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ABSTRACT
Error variance estimation plays an important role in statistical inference for high-dimensional regression
models. This article concerns with error variance estimation in high-dimensional sparse additive model.
We study the asymptotic behavior of the traditional mean squared errors, the naive estimate of error vari-
ance, and show that it may significantly underestimate the error variance due to spurious correlations that
are even higher in nonparametric models than linear models. We further propose an accurate estimate for
error variance in ultrahigh-dimensional sparse additivemodel by effectively integrating sure independence
screening and refitted cross-validation techniques. The root n consistency and the asymptotic normality of
the resulting estimate are established.We conductMonte Carlo simulation study to examine the finite sam-
ple performance of the newly proposed estimate. A real data example is used to illustrate the proposed
methodology. Supplementary materials for this article are available online.

1. Introduction

Statistical inference on regression models typically involves the
estimation of the variance of its random error. Hypothesis test-
ing on regression functions, confidence/prediction interval con-
struction, and variable selection all require an accurate estimate
of the error variance. In the classical linear regression analy-
sis, the adjusted mean squared error is an unbiased estimate of
the error variance, and it performs well when the sample size
is much larger than the number of predictors, or more accu-
rately when the degree of freedom is large. It has been empir-
ically observed that the mean squared error estimator leads to
an underestimation of the error variance when model is sig-
nificantly over-fitted. This has been further confirmed by the
theoretical analysis by Fan, Guo, and Hao (2012), in which
the authors demonstrated the challenges of error variance esti-
mation in the high-dimensional linear regression analysis, and
further developed an accurate error variance estimator by intro-
ducing refitted cross-validation techniques.

Fueled by the demand in the analysis of genomic, financial,
health, and image data, the analysis of high-dimensional data
has become one of the most important research topics during
last two decades (Donoho 2000; Fan and Li 2006). There have
been a huge number of research articles on high-dimensional
data analysis in the literature. It is impossible for us to give a
comprehensive review here. Readers are referred to Fan and
Lv (2010), Bühlmann and Van de Geer (2011), and references
therein. Due to the complex structure of high-dimensional
data, the high-dimensional linear regression analysis may be
a good start, but it may not be powerful to explore nonlinear
features inherent into data. Nonparametric regressionmodeling
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provides valuable analysis for high-dimensional data (Raviku-
mar et al. 2009; Hall and Miller 2009; Fan, Feng, and Song
2011). This is particularly the case for error variance estima-
tion, as nonparametric modeling reduces modeling biases in
the estimate, but creates stronger spurious correlations. This
article aims to study issues of error variance estimation in
ultrahigh-dimensional nonparametric regression settings.

In this article, we focus on sparse additive model. Our pri-
mary interest is to develop an accurate estimator for error vari-
ance in ultrahigh-dimensional additive model. The techniques
developed in this article are applicable to other nonparametric
regressionmodels such as sparse varying coefficient models and
some commonly used semiparametric regression models such
as sparse partial linear additive models and sparse semivary-
ing coefficient partial linear models. Since its introduction by
Friedman and Stuetzle (1981), additive model has been popular,
and many statistical procedures have been developed for sparse
additive models in the recent literature. Lin and Zhang (2006)
proposed COSSO method to identify significant variables in
multivariate nonparametric models. Bach (2008) studied penal-
ized least-square regression with group Lasso-type penalty
for linear predictors and regularization on reproducing kernel
Hilbert space norms, which is referred to as multiple kernel
learning. Xue (2009) studied variable selection problem in
additive models by integrating a group-SCAD penalized least-
square method (Fan and Li 2001) and the regression spline
technique. Ravikumar et al. (2009) modified the backfitting
algorithm for sparse additive models, and further established
the model selection consistency of their procedure. Meier, Van
de Geer and Bühlmann (2009) studied the model selection
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Figure . Distributions of the maximum “linear”and “nonparametric” spurious correlations for s = 1 and s = 2 (left panel, n = 50 and p = 1000) and their consequences
on the estimating of noise variances (right panel). The legend “LM”stands for linear model, and “AM”stands for additive model, that is, nonparametric model.

and estimation of additive models with a diverging number
of significant predictors. They proposed a new sparsity and
smoothness penalty and proved that their method can select
all nonzero components with probability approaching to 1
as the sample size tends to infinity. With the ordinary group
Lasso estimator as the initial estimator, Huang, Horowitz and
Wei (2010) applied adaptive group Lasso to additive model
under the setting in which there are only finite fixed number
of significant predictors. Fan, Feng and Song (2011) proposed
a nonparametric independent screening procedure for sparse
ultrahigh-dimensional data, and established its sure screening
property in the terminology by Fan and Lv (2008).

In this article, we propose an error variance estimate in
ultrahigh-dimensional additive models. It is typical to assume
sparsity in ultrahigh-dimensional data analysis. By sparsity, it
means that the regression function depends only on a few sig-
nificant predictors, and the number of significant predictors is
assumed to bemuch smaller than the sample size. Because of the
basis expansion in nonparametric fitting, the actual number of
terms significantly increases in additive models. Therefore, the
spurious correlation documented by Fan, Guo, and Hao (2012)
increases significantly. This is indeed demonstrated in Lemma
1, which shows that the spurious correlation with the response
increases from

√
n−1 log(p) using onemost correlated predictor

among p variables to
√
dnn−1 log(pdn) by using one most cor-

related predictor with dn basis functions. If s variables are used,
the spurious correlation may increase to its upper bound at an
exponential rate of s.

