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Abstract

We study a modification due to De Gregorio of the Constantin–Lax–Majda
(CLM) model ωt = ω Hω on the unit circle. The De Gregorio equation is ωt +
uωx−uxω = 0, ux = Hω. In contrast with the CLMmodel, numerical simulations
suggest that the solutions of the De Gregorio model with smooth initial data exist
globally for all time, and generically converge to equilibria when t → ±∞, in a
way resembling inviscid damping. We prove that such behavior takes place near a
manifold of equilibria.

1. Introduction

The Constantin–Lax–Majda (CLM) model [8] is

ωt = ωHω, (1.1)

where H is the Hilbert transform. It can be considered on the real line R or on the
circle S1. We will mostly work on the circle. We will use the coordinates

z = eiθ , (1.2)

where z is considered as a complex number and θ ∈ (−π, π ]. De Gregorio [11]
suggested the following modification of (1.1):

ωt + uωθ = uθω, uθ = Hω,

∫
S1
u = 0. (1.3)

If we consider ω, u as vector fields on S1, we can write (1.3) as

ωt + [u, ω] = 0, (1.4)

where [a, b] = aθb − abθ is the usual Lie bracket for vector fields.
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As observed by Constantin, Lax, and Majda, the CML model is equivalent to
the local equation for holomorphic functions on the unit disc D

ḟ = −i f 2, (1.5)

where f is the holomorphic extension of the function ω + i Hω into D. From this
it is clear that the solution with initial datum ω0 blows up in finite (positive) time if
and only if the image of S1 by the function f0 = ω0 + i Hω0 intersects the positive
imaginary axis (R+) i . From (1.5) it is clear that the CLMmodel (1.1) is locally-in-
time well-posed for initial conditions ω0 satisfying ||ω0||L∞ + ||Hω0||L∞ < ∞.
In particular, it is locally-in-time well-posed for ω0 ∈ Hs(S1) for s > 1

2 . On the
other hand, it is also clear that it is not locally-in-time well-posed for a general
ω0 ∈ C(S1) (continuous functions).1 Based on the comparison with the CLM-
model, it is natural to expect that the De Gregorio equation (1.3) is locally-in-time

well-posed in Hs(S1) for s > 1
2 , but not in H

1
2 (S1) or C(S1). One also expects the

Beale–Kato–Majda-type criterion: the L∞
t Hs

x -regularity of the solution (for s > 1
2 )

in a closed interval [0, T ] should be controlled by the condition

∫ T

0
||ω(t)||L∞ dt < +∞, (1.6)

and, in particular, when the integral in (1.6) is finite, the solution can be locally
continued beyond T without a loss of regularity. This is proved for s � 1 in [3].
More discussion of these topics is in section 2.6. Very recently, finite-time blow-up
for initial data in low regularity spaces (allowing infinite derivatives) in which the
equation is still locally well-posed was proved in [13].

Numerical simulations seem to suggest that there is no blow-up from smooth
initial data for the De Gregorio equation, as already observed in [22]. Our own
numerical simulations suggest that for generic smooth initial data the solutionsω(t)
approach equilibria A sin(θ −θ0) for t → ±∞, although not in smooth norms. The

convergence is only in Hs for s < 3
2 , and not in H

3
2 .Moreover, the initial datum has

to be sufficiently regular, with ω0 ∈ H
3
2+ε for any ε > 0 being probably sufficient,

but ω0 ∈ H
3
2 presumably allowing much more complex dynamical behavior. A

good toy model for these phenomena is the linear equation

ωt + [b, ω] = 0, (1.7)

with b = sin θ , which can be completely analyzed by explicit calculation.
Regularising effects of transport terms have been observed in other models, see

for example [18].
The only known conserved quantities for the De Gregorio equation are the orbit

invariants discussed in subsection 2.2, and the quantity
∫
S1ω(θ) dθ . None of these

are coercive. The conjectured long-time behavior, together with the orbit invariants,

1 By contrast, it is natural to expect that the transport equation ωt + uωx = 0, with the
Biot–Savart law as in (1.3) is locally-in-time well-posed in C(S1).
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seems to put strong constraints on possible conserved quantities, and it is not clear
if there is any good coercive conserved quantity at all. This should be contrasted
with the remarkably good numerical behavior of the solutions, and their apparent
convergence to steady states for t → ±∞ for smooth data.

We will study the dynamics near the equilibria A sin(θ − θ0). Our main theo-
retical result is the following:

Theorem 1.1. (Non-linear stability of equilibria) Let ω0 be a C2 function which is
C2-close to an equilibrium �A,θ0 = A sin(θ − θ0). Then the De Gregorio equa-
tion (1.3) has a unique C2-solution ω(t) with ω(0) = ω0 defined for all t ∈ R.
Moreover, as t → ±∞, the solution ω(t) approaches equilibria �A±,θ±

0
, respec-

tively, for suitable A± and θ±
0 . The convergence is exponential in Hs for any s < 3

2 ,

but there is no strong convergence in H
3
2 . The amplitudes A± can be determined

explicitly from ω0 as described in Remark 1 below.

As we will see, the higher norms ||ω(t) − �A±,θ±
0
||Hs with s > 3

2 typically
grow exponentially as t → ±∞.

Remark 1. The proof shows that the amplitudes A± are determined as follows: we
first note that when ω0 is sufficiently close to �A,θ0 in C

2, then ω0 has exactly two
zeroes; at one of them the derivativeω0x is positive and it is negative at the other one.
Let us denote the former one by x1 and the latter one by x2. Then A+ = −ω0x (x2)
and A− = ω0x (x1).

The proof of the theorem is based on a careful analysis of the linearized operator,
in suitable moving frames. Crucial points of the proof include establishing the

(almost) unitarity of the linearized evolution in H
3
2 , ruling out the point spectrum

in H
3
2 by the use of ODEs in the complex domain, establishing connection of the

linearized equation with the simple evolution (1.7), establishing exponential decay
of linearized solutions in an auxiliary space Y0, and finally using bootstrapping to
handle the non-linearity.

Other aspects of the De Gregorio equation and its modifications are studied
in [3,5–7,14,15,26]. Some of these references discuss geometric aspects of the
equation, in the spirit of Arnold and Khesin [1], although one has to replace
Levi-Civita connections of a Riemannian metric with more general connections, as
discussed in [15].

2. Preliminaries

2.1. Simple Observations

Denoting by φt the diffeomorphism of the circle defined by the flow

ẋ(t) = u(x(t), t) (2.1)

with φ0 = id, equation (1.4) is equivalent to

ω(t) = φt
#ω(0), (2.2)
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where φ#a is the push-forward of a vector field a by the diffeomorphism φ, that is

φ#a (θ) = φ′(φ−1(θ)) a(φ−1(θ)). (2.3)

When u and ω are independent, equation (1.4) is invariant under diffeomorphisms:

(φ#ω)t + [φ#u, φ#ω] = 0 (2.4)

for any diffeomorphism φ of S1. However, the “Biot–Savart law”

uθ = Hω (2.5)

is only invariant under a much smaller group of transformations, and hence the non-
linear equation does not seem to have any (exact) symmetries beyond the obvious
ones given by rotations and reflections.

It is perhaps worth noting that the operator

	 = −H∂θ , (2.6)

considered on scalar functions (as opposed to vector fields) on the circle S1, is
covariant under the projective transformations of the circle in a similar way as −�

on the scalar functions on the disc is invariant under the conformal transformations
of the disc. This can be easily seen as follows: the quadratic form

(ω, ω)
Ḣ

1
2

=
∫

S1
(−	ω)ω dx (2.7)

can also be expressed as

(ω, ω)
Ḣ

1
2

=
∫

D
|∇h|2 dx dy, (2.8)

where h is a harmonic extension of ω from the circle S1 to the unit disc D. Now
the conformal diffeomorphisms γ : D → D leave the Dirichlet integral on the
right-hand side of the last equation invariant, if we act on h by h → h ◦ γ −1. The
restrictions of all possible γ to S1 give exactly the orientation-preserving projective
transformations of S1. This implies

	(ω ◦ γ ) = |γ ′|· (	ω) ◦ γ. (2.9)

2.2. Orbit Invariants

Let G be a Lie group and let g be its Lie algebra. Consider the equation for a
g-valued function of time

ξ̇ = [L(ξ), ξ ], (2.10)

where L : g → g is a smooth function. (The equation is in the Lax form.) For
our purposes we can think of the case when L is linear. The trajectory ξ(t) with
ξ(t0) = ξ0 lies in the adjoint orbit

Oξ0 = {
a · ξ0 · a−1, a ∈ G

}
, (2.11)
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and hence the orbit invariants, such as eigenvalues of (a suitable representation of)
ξ , are preserved. The De Gregorio equation is formally of this form, with G =
Diff+(S1), the group of the orientation-preserving diffeomorphisms of the circle,
except that Diff+ (S1) is infinite-dimensional, and hence some of the properties of
finite-dimensional Lie groups may not be available. The adjoint orbits in this case
are

Oω0 = {
φ#ω0, φ ∈ Diff+ (S1)

}
. (2.12)

What are the invariants of such orbits? In general this is not an easy question. In
the case when ω0 has finitely many zeroes of finite order, the full classification
was obtained by Hitchin [17]. Here we will only discuss the case when the zeroes
of ω0 are non-degenerate in the sense that ω′

0(θ) �= 0 when ω0(θ) = 0. Let
θ1 < θ2 < · · · < θ2m be such zeroes, and let

(a1, . . . , a2m) = (
ω′
0(θ1), . . . , ω

′
0(θ2m)

)
. (2.13)

Also, let us define

b = p. v.
∫

S1

dθ

ω0(θ)
, (2.14)

where p.v. means the principle value. Then the data

2m, (a1, . . . , a2m), b (2.15)

where (a1, . . . , a2m) is considered modulo cyclic permutations of a1, . . . , a2m , are
invariants of the orbit. In our non-degenerate case this list of invariants is complete,
that is two orbits with the same invariants coincide, see [17].

