss") ds

1
eylogss")ds + /
n

19
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—logn! +y+nlogy + log(1l —yI),

—e

(3.8)

(3.9)

(3.10)

y log s gn

)ds



Now (3.10) yields
1 1 ,
L= / gVloBsgn (evlsD-vlorsgn _ 1) g < / st (0"~ 1) ds
1 77

since 6 < 1/2 and thus s > 1/2if s > =1 —¢. Since § < 1/,/y we have
y(s —1)? <1 for s > 1— 6. Noting that ¢! — 1 < 2t for 0 < ¢ < 1 we obtain

1 1
I < 2/ s¥Ty(s — 1)%ds < 2/ s¥Ty(s — 1)%ds
n 0
4y 4

B (y+n+1)(y+n+2)(y+n+3) = (y +mn)?

Moreover,

1=0 1-5
L < / VD gnds — / ey(s—1)+nlogs
0 0

e~ O(y+n)

1-6
< / (g = L (b ) <
—Jo y+n T y+n

Since § = min{1/2,1/\/y} > 1/(2y/y +n) and since ¢’ > ¢*/2 and hence
et < 2/t? for t > 0 this yields

L vz o8

I < .
Sy = (y+n)?

Combining the bounds for I; and I, with (3.9) we obtain
1 1 12

<< + .
y+n+1 =" Tytntl (y+n)?
Since
1 1 B 1 1
y+n y+n+l (y+n)y+n+1) = (y+n)?
we obtain
1 12
I— < .
y+n| = (y+n)?

Combining this with (3.8) we find that
n
log(hm(y) — 1) = —logn! +y +nlogy + log| —— — r(y, ,
g(hm(y) — 1) gn! +y+nlogy g<y+n r(y n))
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where

12y
<
Ir(y,n)| < T n)?
Since
log S r(y,n) | =— log<1 + Q) +log| 1+ _(y +n)r(y,n)
y+n ’ n n

we see that log(h,,(z) — 1) has the form given with

(v + n)r(ym)) |

R(y,n) = 10g<1 + -

To prove the estimate for R(y,n) that was stated in the conclusion we note
that |log(1 + )| < 2t for |t| < 1/2 and

2y 12
n

<

~ n(y+n)

’ (y +n)r(y, n)

for n > 24. It follows that

24
R(y.n)| = 10g<1+ (y+n)r(y,n)>‘ §2‘(ern)T(yﬂ”L) < f )
n n n(y +n
for n > 24 as claimed. O
Note that .
g (z) = ) exp(e® + (2m+1)z) #0 (3.11)

so that g,,: R — (1,00) is an increasing homeomorphism. Thus there exists
Sm € R such that

gm(Sm) = 2. (3.12)

Lemma 3.3. Let o = —1.27846454 ... be the unique real solution of the
equation € +1ro+1=20. Then

11 1
Sm = logn +1ryg — — oen +O(—>
2rg n

as m — 0o, with n =2m + 1.
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Proof. We write s,,, = logn + r. Then (3.7) and Stirling’s formula yield
1
0= —logn!+ne" +nlogn+nr —log(l+e") + O(—)
n

1 1 1
=n(e"+r+1)—log(l+e")— §logn - 510g27r+0(—> :
n
This implies that r = 79 + o(1). We write r = ry + ¢ so that ¢ = o(1) as
m — 0o. We obtain

1
0= —nrot — 3 logn + O(1),

from which the conclusion easily follows. m

Let now m, M € N with M > m. We consider the function ¢: R — R

defined by
g (@) = gm(o(x)).

We will consider the functions ¢ for the case that m = my_; and M = my
for the sequence (my) such that ny = 2my + 1, where (ng) was constructed
in Lemma 3.1.

Thus we will consider the behavior of ¢ as m — oo, but in order to
simplify the formulas we suppress the dependence of ¢ from m and M from

the notation. We shall assume that there exists a constant C' > 1 such that
M < Cm. Weput n =2m+ 1 and N =2M + 1. Then clearly

N < Cn. (3.13)

In the following, the constants appearing in the Landau notation O(1/n) and
O(1) will depend on C', but not on other variables.

Lemma 3.4. The function ¢ has a unique fized point p which satisfies

Nlog¥ 1
=1 L —1+0(—-). 3.14
p=logn+ %~ 1401 (3.14)
as m — 00. Moreover, ¢(x) < x for x < p and ¢(z) > x for x > p.

Proof. Let d: R — R, d(x) = gp(z) — gm(x). We have to show that d has a
unique zero. Now

1 1
d _ 2(M—m)x (2m+1)z e”
(z) ((2M)!€ em)!) € “
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from which we see that the derivative has one sign change, namely at the
point
1 (2M)!
og .
2(M —m) (2m)!

Moreover, it follows from (3.7) that d(z) < 0 if x is negative and of sufficiently
large modulus. So d decreases and stays negative on the left of ¢, and then
increases to +o0o on the right of g. We conclude that h has exactly one zero
p > q, which is the fixed point of ¢.

To determine the asymptotic behavior of p as m — oo we note that (3.7)
implies that

q:

P

P 1
—logN!+Np—log(1+ e_) = —10gn!~|—np—log(1+e—> ~|—O(—> .
N n n

We write p = logn + r. It follows that

(N —n)r
N! n ., , 1
:logm—(N—n)logn—l—log(l—l—Ne)—10g(1+e)+0(g)
N! N—-—n ¢€ 1
=log— — (N —n)l log| 1— - .
g —; ( n)logn + og( N 1+er)+0<n)

Now

| 1 N-—-—n ¢€" <l 1 N —n < N —n
O, — (0] _ C
& N 1te)|=[% N J|=9TN

with a constant ¢y depending only on the constant C' appearing in (3.13).
Hence

1 N! 1
r= N_nlogﬁ—logn—i-O(E).

An application of Stirling’s formula now yields

Nlog & log & 1
r = Ogn—1+ Ogn+0(—)

N —n N —n n
Since
log ¥ log ¥ 1
n_o_ n < —
N —n n(%— )_n



we actually have

Nlog ¥ 1
=—"7" —-14+0( -
"TNn + ()’

so that (3.14) follows. O

Remark. We can write the asymptotic formula for r also in the form

NlogX 1
r=2tn gln —1+O(—>.

n

Since the function z — (zlogz)/(z—1) is increasing on the interval (1, C] and
since lim,_,1(xlogz)/(z—1) = 1 we deduce that p = logn+0O(1). If N/n — 1
as it will be the case in our application, we even have p = logn + o(1).

Lemma 3.5. For m, M,n, N € N and ¢: R — R with the unique fized point
p as before there exist positive constants cy,...,cs, depending only on the
constant C in (3.13), such that

0<p(z)—z<ce™?< a for x> 8logn (3.15)
n
and N . v
o) — —x+ —log —| < e®  forx <p. (3.16)
n n n!

Moreover, with s, defined by (3.12) we have

p(x) — x| <5 forax> sy, (3.17)
and N . \
'(b(m) — —z— —log —' <ey foraxz <p. (3.18)
n n o - onl
Finally,
’ —z/2 1 205
o' (x) — 1| <cs (e +ﬁ §7 for x > 8logn (3.19)
and N N
O (x)——| < % forx <p (3.20)
n n
as well as
cr <|¢'(z)| < cg  forall x € R. (3.21)



Remark. Since s, < p for large m we may assume that the constants ¢, ¢y, cg
are chosen such that (3.16), (3.18) and (3.20) also hold for z < s,,.