To quantify this increase and explain more clearly the con-
cept and the problem, we simulate n = 50 data points from
the independent normal covariates {Xj}pj=1 (with p = 1000) and
also independently normal response Y . In this null model, all
covariates {Xj}pj=1 and the response Y are independent and fol-
low the standard normal distribution. As by Fan, Guo, and Hao
(2012), we compute the maximum “linear” spurious correla-
tion ζ L

n = max1≤ j≤p |ĉorr(Xj,Y )| and the maximum “nonpara-
metric” spurious correlation ζN

n = max1≤ j≤p |ĉorr( f̂ j(Xj),Y )|,
where f̂ j(Xj) is the best cubic spline fit of variable Xj to the
responseY , using 3 equally spaced knots in the range of the vari-
able Xj which create dn = 6 B-spline bases for Xj. The concept
of the maximum spurious “linear” and spurious “nonparamet-
ric” (additive) correlations can easily be extended to s variables,

which are the correlation between the response and fitted val-
ues using the best subset of s-variables. Based on 500 simulated
datasets, Figure 1 depicts the results that show the big increase
of spurious correlations from linear to nonparametric fit. As the
result, the noise variance is significantly underestimated.

The above reasoning and evidence show that the naive esti-
mation of error variance is seriously biased. This is indeed
shown in Theorem 1. This prompts us to propose a two-stage
refitted cross-validation procedure to reduce spurious correla-
tion. In the first stage, we apply a sure independence screen-
ing procedure to reduce the ultrahigh dimensionality to relative
large dimensional regression problem. In the second stage, we
apply refitted cross-validation technique, which was proposed
for linear regression model by Fan, Guo, and Hao (2012), for
the dimension-reduced additive models obtained from the first
stage. The implementation of the newly proposed procedure is
not difficult. However, it is challenging in establishing its sam-
pling properties. This is because the dimensionality of ultrahigh-
dimensional sparse additive models becomes even higher.

We propose using B-splines to approximate the nonparamet-
ric functions, and first study the asymptotic properties of the
traditional mean squared error, a naive estimator of the error
variance. Under some mild conditions, we show that the mean
squared error leads to a significant underestimate of the error
variance.We then study the sampling properties of the proposed
refitted cross-validation estimate, and establish its asymptotic
normality. From our theoretical analysis, it can be found that
the refitted cross-validation techniques can eliminate the side
effects due to over-fitting. We also conduct Monte Carlo sim-
ulation studies to examine the finite sample performance of the
proposed procedure. Our simulation results show that the newly
proposed error variance estimatemay perform significantly bet-
ter than the mean squared error.

This article makes the following major contributions. (a)
We show the traditional mean squared errors as a naive esti-
mation of error variance is seriously biased. Although this
is expected, the rigorous theoretical development indeed is
challenging rather than straightforward. (b) We propose a
refitted cross-validation error variance estimation for ultrahigh-
dimensional nonparametric additive models, and further estab-
lish the asymptotic normality of the proposed estimator. The
asymptotic normality implies that the proposed estimator is
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asymptotic unbiased and root n consistent. The extensions of
refitted cross-validation error variance estimation from lin-
ear models to nonparametric models are interesting, and not
straightforward in terms of theoretical development because
the bias due to approximation error calls for new techniques
to establish the theory. Furthermore, the related techniques
developed in this article may be further applied for refitted
cross-validation error variance estimation in other ultrahigh-
dimensional nonparametric regression models such as varying
coefficient models and ultrahigh-dimensional semiparametric
regression models such as partially linear additive models and
semiparametric partially linear varying coefficient models.

This article is organized as follows. In Section 2, we propose
a new error variance estimation procedure, and further study its
sampling properties. In Section 3, we conductMonte Carlo sim-
ulation studies to examine the finite sample performance of the
proposed estimator, and demonstrate the new estimation proce-
dure by a real data example. Some concluding remarks are given
in Section 4. Technical conditions and proofs are given in the
Appendix.

2. New Procedures for Error Variance Estimation

Let Y be a response variable, and x = (X1, . . . ,Xp)
T be a pre-

dictor vector. The additive model assumes that

Y = μ +
p∑

j=1

f j(Xj) + ε, (2.1)

where μ is intercept term, { f j(·), j = 1, . . . , p} are the
unknown functions and ε is the random error with E(ε) = 0
and var(ε) = σ 2. Following the convention in the literature,
it is assumed throughout this article that E f j(Xj) = 0 for j =
1, . . . , p so that model (2.1) is identifiable. This assumption
implies that μ = E(Y ). Thus, a natural estimator for μ is the
sample average ofY ’s. This estimator is root n consistent, and its
rate of convergence is faster than that for the estimator of non-
parametric function f j ’s. Without loss of generality, we further
assume μ = 0 for ease of notation. The goal of this section is to
develop an estimation procedure for σ 2 for additive models.

2.1. Refitted Cross-Validation

In this section, we propose a strategy to estimate the error vari-
ance when the predictor vector is ultrahigh-dimensional. Since
f j ’s are nonparametric smoothing functions, it is natural to use
smoothing techniques to estimate f j. In this article, we employ
B-spline method throughout this article. Readers are referred
to De Boor (1978) for detailed procedure of B-spline construc-
tion. Let {Bjk(x), k = 1, . . . , dj, a ≤ x ≤ b} be B-spline basis
of space S l

j([a, b]) with knots depending on j, the polynomial
spline space defined on finite interval [a, b] with degree l ≥ 1.
Approximate f j by its spline expansion

f j(x) ≈
d j∑
k=1

γ jkB jk(x) (2.2)

for some d j ≥ 1. In practice, dj is allowed to grow with the sam-
ple size n, and therefore denoted by d jn to emphasize the depen-
dence of n. With slightly abuse of notation, we use dn stands for
djn for ease of notation. Thus, model (2.1) can be written as

Y ≈
p∑

j=1

dn∑
k=1

γ jkB jk(Xj) + ε. (2.3)