The conservation of the derivative ωθ(θ(t), t) at the zeroes of ω is easily seen
directly from the De Gregorio equation (1.3). Taking a derivative of the equation,
we obtain

ωθ t + uωθθ = uθθω. (2.16)

If ω(θ(t), t) = 0, then (2.16) implies that ωθ(θ(t), t) is preserved as t changes.
Clearly this remains true for any u(x, t) (it does not have to be given by a specific
Biot–Savart law), reflecting again the fact that ωθ(θ(t), t) at θ(t)with ω(θ(t), t) =
0 is an invariant of the orbit. This “conservation law”, togetherwith the conservation
of p. v.

∫
S1dθ/ω(θ, t), is an analogue of theKelvin–Helmholtz law for the classical

fluids.

2.3. Conservation of
∫
S1ω dθ

In general the integral
∫
S1ω(θ) dθ is not invariant on the adjoint orbit, but for

the evolution by equation (1.3) it is invariant, as we have

d

dt

∫
S1

ω(θ, t) dθ =
∫

S1
(−uωθ + uθω) =

∫
S1
2uθω

=
∫

S1
2(Hω)ω = 0. (2.17)
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In what follows we will work with the solutions ω satisfying
∫

S1
ω(θ, t) dθ = 0. (2.18)

In the general case
∫

S1
ω̃(θ, t) dθ = c (2.19)

we can replace ω̃ byω+c, whereω still satisfies (2.18). The equation then becomes

ωt + [u, ω] = cHω. (2.20)

The solutions of (2.20) corresponding to the steady states A sin(θ − θ0) of (1.4)
become

ω(x, t) = A sin(θ − θ0 − ct). (2.21)

2.4. Other Choices of Gauge for the Velocity Field

Let θ0 ∈ (−π, π ]. It will be sometimes useful for us to change coordinates and
instead of “calibrating” the velocity field u by

∫
S1
u dθ = 0, (2.22)

we will modify by it by a constant (depending on time) and work with the field
ũ(x, t) defined by

ũθ = Hω, ũ(θ0, t) = 0. (2.23)

Assume that ω1(θ, t) is a solution of (1.3), with the corresponding vector field u1,
and set

ω(θ, t) = ω1(θ + ϑ(t), t), u(θ, t) = u1(θ + ϑ(t), t), (2.24)

where ϑ is a function of time. Then

ωt + [u − ϑ̇(t), ω] = 0. (2.25)

We see that if we choose ϑ so that

ϑ̇(t) = u(θ0, t), (2.26)

which amounts to solving ϑ̇(t) = u1(θ0 + ϑ(t), t), the field ω will solve

ωt + [ũ, ω] = 0. (2.27)

If we start with a solution of (2.27), we can obtain a solution of (1.4) by a similar
change of variable. We see that the equations (2.27) and (1.4) are equivalent. When
it is more convenient, we will work with (2.27) rather than (1.4).
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2.5. Equilibria and Numerically Observed Long-Time Behavior

It is easy to see that functions of the form

ω(θ) = A sinm(θ − θ0), A ∈ R, θ0 ∈ (−π, π ], m ∈ Z (2.28)

are equilibria of (1.4). For eachm these forma two-dimensionalmanifoldMm in the
space of smooth (real-valued) functions on the circle S1. Numerical experiments
(performed in Matlab using a simple pseudo-spectral method) suggest that the
manifoldsMm withm � 2 are unstable, and that generic smooth solutions of (1.4)
approach the manifold M1, although not in the space of smooth (or even C1)
functions. The convergence to equilibria appears to hold in Ḣ s for s < 3/2. This is
consistent with the conservation of the orbitsOω0 and the invariants (2.15).We note

that, in general, a C1 convergence (or Ḣ
3
2 convergence) would not be consistent

with the conservation of these quantities. This is obvious for the C1 case; the case

of Ḣ
3
2 follows from the analysis below. In fact, a generic trajectory ω(t) appears

to have well-defined limits ω∞ and ω−∞ as t → +∞ and t → −∞ respectively

(in topologies just below Ḣ
3
2 regularity).

Previous numerical results were reported for example in [22]. The results there
agree with our numerical observation that there appears to be no blow-up. The
approach to equilibria seems to happen in a way which is similar to the following
linear toy model. Let

b(θ)
∂

∂θ
(2.29)

be a smooth vector field on S1 with exactly two non-degenerate equilibria at θ = θ1
and θ = θ2 on S1.We can assume the equilibrium at θ1 is unstable, that is b′(θ1) > 0
(together with b(θ1) = 0). Then, necessarily, b′(θ2) < 0. (Recall that we assume
the equilibria are non-degenerate.) Consider now the equation

ωt + [b, ω] = 0, (2.30)

with the initial value ω(θ, t)|t=0 = ω0(θ), where ω0 is a smooth initial condition,
where ω0(θ1) = 0, ω′

0(θ1) = α. In this situation it is not hard to show that

lim
t→∞ ω(θ, t) = αb(θ), θ �= θ2, (2.31)

and the convergence is uniform on compact subsets of S1\{θ2}. One way to see this
is to change the coordinate θ to ξ so that the vector field b in S1\{θ2} becomes

cξ
∂

∂ξ
ξ ∈ R. (2.32)

The flow map φt given by the last field is given explicitly by

φt (ξ) = ectξ (2.33)
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and the limit φt
#ω0 for t → ∞ is easily calculated, after expressing ω0 in the

coordinate ξ via

ω0(θ)
∂

∂θ
= ω0(θ)

b(θ)
b(θ)

∂

∂θ
= ω0

b
cξ

∂

∂ξ
. (2.34)

In the linear example (2.30) we had to assume that the zeroes of b and ω0 were
“aligned”. (If ω0(θ1) �= 0, it is easy to see that |ω(θ, t)| → ∞ for θ �= θ2.) The
non-linear equation seems to be able to align the zeroes of ω and u “by itself”.

2.6. Local Well-Posedness for ω0 ∈ H
1
2+ε and the BKM Criterion

The local-in-time well-posedness forω0 ∈ H1 is proved in [22], and the Beale–
Kato–Majda-type criterion mentioned in the introduction, namely that the L∞

t Hs
x

regularity in any closed interval [0, T ] is controlled by the condition
∫ T

0
||ω(t)||L∞ dt < +∞,

is proved in [3] when s � 1. One can generalize these results to s > 1
2 based on the

methods of [2,10], and also [3,12,21]. Here we only briefly outline the arguments,
leaving a more detailed exposition of these topics for a future work.

Motivated by the works [2,3,10,12,21], we can re-write the De Gregorio equa-
tion (1.3) in terms of u as follows:

ut + uux = uux − 	−1 (u	ux − ux	u)
def= B(u, u). (2.35)

The operator 	 has a one-dimensional kernel consisting of constant functions, but
if we work with functions of zero average, we do not have difficulties with the
invertibility of 	, if we take into account (2.17). We fix s ∈ ( 12 , 1). The main point
now is that the expression B(u, u) on the right-hand side of (2.35) is a continuous
quadratic mapping from H1+s to itself. We notice that, due to cancellations in the
expression for B, one can expect

||B(u, u)||H1+s � ||ux ||L∞||u||H1+s , (2.36)

from which it is not hard to get the Beale–Kato–Majda-type criterion at the level
of L∞

t Hs
x regularity for ω, with the help of the Kato–Ponce commutator estimate

[20] and an often-used trick of Kato involving the estimation of ux through ω and
log of a higher norm, see for example Proposition 2.104 in [2].

For the local well-posedness for ω0 ∈ Hs one can follow (with some mod-
ifications) either the methods of [2,10], working with the Eulerian formulation,2

or [12,21], working with the Lagrangian formulation, and showing (again with
some modifications) that the vector field which defines the equations in Lagrangian
coordinates on the tangent space of the group of H1+s-diffeomorphisms of S1 is
Lipschitz, so we are dealing with an ODE in these coordinates, and standard ODE
theorems can be applied.

2 And showing the “quasi-linear wellposedness”, in the sense of [24].
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3. Linearized Stability

In this section we will study the linearization of equation (1.3) about the steady
solution

�(θ) = − sin θ. (3.1)

The corresponding velocity field given by the Biot–Savart law in (1.3) is

U (θ) = sin θ. (3.2)

The linearized equation is

ηt + [U, η] + [v,�] = 0, vθ = Hη,

∫
S1

v = 0. (3.3)

Note that if the equation did not have term [v,�], we would be in the situation
of (1.7), and the long-time behavior of η would be easy to determine.

The linearized operator

L(η) = −[U, η] − [v,�] = −[U, η + v] (3.4)

has two important properties which will help us to handle the situation.

Lemma 3.1. L commutes with the Hilbert transform H.

Proof. Recall that we assume that
∫
S1η = 0, and from the Biot–Savart law we

then see that the three Fourier coefficients of the function η + v corresponding to
e−iθ , 1 and eiθ vanish. This easily gives the result, as commutation by U shift the
Fourier frequencies at most by 1, and the Fourier multiplier of H is constant on the
positive frequencies and is also constant on the negative frequencies. 	