Proof of Lemma 3.5. Let y = ¢(x) so that gy (z) = gm(y). By (3.7) we have

—1ogN!+ex+Nx—log(1+%> + R(e",N)

) (3.22)
e

= —logn!—{—ey—l—ny—log(l—{——) + R(e¥,n).
n

Suppose first that £ < p. Then y < x and thus

‘ N 1 N!
y— —x+ —log —
n n n!

xT

1 e e’
e’ —e¥ — log(l + —) + R(e*,N) + 10g<1 + —) — R(e’,n)
n

n

N

<1 vy y+em+206‘”+ey+206y <44ea’
—le e — 4 — + — .
—n N N2 n n? | —

n

This yields (3.16) and, since p = logn + O(1), also (3.18).
Suppose now that x > p. Using

x N
log(l—i— 6—) :x—logN+log(1+—>
N ev

and the corresponding formula for log(1 + €¥/n) we may write (3.17) in the
form

N
—log N!+¢e® + (N — 1):B—|—logN—log(1+—z) + R(e",N)
¢ (3.23)

= —logn!+e'+ (n—1)y+logn — log<1 + Ey) + R(e,n).
e

We write x = logn + s and y = logn +t and note that, since x > p, we have
t > s> —0(1) by Lemma 3.4 and the remark following it. We obtain

N
—logN!—i—neS—i-(N—1)(10gn+5)+10gN—10g<1+ )
nes

¢ 1 1

= —logn! +ne' + (n—1)(logn +1t) +logn —log{ 1+ — | + O| —
e n
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and hence, using Stirling’s formula,

1 N! N
el —ef =~ (—log——i-(N—n)logn—i-log—)
n n! n

(Dol

N
< gs +0(1) < Cs+0O(1).
It follows that
0<g(z)—x=t—s<e=1<Cse*+0(e*) =0(1) forz>p. (3.24)

For > 8logn we have s = z —logn > 3z/4 and thus 2s/3 > z/2. It follows
that se™ = O(e™2*/3) = O(e™*/?) and thus (3.24) yields (3.15). Noting that
p — sm = O(1) by Lemma 3.3 we can also deduce (3.17) from (3.24).

Since ¢h;(x) = gm(y)¢'(x) by the chain rule, (3.11) yields

n—1)!
¢ (r) = (n—1) exp(e” + Nx — e¥ — ny)

(N -1
and thus

log ¢'(z) = logn! —log N! —logn + log N + e¢* + Nx — ¥ — ny.
Using (3.23) and (3.24) we obtain

N 1

for x > p. Together with (3.15) and (3.17), and since for all A > 0 there
exists B > 0 such that |t — 1| < B|logt| whenever |logt| < A, the same
arguments as the ones used before now yield (3.19), as well as

|log ¢'(x)| = O(1) for z > p. (3.25)
Similarly (3.22) yields

N 2 v
log ¢'(x) = log o - log(l -+ %) — log(l + e_) — R(e®, N) + R(e”,n)

n
and hence
n ., B e’
log(N¢($)> _O<n for x < p.
This yields (3.20) as well as |log¢'(z)] = O(1) for < p which together
with (3.25) yields (3.21). O
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3.2 Definition of a quasiregular map

The idea is to construct an entire function by gluing functions g, with differ-
ent values of m appropriately. Actually, we will first modify the functions g,,
slightly to obtain closely related functions u,, and v,,. We then glue restric-
tions of these maps to half-strips along horizontal lines to obtain quasiregular
maps U and V which are defined in the right and left half-plane. Then we
will glue these functions along the imaginary axis to obtain a quasiregular
map G in the whole plane.

In the next section we will show that the map constructed satisfies the
hypothesis of the Teichmiiller-Wittich—Belinskii theorem.

The maps U, V and G will commute with complex conjugation, so it will
be enough to define them in the upper half-plane. We begin by constructing
the map U.

Instead of g, we consider the map

Un: {z€C: Rez >0} =5 C, up(2) =gm(z+ sm).

Note that w,, is increasing on the real line, and maps [0, c0) onto [2,00).
Let (ng) be the sequence from Lemma 3.1 and write n, = 2my + 1.
Basically, we would like to put U(z) = uy, (z) in the half-strip

I ={z+iy:2>02r(k—1) <y <2k}

However, this function U will be discontinuous. In order to obtain a con-
tinuous function we consider the function 9y : [0,00) — [0,00) defined by
Uy, (T) = U, (Y1 (2)). This function 1)y, is closely related to the functions ¢
considered in Lemmas 3.4 and Lemma 3.5. In fact, denote by ¢; the function
¢ corresponding to m = my and M = my;. Then

Ur(2) = op(2 + 5y, ) — Sy, (3.26)

We then define U: {z € C: Rez > 0} — C by interpolating between
Uy, A0 Uy, as follows: if 27(k — 1) <y < 27k, say y = 2m(k — 1) + 2nt
where 0 <t < 1, then we put

U(x +iy) = U, (1 — t)z + th(z) + 1y) = tm, (x + 1y + t(Yr(x) — x)).
Actually, by 27mi-periodicity we have

Uz +1iy) = tum, (1 — t)z + thg(x) + 2mit).
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The function U defined this way is continuous in the right half-plane.
We now define a function V' in the left half-plane. In order to do so, we
define

Um: {2z €C: Rez <0} = C, wv,(z) :gm<2mz+1 —|—Sm) :

Note that v, maps (—o0o, 0] monotonically onto (1, 2].
Let (ng) and (my) be as before and put Ny, = 25:1 nj, with Ny = 0. This
time we would like to define V(z) = vy, (2) in the half-strip

{z+iy:x <0, 2rN,_1 <y < 2nNi},

but again this function would be discontinuous, so in order to obtain a
continuous function we again interpolate between v, , and v, . Simi-
larly as before we consider the map ¢: (—00,0] — (—o00,0] defined by
Uyt () = Uy (Yi(x)). Then we define V: {z € C: Rez < 0} — C by
interpolating between v, ., and vy, as follows: if 27N, <y < 2w Ny, say
y = 2nNp_1 + 2mnit where 0 <t < 1, then we put

V(x4 1y) = U, (1 — ) + thp(x) + iy) = vm, (x + iy + t(Yr(z) — 2)).

This map V is continuous in the left half-plane.

Now we define our map G by gluing U and V' along the imaginary axis. In
order to do this we note that by construction we have U (iy) = V (ih(y)) and
thus U(ig(y)) = V(iy?) for y > 0, with the maps h and ¢ from Lemma 3.1.
Let now ) be the homeomorphism of the right half-plane

H"={2€C: Rez >0}

onto itself which satisfies Q(+iy) = ig(y)) for y > 0, which is the identity
for Re z > 1, and which is defined by interpolation in between; that is,

Qe+ i) = x + 1y if x > 1, (3.27)
B r+i((1—2)g(y) +ay) if0<z<1. '

Then the map W = U o @ satisfies W (iy) = Ul(ig(y)) = V (iy?).

Let now p € (1/2,1) as in the hypothesis of Theorem 1.1. We choose
v =1/(2p — 1) in the above construction and put o = py = p/(2p — 1). The

28



hypothesis that 1/2 < p < 1 corresponds to v > 1 as well as ¢ > 1. The map

W (zP) if |arg z| < 1,
_ 2p
G(’Z) - . T
V(-(-2)) it |arg(~2)| < o

is continuous in C. Here, for n > 0, we denote by 2" the principal branch of
the power which is defined in C\(—o0, 0].

3.3 Estimation of the dilatation

We will use the Teichmiiller-Wittich-Belinskii theorem stated in section 2.2
to show that the map G defined in the previous section has the form G(z) =
F(7(z)) with an entire function F' and a homeomorphism 7 satisfying 7(z) ~
Z as z — 0.

For a quasiregular map f, let

1) 1+ ()
fz(z) 1- |Mf(Z)|

In order to apply the Teichmiiller-Wittich—Belinskii theorem, we have to
estimate Kg(z) — 1. We note that

o e e+ eG)) _ Hus))
S 1 5 By oo | Rl o9

We begin by estimating Ky (z) — 1. Let 2m(k — 1) < y < 27k so that
y = 2m(k — 1) 4 2mt where

s (2) and K (2)

Yy
<t=——-(k—-1)<1.
0= 2m ( ) <

Then U(z) = tm, (¢(2)) where

q(x +iy) = x + iy + t(Yi(z) — 2)
(3.28)

Thus



with
a(z + iy) = %w;(x) ~ 1) and b(z +iy) = %wk(x) _ ).