Suppose that {(xi,Yi)}, i = 1, . . . , n is a random sample
from the additive model (2.1). Model (2.3) is not estimable
when pdn > n. It is common to assume sparsity in ultrahigh-
dimensional data analysis. By sparsity in additive model, it
means that only a few ‖ f j‖2 = E f 2j (Xj) �= 0 and other ‖ f j‖ =
0. A general strategy to reduce ultrahigh dimensionality is sure
independent feature screening, which enables one to reduce
ultrahigh dimension to large or high dimension. Some exist-
ing feature screening procedures can be directly applied for
ultrahigh-dimensional sparse additive models. Fan, Feng, and
Song (2011) proposed nonparametric sure independent (NIS)
screening method and further showed that the NIS screen-
ing method possesses sure screening property for ultrahigh-
dimensional additive models. That is, under some regularity
conditions, with an overwhelming probability, the NIS is able to
retain all active predictors after feature screening. Li, Zhong, and
Zhu (2012) proposed a model-free feature screening procedure
based on distance correlation sure independent screening (DC-
SIS). The DC-SIS is also shown to have sure screening property.
Both NIS and DC-SIS can be used for feature screening with
ultrahigh-dimensional sparse additive models, although we will
use DC-SIS in our numerical implementation due to its intuitive
and simple implementation.

Hereafter we always assume that all important variables have
been selected by screening procedure. Under such assumption,
we will overfit the response variable Y and underestimate the
error variance σ 2. This is because extra variables are actually
selected to predict the realized noises (Fan, Guo, andHao 2012).
After feature screening, a direct estimate of σ 2 is the mean
squared errors of the least-square approach. That is, we apply
a feature screening procedure such as DC-SIS and NIS to screen
x-variables and fit the data to the corresponding selected spline
regression model. Denoted by D∗ the indices of all true predic-
tors and D̂∗ the indices of the selected predictors, respectively,
satisfying the sure screening propertyD∗ ⊂ D̂∗. Then, we min-
imize the following least-square function with respect to γ :

n∑
i=1

⎧⎨⎩Yi − ∑
j∈D̂∗

dn∑
k=1

γ jkB jk(Xi j)

⎫⎬⎭
2

. (2.4)

Denote by γ̂ jk the resulting least-square estimate. Then, the non-
parametric residual variance estimator is

σ̂ 2
D̂∗ = 1

n − |D̂∗| · dn

n∑
i=1

⎧⎨⎩Yi − ∑
j∈D̂∗

dn∑
k=1

γ̂ jkB jk(Xi j)

⎫⎬⎭
2

.

Hereafter |D| stands for the cardinality of a set D and we have
implicitly assumed that the choice of D̂∗ and dn is such that
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Figure . Refitted cross-validation procedure.

n 
 |D̂∗| · dn. It will be shown in Theorem 1 that σ̂ 2
D̂∗ signifi-

cantly underestimates σ 2, due to spurious correlation between
the realized but unobserved noises and the spline bases. Indeed
we will show that σ̂ 2

D̂∗ is inconsistent estimate when |D̂∗| · dn
is large. Specifically, let PD̂∗ be the corresponding projection
matrix of model (2.4) with the entire samples. Denoted by
γ̂ 2
n = εTPD̂∗ε/εTε, where ε = (ε1, . . . , εn)

T . We will show that
σ̂ 2
D̂∗/(1 − γ̂ 2

n ) converges to σ 2 with root n convergence rate, yet
the spurious correlation γ̂ 2

n is of order

γ̂ 2
n = O

((
2

1 − δ

)|D̂∗| dn log(pdn)
n

)
, for some δ ∈ (0, 1).

(2.5)
See Lemma 1 and Theorem 1 in Section 2.2 for details. Our first
aim is to propose a new estimation procedure of σ 2 by using
refitted cross-validation technique (Fan, Guo, and Hao 2012).

The refitted cross-validation procedure is to randomly split
the random samples into two datasets denoted by I1 and I2 with
approximately equal size. Without loss of generality, assume
through this article thatI1 andI2 have the same sample size n/2.
We apply a feature screening procedure (e.g., DC-SIS or NIS)
for each set, and obtain two index sets of selected x-variables,
denoted by D̂1 and D̂2. Both of them retain all important pre-
dictors. The refitted cross-validation procedure consists of three
steps. In the first step, we fit data in Il to the selected additive

model D̂3−l for l = 1 and 2 by the least-square method. These
results in two least-square estimate γ̂

(3−l) based on Il , respec-
tively. In the second step, we calculate the mean squared errors
for each fit:

σ̂ 2
l = 1

n/2 − |D̂3−l | · dn
∑
i∈Il

⎧⎨⎩Yi − ∑
j∈D̂3−l

dn∑
k=1

γ̂
(3−l)
jk B jk(Xi j)

⎫⎬⎭
2

for l = 1 and 2. Then the refitted cross-validation estimate of σ 2

is defined by

σ̂ 2
RCV = (

σ̂ 2
1 + σ̂ 2

2
)
/2.

This estimator is adapted from the one proposed by Fan, Guo,
andHao (2012) for linear regressionmodels, however, it ismuch
more challenge in establishing the asymptotic property of σ̂ 2

RCV
for the large dimensional additive models than that for linear
regression models. The major hurdle is to deal with the approx-
imation error in nonparametric modeling as well as the cor-
relation structure induced by the B-spline bases. The proce-
dure of refitted cross-validation is illustrated schematically in
Figure 2.
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2.2. Sampling Properties

We next study the asymptotic properties of σ̂ 2
D̂∗ and σ̂ 2

RCV. The
following technical conditions are needed to facilitate the proofs,
although they may not be the weakest.
(C1) There exist two positive constants A1 and A2 such that

E{exp(A1|ε|)|x} ≤ A2.
(C2) For all j, f j(·) ∈ Cd([a, b]), which consists of functions

whose rth derivative f (r)
j exists and satisfies∣∣∣ f (r)

j (s) − f (r)
j (t )

∣∣∣ ≤ L |s − t|α , for s, t ∈ [a, b], j = 1, . . . , p,
(2.6)

for a given constant L > 0, where r ≤ l is the “integer
part” of d and α ∈ (0, 1] such that d = r + α ≥ 2. Fur-
thermore, it is assumed that dn = O(n1/(2d+1)), the opti-
mal nonparametric rate (Stone 1985).