We note that Lemma 3.1 requires that the functions η satisfy η0 = 0. If we wish
to work with the natural extension of L to η0 �= 0 defined by Le0 = 1

2e−1 + 1
2e1,

the commutator [L , H ] will not vanish on e0. However, it will still vanish if we
mod out by the linear span of e−1, e0, e1 which is a subspace invariant under both
H and (the extended) L .

Wenowaim to show that L is skew-symmetricwith respect to a certain quadratic
form. This calculation seems to be easiest in the Fourier variables. For k ∈ Z we
denote by ek the function eikθ . A direct calculation shows that

Lek = Akek−1 + Bkek+1, k �= 0, (3.5)

where, for k �= 0,

Ak = 1

2
(k + 1)

(
1 − 1

|k|
)

, Bk = 1

2
(−k + 1)

(
1 − 1

|k|
)

. (3.6)

In terms of the Fourier coordinates ηk this means that

(Lη)k = Bk−1ηk−1 + Ak+1ηk+1, k �= 0, (3.7)
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where we adopt the convention B0η0 = 0 and A0η0 = 0. (We recall that we work
with functions η for which η0 = 0. A natural extension of the operator to functions
withη0 �= 0 is by setting A0 = B0 = 1

2 , as the term1− 1
|k| in (3.5) arises as 1− signk

k .)
We note that Ak = 0, Bk = 0 for |k| = 1, and that A−k = Bk, B−k = Ak .

The formulae (3.6) also provides a proof of Lemma 3.1.
The evolution equations for ηk, k = 1, 2, 3, . . . are

η̇1 = A2η2
η̇2 = A3η3
η̇3 = B2η2 + A4η4.

. . .

(3.8)

Note that the system for η2, η3, . . . is closed and the variable η1 can be calculated
by integration of A2η2 once the components η2, η3, . . . are known.

We aim to find ck > 0, k = 2, 3, . . . so that L is anti-hermitian with respect
the hermitian form

〈η, η〉 =
∞∑
k=2

ckηk η̄k . (3.9)

An easy calculation shows that the condition on the sequence ck is

ck+1 = Ak+1

−Bk
ck, k = 2, 3, . . . , (3.10)

and hence we can write

ck+1 = Ak+1Ak Ak−1
Ak−2Ak−3 . . . A3

(−Bk)(−Bk−1) . . . (−B2)
c2. (3.11)

It is easy to see that the fraction on the right-hand side of the last equation has a
finite strictly positive limit as k → ∞ and hence we see that

ck ∼ k3. (3.12)

In fact, a more detailed calculation shows

ck = (k − 1)2(k + 1). (3.13)

Also, the conservation of the form (3.9) by the evolution given by η̇ = Lη can be
seen directly by formulating the evolution in a Hamiltonian form. On the phase-
space given by the (complex) coordinates η1, η2, . . . we define the Hamiltonian

H = H (η) =
∞∑
k=1

1

4
ckηk η̄k . (3.14)

Consider the (infinite) matrix

J =

⎛
⎜⎜⎜⎜⎝

0 a1 0 0 . . .

−a1 0 a2 0 . . .

0 −a2 0 a3 . . .

0 0 −a3 0 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠ , ak = 1

k(k + 1)
. (3.15)
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We can then write our linear system (3.4) in the Hamiltonian from

η̇ = Lη = J DH (η), (3.16)

which transparently shows thatH is preserved by the evolution.
Note that on the Fourier side L commutes with complex conjugation

L η̄ = Lη, η = (η1, η2, . . . ). (3.17)

This reflects the fact that in the physical space the evolution preserves the spaces
of odd and even functions, respectively.

We see that a good space in which we can consider our equation is the space

X = Ḣ 3
2 /Ce1, (3.18)

where Ḣ 3
2 is the space of analytic function on the unit disc with the restriction to the

boundary belonging to the Sobolev space Ḣ
3
2 , andCe1 is the subspace of functions

which are a multiple of z. Our convention here and in other similar situations

is that Ḣ 3
2 is (equivalent to) a factor space H 3

2 /Ce0, so that X is equivalent to

H 3
2 /(Ce0+Ce1). The variables η2, η3, . . . can be used as coordinates in this space

and the hermitian product will be taken as (3.9).
The fact that we can restrict our attention to analytic functions can be seen

directly from Lemma 3.1. We use the standard decomposition

η = η+ + η−, η+ = 1

2
(η + i Hη), η− = 1

2
(η − i Hη), (3.19)

and due to Lemma 3.1 we can deal with η+ and η− separately.
In what follows we will work with the holomorphic part of η and will slightly

abuse notation by assuming that η is a holomorphic function, and the same for v.
For holomorphic functions on the disc it is natural to use the variable z = eiθ . In
the holomorphic situation the Biot–Savart law is given by a differential operator:

η(z) = −zv′(z), v′ = dv

dz
. (3.20)

To write the equations in the z-variable, we use

∂

∂θ
= i z

∂

∂z
(3.21)

and write

sin θ
∂

∂θ
= 1

2
(z2 − 1)

∂

∂z
. (3.22)

The evolution equation for holomorphic η can be written symbolically as

ηt i z
∂

∂z
+

[
1

2
(z2 − 1)

∂

∂z
, (η + v)i z

∂

∂z

]
= 0, (3.23)
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which is the same as

ηt z + 1

2
(z2 − 1)(ηz + vz)′ − z2(η + v) = 0, η = −zv′. (3.24)

The evolution given by this equation will be unitary in X (as the operator L is anti-
hermitian). In addition, the vector e2 ∈ X (where we slightly abuse notation by
using e2 for what really is the projection of e2 into X ) is a totalizer for the operator
L , in the sense that the vectors e2, Le2, L2e2, . . . generate a dense subspace of X .
Spectral theory for unitary semigroups now implies that the spectrum of L is purely
imaginary, and that there is a measure μ and an isometry T : X → L2(R, μ) such
that L̃ = TLT−1 is given by

(L̃ f )(s) = is f (s), f ∈ L2(R, μ). (3.25)

The corresponding evolution equation in L2(R, μ), equivalent to the projection
of (3.23) to X , is then

ft = L̃ f, (3.26)

and its solutions are given by

f (s, t) = f (s, 0)eist . (3.27)

Our goal is to obtain information about μ. In particular, we would like to show
thatμ is absolutely continuouswith respect to theLebesguemeasure. This is enough
to conclude from (3.27) (essentially via the Riemann–Lebesgue lemma) that

η(t) ⇀ 0 in X (weak convergence) as t → ∞ (3.28)

for any η(0) ∈ H
3
2 . Here we slightly abuse the notation by using η(t) also for the

projection of η(t) to X . (Therefore the statement says nothing about the first Fourier
mode.) This result is essentially sharp; we will see that for any given T > 0 there

are non-trivial periodic solutions of period T with η(0) just missing H
3
2 . Also, even

with η(0) ∈ H
3
2 , the first Fourier mode may in general not have a limit as t → ∞,

while at the same time the projections of η(t) approach 0 weakly in X .

3.1. A Model Problem

In this subsectionwe look at a simplifiedmodel of (3.24),which already captures
its main features and can be solved explicitly. Some of the calculations will also be
important for the analysis of (3.24).

Let us consider the equation

ft + sin θ fθ = 0 (3.29)

on the unit circle. Denote

M f = − sin θ fθ . (3.30)
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The analogue of (3.5) for M is

Mek = Akek−1 + Bkek+1, k ∈ Z, (3.31)

where

Ak = 1

2
k, Bk = −1

2
k. (3.32)

In terms of the Fourier coordinates fk the equation gives a closed system for
f1, f2, . . . , and a closed system for f−1, f−2, . . . . The system for f1, f2, . . . is

ḟ1 = A2 f2
ḟ2 = B1 f1 + A2 f3
ḟ3 = B2 f2 + A4 f4,

. . .

(3.33)

and an analogous system holds for f−1, f−2, . . . . The equation for f0 is

ḟ0 = B−1 f−1 + A1 f1 = 1

2
( f−1 + f1) . (3.34)

One checks easily that M is anti-hermitian with respect to the Ḣ
1
2 (semi-)norm,

given by

|| f ||
Ḣ

1
2

= 1

2π

∑
k

|k|| fk |2, (3.35)

and hence the evolution operator given by (3.29) is unitary in Ḣ
1
2 . The Hilbert

transform H does not commute with M , but does so modulo constants. More
precisely, we have

[H, M] f = i

2
( f1 − f−1) e0, (3.36)

so that, recalling our convention that constants are factored out in Ḣ
1
2 , we can write

[H, M] = 0 in Ḣ
1
2 . (3.37)

The fact that the evolution byM is an isometry on Ḣ
1
2 is also easily seen from (3.22):

the field sin θ ∂
∂θ

on S1 has a holomorphic extension to the unit disc, given by (3.22),
and the evolution given by the extension on harmonic function is an isometry of

Ḣ 1
2 , because conformal transformations preserve the Dirichlet integral on the disc.
Wemap the unit disc D = {z, |z| < 1} onto the stripO = {w,−π/2 < Imw <

π/2} via

z → w = log
1 − z

1 + z
, (3.38)

where we take the branch of the log function defined by log(reiθ ) = log r + iθ for
r ∈ (0,∞) and θ ∈ (−π, π). It is easy to check that under the mapping z → w
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the vector field 1
2 (z

2 − 1) ∂
∂z is mapped to ∂

∂w
. This means that the evolution of the

holomorphic sector of Ḣ
1
2 given by (3.29) is equivalent to the equation

ft + fw = 0 (3.39)

in the space Ḣ 1
2 (O) of holomorphic functions in O, where the norm on Ḣ 1

2 (O)

is given by
∫
O| f ′(w)|2 i

2 dw ∧ dw̄ . The evolution given by (3.39) is of course
f (w) → f (w − t) and it is diagonalized in the Fourier representation

f (w) =
∫ ∞

−∞
ϕ(s)eisw ds. (3.40)

Assuming ϕ is smooth and compactly supported, we have

f ′(w) =
∫ ∞

−∞
isϕ(s)eisw ds. (3.41)

Writing w = w1 + iw2 with w1 ∈ (−∞,∞) and w2 ∈ (−π
2 , π

2 ) we have, using
Parserval’s identity,

∫
O

| f ′(w)|2 dw1 dw2 =
∫ π

2

− π
2

(∫ ∞

−∞
| f ′(w1 + iw2)|2 dw1

)
dw2

=
∫ π

2

− π
2

(
2π

∫ ∞

−∞
s2|ϕ(s)|2e−2sw2 ds

)
dw2

= 2π
∫ ∞

−∞
|ϕ(s)|2s sinh πs ds.