This yields

|/LU(Z)‘ = ’:UQ(Z)’ = (1+a(z))2+b(2)2

and thus
B 4lpg(2)1)
=S 2l
_ 4/ +a(2))? + b(2)*Va(2)? + b(2)?
1+2a(z)
_ 4 +a(z) + (=)D (a(2)] + [b(2)])
1+ 2a(z) '
Note that if a(z) < 0, then
t 1
az) = SW) ~ 1) > S(Wh(a) 1)

and thus
14 2a(z) > ¢p(x) >0
Thus we have
14 2a(z) > min{1, ¢ ()} >0

in any case. Altogether we find that

401+ [P () — 1 + Yu(2) — 2[)([Yp(2) — 1 + [¢(z) —2])

Ky(z) =1< min{1, ¢} ()}

With
r(z) = [Yy(x) = 1| + [ve(z) — 2| (3.29)

we thus have

4(1
Ko (e) -1 < 20D,
min{1, vy, ()}
We shall use Lemma 3.5 to estimate the terms occurring here.
Let now

(3.30)

S =A{x+iy: 2n(k—1) <y < 2rk, x > 8logng}.
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In order to estimate Ky(z) — 1 for z € S we note that Lemma 3.3 yields
that that if x € S, then z + sp,, ., > 8logny for large k. For such k we
deduce from (3.4), (3.15), (3.26) and Lemma 3.3 that

|¢k(5€) - J}| = |¢k(x + 5mk+1) - ($ + Skarl) + Sy Smk|

c 1 |logn logn
< — + |log ngs1 — log k| + LS M
ny 2|7"0‘ Ng41 ny

oft)

with § = min{1,v — 1}. By (3.4) and (3.19) we also have

64(2) = 1 = 4@ + Smp) — 1] = o(i) _ o(ki) |

g

The last two inequalities imply that |r(z)] = O(1/k°) and hence
1
KU(Z)—le ﬁ fOI'ZGSk.

by (3.21) and (3.30).

Now
/ dx dy < / dx dy
s, T2+ Y2 T Js, 22 44w (k — 1)?

<2 /OO do =T <z
= Ak —12 2(k—1) — k

dr d *d
/ 2x y2§27r/ —fIQﬂ'.
s, T4ty 1z

Combining the last three inequalities and noting that W (z) = U(z) for z € Sj
we deduce that

for £k > 2 and

Kw(Z) -1 " . KU(Z) —1 Al
s, x2+y2 S, x2+y2 - k1+5

(3.31)

for some constant A;.
Combining (3.17) and (3.21) with (3.30) we also see that U is quasiregular
in the right half-plane H™*.
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Next we show that ) defined in (3.27) is quasiconformal. Similarly as in
the computation of y; we find that

Q.(2) = 1+a(z) —ib(z) and Q=(z) = a(z) +ib(2),

where, for y > 0,

ale +iy) = - 5 “(g(y)— 1) and bz +iy) = %(g(y) ~ )
and thus
o) = a(z)? + b(2)? _ a(z)? + b(2)? |
(1+a(2))? +b(2)* 14 2a(2) + a(2)? + b(2)?
Since g(y) —y = o(1) and ¢'(y) — 1 = o(1) as y — oo by Lemma 3.1, we

conclude a and b are bounded. Moreover, inf,>( ¢'(y) > 0, which implies that
inf, e+ |1+ 2a(z)| > 0. We deduce that @ is indeed quasiconformal in H™.
Hence W = U o () is quasiregular in H™.

We put

S, ={x+iy: 2n(k —1) <y <27k, 0 < x < 8logny}.

dz dy 1 8 log ny, log k
< drdy = —="2_ < A,——
/s; 2242 = dn(k — 1) /S T e — 12 = T

Then

for some constant A, in view of (3.4). Let K be the dilatation of W in H*;
that is, K = sup,cy+ Kw(z). We conclude that

Kw(z) —
sy $2+?/

log k

(3.32)

Let now R > 27 + 8logn, so that {z € C: |z] > R} NS} = 0. We deduce
from (3.31) and (3.32) that
Kw(Z) —1
p>r T2 F y2

_Z . x2 _1d dy+z

< (K —1)A, \~ logk +Alz
k=

dx dy

dxd
S I2+y i

2 k1+5dxdy<oo.

k=2
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For |arg z| < 7/(2p) we have G(z) = W(z*). It follows that

Kg(Z) -1 Kw(Zp) -1

|argz|<% T2 _|_y2 dxdy - |argz|<% T2 +y2 dfﬂdy
|Z|>R1/p ‘Z|>R1/p (3 33)
1 Kyw(z) — 1 '
= —/ &dx dy < oo.
p JzeHt 22 4 92

|z|>R

The estimate of K¢(z) for arg(—z) < 7/(20) is similar. Instead of (3.29)
and (3.30) we obtain

41 4 r(x))r(x)

K —-1< . 3.34
VTS L i) 330
with .
r(z) = [Y(z) — 1] + n—k|¢k(x) — (3.35)
and
z
Up(z) = nk¢k( + smm) — NSy -
Nk+1
Now
r)—x n T 1 Ngt1!
wk( ) :¢k( +3mk+1) - bl < +$mk+1> +_10g k+'1
N Ng41 ny N1 Ny ng-
Ni41 1 nk+1!
n—kSmk+1 — Smy, — n_k lo nk' .

It follows from Lemma 3.3 and (3.4) that

Njt1 B —il Moy
——Smps — Sma o

Since x/nyy1 + Smpp < —logny, for ¥ < —2ny logny, and sufficiently large k

by Lemma 3.3, Lemma 3.4 and (3.4), we deduce from (3.16) that

T n T 1 Tp!
Nk41

ng Nkg+1 ng nk'
T Co
< ¢y exp<—> < —=  for x < —2n4 logng
nk+1 + Smk+1 nk
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and large k. The last three inequalities yield that

1 1
n—k|1/zk(x) —z| = O(ﬁ) for x < —2ny log ny. (3.36)

Moreover, the above arguments in conjunction with (3.18) show that
1
—|Yp(z) — x| = O(1) for —2nglogng < x < 0. (3.37)
Ny

Next we note that

Yy() = =& ¢;(i+smm)

Nk+1 Nk+1

From (3.20) we can now deduce that

1
[ (x) — 1] = O(E) for © < —2ny log ny.

and
[Yp(x) — 1] = O(1) for —2nilogng <z < 0.

Combining the last two inequalities with (3.34), (3.35), (3.36) and (3.37) we
conclude that V' is quasiregular in the left half-plane

H™ ={ze€C: Rez <0}
and that

1
Ky(z)—1= O(ﬁ) for x < —2ny log ny. (3.38)
In analogy with Sy and S, we put

Ty ={x+iy: 2rNy_1 <y < 27Ny, = < —2n;logng}

and
T, ={x+iy: 2nNp_1 <y < 2w Ny, 2nglogng < z < 0}.

For k > 2 we have
dx dy dx dy * dx T,
2 eS| Ny S R v :
T, TPty 7, T2+ 4TANE_ o T*+4mANg 2N,
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Since also
dx dy
— 5 <
Tty

1
N ~ —k7 (3.39)
2T

and since

as k — oo by (3.4) this yields

dz d 1
[ 8ol
T, T°+Y k
In analogy with (3.31) we can use these estimates and (3.38) to deduce that

Kv<2) —1 Ag
—————drdy < —=
2+ T =705

for some constant As. Similarly, if £ > 2, then

dx dy 1 ny log ng log k
< drdy=——=—<A
/T,; w2 +y? T ATIN, /T,; YT N e

for some constant A, by (3.4). The last two inequalities now imply that if
R > 0, then

K -1
%dw dy < oo.
lz2l>R T +y

For |arg(—z)| < 7/(20) we have G(z) = V(—(—%)?). Similarly as in (3.33)

it follows that
K —1 1 K —1
zeHd

larg(—2)|<3; 2 4 y2 o 2 + y2
|z|>RY/ |z|>R

Combining this with (3.33) we see that if » > 0, then

Kg<Z) —1

dr dy < 00.
|z|>7 x? + y2 Y

Thus G satisfies the hypothesis of the Teichmiiller-Wittich-Belinskii the-
orem [33, §V.6]. This theorem yields that there exists a quasiconformal
homeomorphism 7: C — C and an entire function F' such that

G(z) =F(r(2)) and 7(2)~2z asz— o0. (3.40)
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3.4 Asymptotic behavior of F, EF and A: proof of The-
orems 1.1 and 1.2

Proof of Theorem 1.1. We begin by estimating the counting function of the
zeros of F. Let r > 0 and choose k € N such that 27(k — 1) <r < 27k. It
follows from the construction and (3.39) that

k
1
n(r,0,U) <4 E mj ~ 2N, ~ —k7 = O(r").
T

j=1
Similarly, if 2r N, < r < 27Ny, then
& 1
n(r,0,V) < 4217%]- ~ 2N} ~ ;k” = O(r).
J:
This implies that

n(r,0,G) = O(r"") + O(r?)