(C3) The joint distribution of predictors X is absolutely con-
tinuous and its density g is bounded by twopositive num-
bers b and B satisfying that b ≤ g ≤ B. The predictor
Xj, j = 1, . . . , p has a continuous density function g j,
which satisfies that for any x ∈ [a, b], 0 < A3 ≤ g j(x) ≤
A4 < ∞ for two positive constants A3 and A4.

Condition (C1) is a tail condition on the random error. Con-
dition (C2) is a typical smoothness condition in the literature
of regression splines. Condition (C3) is a mild condition on the
densities of the predictors, and this condition was imposed by
Stone (1985) for low-dimensional additive models, and implies
that there is no collinearity between the candidate predictors
with probability one. The asymptotic properties of σ̂ 2

D̂∗ are given
in the following theorem, in which we use pn to stand for p
to emphasize that the dimension p of the predictor vector may
depend on n. Since the DC-SIS and the NIS possess sure screen-
ing property, the resulting subset of predictors selected by the
used screening procedure contains all active predictors, with
probability tending to one. Thus, we assume that all active pre-
dictors are retained in the stage of feature screening in the
following two theorems. This can be achieved by imposing the
conditions by Li, Zhong, and Zhu (2012) for the DC-SIS and the
conditions by Fan, Feng, and Song (2011) for the NIS. We first
derive the orders of εTPD̂∗ε and γ̂ 2

n in next lemma, which plays
a critical role in the proofs of Theorems 1 and 2. The proofs of
Lemma 1 and Theorems 1 and 2 will be given in the Appendix.

Lemma 1. Under Conditions (C1)|(C3), it follows that

εTPD̂∗ε = Op

{(
2

1 − δ

)ŝ

dn log(pdn)

}
,

and γ̂ 2
n = εTPD̂∗ε

εTε
= Op

{(
2

1 − δ

)ŝ dn log(pdn)
n

}
,

where δ ∈ (
√
1 − b2ζ0/B2, 1) for some constant ζ0 ∈ (0, 1)with

b and B being given in Condition (C3).

Lemma 1 clearly shows that the spurious correlation γ̂ 2
n

increases to its upper bound at an exponential rate of ŝ since
δ ∈ (0, 1) and 2/(1 − δ) > 2.

Theorem 1. Assume that lim supn→∞ γ̂ 2
n < 1. Let ŝ = ∣∣D̂∗∣∣ be

the number of elements in the estimated active index set D̂∗.

Assume that all active predictors are retained in the stage of fea-
ture screening. That is, D̂∗ contains all active predictors. Under
Conditions (C1)–(C3), the following statements hold:

(i) If log(pn) = O(nζ ), 0 ≤ ζ < 1 and ŝ = Op(log(n)),
then σ̂ 2

D̂∗/(1 − γ̂ 2
n ) converges to σ 2 in probability as

n → ∞;
(ii) If log(pn) = O(nζ ), 0 ≤ ζ < 3/(2d + 1) and ŝ =

Op(log(n)), then it follows that

√
n
(
σ̂ 2
D̂∗/

(
1 − γ̂ 2

n
)− σ 2

) L→N (
0,Eε41 − σ 4) ,

(2.7)
where L→ stands for convergence in law.

Theorem 1 (i) clearly indicates that the naive error variance
estimator σ̂ 2

D̂∗ underestimates σ 2 by a factor of (1 − γ̂ 2
n ), yet by

Lemma 1, γ̂ 2
n is of order given in (2.5) and is not small. Since

γ̂ 2
n cannot be estimated directly from the data, it is challeng-

ing to derive an adjusted error variance by modifying the com-
monly usedmean squared errors. On the other hand, the refitted
cross-validation method provides an automatic bias correction
via refitting and hence a consistent estimator, as we now show.

Theorem 2. Assume that D̂∗
j contains all active predictors, for

j = 1 and 2. Let ŝ j = ∣∣D̂∗
j
∣∣ be the number of elements in

D̂∗
j . Under Conditions (C1)–(C3), if ŝ1 = o(n(2d−1)/4(2d+1)), and

ŝ2 = o(n(2d−1)/4(2d+1)), then

√
n
(
σ̂ 2
RCV − σ 2) L→N (

0,Eε41 − σ 4) . (2.8)

Comparing with the result in Theorem 1, the refitted cross-
validation method can eliminate the side-effect of the selected
redundant variables to correct the bias of the naive variance esti-
mator through the contributions of refitting. This bias factor can
be nontrivial.

Remark 1. This remark provides some implications and limita-
tions of Theorems 1 and 2 and some clarification of conditions
implicitly required by Theorem 2.

(a) From the proof of Theorems 1 and 2, it has been
shown that σ̂ 2

D̂∗/(1 − γ̂ 2
n ) = σ 2 + Op(1/

√
n) and

σ̂ 2
RCV = σ 2 + Op(1/

√
n). As a result, the ratio of RCV

estimate to the naive estimator may be used to provide
one an estimate of the shrinkage factor 1 − γ̂ 2

n .
(b) Theorem 2 is applicable provided that the active index

sets D̂∗
j , j = 1 and 2 include all active predictor variables.