(3.42)

Going back to the z-variable in the unit disc and remembering ew = 1−z
1+z , we see

that in the holomorphic sector the spectral decomposition induced by the operator
M , or equivalently, 1

2 (z
2 − 1) ∂

∂z , is given by

f (z) =
∫ ∞

−∞
ϕ(s)

(
1 − z

1 + z

)is

ds, (3.43)

with

|| f ||2Ḣ 1
2 (D)

∼
∫ ∞

−∞
|ϕ(s)|2s sinh πs ds. (3.44)

A simple corollary of the above considerations is the following lemma, which
will be useful later:

Lemma 3.2. Let ν be a Borel measure with compact support in R\{0}. Then the
function

f (z) =
∫ ∞

−∞

(
1 − z

1 + z

)is

dν(s) (3.45)

is in Ḣ 1
2 (D) if and only if ν is absolutely continuous, with a square-integrable

density.
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Proof. We can work with the variable w given by (3.38). Then by our assumptions

the function f (w) given by (3.40) is in Ḣ 1
2 (O). This means that f ′(w) is in L2(O),

and since f is holomorphic in O, it means that the restriction of f ′ to the real line
is square integrable on the real line. Thus f ′(w1) has the Fourier representation

f ′(w1) =
∫ ∞

−∞
ψ(s)eisw1 ds (3.46)

for some ψ ∈ L2(R). At the same time,

f ′(w1) =
∫ ∞

−∞
eisw1 is dν(s), (3.47)

and we see that dν(s) = ψ(s) ds by the Fourier representation uniqueness. 	

We note that the functions

h(z, λ) =
(
1 − z

1 + z

)λ

(3.48)

satisfy

1

2
(z2 − 1)

∂

∂z
h(z, λ) = λ h(z, λ)

and can be thought of as generalized eigenfunctions of the operator 1
2 (z

2 − 1) ∂
∂z in

Ḣ 1
2 .

3.2. Generalized Eigenfunctions of the Operator L

For the spectral analysis of L in the holomorphic sector, we find the analogues
of the generalized eigenfunctions (3.48) when the simple operator M is replaced
by L . The corresponding equation is obtained from (3.24):

2λzη + (z2 − 1)(zη + zv)′ − 2z2(η + v) = 0, η = −zv′. (3.49)

In terms of the Fourier coefficients ηk the equation is equivalent to

λη1 = A2η2
λη2 = A3η3
λη3 = B2η2 + A4η4.

. . .

(3.50)

If we choose η2 �= 0, then the first equation determines η1 (except when λ = 0, of
course), and for η3, η4, . . . we get

ηk+1 = A−1
k+1 (ληk − Bk−1ηk−1) , k = 3, 4, . . . . (3.51)

The usefulness of equation (3.49) is that it enables us to get some control over the
functions given by the coefficients calculated from these recursive relations.
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As η0 = 0 and v0 = 0, we can set η = z f and v = zF . Then

f = −(zF)′, (3.52)

and (3.49) gives

z(z2 − 1)F ′′ + (z2 + 2λz − 3)F ′ + 2λF = 0. (3.53)

The equation can also be written as

F ′′ +
[−1 + λ

z − 1
+ −1 − λ

z + 1
+ 3

z

]
F ′ + 2λ

z(z2 − 1)
F = 0. (3.54)

This is a classical complex ODE, a special case of the Heun equation [19]. It has
four singular points: z = −1, z = 0, z = 1, and z = ∞. All these points are
regular singular points, see for example Chapter X of [25] for precise definitions.
The local behavior near z = ∞ can be investigated, as usual, by setting z = 1/ζ ,
which gives

d2F

dζ 2 +
[−1 + λ

ζ − 1
+ −1 − λ

ζ + 1
+ 1

ζ

]
dF

dζ
+ 2λ

ζ(1 − ζ 2)
F = 0. (3.55)

We are interested in solutions which are holomorphic in the neighborhood of z = 0.
To analyze the behavior of the solutions at the other regular singular points, we can
use the Frobenius method and seek solutions in the form

(z − z0)
r
(
1 + a1(z − z0) + a2(z − z0)

2 + . . .
)

, (3.56)

see for example Chapter X of [25] for details. We will assume that λ is a non-zero
purely imaginary number. The equation for r (often called the indicial equation)
in our special case is

r(r + α − 1) = 0, (3.57)

where α
z−z0

is the term in the square bracket in (3.54) corresponding to the singular
point we are considering. In our case r = 0 is always a solution, and we have
one holomorphic solution (up to a multiple, of course) in a neighborhood of each
singular point. The other solution will be crucial for us at the points −1, 1. We will
also need more information at z = ∞.
(i) The general solution near z0 = 1 when λ is not an integer can be expressed as

F = A (1 − z)2−λU (z, 1, λ) + B V (z, 1, λ), (3.58)

where A, B ∈ C,

U (z, 1, λ) = 1 +U1(1, λ)(z − 1) +U2(1, λ)(z − 1)2 + . . . ,

V (z, 1, λ) = 1 + V1(1, λ)(z − 1) + V2(1, λ)(z − 1)2 + . . . ,

(3.59)

where the radius of convergence of the series is at least R = 1 (the distance
between z0 = 1 and the closest of the remaining singular points, which is z0 = 0).



De Gregorio Modification of the Constantin–Lax–Majda Model 1285

The function z → (1− z)2−λ is interpreted in a usual way, along a suitable branch
over C\{1}.
(ii) In a similar way, near z0 = −1 we can write

F = A (1 + z)2+λU (z,−1, λ) + B V (z,−1, λ). (3.60)

Note that the equation has a symmetry (F(z), λ) → (F(−z),−λ). In general, the
Heun equation has a rich symmetry group, see for example [19].
(iii) At z0 = ∞, which is of course the same as ζ = 0 in (3.55), the indicial equation
is r2 = 0, and there is one holomorphic solution U with U (0, λ) = 1. The general
solution is of the form

F = AU (ζ, λ) + B
[
U (ζ, λ) log ζ + V (ζ, λ)

]
, (3.61)

where V is also holomorphic.

Lemma 3.3. The operator L in X = Ḣ 3
2 /Ce1 has no point spectrum.

We recall that our convention is that constants are factored out already in Ḣ 3
2 .

Proof. It is easy to see from (3.8) that the kernel of L in X is trivial. (The solutions
η = A sin(θ − θ0) are factored out by the projection to X .) Therefore we can only
consider the case λ = is for s ∈ R\{0}. As the functions (1 ± z)is are not in
Ḣ 1

2 (D) for any s �= 0, the only possibility for the eigenfunctions η would be that
the corresponding solution F of (3.53) be holomorphic in C. However, in that case
one has to have B = 0 in the representation (3.61), which implies that F must
be bounded. Hence F is constant by the Liouville theorem, and the claim follows
easily. 	

Remark. Although the operator L does not have any eigenfunctions in X , the
above analysis shows that the eigenfunctions defined by the formulae (3.51) are
regular in D\{1,−1}, with behavior ∼ (1 − z)1−is and (1 + z)1+is at 1 and −1

respectively. Such functions just narrowly miss H 3
2 , and do belong to Sobolev

spaces with any lower regularity. The linearized equation therefore has a large set

of periodic and almost periodic solutions in spaces just below H 3
2 . We conjecture

that this extends to the non-linear level.

3.3. Absolute Continuity of the Spectral Measure μ for the Linearized Operator L

Our goal is to prove

Theorem 3.1. Themeasureμ in the spectral representation (3.25)of L is absolutely
continuous.