O(r?) (3.41)
since py = 0. Now (3.40) yields n(r,0, F') = O(r?) and hence
N(r,0,F) =O(r°) (3.42)

as r — 00.
Next we note that the coefficients in the Taylor series expansion of h,,
are all non-negative. This implies that |h,,(2)| < Ay, (]2]) and hence

|9m (2)] < gm(Re 2)
for all z € C. Clearly this implies that
[Um (2)] S vm(Rez) for 2 € H- and  |up(2)] < un(Rez) forz€ HT.

Let 2z =x+11w € H™ and k € N with 27N,_; < Imz < 27N,. With
t = (y — 2w Ng_1)/(2mnit) we have 0 <t < 1 and

V(@ +iy)| = [vm, (1 =)z + tu(x) + iy)|
< U, (1 = ) + thg () < U, (0) = g(Sm,) = 2.

Thus
V(z)| <2 (3.43)
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for z € H-. For z € H' we use the estimate

2m
Im(2)] < lgm(Rez)| = —1)7 eI Rez exp(elte?
90| < lan(Re2) = D1 G el
S 61+2mRezeXp<€Rez).

Again we choose k € N such that 27 (k — 1) < Im 2z < 27k. Then

U ()] = [um, (¢(2)] = gm;.(2(2) + $mp )| < gy (Re q(2) + 5m,.),
with ¢(z) defined by (3.28). Noting that m; = O(K7') = O(|z|""!) by (3.4)

and thus
Sm,, = logny + O(1) = logmy, + O(1) = O(log |2|)

we deduce from (3.17) and (3.44) that

log |U(2)| <1+ 2mg(Req(2) + sm,) + exp(Req(z) + sm,,)
< exp((1+o(1))[z]) + O(]z]") < exp((1 + o(1))|z])

and hence
loglog|U(2)] < (1+o0(1))|z] asz-—ooin H.
Together with (3.43) we conclude that
loglog |G(z)| < (1+0o(1))|2| (3.45)
as |z| — o0o. Hence (3.40) yields that
loglog [F(2)] < (1 + o(1))]2|”

as |z| = oco. The lemma on the logarithmic derivative [19, Section 3.1] now
implies that £ = F/F’ satisfies

1
m<r, E) = O(r’). (3.46)
By (3.42), and since the zeros of E are simple, we have

N(r,0,E) = O(r?)
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and we conclude that
T(r,E)=0(r?).

In particular, £ has finite order. Since F' is entire, E is clearly a special
Bank-Laine function.

The lemma on the logarithmic derivative, together with (2.2) and (3.46),
also implies that

1
m(r,A) =2m (r, E) + O(logr) = O(r?).

We thus have A\(E) < p(F) < ¢ and p(A) < p. Since

1

-4 — = 2

p o
by the definition of o, we deduce from (1.6) that actually A(E) = p(F) = o
and p(A) = p. This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. We estimate the asymptotics of I/, F and A more
accurately than in the previous proof. First we note that for |z| > 4m we
have

2m—1 2m—1 2m—1

P ( ) z2m Z( 1)kzk - Z |Z|k Z ’Z|2m—1
m(2) — = —1)" | < — = T
(2m)! p k! k! — |z|2m—1=F
B - - 4
B = W TN P 347
= 1) 2m—1-k || [
(2m —1)! prd |z| (2m)!

and thus in particular P, (z) # 0.

Let 0 <ey <ey <e<landput Hl ={z¢cC:|argz| < (1 —e1)7/2}.
Given z € Ht, we choose k € N with 27(k — 1) < Imz < 27k. We then
have £k = O(Rez) and hence, by (3.4), logmy = o(Re z) and my = o(e?) as
z — 00 in HY. We deduce from (3.47) that

62mkz

P, (ez) ~
and thus, by Stirling’s formula,
log P, (€7) = 2my.z + log((2mg)!) + o(1) ~ 2myz  as z — oo in H..
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It follows that
log g, (€*) = (1 + 0(1))2myz + €* ~ €7
and hence

(I+e)z a5 2 — 0o in H;;.

log U(z) = log um, (2) = 1og gm, (2 + Sm,) =€
This implies that

log F'(z) =logU(2”) = exp((1 4+ 0(1))z”) for |argz| < (1 — 51)21/)

and
loglog F(z) = loglog U(z”) ~ z* for |arg z| < (1 — 51)21
p

as |z| — oo. This implies that

F(2) "
N f 1— &)
F () Iog F(2) pz or |arg z| < (1 —&9) 2%
and hence
F 1
B(z) = (2) =
F'(z)  plog F(z)
Z=r T
= —exp(—(1+40(1))z) for |argz| < (1 —e9)—
p 2p
as |z| = oo. Actually, this yields
E(z) = exp(—(1+0(1))z") for |arg 2| < (1 — &) — (3.48)

2p

as z — oo. This implies that log F(z) ~ —z for |argz| < (1 —e2)7/(2p) so

that B Tlow B
(2) _ 408 (2) ~ —pzP~t for |arg 2| < (1 —5)21

E(z) dz
and
E"(z) E'(2)\? _ d’log E(z) o2 T
5 (E(z)) =—5 =~ —p(p—1)z for |arg z| < (1 —8)2—p.
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Together with (2.2) and (3.48) the last two inequalities yields

~exp((2+40(1))z") for |argz| < (1 — 5)1. (3.49)

A(z) ~ 2%

b
E(z)?
Now (1.8) follows from (3.48) and (3.49).

The proof of (1.9) and (1.10) is similar. Here we use that

1 o
hm(z)—lzm/o ¢?metdc¢

_ 1 2m—+1 1 2m
=G ) € 0
1
U+ (2) Gy,
where
2m +1 m om4+1 [ .
|1 (2 |_‘ B / ¢ 1)d§‘ §2|z]2m+1/ u?™ M du < 2|z

0

for |z| < 1. Thus, with n = 2m + 1 as before, we have

log(vm(z) = 1) = 10g<9m<§ + sm) - 1) = log(hm (62/(n)+sm) . 1)
_ 1og(n!) + 2 4+ ns,, + log (1 + M (ez/n+sm))
=z + log (1 + N (ez/n+8m)) + O(n)

by Lemma 3.3.

We consider H_, = {z € C: |arg(—z)| < (1 —&1)7/2}. For z € H we
choose k € N with 27N, < Im z < 27 Ny,. We can deduce from (3.39) and
Lemma 3.3 that Re 2/nj_; + s, — —00. This implies that e/™-1Fsm. — ()
and hence n(e*/™15m) — 0 as z — oo in H_,. Moreover, n; = o(|z|) as
z — oo in H_, again by (3.39).

It follows that log(vy,, (2) —1) ~ z and hence log(V (z) —1) ~ z as z — oo
in H_ . This implies that

log(F(2) — 1) ~ —(—2)7 for |arg(—=2)| < (1 — gl)%. (3.50)

In particular, F'(z) — 1 as z — oo, |arg(—=2)| < (1 —&1)7/(20). Similarly as
before we conclude that
F(z)

o)1 o(—2)7"" for |arg(—z)| < (1 — 52)%. (3.51)
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and thus, since

_F(z)N 1 Flz)—1 1
CF(2)  F'(2) F'(2) F(2)-1
we deduce from (3.50) and (3.51) that

S el o) ()

=exp((1+0(1))(—2)7) for |arg(—2)| < (1 — 62)%.