Here, we emphasize that the RCV method can be inte-
grated with any dimension reduction procedure to effec-
tively correct the bias of naive error variance estimate,
and do not directly impose condition on the dimension
pn. In practical implementation, the assumption that
both two active index sets include all important variables
implies further condition on pn. In particular, the condi-
tion log(pn) = o(n) is necessary for DC-SIS (Li, Zhong,
and Zhu 2012) to achieve sure screening property. This
condition is also necessary for other sure screening pro-
cedures such as the NIS (Fan, Feng, and Song 2011) to
achieve sure screening property. In Theorems 1 and 2,
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Table . Simulation results for different ŝ (σ 2 = 1)

a = 0

Method ŝ = 20 ŝ = 30 ŝ = 40 ŝ = 50

Oracle . (.)∗ . (.) . (.) . (.)
Naive . (.) . (.) . (.) . (.)
RCV . (.) . (.) . (.) . (.)

a = 1/
√
3

Oracle . (.) . (.) . (.) . (.)
Naive . (.) . (.) . (.) . (.)
RCV . (.) . (.) . (.) . (.)

a = 2/
√
3

Oracle . (.) . (.) . (.) . (.)
Naive . (.) . (.) . (.) . (.)
RCV . (.) . (.) . (.) . (.)

NOTE: ∗Values in parentheses are standard errors.

we have imposed conditions on ŝ, ŝ1, and ŝ2. These condi-
tions may implicitly require extra conditions on the DC-
SIS to ensure that the size of the subset selected by DC-
SIS is of order required by the conditions. For NIS, by
Theorem 2 by Fan, Feng, and Song (2011), we need to
impose some explicit conditions on the signal strength
as well as the growth of the operator norm of the covari-
ance matrix of covariates.

(c) The RCV method can be combined with any feature
screening methods such as DC-SIS and NIS and variable
selection methods such as grouped LASSO and grouped
SCAD (Xue 2009) for ultrahigh-dimensional additive
models. The NIS method needs to choose a smooth-
ing parameter for each predictor. The grouped LASSO
and the grouped SCAD methods are expensive in terms
of computational cost. We focus only on DC-SIS in the
numerical studies to save space.

(d) For sure independent screening procedures such as the
SIS and DC-SIS, the authors recommended to set ŝ =
n/ log(n). The diverging rate of ŝ, ŝ1, and ŝ2 required in
Theorems 1 and 2 are slower than this due to the non-
parametric nature. It seems that it is difficult to further
relax the conditions in Theorems 1 and 2. This can be
viewed as a limitation of our theoretical results. Fromour
simulation studies and real data examples, the perfor-
mance of the naive method certainly relies on the choice
of ŝ, while the RCV method performs well for a wide
range of ŝ1 and ŝ2. As shown in Tables 1 and 2, the result-
ing estimate of the RCV method is very close to the ora-
cle estimate across all scenarios in the tables. Theoretical
studies on how to determine ŝ1 and ŝ2 are more related to
the topic of feature screening than the variance estima-
tion andwedonot intend to pursue further in this article.
In practical implementation, the choices of these param-
eters should take into account of the degree of freedoms
in the refitting stage so that the residual variance can be
estimated with a reasonable accuracy. We would recom-
mend considering several possible choices of ŝ1 and ŝ2 to
examine whether the resulting variance estimate is rel-
atively stable to the choices of ŝ1 and ŝ2. This is imple-
mented in the real data example in Section 3.2.

Table . Simulation results with different n (σ 2 = 1)

a = 0

Method n = 400 n = 600

Oracle . (.)∗ . (.)
Naive . (.) . (.)
RCV . (.) . (.)

a = 1/
√
3

Oracle . (.) . (.)
Naive . (.) . (.)
RCV . (.) . (.)

a = 2/
√
3

Oracle . (.) . (.)
Naive . (.) . (.)
RCV . (.) . (.)

NOTE: ∗Values in parentheses are standard errors.

3. Numerical Studies

In this section, we investigate the finite sample performances of
the newly proposed procedures. We further illustrate the pro-
posed procedure by an empirical analysis of a real data exam-
ple. In our numerical studies, we report only results of the
proposed RCVmethod with DC-SIS to save space, although the
NIS method, the grouped LASSO, and the grouped SCAD (Xue
2009) can be used to screen or select variables. All numerical
studies are conducted using Matlab code.

3.1. Monte Carlo Simulation

Since there is little work to study the variance estimate for ultra-
high-dimensional nonparametric additive model, this simu-
lation study is designed to compare the finite sample per-
formances of two-stage naive variance estimate and refitted
cross-validation variance estimate. In our simulation study, data
were generated from the following sparse additive model:

y = a
(
X1 + 0.75X2

2 + 2.25 cos(X5)
)+ ε, (3.1)

where ε ∼ N(0, 1), and {X1, . . . ,Xp} ∼ Np(0, �) with � =
{ρi j}pi, j=1 where ρii = 1 and ρi j = 0.2 for i �= j. We set p =
2000 and n = 600. We take a = 0, 1/

√
3, and 2/

√
3 to exam-

ine the impact of signal-to-noise ratio to error variance estima-
tion. When a = 0, the DC-SIS always can pick up the active sets
and the challenge is to reduce spurious correlation, while when
a = 2/

√
3, the signal is strong enough to pick up active sets

so that DC-SIS performs very well. The case a = 1/
√
3 corre-

sponds to the signal-to-noise equaling to 1. This is a difficult case
to distinguish signals and noises and is the most challenge one
for DC-SIS among these three cases considered: the first and the
third case are easy to achieve sure screening with relative fewer
number of selected variables and this reduces the biases of the
RCV method and leaves more degrees of freedoms for estimat-
ing the residual variance. We intended to design such a case to
challenge our proposed procedure, as sure screening is harder to
achieve.