Proof. Let us consider the map T−1, where T is the isometry X → L2(R, μ)

defined just before (3.25). We will represent η = T−1 f by the Fourier components
η2, η3, . . . :

f → T−1 f ∼ (η2( f ), η3( f ), . . . ). (3.62)
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For each k � 2 the map f → ηk( f ) is clearly a continuous linear functional on
L2(R, μ), and hence we have a representation

ηk = ηk( f ) =
∫ ∞

−∞
f (s)Gk(s) dμ(s), (3.63)

with

Gk ∈ L2(R, μ),

∫ ∞

−∞
Gk(s)Ḡl(s) dμ(s) ∼ δkl

ck
(no summation), (3.64)

where ck is given by (3.11). Note that

ηk = 1

ck
(η, ek)X = 1

ck
(Tη, T ek)L2(R,μ)

= 1

ck

∫ ∞

−∞
f (s) T ek(s) dμ(s), (3.65)

and hence

Gk = 1

ck
T ek . (3.66)

Letting G = (G2,G3, . . . ), considering G simply as an element of the linear space
of infinite sequences of L2(R, μ)-functions, we can write

η =
∫ ∞

−∞
f (s)G(s) dμ(s), Lη =

∫ ∞

−∞
f (s)LG(s) dμ(s), (3.67)

where the integrals are defined component-by-component. (Note that (LG)k =
Bk−1Gk−1 + Ak+1Gk+1 is well-defined.) At the same time, we have, by the con-
struction of the isomorphism T ,

Lη =
∫ ∞

−∞
is f (s)G(s) dμ(s). (3.68)

As f was an arbitrary element of L2(R, μ), we see by comparing (3.67) and (3.68)
that

LG(s) = isG(s), for μ-almost every s. (3.69)

We set

G1(s) = 1

is
A2G2(s), �(z, s) = G1(s)z + G2(s)z

2 + G3(s)z
3 . . . , (3.70)

where the definition of G1 reflects the first equation of (3.50). Using (3.64), we see
easily that when σ < 1, the function z → �(z, s) belongs toHσ (D) for μ-almost
every s. (This is not optimal, but is enough to show that �(z, s) is well-defined
as a function of z for μ-almost every s.) Due to (3.69), the function z → �(z, s)
satisfies equation (3.49) with λ = is for μ-almost every s.
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Let �(z, λ) be a solution of (3.49) defined by the recursive relations (3.51),
with the normalization η2 = 1. By considerations of subsection 3.2, near z = 1 we
have

�(z, λ) = A(λ, 1)(1 − z)1−λ + W (z, 1, λ), (3.71)

where A is analytic in λ andW is analytic in z ∈ D and λ andW ( ·, 1, λ) ∈ H 3
2 (D)

as long as λ = is and s �= 0. Similarly, near z = −1 we have

�(z, λ) = A(λ,−1)(1 + z)1+λ + W (z,−1, λ), (3.72)

with the same properties of A andW . Due to the analyticity, the functions A(λ,±1)
can vanish only on a countable set of values of the parameter λ.

As z → �(z, is) and z → �(z, s) satisfy the same ODE for μ-almost every s
and � is normalized by η2 = 1, we must have

�(z, s) = G2(s)�(z, is), for μ-almost every s. (3.73)

Assume now that μ is not absolutely continuous, and let us choose a compact set
E ⊂ R\{0} with vanishing Lebesgue measure such that μ(E) > 0 and such that
the functions |G2(s)|, |A(is, 1)| and |A(is,−1)| are all bounded below on E by a
positive ε > 0. This is possible by the analyticity and non-triviality of the functions
A(is,±1), as we already know that μ contains no Dirac masses, by Lemma 3.3.
Let

μE = χEμ, (3.74)

where χE is the characteristic function of E .
ByLemma3.2, for any boundedμ-measurable function hwhich does not vanish

μ-almost everywhere on E , the function

F(z) =
∫ ∞

−∞

(
1 − z

1 + z

)−is

h(s) dμE (s) (3.75)

does not belong to Ḣ 1
2 (D). Fix such an h. As the function F is smooth away from

z = ±1, the loss of regularity must happen locally at least at one of the points of
the set {1,−1}. Assume it is z = 1, the other case being essentially the same.

Near z = 1 we can write

(1 + z)is = 2is + (1 − z)H(z, s), (3.76)

where H is analytic in z and s (for z close to 1). As the function

z → (1 − z)1−is (3.77)

does belong to Ḣ 1
2 (D), with a bound on the norm which is uniform in s ∈ E , we

conclude that the function

z →
∫ ∞

−∞
(1 − z)−ish(s)2is dμE (s) (3.78)
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will not belong to Ḣ 1
2 (D). The proof of the theorem is now easily finished by taking

f (s) = χE (s)h(s)2is

G2(s)A(is, 1)
(3.79)

in formula (3.63). 	

Corollary 3.1. Let η0 ∈ Ḣ 3

2 and let η(t) be the solution of the linearized equa-

tion (3.3)with η(0) = η0. Then the functions η(t) approach zero weakly in Ḣ 3
2 /Ce1

as t → ±∞.

Proof. Once we know thatμ is absolutely continuous, the statement follows easily
from the Riemann–Lebesgue lemma, the representation (3.27), and the fact that the

evolution is unitary in Ḣ 3
2 /Ce1. 	


Remark. Let �(z, λ) be as in (3.71), and for a smooth ϕ compactly supported in
R\{0} set

f (z) =
∫ ∞

−∞
ϕ(s)�(z, is) ds. (3.80)

It is natural to expect that

|| f ||2X =
∫ ∞

−∞
|ϕ(s)|2 ρ(s) ds (3.81)

for all such ϕ, with ρ analytic and strictly positive in R\{0}. Our method above
can be used to obtain (after more detailed considerations) that we have (3.81) with
ρ ∈ L∞

loc(R\{0}), and ρ(s) > 0 for almost every s. The density of the functions of
the form (3.80) in X follows from the proof of Theorem 3.1.

3.4. Operator L in Other Function Spaces

In this section we will use the similarity of the linearized equation (3.3) with
the equation (1.7). This will allow us to obtain decay estimates for suitable classes
of solutions η in weighted L2 spaces. When dealing with the linearized operator,
it is natural to work with spaces over C. In the considerations below the functions
are complex-valued (unless stated otherwise).

Let us fix γ ∈ ( 32 , 2) and define

Y0 =
{
f ∈ L2(S1),

∫ π

−π

| f (θ)|2| sin(θ/2)|−2γ dθ < +∞
}

. (3.82)

On the space Y0 we will take the natural norm

|| f ||Y0 = || | sin(θ/2)|−γ f ||L2 . (3.83)

We also define the space

Y = Y0 ⊕ {
a + b sin θ, a, b ∈ C

}
(3.84)
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with the norm defined for f ∈ Y0 and a, b ∈ R by

|| f + a + b sin θ ||2Y = || f ||2Y0 + |a|2 + |b|2. (3.85)

For a use of unisotropic Sobolev space for the analysis of the spectral properties
ofMorse–Smale flows and their action on differential forms (which is in some sense
dual to the flow defined by (2.30)) we refer the reader to [9].

Note that each f ∈ Y has a unique representation of the form

f = f0 + a + b sin θ f0 ∈ Y0, a, b ∈ C. (3.86)

Although values of a function f ∈ Y may not be defined for all θ , it is natural to
define the values of f and f ′ at θ = 0 as

f (0) = a, f ′(0) = b. (3.87)

It is easy to see that this definition agrees with the usual definition when f ∈ Y is
a C1 function. We have the natural projection P0 : Y → Y0 defined by for f0 ∈ Y0
and a, b ∈ R by

P0( f0 + a + b sin θ) = f0. (3.88)

For C1-functions in Y this amounts to

(P0 f )(θ) = f (θ) − f (0) − f ′(0) sin θ. (3.89)

To take advantage of the commutation of L with the Hilbert transform H , the
following lemma will be useful:

Lemma 3.4. The Hilbert transform H is a continuous operator from Y to Y .

Proof. Recalling that

H f (θ) = 1

2π

∫ π

−π

f (ϑ) cot

(
θ − ϑ

2

)
dϑ, (3.90)

we see from (3.89) and the fact that H leaves the 2d subspace {a cos θ + b sin θ}
invariant that it is enough to show that for a smooth f ∈ Y0 the function

P0H f : θ → 1

2π

∫ π

−π

f (ϑ)

[
cot

(
θ − ϑ

2

)
+ cot

(
ϑ

2

)
+ sin θ

2 sin2
(

ϑ
2

)
]
dϑ

(3.91)

is in Y0, with the corresponding estimate. Using

cot

(
θ − ϑ

2

)
+ cot

(
ϑ

2

)
+ sin θ

2 sin2
(

ϑ
2

) = sin2 θ
2

sin2 ϑ
2

cot

(
θ − ϑ

2

)
, (3.92)

we see that

P0H f (θ) = 1

2π

∫ π

−π

f (ϑ)
sin2 θ

2

sin2 ϑ
2

cot

(
θ − ϑ

2

)
dϑ. (3.93)
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Let us now write

f (θ) = | sin(θ/2)|γ g(θ), P0H f (θ) = | sin(θ/2)|γ G(θ). (3.94)

We have to show that the operator

g → G: θ → 1

2π

∫ π

−π

g(ϑ)
| sin(θ/2)|2−γ

| sin(ϑ/2)|2−γ
cot

(
θ − ϑ

2

)
dϑ (3.95)

is continuous on L2(S1). This can be either done directly by modifying the proof
for the Hilbert transform, or one can use results from the theory of A2-weights. Let
us illustrate the latter approach in the case of the Hilbert transform on the real line,
leaving the easy adaptation of the proof to S1 for the reader. We would like to show
that for α ∈ [0, 1/2) the operator T : C∞

0 → D′ given by

T (x) =
∫

R
K (x, y) f (y) dy, K (x, y) = |x |α

|y|α
1

x − y
(3.96)

can be continuously extended to an operator from L2(R) to L2(R). This is an
immediate consequence of the fact that the functionw(x) = |x |2α is an A2-weight,
see Stein [23] for the definitions. To verify this, we note that the function f belongs
to L2(R) if and only if the function y → f (y)|y|−α belongs to L2(R, w(y) dy)
and, similarly, a function x → |x |αg(x) belongs to L2(R) if and only if g ∈
L2(R, w(x) dx). 	