E(z) =

Thus .
log E(z) ~ (—z)° for |arg(—z)| < (1 — 52)2—,
o

which implies (1.9). As before it follows

E'(z) o1 m
F(2) ~ —o(—2z) for |arg(—2)| < (1 — z—:)%.
and
E"(2) - E'2) 2 ~ —c(oc—1)(=2)°"2 for |arg(—2z o)L
L= (50)) ~ oo =12 for [ang(-2)| < (1= )5
Now (2.2) yields
A(z) ~ <§/((ZZ))> ~ %(—2)2”_2 for |argz| < (1 — 5)21p,
from which (1.10) immediately follows. O

4 Proof of Theorem 1.3

The main idea used in [37, 40, 44] is that (2.2) implies that when A is large,
then F is small, except possibly in the set where E”/FE or E'/FE is large, but
the latter set is small by the lemma on the logarithmic derivative. We shall
also use this idea, but we will need that every unbounded component of the
set {z € C: |A(z)| > K,|2|P} actually contains a path where E' tends to zero.
In order to prove this we need to show that E is small on certain paths where
A is large also on the exceptional set where the logarithmic derivatives are
large. The key tool used here is an estimate of harmonic measure.

Fora € Cand r > 0let D(a,r) = {z € C: |z—a| < r} be the disc around
a of radius 7.
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Lemma 4.1. Let f be a meromorphic function of finite order, c,n > 0 and
c > p(f). Let (zx) be the sequence of zeros and poles of f in C\{0}. Then
there exists ro > 0 such that, for |z| > ro,

PO <o) irz¢ UDGresl-lal) (@)
and ,
J}((j)) < |Z’c+n if z ¢ UD(Zk’ |Zk|*’7) . (4.2)

Remark. The estimate (4.2) is standard [46, p. 74] and (4.1) is proved by the
same method.

Proof of Lemma 4.1. We use the estimate [19, Chapter 3, (1.3')]

f'(2)
f(2)

ART(R, f)
S R-T)P

1
+ 2 —— for |z| < R, 4.3
> oy forl (43)

zK|<R

which is obtained from the Poisson-Jensen formula and forms the basis for
the proof of the lemma on the logarithmic derivative. We choose R = 2|z|.
Then the first summand on the right side of (4.3) is less than R“™! for large R.
The second summand is less than 2n(R)exp(R®) if |z — zx| > exp(—|zk|¥)
for all k, where n(R) denotes the number of z; of modulus at most R. Since
n(R) < R° for large R we obtain

f'(z) -1
< R+ 2R°exp(R”
2 i
for large R, from which (4.1) easily follows. The estimate (4.2) is proved
analogously. O]

We shall use the following version of the “two constants theorem” which is
obtained from a suitable harmonic measure estimate; see [36, p. 113, Satz 4].
There only the case z = 0 is stated, but the version below follows immedi-
ately.

Lemma 4.2. Let G be a domain and let 6,0 € (0,1) and R > 0. Let
z € G and suppose that the set of all v € (0, R] for which the circle 0D(z,r)
intersects the complement of G has measure at least (1 — O)R.
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Let w: G — C be an analytic function. Suppose that |w(C)| < 1 for all
¢ € G and that limsup,_,¢ [w(¢)] < 6 for all £ € OG satisfying |§ — 2| < R.
Then

2 1-0
<™ with M = = arcsi : 4.4
lw(z)| < wi ; aresin ——= (4.4)
Noting that arcsin(1 — z) > 7/2 — /2z we obtain
2 : 4
M > —arcsin(1 —20) >1—- -vO (4.5)
T T

in (4.4).
The following result was proved in [16].

Lemma 4.3. Let f be a transcendental entire function, € > 0, K, > 0 and
p > 0. Suppose that |f(z)| < Kp|z|? for z on some curve tending to oo and
let U be an unbounded component of {z € C: |f(z)| > Kp|z|P}. Then there
exists a curve 7 tending to oo in U such that |f(z)| > exp(|z|"/?>7¢) for z
in .

Finally we shall use the following result of Toda [44, Lemma 6].

Lemma 4.4. Let A and E be entire functions satisfying (2.2). Suppose that
ME) < p(E). Then w(E) = p(E) = u(A) = p(A), and these numbers are
equal to an integer or oo.

Proof of Theorem 1.3. Let A and E be as in the statement of the theorem.
By the Denjoy—Carleman—Ahlfors Theorem [36, Chapter XI, §4], we have
u(A) > N/2. We may also assume that \(E) < co. By Lemma 4.4 we then
have p(F) < occ.

Let Uy, ..., Uy be unbounded components of {z € C: |A(z)| > K,|z"}.

Then there are curves oy, ...,oy tending to co “between” these components
such that |A(2)| = K,|z|P for z € g;, for j =1,..., N. We may assume that
the U; and the o; are numbered such that for large r there exist ¢q,..., pn

and 61, ..., 0y satisfying o1 < 01 < g < --- < pn < Oy < @1+ 27 such that
re'¢i € U; and re ojforj=1,...,N.

Let g € (0,1/2) and j € {1,..., N}. By Lemma 4.3 there exists a curve
7; tending to oo in U; such that

|A(2)] > exp(|2|°) for z € 7. (4.6)
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We denote by (zx) the sequence of zeros of £ and E’ in C\{0}, choose
a € (0,0), and put

X = U D(zg, exp(—|zk|¥)) .

Denote by n(r) be the number of z; of modulus at most r and let ¢ > p(FE).
Since p(E) = p(E') we have n(r) < r¢ for large r. It follows that if r is
sufficiently large, then the sum of the diameters of the components of X that
intersect the annulus {z € C: r/2 < |z| < 2r} is at most (3r)°exp(—(r/3)%).
Since, noting that av < 1/2, we have

aryren( (5)7) <exn( -5 ) <r

for large r, we see that C\X has exactly one unbounded component. We
denote this component by  and put Y = C\Q2. Then X C Y and 9Y C 9X.
The above estimate also shows that if |z| is large enough

meas {t c (0, %} L OD(|2, ) NY # @} < exp (-%pw) (4.7)

for large r.
Next, we deduce from (4.1), applied to f = E and f = F’, that

2

LE) (E’(Z))2 . ‘28 ‘]?Eg)) ‘?E((;)

E(z)  \E(2)
< 3exp(6]z]*) if z€ C\X

and hence, in particular, if z € Q, provided |z| is sufficiently large.
It follows from (2.2), (4.6) and the last estimate that if z € v; N Q and
|z| is large, then

> dexp(|z]”) — exp(6]2]*) > exp(|2]”)

|E(2)[?

and hence )
|E(2)] < exp<—§|z|ﬁ) for z € v, N Q, (4.8)

provided |z| is sufficiently large. By continuity, this holds for z € cl(y; N Q).
Here and in the following cl(-) denotes the closure of a set. We use Lemma 4.2
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to estimate E(z) for the points z on ; which are not in cl(y;N€2). For such a
point z, put R = |2|/2 and let G be the the component of D(z, R)\ cl(y; N2)
which contains z. Since 7; connects z with 0D(z, R), we deduce from (4.7)
that G satisfies the hypothesis of Lemma 4.2 with © = exp(—|z|%/2) /R.