As a benchmark, we include the oracle estimator in our sim-
ulation. Here the oracle estimator corresponds to the mean
squared errors for the fitting of the oracle model that includes
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Figure . Variance estimators for different signal-to-noise ratios.

only X1, X2, and X5 for a �= 0, and include none of predictors
when a = 0. In our simulation, we employ the distance correla-
tion to rank importance of predictors, and screen out p− ŝ pre-
dictors with low distance correlation. Thus, the resulting model
includes ŝ predictors. We consider ŝ= 20, 30, 40, and 50 to illus-
trate the impact of choices of ŝ on the performance of the naive
estimator and the refitted cross-validation estimator.

In our simulation, each function f j(·) is approximated by a
linear combination of an intercept and five cubic B-splines bases
with three knots equally spaced between the minimum and
maximum of the jth variable. Thus, when ŝ = 50, the reduced
model actually has 251 terms, which is near half of the sam-
ple size. Table 1 depicts the average and the standard error of
150 estimates over the 150 simulations. To get an overall picture
how the error variance estimates change over ŝ, Figure 3 depicts
the overall average of the 150 estimates. In Table 1 and Figure 3,
“Oracle” stands for the oracle estimate based on nonparametric
additivemodels using only active variables, “Naive” for the naive
estimate, and “RCV” for the refitted cross-validation estimate.

Table 1 and Figure 3 clearly show that the naive two-stage
estimator significantly underestimates the error variance in the
presence of many redundant variables. The larger the value ŝ,
the bigger the spurious correlation γ 2

n , and hence the larger the
bias of the naive estimate. The performance of the naive estimate
also depends on the signal-to-noise ratio. In general, it performs
better when the signal-to-noise ratio is large. TheRCVestimator
performs much better than the naive estimator. Its performance
is very close to that of the oracle estimator for all cases listed in
Table 1.

In practice, we have to choose one ŝ in data analysis. Fan
and Lv (2008) suggested ŝ = [n/ log(n)] for their sure indepen-
dence screening procedure based on Pearson correlation rank-
ing. We modify their proposal and set ŝ = [n4/5/ log(n4/5)] to
take into account effective sample size in nonparametric regres-
sion. Table 2 depicts the average and the standard error of 150
estimates over the 150 simulationswhen the sample sizen = 400
and 600. The caption of Table 2 is the same as that in Table 1.
Results in Table 2 clearly show that the RCV performs as well as
the oracle procedure, and outperforms the naive estimate.

We further studied the impact of randomly splitting data
strategy on the resulting estimate. As an alternative, one may
repeat the proposed procedure several times, each randomly
splitting data into two parts, and then take the average as the
estimate of σ 2. Our findings fromour simulations study are con-
sistent with the discussion by Fan, Guo, and Hao (2012): (a) the
estimates of σ 2 for different numbers of repetitions are almost
the same; and (b) as the number of repetitions increases, the
variation slightly reduces at the price of computational cost. This
implies that it is unnecessary to repeat the proposed procedure
several times. As another alternative, onemay randomly split the
sample data into k groups. Specifically, the case k = 2 is the pro-
posed RCV methods in the article. Similarly, we can use data
in one group to select useful predictors, data in other groups
to fit the additive model. We refer this splitting strategy to as
multi-folder splitting. Our simulation results implies that the
multi-folder splitting leads to (a) less accurate estimate for the
coefficients and (b) increased variation of σ̂ 2

l used to construct
the RCV estimate. This is because this strategy splits the data
into many subsets with even smaller sample size. If the sample
size n is large, as nowadays Big Data, it may be worth to try mul-
tiple random splits, otherwise we do not recommend it.

3.2. A Real Data Example

In this section, we illustrate the proposed procedure by an
empirical analysis of a supermarket dataset (Wang 2009). The
dataset contain a total of n = 464 daily records of the number
of customers (Yi) and the sale amounts of p = 6398 products,
denoted as Xi1, . . . ,Xip, which will be used as predictors. Both
the response and predictors are standardized so that they have
zero samplemean and unit sample variance.We fit the following
additive model in our illustration.

Yi = μ + f1(X1) + · · · + fp(Xp) + εi,

where εi is a random error with E(εi) = 0 and var(εi|xi) = σ 2.
Since the sample size n = 464, we set ŝ = [n4/5/ log(n4/5)] =

28. The naive error variance estimate equals 0.0938, while the
RCV error variance estimate equals 0.1340, a 43% increase of
the estimated value when the spurious correlation is reduced.
Table 3 depicts the resulting estimates of the error variance with
different values of ŝ, and clearly shows that the RCV estimate

Table . Error variance estimate for market data.

ŝ     

Naive . . . . .
RCV . . . . .
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Figure. Quantile–quantile plot ofχ2-test values. “o”stands forχ 2-test usingnaive
error variance estimate. “+”stands for χ 2-test using RCV error variance estimate.

of error variance is stable with different choices of ŝ, while the
estimate of error variance by the naive method reduces as ŝ
increases. This is consistent with our theoretical and simulation
results.

Regarding the selected models with ŝ predictors as a correct
model and ignoring the approximation errors (if any) due to
B-spline, we further employ the Wald’s χ2-test for hypothesis
whether (γ j1, . . . , γ jd j )

T equals zero, namely, whether the jth
variable is active in presence of the rest variables. Such Wald’s
χ2 statistics offer us a rough picture whether Xj is significant
or not. The Wald’s χ2-test with the naive error variance esti-
mate concludes 12 significant predictors at significant level 0.05,
while the Wald’s χ2-test with the RCV error variance estimate

concludes seven significant predictors at the same significant
level. Figure 4 depicts theQ-Q plot of values of theχ 2-test statis-
tic of those insignificant predictors identified by the Wald’s test.
Figure 4 clearly shows that the χ2-test values using naive error
variance estimate systematically deviate from the 45-degree line.
This implies that the naive method results in an underestimate
of error variance, while the RCV method results in a good esti-
mate of error variance.