Above we complemented the space Y0 by the 2-dimensional space of the functions
of the form a + b sin θ . When working with holomorphic functions, it is better to
work with another natural complementary space of Y0, defined as

Z0 = {
f, f (z) = a + b(z − 1), a, b ∈ C

}
. (3.97)

Clearly Y0 ∩ Z0 = {0} and Y = Y0 ⊕ Z0. Moreover, the functions in Z0 are
holomorphic. For g ∈ Y0 and f ∈ Y given by f (z) = g(z) + a + b(z − 1) we can
define a norm in Y (equivalent to the previously defined norm || · ||Y ) by

|| f ||2 = ||g||2Y0 + |a|2 + |b|2. (3.98)

In what follows we will not distinguish too carefully between the two equivalent
norms, as the distinction is not important for our purposes. For f (z) = g(z) + a +
b(z − 1) with g ∈ Y0 we can define (keeping in mind that z = eiθ )

f (1) = a,
∂ f

∂z
(1) = b, (3.99)

where the value 1 of course refers to the variable z, and we use i z ∂
∂z = ∂

∂θ
. The

decomposition Y = Y0 ⊕ Z0 defines projections

P : Y → Y0, Q : Y → Z0. (3.100)

It is perhaps worth emphasizing that P does not coincide with P0 defined above.
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The proof above of the continuity of the Hilbert transform on Y can we re-
written in the complex notation, using

cot

(
θ − ϑ

2

)
= i

z + w

z − w
, z = eiθ , w = eiϑ (3.101)

and replacing (3.92) by

z + w

z − w
− 1 + w

1 − w
+ 2w (z − 1)

(1 − w)2
= 2w (1 − z)2

(z − w)(1 − w)2
. (3.102)

Equation (3.24) for η can be rewritten as

ηt + 1

2
(z2 − 1)η′ − zη − 1

2

(
z + 1

z

)
v = 0, η = −zv′, v|z=0 = 0.

(3.103)

Note that when considering η as a function on S1, the equation makes sense even
when η is not holomorphic, as for functions on S1 we have i z ∂

∂z = ∂
∂θ
. However,

the equation η = −zv′ coincides with vθ = Hη only on holomorphic functions.
We first analyze the equation

ηt + 1

2
(z2 − 1)η′ − zη = 0, (3.104)

which is equivalent (on the circle S1) to ξt + sin θ ξθ − cos θ ξ = 0 via the change
of variables η = zξ . The equation can be solved explicitly as follows: the flow map
generated by the ODE

ż = 1

2
(z2 − 1) (3.105)

is

φt (z) = z − τ

1 − τ z
, τ = tanh

t

2
. (3.106)

The solution at time t of (3.104) with the initial condition η|t=0 = η0 can be thought
of as the push-forward of η0 (viewed as a vector field) by the flow φt , and hence it
is given by

η(z, t) = φ′
t (φ

−1
t (z)) η0(φ

−1
t (z)). (3.107)

The norm ||η(t)||2Y0 satisfies

||η(t)||2Y0 =
∫

S1
|η(z, t)|2|z − 1|−2γ 22γ dH 1(z), (3.108)

where H 1 is the standard 1d measure on the circle. Setting z = φt (w) in the last
integral and using (3.107) together with

dH 1(z) = |φ′
t (w)| dH 1(w) = 1 − τ 2

|1 − τw|2 dH
1(w) (3.109)
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and

|w − τ | = |1 − τw| � |1 − τ | when |w| = 1 and 0 � τ < 1, (3.110)

we infer that

||η(t)||2Y0 � (1 − τ)2γ−3
∫

S1
|η0(w)|2|w − 1|−2γ dH 1(w)

� e−2β0t ||η0||2Y0 , β0 = γ − 3

2
. (3.111)

Let us denote

L0η = −1

2
(z2 − 1)

∂η

∂z
+ zη. (3.112)

We can state (3.111) as follows:

Lemma 3.5.

||etL0η0||Y0 � e−β0t ||η0||Y0 , t � 0. (3.113)

Proof. See above. 	

Our goal is to prove a suitable version of this estimate for the operator L .
Let us define an operator η → Kη on L2(S1) by

Kη = (cos θ) v, vθ = Hη,

∫ π

−π

v(θ) dθ = 0. (3.114)

Note that on holomorphic functions

Kη = 1

2

(
z + 1

z

)
v, η = −zv′, v|z=0 = 0. (3.115)

It is worth noting that

K · 1 = 0, K · z = −1

2
(z2 + 1). (3.116)

Lemma 3.6. The operator K maps Y to Y and is continuous and compact as an
operator on Y .

Proof. The statement is clearly true for the restriction of K to Z0. Therefore is
enough to show that K : Y0 → Y is continuous and compact. As the maps f →
(cos θ) f and f → H f are continuous from Y to Y , we only have to show that
taking primitive of a function in Y0 with zero average is a compact map from Y0 to
Y . Let us write elements of Y0 as f (θ) = | sin θ

2 |γ g(θ) with g ∈ L2(S1). Letting
w(θ) = | sin θ

2 |γ , define

Tg(θ) =
∫ θ

0

w(ϑ)

w(θ)
g(ϑ) dϑ. (3.117)
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We need to show that T is a compact operator from the subspace of L2 of functions
with

∫ π

−π
w(θ)g(θ) = 0 into L2. Let us fix some 0 < θ0 < π

2 . For |θ | � θ0 we
have

|Tg(θ)|2 � ||g||2L2

∫ θ

0

w2(ϑ)

w2(θ)
dϑ. (3.118)

This gives

|Tg(θ)|2 � ||g||2L2 |θ |, |θ | � θ0. (3.119)

This gives sufficient control near θ = 0. In regions away from small neighborhoods
of θ = 0 we can use standard results about compactness of integral operators. 	


Let Z0 be the subspace of Y spanned by 1, cos θ , and sin θ . Recalling that
K · 1 = 0, and the equilibria (2.28), we see that

L · 1 = cos θ, L · cos θ = 0, L · sin θ = 0. (3.120)

(Of course, the last two equalities can be also seen by a direct substitution of cos θ

and sin θ into L .) Hence Z0 is invariant under L and L is well-defined on the factor
space

Ỹ = Y/Z0. (3.121)

Lemma 3.7. For each β < β0 = γ − 3
2 we have the decay estimate

||etLη||Ỹ � Ce−βt ||η||Ỹ , η ∈ Y, (3.122)

where C = C(β) is a suitable constant.

This implies that for |k| � 2 the Fourier coefficients ηk(t) of etLη decay
exponentially as t → ∞. This is a considerable strengthening of our analysis

in Ḣ
3
2 in the previous subsection. It is this exponential decay (together with the

Ḣ
3
2 estimate), which will enable us to do perturbation analysis near equilibria in

the non-linear case.

Proof of the Lemma. Wenote that the commutator [L , H ] (where H is theHilbert
transform) vanishes on Ỹ (although it does not vanish onY , aswe nowdonot assume
that

∫
S1η = 0), and hence we can decompose η as in (3.19) and prove the decay

separately for η+ and η−. For the rest of the proof we will assume that η = η+ is
holomorphic in the unit disc. The subspace of holomorphic functions in Y will be
denoted by Y . The factor space Y/Z0 will be denoted by Ỹ . (Recall that Z0 is the
linear space of 1 and z.) The projections P and Q defined by the decomposition
Y = Y0 ⊕ Z0 (see (3.100)) map Y into itself, and we will denote their restrictions
to Y also by P and Q, respectively. We will also denote by Y0 the holomorphic
functions in Y0. Clearly PY = Y0.

Letting

L1 = L0P, K1 = L0Q + K (3.123)
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we clearly have

L = L1 + K1. (3.124)

Moreover, as K is compact by Lemma 3.6 and Q has a finite-dimensional range on
which L0 is continuous, the operator K1 is compact in Y . In view of Lemma 3.5,
we also have

||etL1η||Ỹ � Ce−βt ||η||Ỹ , η ∈ Y . (3.125)

In this situation the only obstacle to the decay estimate (3.122) can come from
possible points of the spectrum of L in the region {λ, Re λ > −β0} see [16,
Section 2 of Chapter IV, Corollary 2.11 and Proposition 2.12]. Hence we need to
study the solutions η ∈ Y of Lη = λη. Using this equation, we can again look at
the recursive relations (3.51) for the Fourier coefficients and conclude that η has
to be a holomorphic function satisfying (3.49). We return to the analysis of the
equation (3.49) for the holomorphic eigenfunctions in subsection 3.2, which we
re-write here for the convenience of the reader:

z(z2 − 1)F ′′ + (z2 + 2λz − 3)F ′ + 2λF = 0. (3.126)

By the method of Frobenius discussed in subsection 3.2, for each λ ∈ C there is
a unique solution of (3.126) holomorphic in the unit disc with F(0) = 1. We will
denote this solution F(z, λ).

We will use the following notation: if g(z) = ∑∞
k=0 gkz

k is a function which is
holomorphic in a neighborhood of z = 0, we define ḡ(z) = ∑∞

k=1 ḡk z
k . Clearly ḡ

is holomorphic, with the same radius of convergence for its Taylor series at z = 0
and g(z) = ḡ(z̄). Applying this notation to the function z → F(z, λ) where λ is
considered as a parameter, we can write

F̄(z, λ) = F(z, λ̄) (3.127)

and

F(z, λ) = F(z̄, λ̄). (3.128)

We also note that F(−z,−λ) satisfies (3.126) and its value at z = 0 is 1, which
means that, by uniqueness,

F(−z,−λ) = F(z, λ). (3.129)

Let us now assume that λ = is for s ∈ R\{0}, and let us look at the function
x → F(x, λ) for real x . Using (3.128) and (3.129), we see that

F(−x, is) = F(−x, is) = F(−x,−is) = F(x, is). (3.130)

Given the local form of F near z = −1 and z = 1, we see that for a non-zero
purely imaginary λ, the function z → F(z, λ) is singular at z = 1 if and only if it
is singular at z = −1. From this it is easy to see that the generalized eigenfunction
η corresponding to λ = is cannot belong to Y , unless it is regular in C. However,
we have seen in the proof of Lemma 3.3 that such functions have to be constant,
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which correspond to η(z) = cz, which project to 0 in Ỹ . Hence the imaginary axis
does not contain any points of the spectrum of L considered as an operator from Ỹ
to Ỹ .