We choose w(¢) = E(¢) exp(—|z|¢). Since ¢ > p(FE) we have |w(¢)| < 1
for ¢ € G, provided |z| is large enough. If ¢ € 0G and |£ — z| < R, then
£ € 0Y C 0X and thus

limsup |w(C)] = |E(&)] exp(—[2[°)

(—¢
eXpl| —=< | — — |z eXpl| —— 7] — |R
B 2\ 2 B 4

for all £ € OG satisfying | — z| < R. We may thus apply Lemma 4.2 with
6 = exp(—|z|?/4 — |2|°). Together with (4.5) we thus have

4 1
log |E(2)] — |2I°  log [w(=)] < Mlogé < — (1 _ —@) (Z'Z'B ; |z|c)
e

and hence . A A
log|E(z)| < —= (1 — —@) 12| + =0|z|°.
4 s s
Now © = exp(—|z]%/2) /R < 7|2|°~¢/64 and also © < /8 for large |z|. We
conclude that |E(z)| < exp(—|2|?/16) if z € v; but z ¢ cl(y; N Q). By (4.8)
this estimate also holds for all other z € v; of sufficiently large modulus; that
is, we have

1
|E(2)| < exp (—1—6|zlﬁ) for z € ;. (4.9)
We put

Z = UD(Zk, |Zk|_c) .
k

We note that since ¢ > p(E), the sum of the radii of the discs forming Z is
convergent. By (4.2), applied to F and F’,

‘—QE”(Z) (E/(Z)>2 <3lzf* for 2 ¢ Z. (4.10)

E(z) E(z)
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Let M € N with M > max{2¢c,p/2}. Together with (2.2) the last equation
implies that if z € 0\ Z, then

1
T <K ||P2M gy de2M 5
|Z‘2M‘E(2)|2 = P|Z| + |Z| O( )
as z — 0o. Thus z2ME(z) — oo as z = oo in 0;\Z, for j = 1,..., N. Since

ZME(z) = 0as 2z = oo in v for j = 1,..., N by (4.9), we conclude that
if K > 1 is large, then {z € C: |z2ME(2)| > K} has at least N unbounded
components, which we denote by Wy, ..., Wy.

It follows from (2.2) and (4.10) that if |z E(z)| > K and 2 ¢ Z, then

3
AR < 712" + 72 < K]

4K?
If K is large, then the component U; of {z € C: |A(2)| > K,|2|P} contains
a component V; of {z € C: |A(z)| > K|z|*}. With V = UjvleJ and
W= Ujvzl W; the above argument shows that

VnWwcZ (4.11)
For an unbounded open set D and r > 0 we put
0(r, D) = meas{t € [0,27]: re" € D}.

Since >, |z1|7¢ < oo we see that 0(r,Z) — 0 as r — oo. It thus follows
from (4.11) that

O(r,V)+0(r,W) <2r+0(r,Z) =27+ o(1) (4.12)

as r — oo.

The proof is now completed by a standard application of the Ahlfors
distortion theorem; cf. [36, Chapter XI, §4, no. 267]. Choose ry > 1 so large
that 0D(0, 7o) intersects all V; and W;. Then

"Toodt
> —0(1).
- W/ro wie.vy OV

A=)

KZZM

loglog M(r, A) > loglog max

|z|=r,z€V;

By the Cauchy-Schwarz inequality we have

NZIAD) al B Yo
(Z\/tet,vj> Z t’vjz_: (V;)_w(t’v);te(t,vj)
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and

PN 06V )\ [ d e Y)
<1Ogro) _(TO VIO V) Vi dt) S/m to(t, V) /ro r

so that

r N

dt
e, vy 00

loglog M(r, A) > T
N Joy &

log L

> Nr / tH(f,tV) —o() > Nw/gwfov))dt —0(1).

t

It follows that

dt.

Nlogr 1 "o(t, V)
< (1
loglog M(r, A) — ( +0(1))7rlogr/ t

To
Noting that loglog M (r, E) = loglog M (r, 2 E(2)) 4+ o(1) we obtain

Nlogr 1 /T o(t, W)

< (1 1 dt
loglog M(r, E) < (T+of ))Wlogr t

To

by the same argument. Adding the last two inequalities and using (4.12)

yields
Nlogr Nlogr

loglog M(r,A) ~ loglog M(r, E)

from which we deduce that

<2+ o(1),

NN oy (4.13)
pA) - p(B) — '
Since p(A) < N, this implies that N/p(E) < 1 and thus p(E) > N > u(A).
Hence p(E) = A(E) by Lemma 4.4, and substituting this in (4.13) yields the
conclusion. H
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5 Proof of Theorem 1.4

5.1 Preliminaries and outline of the construction

We will use the map constructed in section 3.2, but with py = p/N and
a0 = po/(2po—1) instead of p and o. We also assume that m; = ms = 0. We
denote the resulting map by G,. We summarize the properties of Gy that we
need.

Let @ be the homeomorphism of the right half-plane onto itself given
by (3.27). The exact definition of ) is irrelevant here but we note that
Q(z) = z if Rez > 1. We denote by J* the preimage of the half-strip
{z€C: Rez >0, |Imz| <27} under z — Q(z*) and by J~ the preimage
of {z€ C: Rez <0, |Imz| <27} under z — —(—2)7°. With sy = loglog 2
we then have

GO(Z) =

{eXp exp(Q(2™) + so) ifzeJ, (5.1)

expexp((—(—z)7) +s9) ifz € J.

We note that J := J™ U J~ is bounded by the real axis and a curve in the
upper half-plane which, as the real axis, is mapped to (1, 00) by Go.

In addition to G, we will also consider a modification G; of G defined
as follows. Let U and V' be as in section 3.2. For Re z > 0 we define

U(z — i) if Imz >,
Ui(z) = { exp(—exp(z + s0)) if —7m<Imz<m,
U(z + i) if Imz < —m,

and for Re z < 0 we define

V(z — mi) if Imz >,
Vi(z) =  exp(—exp(z + sp)) if —7m <Imz <,
V(z + mi) if Imz < —m.

The map (G is then obtained by gluing U; and V; in the same way that U
and V were glued to obtain Gy. Then

Gi(2) = {exp exp(—Q(2°) + s9) if z € JT, (5.2)

expexp((—z)7°) +s9) ifze€ J.
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We note that for z € J we have G1(2) = 1/Gy(2).
For j =1,...,2N we put
Zj:{ze(C: (j—l)%<argz<j%}.

Let H = {z € C: Rez > 0} be the upper half-plane and L = H\J. Denote
by L the reflection of L at the real axis; that is, L = {z € C: z € L}. Denote
by D; the preimage of L or L in ¥, for j = 1,...,2N. We will define
a quasiregular map G: C — C which satisfies G(z) = Go(z") for z € D;
if 2 < j <2N—1and G(z) = G(2V) for 2 € Dy and z € Dyy. In the
remaining part of the plane we will define G by a suitable interpolation which
will require only (5.1) and (5.2).

In order to do so, we will first define GG in section 5.2 in a neighborhood
of co. Thus, for a suitable ry > 0, we have to define G in certain neigh-
borhoods of the rays {z € C: argz = 7/N, |z| > ro}. This interpolation is
comparatively easy if j # 1 and 7 # 2N — 1 since in this case G is defined by
the same expression in the domains D; and D, adjacent to the ray. (Here
we have put Doy = Dp. In similar expressions the index j will also be
taken modulo 2N.) For j =1 and j = 2N — 1 the interpolation argument is
more elaborate. Next, in section 5.3, we will extend G to the bounded region
that remains.

Using that Gy and G satisfy the hypothesis of the Teichmiller—Wittich—
Belinskii Theorem we will then show in section 5.4 that this is also the
case for G so that we again have (3.40) with an entire function F and a
quasiconformal map 7: C — C. As in the proof of Theorem 1.1 we will then
define F by F = F/F’" and A by (2.2) and show in section 5.5 that these
functions have the required properties.

Remark. The function (G is introduced only to obtain a special Bank—Laine
function E; that is, to obtain that one of the two solutions of (1.1) whose
product is E has no zeros. If we use 1/Gy instead of G1, then both solutions
have zeros, but (1.11) is still satisfied.

5.2 Interpolation near oo

Let v, be the curve forming the boundary of L. We may parametrize it as
Y9: R — C,

—(—(t + 2mi))Yo0) if t <0,
72(25) - 1 N1/ .
Q' (t + 2mi)H/ro it t > 0.
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We shall also need the curve 7, in the “middle” between 2 and the real axis;
that is, y1: R — C,

(=@ +im)Yeo) it <o,
71(t) - {Q_l(t + Z"]T)l/po if ¢t > O,

see Figure 3. Then Gy maps 7; to the interval (0,1) and Go(71(t)) — 0 as
t — 400 while Gy(1(t)) = 1 as t — —oc.

Y2

Y1 Qr
e

Yo

Ql M Qm

Figure 3: The curves 7y, 71 and 7, for pg = 3/4 and op = 3/2.
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We note that if z; < 0 and v;: [0, 7] — C, v(t) = —(—(x; +4t))'/°°, then
the domain €2; which is to the left of 7; and between 7, and the negative real
axis is mapped by z — —(—2) to the half-strip

P={2e€C: Rez<zjand 0 < Imz < 7}.