The Wald’s test at level 0.05 is in favor that seven predictors,
X11, X139, X3, X39, X6, X62, and X42, are significant. We refit the
data with the additive model with these seven predictors. The
corresponding mean squared errors is 0.1207, which is close
to the σ̂ 2

RCV = 0.1340. Note that σ 2 is the minimum possible
prediction error. It provides a benchmark for other methods to
compare with and is achievable whenmodeling bias and estima-
tion errors are negligible.

To see how the above selected variables perform in terms
of prediction, we further use the leave-one-out cross-validation
(CV) and five-fold CV to estimate the mean squared prediction
errors (MSPE). The leave-one-out CV yields MSPE = 0.1414,
and the average of the MSPE obtained from five-fold CV based
on 400 randomly splitting data yields is 0.1488 with the 2.5th
percentile and 97.5 percentile being 0.1411 and 0.1626, respec-
tively. TheMSPE is slightly greater than σ̂ 2

RCV. This is expected as
the uncertainty of parameter estimation has not been accounted.
This bias can be corrected from the theory of linear regression
analysis.

Suppose that {xi,Yi}, i = 1, . . . , n is an independent and
identically distributed random sample from a linear regres-
sion model Y = xTβ + ε, the linear predictor Ŷ = xT β̂, where
β̂ is the least-square estimate of β, has prediction error
at a new observation {x∗, y∗}: E{(y∗ − xT∗ β̂)2|X} = σ 2(1 +
xT∗ (XTX)−1x∗), where σ 2 is the error variance and X is the

Figure . Estimated functions based on  variables selected from  variables that survive DC-SIS screening by the χ 2-test with the RCV error variance estimator.
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Figure . Estimated functions based on  variables selected from  variables that
survive DC-SIS screening by the χ2-test with the RCV error variance estimator and
the Bonferroni adjustment.

corresponding design matrix. This explains why the MSPE
is slightly greater than σ̂ 2

RCV. To further gauge the accu-
racy of the RCV estimate of σ 2, define weighted prediction
error |y∗ − xT∗ β̂|/√1 + xT∗ (XTX)−1x∗. Then the leave-one-out
method leads to the mean squared weighted predictor error
(MSWPE) 0.1289 and the average of five-fold CV based on
400 randomly splitting data yields MSWPE 0.1305 with the
2.5th percentile and 97.5 percentile being 0.1254 and 0.1366,
respectively. These results imply (a) the seven selected variables
achieve the benchmark prediction; (b) themodeling biases using
the additive models of these seven variables are negligible; (c)
σ̂ 2
RCV provides a very good estimate for σ 2.
Their estimated functions f̂ j(x j) are depicted in Figure 5,

fromwhich it seems that all predictors shown in Figure 5 are not
significant since zero crosses the entire confidence interval. This
can be becausewe have used toomany variables, which increases
the variance of the estimate.

We further employ theWald’s test with Bonferroni correction
for 28 null hypotheses. This leads only two significant predictors,
X11 and X6, at level 0.05. We refit the data with the two selected
predictors. Figure 6 depicts the plot of f̂11(x11) and f̂6(x6).

4. Discussions

In this article, we proposed an error variance estimator in
ultrahigh-dimensional additive model by using refitted cross-
validation technique. This is particularly important given the
high level of spurious correlation induced by the nonparametric
models (see Figure 1 and Lemma 1). We established the root n
consistency and asymptotic normality of the resulting estimator,
and examined the empirical performance of the proposed esti-
mator byMonte Carlo simulation.We further demonstrated the
proposedmethodology via an empirical analysis of supermarket
data. The proposed estimator performswell withmoderate sam-
ple size. However, when the sample size is very small, the refit-
ted cross-validation procedure may be unstable. How to con-
struct an accurate error variance estimatewith very small sample

size is challenging and will be an interesting topic for future
research.

Appendix: Proofs

A.1 Proofs of Lemma 1 and Theorem 1

Let � be the corresponding design matrix of model (2.3).
Specifically, � is a n × (pdn) matrix with ith row being
(B11(Xi1), . . . ,B1dn (Xi1),B21(Xi2), . . . ,Bpdn (Xip)). Denote by �(D̂∗ )

the corresponding design matrix of model D̂∗, and PD̂∗ the correspond-

ing projection matrix. That is, PD̂∗ = �(D̂∗ )(�(D̂∗ )
T
�(D̂∗ ) )−1�(D̂∗ )

T
.

Denote Pc
D̂∗ = In − PD̂∗ . Without loss of generality, assume that the first

s non-parametric components are nonzero and others are all zero. By the
assumption that all active predictors are retained by DC-SIS screening
procedure. For ease of notation and without loss of generality, assume that
D̂∗ = {1, 2, . . . , ŝ}, where ŝ = |D̂∗|.
Proof of Lemma 1. Note that

εTPD̂∗ε = εT�(D̂∗ )

(
�(D̂∗ )

T
�(D̂∗ )

)−1

�(D̂∗ )
T

ε ≤ λ−1
min

(
�(D̂∗ )

T
�(D̂∗ )

)∥∥∥∥�(D̂∗ )
T
ε

∥∥∥∥2
2
, (A.1)

where λmin(A) stands for the minimal eigenvalue of matrix A. To show

Lemma1,we need to derive the bound of eigenvalue ofmatrix�(D̂∗ )
T
�(D̂∗ ).