It remains to deal with the case when λ is not on the imaginary axis, with
Re λ > −β0. Assume that λ is an eigenvalue of L in Ỹ with Re λ > −β0 and
Re λ �= 0. The operator λ − L is a compact perturbation of the invertible operator
λ− L0P (with all operators being considered on Ỹ), and hence it is Fredholm. The
projection Pλ on the eigenspace of λ (or, equivalently, the kernel of λ− L) is given
by

Pλη = 1

2π i

∫
C
(z − L)−1η dz, (3.131)

where C is a sufficiently small circle around λ (taken with the positive orientation).

We take C so that it does not intersect the imaginary axis Ri . When η ∈ Ḣ
3
2 , the

integral vanishes, as the region surrounded by the contour C does not contain any

spectral value of L (considered in Ḣ
3
2 ), and hence the integral has to vanish. As

smooth functions are dense in Y , the integral has to vanish in Ỹ for any η ∈ Y . 	

Remarks. 1. The equation (3.126) very likely has non-trivial solutions F(z, λ)

which are regular both at z = 0 and z = 1 for a countable set of real λn ↘ −∞
which satisfy λn < −β0. These solutions do not interfere with our estimate.

2. In the definition of the space Y0 we work with approximation of functions by
affine maps near a point. There is a natural generalization of Y0 to higher-order
approximations. Let m � 1 be an integer and let γ ∈ (m − 1

2 ,m). Let

Y (m)
0 =

{
f ∈ L2(S1); |z − 1|−γ f ∈ L2(S1)

}
, (3.132)

with the norm || f ||
Y (m)
0

= || |z − 1|−γ f ||L2 . We denote by Pm the set of

polynomials of degreem and define Y (m) = Y (m)
0 ⊕Pm−1, with a norm of f =

g + p, g ∈ Y (m)
0 , p ∈ Pm−1 given by || f ||2

Y (m) = ||g||2
Y (m)
0

+ ||p||2Pm
, where

|| · ||Pm is a norm on Pm . (This does not define the norm uniquely, of course,
but any two norms defined in such a way are equivalent.) Replacing (3.102) by
its m-th order generalization

z + w

z − w
= 1 + w

1 − w
+

m−1∑
k=1

(
z − 1

w − 1

)k 2w

w − 1
+

(
z − 1

w − 1

)m 2w

z − w
,

(3.133)

one can use similar arguments as above to show that Y (m) is invariant under H ,
for f ∈ Y (m) the map f → ( f (1), f ′(1), . . . , f (m−1)(1)) is continuous, and
the evolution by L0 and L preserves Y (m).

3. It is not hard to see that the evolution given by η̇ = Lη preserves smooth
functions and many other regularity classes, such as the above defined Y (m)

spaces. This can be seen in many ways. For example, it is obvious from the
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explicit formulae that the operator etL0 preserves various regularity classes. The
generator of L is a bounded (and even compact) perturbation of the generator of
L0 in the spaces of holomorphic functions discussed above, and this can be used
to show thedesired regularity, as long as H and K preserve the regularity classes.
A useful corollary of this is that when η0 ∈ Y , the equations for η(z0, t) and
η′(z0, t) are well defined, and are the same as in the case of smooth functions.
To see this, one can use the density of the smooth functions in Y , continuity of
etL in Y , and the continuity of η → (η(1), η′(1)) on Y . The same will be true
for the linearization of (2.27) about an equilibrium.

It will be useful to look at the decay of a general solution of the form (2.27) of
the linearized equation, with the calibration ũ(θ0, t) = 0. Let us set θ0 = 0. The
equation then is

ηt + sin θ ηθ − cos θ η + sin θ vθ − cos θ v + cos θ v(0, t) = 0, vθ = Hη,∫ π

−π

v(θ) dθ = 0, (3.134)

and we assume
∫ π

−π
η(θ) dθ = 0. By the previous remark, for any solution with the

initial condition η0 ∈ Y (with zero average) the solution will be in C([0,∞),Y ),
the values η(0, t), ηθ (0, t) will be well defined for all t and the same equations for
η(0, t), ηθ (0, t) are satisfied as in the case when η is smooth. In particular, it is easy
to check that the condition η(0, t) = 0 is preserved under the evolution by (3.134),
and so is the condition (η(0, t), ηθ (0, t)) = (0, 0). Note that the term with v(0, t)
in (3.134) does not affect the projection of η to Y/Z0, and hence Lemma 3.7 implies
that for a suitable

ξ(θ, t) = a1(t)e
iθ + a−1(t)e

−iθ (3.135)

we have

||η(t) + ξ(t)||Y � Ce−βt . (3.136)

Denoting by ηk(t) the Fourier coefficients of η(θ, t), we have

η̇1 = 1
2 (η1 + η−1) + A2η2 + 1

2

∑
|k|�2

ηk|k|
η̇−1 = 1

2 (η1 + η−1) + B−2η−2 + 1
2

∑
|k|�2

ηk|k| .
(3.137)

From (3.136) we see that the terms not containing η1 and η−1 decay as e−βt as
→ ∞. Hence for y1(t) = η1(t) + η−1(t) we have

ẏ1 = y1 + g1(t), |g1(t)| = O(e−βt ), t → ∞. (3.138)

Therefore

y1(t) = −
∫ ∞

t
et−sg1(s) ds + c̃1e

t (3.139)
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for some c̃1 ∈ C. (For real-valued solutions η we will have c̃1 ∈ R.) Similarly, for
y2(t) = η1(t) − η−1(t), we gave an equation

ẏ2 = g2(t), |g2(t)| = O(e−βt ), t → ∞, (3.140)

with the general solution

y2(t) = −
∫ ∞

t
g2(s) ds + c̃2, (3.141)

where c̃2 ∈ C (and c̃2 ∈ iR for real-valued solutions). We conclude that in (3.135)
we must have,

a1(t) = c1e
t + c2 + O(e−βt ), a−1(t) = c1e

t − c2 + O(e−βt ), (3.142)

where t → ∞, where c1, c2 ∈ R are suitable constants. If η(0, t) = 0, then
η(0, t) = 0 for all t and c1 = 0. If ηθ (0, t) = 0, then ηθ (θ, t) = 0 for all t and
c2 = 0. In particular, we have proved the following statement:

Lemma 3.8. Let us denote by et L̃ the semigroup in Y generated by equation (3.134).
There exists C0 ∈ R such that for any η0 ∈ Y0 we have

||et L̃η0||Y0 � C0e
−βt ||η0||Y0 . (3.143)

4. Nonlinear Stability

Wewill consider the non-linear stability of the steady state� = −A sin(θ −θ0)

of equation (1.4). We assume the initial data is of form ω0 = � + εη0, where η0 is
a sufficiently regular function (roughly of size of order one in a suitable norm) and
ε is small. By a suitable rotation we can assume ω0(0) = 0, and we can adjust� by
changing A, if necessary, so that �θ(0) = ω0θ (0), which then gives η0 ∈ Y0. After
these transformations we can also multiply � by a suitable factor and rescale time,
so we are in the situation with x � = − sin θ and η ∈ Y0. Our main assumption
now will be that

||η0||
Ḣ

3
2

� 1, ||η0||Y0 � 1. (4.1)

Wewill consider the evolution in the gauge (2.27) with θ0 = 0, so that the condition
η(0, t) = 0 is preserved during the evolution. The evolution is given by

ηt + [U, η + ṽ] + ε[ṽ, η] = 0, ṽθ = Hη, ṽ(0, t) = 0. (4.2)

Unless otherwise stated, the functions η, v etc. in this section are considered to be
real-valued.

The non-linear problem is well-posed locally in time and the regularity of the
initial data is preserved in the closed time interval [0, T ] under the assumptions
above, as long as the quantity

∫ T
0 ||η(t)||

Ḣ
1
2
dt is finite. This is similar to the Beale–

Kato–Majda-type criterion for three dimensional incompressible Euler, see [4], and
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can be proved along similar lines. A slightly different form, inwhich the last integral
is replaced by

∫ T
0 ||vθ (t)||L∞ dt , is proved in [22]. That form is fully sufficient for

our purposes here.
For the remainder of this section with will assume � = − sin θ, U = sin θ,

and θ0 = 0. As above, we will use the notation L̃ for the operator η → −[U, η+ ṽ].
Our goal is to prove the following result:

Theorem 4.1. When ε > 0 is sufficiently small, the local solutionη of equation (4.2)
can be continued globally for any initial condition satisfying (4.1), and satisfies

||η(t)||Y0 � 2C0e
−βt and ||η(t)||

H
3
2

� 2C0 (4.3)

for all t � 0, where C0 is the constant from Lemma 3.7.

For the proof of the theorem we first establish a few auxiliary results.