We see that if € small enough, then x; may be chosen so that §; is mapped
univalently onto the half-disc {z € C: |z| < e, Imz > 0} by the function
2 exp(—(—2)7° + s¢9) and hence univalently onto some half-neighborhood
of 1 by Gy.

Similarly, we now define a curve vy “below” v, and an arc v, connecting 7,
and v, in the domain between them such that the domain 2, between v, and
~1 and to the right of v, is mapped univalently onto some half-neighborhood
of 0 by Gp. In order to do so, we define 79: R — C by 7o(t) =t for t <0
and

1/p
Yo(t) = (t+i7r —iarcsin( : 0)) " fort > 1.
e S

For 0 < t < 1 we define 7y in such a way that the curve 7y is below the
curve v; see Figure 3.

We find that Go(vo(t)) is real and negative for t > 1 and Gy(v(t)) — 0
as t — 0o. Moreover, if x,, > 0 is large and 7 is an arc connecting 7, and v,
in QN {z: Rex > x,}, then the image of 7 under the function z + exp z”
is an arc connecting the real axis with the line {z € C: Imz = 7}. Hence
G o is an arc which is contained in the intersection of the lower half-plane
with a small neighborhood of 0 and which connects a point on the negative
real axis with a point on the positive real axis. In fact, for € > 0 sufficiently
small there exists an arc 7, connecting vy and ~; such that €2, is mapped
univalently onto the half-disc {z € C: |z| < e, Imz < 0} by Gy; cf. Figure 3.

Let Q,, = Q\(2, U ;) be the “middle piece” of 2. Let T" be the domain
above the curve 7o and put S = T\ cl(2,) and R = T\ cl(Q,, U Q) =
S\ cl(€). (Recall that cl(-) denotes the closure of a set.) Thus we have
LCRCSCTCH.

It is not difficult to see that there exists a quasiconformal map ¢: H — T
which satisfies ¢(z) = z for z € L as well as ¢(z) = z for Rez < ¢ with
some xg < 0. Choosing ¢ > 0 sufficiently small we may achieve that x; < xg
and hence that ¢(z) = z in particular for z € ;. Moreover, the map ¢
can be chosen such that ¢(z) ~ z as z — oco. In fact, one can show that
any quasiconformal map ¢ with the properties listed before also has the last
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property. The map ¢ extends continuously to the real axis and we may
assume that ¢(0) = 0.

We denote by L, R, S and T the reflections of L, R, S and T at the real
axis. The function ¢ extends to the lower half-plane by putting ¢(z) = ¢(%)
for Im z < 0 and it maps the lower half-plane to 7.

Let A be the closure of ¢! (S)U¢~'(S) and put B = {z € C: 2N € A};
see Figure 4. The boundary of B consists of a Jordan curve I': [0,1] — 0B
which we may assume to have positive orientation.

/
' Yo /Y
/

Figure 4: Sketch of the domain B for N = 3. The boundary of B
consists of the curves ag,...,aq and 51, ..., Bg.

The curve I' splits into curves aq,...,ay and fi,..., By. Here «; is the
part of I' which is contained in the sector X; and which by the function
z — p(2") is mapped to a subcurve of 7; or its reflection in the real axis.
For a more precise description of this subcurve, let «; be the the subcurve
of ;1 that lies between the intersection of v; with v, and ~,, let —~; be the
curve v; with reversed orientation and let 4 be the reflection of v; in the real
axis. If j is odd, then «; is mapped bijectively to —} by z — ¢(2%), and if
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J is even, then a; is mapped bijectively to ~f by this function. Thus for odd
j the function z — Go(p(2Y)) maps a; bijectively to the interval [e,e™¢],
preserving the orientation. For even j it maps a; to the same interval, but
reversing the orientation. Noting that G1(z) = 1/Gy(z) for z € JU J, and
thus in particular for z on the curves —; and 75, we see that z — G1(¢(zV))
maps «; to the interval [e®,1/¢], reversing the orientation for odd j and
preserving the orientation for even j.

The curve 3; connects a; and a4 and is mapped onto the concatenation
of the curves v and 77 by z — ©(2") if j is odd and onto that of 7, and 7,
if j is even. Thus z — Go(¢(2")) maps S3; to a loop surrounding the point 1
once for odd j and to a loop surrounding the point 0 once for even j. Using
again that G (z) = 1/Go(z) for z € JU J we see that z — G1(p(z")) maps
B; to a loop around 1 and oo, respectively.

We will define a quasiregular map G: C — C first in B and later extend
it to the (bounded) complement of B. In order to do so, put B; = BNY;
for j=1,...,2N, let

2N
n: | = TUT, n(z) = ("),

J=1

and denote by 7; the restriction of 1 to X;. Then n; maps ¥; univalently
onto T or T, depending on whether j is odd or even. Since ¢(z) ~ z as
z — 00, we have

n(z) ~ 2N (5.3)
as z — OQ.
Let
2N -2
X=n"(R)Unpn (R)U | J B; and Z=1n;"(R)Unyy(R).
j=3

The sets X and Z are shown in light and dark gray in Figure 4.

We put G(z) = Gy(n(z)) for z € X and G(z) = G1(n(z)) for z € Z. The
map G extends continuously to the parts of the rays {re*™/V: r > 0} that are
contained in B, for k =0and £k = 2,...2N —2. Thus G extends continuously
to the closures of X and Z. Note that since ¢(z) = z for z € LUL we indeed
have G(z) = Go(2V) for z € D; if 2 < j < 2N — 1 and G(z) = G1(zV) for
ze€ Djif j=1o0r j=2N, as said in section 5.1.
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Next we define G in the remaining part of B; that is, to B\ (cl(X)Ucl(Z)).
As we will define a map which commutes with complex conjugation, it suffices
to define G in the remaining part in the upper half-plane. We put (cf.
Figure 4)

YVi=n' (), Ya=n"(%%) and Y;=0Y1N5Ys.

Hence Yy = {re™N: r > 1y} for some ry > 0.

In order to define G in Y} UY>UY), we note that since ¢(z) = z for z € €,
we have 7(z) = 2 for 2 € Y1 U Y, U Yy, Also, 2 = —(—n(2))70 = —(—2)Noo
maps Y] univalently onto the half-strip P and Y, univalently onto

P={2€C: Re<z;and — 7 <Imz < 0}.

Moreover, Y is mapped to (—oo, z;] by this map.
We consider the quasiconformal maps

Y+

T:P—C, mzx+iy)=z+1 5

and 75: P — C, 75(2) = 71(%). Then we define

Xp( exp( ( (— z)N"O) + so)) if z €Y,
G(z) =  exp(—iexp(— ( 2)7° + 50)) if z € Y,
exp(exp(Tg( —2) N"O) + 80)) if z €Y.

Note that G has already defined on cl(X) and thus in particular on 0.X NA9Ya,
and that we have G(z) = expexp(—(—n(z))?° + s¢)) for z € 0X NIY;. Since
To(x —im) = x —iw for © < ; we conclude that G is continuous in 0X NJYs.
Similarly, G(z) = exp(— exp(—(—n(2))? + s¢))) for z € 9ZNJY; and thus G
is also continuous there. Clearly G also extends continuously to the remaining
parts of dY; and 0Y,. Overall we have thus defined a continuous map G in
B which is quasiregular in the interior of B.

5.3 Extension of G to the complement of B

To extend G to the complement of B, recall that the boundary of B is given
by the Jordan curve I': [0,1] — OB which consists of the curves a, ..., ay

and Bl,...,ﬁN.
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For 2 < j < 2N — 1 the function G maps «; to the interval [e,e™¢],
preserving the orientation for odd j and reversing the orientation for even j.
Moreover, oy and asy are mapped to [e®, 1/¢], preserving the orientation for
a1 and reversing the orientation for apgy.

Also, for odd j # 1 the function G maps 3; to a loop surrounding the
point 1 once and for even j # 2N it maps §; to a loop surrounding the
point 0 once. The curve fyy is mapped to a loop around oo and (; and
Ban—1 are mapped to half-loops around 1, connecting the points e® and e™¢.