4.1. Energy Estimate

Let us denote by M the operator on functions S1 given by the Fourier multiplier√
(k2 − 1)(|k| + 1), that is

̂M f k =
√

(k2 − 1)(|k| + 1) f̂k . (4.4)

We saw in the previous section (see (3.13)) that the quadratic form
∫
S1 |Mη(θ)|2 dθ

is preserved by et L̃ . The next lemma provides an estimate of how the conservation
is affected by the non-linear term.

Recall that Z0 is the subspace of functions on S1 generated by 1, cos θ, sin θ ,
and that for η ∈ Hs(S1) we define ṽ by the “Biot–Savart law” (2.23).

Lemma 4.1. Given σ > 1
2 , there exists C = C(σ ) ≥ 0 such that for each η ∈

H2(S1) we have
∣∣∣∣
∫

S1
(M[ṽ, η])Mη dθ

∣∣∣∣ � C ||η||Ḣσ /Z0
||Mη||2L2 . (4.5)

Proof. It is not hard to check by direct calculation that the integral on the left-hand
side of (4.5) does not change when we change η by a function in Z0. It is therefore
enough to prove the estimate with the right-hand side replaced byC ||η||Hσ ||η||2

H
3
2
.

Recalling that [ṽ, η] = ṽηθ − ṽθ η we note that the part of the left-hand-side of (4.5)
arising from the term ṽθ η is easily estimated as required by the standard estimate
for multiplication of functions in Sobolev spaces

||ṽθ η||
H

3
2

� ||ṽθ ||L∞||η||
H

3
2

+ ||ṽθ ||
H

3
2
||η||L∞ . (4.6)

As is usual in similar situations, the main point in estimating the part arising from
ṽηθ is to integrate by parts. We write

M (ṽηθ ) = ṽ Mηθ + [M, ṽ] ηθ , (4.7)
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wherewe denote by [M, ṽ] the commutator of the operatorM and themultiplication
operator by ṽ. The term coming from ṽ Mηθ is estimated from∫

S1
ṽ(Mη)θ (Mη) dθ = −1

2

∫
S1

ṽθ |Mη|2 dθ,

and it only remains to estimate the term with the commutator. The standard Kato–
Ponce estimate (see [20]), applied to our situation, gives

||[M, ṽ]ηθ ||L2 � ||ṽθ ||L∞||ηθ ||
H

1
2

+ ||ṽ||
H

3
2
||ηθ ||L∞, (4.8)

which is close towhatweneed, except for the term ||ηθ ||L∞ .Wecan replace ||ηθ ||L∞
by ||ηθ ||

H
1
2
at the cost of adding an extra ε−-derivative to ||ṽ||

H
3
2

∼ ||η||
H

1
2
,

obtaining

||[M, ṽ]ηθ ||L2 � ||ṽθ ||L∞||ηθ ||
H

1
2

+ ||η||Hσ ||ηθ ||
H

1
2

� ||η||Hσ ||ηθ ||
H

1
2
,

(4.9)

which, together with the other estimates above, gives (4.5).
Estimate (4.9) does not have the optimal scaling (unlike the Kato–Ponce esti-

mate) and can be proved by a standard application of Cauchy–Schwarz inequality
on the Fourier side. For the convenience of the reader we outline the proof. Let
us write f = ṽ, g = ηθ , and let fk, gl denote the Fourier coefficients of f and
g, respectively. The Fourier series for the commutator is given (up to a factor of
(2π)2) by

∑
k,l

K (k, l)FkGle
i(k+l)θ , (4.10)

where

Fk = 〈k〉1+σ fk, Gl = 〈l〉 1
2 gl , K (k, l) = M(k + l) − M(l)

〈k〉1+σ 〈l〉 1
2

, (4.11)

with the usual notation 〈k〉 = √
1 + k2. Hence, by the Cauchy–Schwarz inequality,

||[M, ṽ]ηθ ||2L2 �
∑
m

( ∑
k+l=m

|K (k, l)|2
) ( ∑

k+l=m

|Fk |2|Gl |2
)

�
(
sup
m

∑
k+l=m

|K (k, l)|2
) ∑

k,l

|Fk |2|Gl |2

=
(
sup
m

∑
k+l=m

|K (k, l)|2
) (∑

k

|Fk |2
) (∑

l

|Gl |2
)

. (4.12)

Letting

C∗ = sup
m

( ∑
k+l=m

|K (k, l)|2
) 1

2

, (4.13)
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we see from (4.12) that

C∗|| f ||H1+σ ||g||
H

1
2
. (4.14)

The proof is completed by showing that C∗ is finite, which is an easy exercise. The
main point is that for large m and k + l = m one has to use the cancellation in
M(k + l) − M(l) when k is small relative to l. 	


Let us now assume that on a time interval [0, T ] we have a solution of (4.2)
with initial condition η0 satisfying (4.1) such that

||η(t)||Y0 � �e−βt and ||Mη(t)||L2 � �, t ∈ [0, T ], (4.15)

where � is a definite constant. Then for α slightly below 2
3 we have, based on the

equation and Lemma 4.1,

d

dt

∫
S1

||Mη(t)||2 = −
∫

S1
2ε (M[ṽ, η]) Mη dθ � ε||η(t)||Ḣσ /Z0

||Mη(t)||2L2

� ε
(
||Mη(t)||1−α

L2 ||η(t)||αY0 + ||η||Y0
)

||Mη(t)||2L2

� ε�e−βαt ||Mη(t)||2L2 .

(4.16)

Using ||Mη(0)||L2 � 1 and the Gronwall inequality, we see that

||Mη(t)||L2 � ecε�, (4.17)

where c is some fixed constant obtained from the various constants involved in the
inequalities we have used.

4.2. Estimates in Y0

Let us set

b(t) = ṽθ (0, t) = vθ (0, t), w = ṽ − b(t)U (4.18)

and let us write the non-linear term as

[ṽ, η] = [w, η] + b(t)[U, η]. (4.19)

To estimate [w, η] in Y0, we estimate separately wηθ and wθη. For the last term we
clearly have

||wθη||Y0 � ||wθ ||L∞||η||Y0 = ||Hη − Hη(0)Uθ ||L∞||η||Y0
� (||Hη||L∞ + |Hη(0)|) ||η||Y0 �

(
||η||1−α

H
3
2

||η||αL2 + ||η||Y0
)

||η||Y0
�

(
||Mη||1−α

L2 ||η||αL2 + ||η||L2 + ||η||Y0
)

||η||Y0
� ||Mη||1−α

L2 ||η||1+α
Y0

+ ||η||2Y0 (4.20)
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for anα slightly below 2
3 . To estimatewηθ ,we note that from the proof ofLemma3.6

and the fact that w(0) = w′(0) = 0, it follows that

|w(θ)| �
(
sin

θ

2

)2

||η||Y0 , (4.21)

and therefore

||wηθ ||Y0 � ||η||Y0 ||ηθ ||L2 � ||η||Y0 ||η||
1
3
L2 ||η||

2
3

H
3
2

� ||Mη|| 23 ||η||
4
3
Y0

+ ||η||2Y0 . (4.22)

The term b(t)[U, η] is an indication of a certain “quasi-linearity” of the equation,
andwill be handled differently, by a suitable “time renormalization”.Wewrite (4.2)
as follows (keeping the same meaning of b(t) as above):

ηt + (1 + εb(t))[U, η + ṽ] − εb(t)[U, ṽ − b(t)U ] + ε[ṽ − b(t)U, η] = 0.

(4.23)

Note that in view of (4.21) we have

||[U, ṽ − b(t)U ]||Y0 = ||[U, w]||Y0 � ||η||Y0 , (4.24)

Assume again that a solution η of (4.2) with an initial condition η0 for which
we have (4.2) satisfies (4.15). Then

|b(t)| = |ṽθ (0, t)| = |Hη(0, t)| � ||η||Y0 � �e−βt , (4.25)

where we have used Lemma 3.4. We rewrite the equation (4.23) as

∂η

(1 + εb(t))∂t
= L̃η + f, (4.26)

where

f = εb(t)

1 + εb(t)
[U, ṽ − b(t)U ] − ε

1 + εb(t)
[ṽ − b(t)U, η]. (4.27)

We define a “renormalized” time variable s by

ds

dt
= 1 + εb(t), s|t=0 = 0. (4.28)

It is easy to see that

e−ε� � e−βs

e−βt
� eε�, t � 0. (4.29)

We write (4.26) as

ηs = L̃η + g, (4.30)
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where g is defined by g(s) = f (t). Collecting the various estimates, we see that

||g(s)||Y0 � ε�2e− 4
3βt . (4.31)

From Duhamel’s formula we see that

||η(s)||Y0 = C0e
−βs + c̃ε�2

∫ s

0
C0e

−β(s−s′)− 4
3βs′ ds′

= C0(1 + cε�2)e−βs . (4.32)

Going back to the variable t , we have

||η(t)||Y0 � ecε�(1 + cε�2)C0e
−βt . (4.33)

4.3. Proof of Theorem 4.1

Let us set � = 2C0 and let us choose ε > 0 so that

max
(
ecε� , ecε�(1 + cε�2)C0

)
= ecε�(1 + cε�2)C0 < �, (4.34)

where we have used that C0 � 1. Let us consider the local solution η(t) with
η(0) = η0. By continuity, the bounds (4.3) will be satisfied on some open time
interval. If the boundswere not satisfied for all time, therewould be the firstmoment
of time T when we will have equality in one of the inequalities (4.3). However,
this is not possible due to the choice of ε and the bounds (4.17) and (4.33). 	


4.4. Proof of Theorem 1.1

Theorem 1.1 follows from Theorem 4.1 by using the changes of variables de-
tailed in the beginning of Section 4. 	
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