To define a quasiregular map in the interior of I' which has this boundary
behavior suppose first that N is odd. We note that there exists a quasiconfor-
mal map from the sector {z € C: |argz| < 7/(2N), |z| < 1} onto C\[0, c0)
such that the continuous extension to the boundary maps 0 to oo, the points
e/ (N) to 1, and 1 to 0. We may assume that this map is symmetric
with respect to the real axis; that is, it commutes with complex conjugation.
Reflecting N — 1 times along the sides of sectors we obtain a locally univa-
lent quasiregular map defined in the half-disc {z € C: Rez > 0, |z] < 1}.
For even N we do the same construction, starting with a quasiconformal
homeomorphism of the sector {z € C: 0 < argz < /N, |z| < 1} onto
C\ [0, 00) such that the continuous extension to the boundary maps 0 to oo,
the points 1 and e”™/N to 1, and e™/N) to 0. Reflecting N — 1 times we
again obtain a locally univalent quasiregular map, defined in the half-disc
{z € C: Rez >0, |z] <1} and symmetric with respect to the real axis.

The boundary curve of the half-disc, beginning at the origin, is mapped
— in the following order — to the intervals [oo, 1], [1,0], [0,1], [1,0], ...,
[1,0], [0,1], [1,00]. Removing small neighborhoods of the 2/N-th roots of
unity and a small neighborhood of 0 from the half-disc we obtain a domain
A and a locally univalent quasiregular map v: A — C such that, for a
suitable parametrization I'g: [0,1] — O0A of the boundary of A, we have
v(To(t)) = G(T(1)).

Furthermore, there exists a quasiconformal map ¢: A — C\ B which has
a continuous extension to the boundary of A that satisfies ¢(Ig(t)) = I'(¢)
for all t € [0,1]. Finally, we put G(z) = v(¢~'(2)) for z € C\B. Then G is
a locally quasiregular map defined in C.

Remark. The quasiregular map v in the above proof was defined by an ad
hoc construction. A systematic way to construct such maps was described
by Nevanlinna [35, no. 16]; see also [42, no. 44].

A special case of the result proved there yields the following. Let a poly-
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gon K, with p sides and a continuous function F': 9K, — [0, 00| be given.
Suppose that I’ maps each side of K, homeomorphically onto one of the in-
tervals [0, 1] and [1, oo], with each interval occurring as the image of at least
one side. Then there exists a locally homeomorphic extension of F' to K.

Nevanlinna used this to construct functions in the class § by gluing loga-
rithmic ends to the sides of this polygon. Instead, we glue restrictions of our
maps Gg and G to half-planes to the sides of this polygon.

5.4 Estimate of the dilatation

Let L' be the preimage of LU L under z — 2. Since p(z) = 2z for 2 € LUL
we have G(z) = Go(2V) for z € I'NY; if 2 < j <2N —1 and G(z) = G (%)
for z€ L'NY;if j =1o0r j =2N. For odd j satisfying 2 < j <2N — 1 we

thus have
K -1 1 K -1
/ Gz(Z)—z dody =~ [ Eal) Ly,
rny, T°tY L

and for even j in that range the same equation holds with L replaced by L on
the right side. For 7 =1 and 7 = 2N these equations hold with G replaced
by G. Since Gy and G satisfy the hypothesis of the Teichmiiller—Wittich—
Belinskii Theorem we conclude that

Kg(Z) -1

dr dy < oo.
2+ y? TaY = 0

Next we note that v,(t)V/N = (t+2mi)/ V%0 for large t. Since Npy > N/2 > 1
we thus have Imyy(t) — 0 as t — +00. So the distance of v,(t)*/" to the
positive real axis tends to 0 as t — 4o00. Similarly we see that the distance
of y(t)'/N to the ray {z € C: argz = 7/N} tends to 0 as t — —oco. We
conclude that there exists R > 1 such that C\(D(0, R) U L') is contained in
strips of width 1 around the rays {z € C: argz = jn/N}, for j=1,...,2N.

Now ) ~ g 4
T

< = ==,

/|>R x2+ydmdy 2/§Rx2 R

|Tm 2|< 5

Denoting by K = sup,.¢c K¢(#) the dilatation of G we conclude that

[ el
o\(poRuLy T2+ Y? R
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Overall we see that the quasiregular map G satisfies hypothesis of the Teich-
miiller—-Wittich-Belinskii Theorem. Thus there exist an entire function F'
and a quasiconformal map 7: C — C satisfying (3.40).

5.5 Completion of the proof

Equation (3.41) says that n(r,0,Go) = O(r°) as r — oo and the same
argument shows that n(r,0,Gy) = O(r). Noting that G has no zeros for
z € C\(X U Z) while G(2) = Go(n(2)) for z € X and G(z) = G1(n(z)) for
z € Z, we find that n(r,0,G) = O(|n(z)|?°) and hence, with o = Nay,

n(r,0,G) = O(rV°°) = O(r”)

by (5.3).

Similarly, (3.45) says that loglog |Go(z)] < (1 + o(1))|z] as |z| — oo,
and the same argument yields that loglog|G1(2)| < (1 + o(1))|z]*. Since G
is bounded in C\(X U Z), we now conclude from (5.3) that

loglog|G/(2)| < (1+ o(1))|2|" = (1 + o(1))|2]°

as |z| = oo. As in the proof of Theorem 1.1, we now deduce from (3.40) that
and the last two equations that

N(r,0,F) =0(r°)

and

loglog [F(z)] < (14 0(1))]z]7,
which together with the lemma on the logarithmic derivative again yields
that £ = F/F’ satisfies m(r,1/F) = O(r?) and N(r,0, E) = O(r?) so that
T(r,E) = O(r?). Hence

log |[E(2)] = O(|2]).

As in the proof of Theorem 1.1 the lemma on the logarithmic derivative
also implies that m(r, A) = 2m(r,1/E)+ O(logr) = O(r”) so that altogether
we have A(E) < p(FE) <o and p(A) < p(A) < p.

For odd j satistying 1 < 7 < 2N — 1 and € > 0 we put

Vs s
S;(e) {ze@ arg z 2N’_(l 6)4N}
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Let 0 < g1 < g9. It follows from the construction that
|F(z)] > 1 as|z| = ocoin Sj(ey).

Hence |F'(z)| = o(1) as z — oo in Sj(e3) and

log Ty ~ o8 |E(2)| = O(|2]°) as |z| = oo in Sj(e1).

This implies that

F'(z)| oot d F"(z)| _ o2 e
‘F’(z) =0(|z|7") and L) O(|z|1777) as |z| = oo in Sj(eq).
Using (2.1) we see that

|A(2)] = O(|2|*7%) as |2] = oo in Sj(eq). (5.4)

For even j we denote by Tj the sector between S;_; and S;j;1. It follows
from the construction that if R > 1 is sufficiently large, then each 7} contains
infinitely many components of the set {z € C: |F(z)| > R}. Moreover, for
each component U of this set we have

My (r) := max |F(z)| > expexp((1 —o(1))r") (5.5)

|z|=r
zeU

as r — oo.
For large r we choose z, € U such that |z,| = r and |F(z,)| = My(r). It
follows from [8, equation (2.10)] that with

_ dlog My (r)

alr) logr

we have, for all £ € N,

F®(2) ~ (@>kF(zr) asr — o0, r ¢ L,

Zr

where L C [1,00) is some exceptional set of finite logarithmic measure.
Now (2.1) yields that

A(z):—i <@>2 as T — 00, 1 & L.
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Noting that [8, equation (2.6)]

log My (1)
log r

a(r) = (1 = o(1)) > exp((1 = o(1))r")

as r — oo we deduce from (5.4) and (5.5) that {z € C: |A(2)| > K,|2|"} has
at least N unbounded components if p =2Np/(2p — 1) —2 = 20 — 2 and K,
is sufficiently large.

Since

it now follows from (1.11) that we actually have A(E) = p(F) = o and
1(A) = p(A) = p. Hence (1.12) holds.
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