Note that �(D̂∗ ) = (�1, . . . , �ŝ) with

� j =
⎛⎝Bj1(Xj1) · · · Bj dn (Xj1)

· · · · · · · · ·
Bj1(Xjn) · · · Bj dn (Xjn)

⎞⎠, j = 1, . . . , ŝ. (A.2)

Let b = (bT1 , . . . , bTŝ )T and ‖b‖22 = bTb = 1. Then we have �(D̂∗ )b =
�1b1 + · · · + �ŝbŝ. As shown in Lemma S.5 in the supplemental material
of this paper, it follows that

(
1 − δ

2

)ŝ−1 (‖�1b1‖2 + · · · + ‖�ŝbŝ‖2
)2

≤ ‖�1b1 + · · · + �ŝbŝ‖22 = bT�(D̂∗ )
T
�(D̂∗ )b. (A.3)

This yields that

(
1 − δ

2

)ŝ−1
⎛⎝ ŝ∑

i=1

bi�T
i �ibi

⎞⎠ ≤ bT�(D̂∗ )
T
�(D̂∗ )b, (A.4)

since ‖�ibi‖2 ≥ 0. Furthermore,

(
1 − δ

2

)ŝ−1
⎛⎝ ŝ∑

i=1

bi�T
i �ibi

⎞⎠
≥
(
1 − δ

2

)ŝ−1
⎛⎝ ∑

bTi bi �=0

λmin(�
T
i �i) bTi bi

⎞⎠ .

Recalling Lemma 6.2 of Zhou, Shen andWolfe (1998), there exists two pos-
itive constantsC1 andC2 such that, for any 1 ≤ i ≤ ŝ,

C1d−1
n n ≤ λmin(�

T
i �i) ≤ λmax(�

T
i �i) ≤ C2d−1

n n. (A.5)
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Thus,

(
1 − δ

2

)ŝ−1
⎛⎝ ∑

bTi bi �=0

λmin(�
T
i �i) bTi bi

⎞⎠
≥ C1

(
1 − δ

2

)ŝ−1

d−1
n n

∑
bTi bi �=0

bTi bi = C1

(
1 − δ

2

)ŝ−1

d−1
n n.

(A.6)

The last equation is valid due to ‖b‖22 = bTb = 1. Combining the equa-
tion (A.4) and (A.6), we have

λmin

(
�(D̂∗ )

T
�(D̂∗ )

)
≥ C1

(
1 − δ

2

)ŝ−1

d−1
n n. (A.7)

Thus, it follows by using (A.1) that

εTPD̂∗ε ≤ C−1
1

(
2

1 − δ

)ŝ−1

dnn−1
∥∥∥∥�(D̂∗ )

T
ε

∥∥∥∥2
2
. (A.8)

By the notation (A.2), we have

�T
i ε =

⎛⎜⎜⎜⎝
∑n

k=1 Bi1(Xik)εk∑n
k=1 Bi2(Xik)εk

...∑n
k=1 Bidn (Xik)εk

⎞⎟⎟⎟⎠. (A.9)

Recalling that 0 ≤ Bi j(·) ≤ 1, for any i, j and E
∣∣Bi j(Xik)

∣∣2 ≤ C4d−1
n (Stone,

1985), we note the fact that for m ≥ 2, E
∣∣Bi j(Xik)

∣∣m ≤ E
∣∣Bi j(Xik)

∣∣2 ≤
C4d−1

n . Observe that, using Condition (C1), for any integers i and j

E
∣∣Bi j(Xik)εk

∣∣m = E
∣∣Bi j(Xik)

∣∣m · E |εk|m
≤ E

∣∣Bi j(Xik)
∣∣m E

(
m! am exp{|ε1| /a}

)
. (A.10)

Taking A1 = 1/a and A2 = b in Condition (C1), it follows that the right
hand side of above inequality will not exceed

C4m! amd−1
n E

(
exp{|ε1| /a}

) ≤ C4

2
m! (2 d−1

n b a2)am−2. (A.11)

Using Bernstein’s Inequality (see Lemma 2.2.11 of Van der Vaart and
Wellner 1996), we have

P

⎛⎝ max
1 ≤ i ≤ p
1 ≤ j ≤ dn

∣∣∣∣∣
n∑

k=1

Bi j(Xik)εk

∣∣∣∣∣ ≥ M

⎞⎠
≤

p∑
i=1

dn∑
j=1

P

(∣∣∣∣∣
n∑

k=1

Bi j(Xik)εk

∣∣∣∣∣ ≥ M

)

≤ 2 pdn exp
{
− M2

2(2 d−1
n b a2n + aM)

}
= 2 exp

{
log(pdn)

(
1 − 1

4 log(pdn) n d−1
n b a2M−2+2 log(pdn)aM−1

)}
.

When we take M = C5
√
n log(pdn)/dn, with

dn log(pdn )
n → 0 and suf-

ficiently large C5, the power in the last equation goes to nega-
tive infinity. Thus, with probability approaching to one, we have

max
1≤i≤p
1≤ j≤dn

∣∣∑n
k=1 Bi j(Xik)εk

∣∣ ≤ C5
√
n log(pdn)/dn and

εTPD̂∗ε ≤ C−1
1

(
2

1 − δ

)ŝ−1

dnn−1
∥∥∥∥�(D̂∗ )

T
ε

∥∥∥∥2
2

≤ C2
5C

−1
1

(
2

1 − δ

)ŝ−1

dn log(pdn). (A.12)

Due to the independent and identically distributed random errors with
mean 0 and variance σ 2, by the law of large numbers, we have

1
n

n∑
i=1

εi
a.s.−→ 0,

1
n

n∑
i=1

ε2i
a.s.−→ σ 2. (A.13)

Thus, we obtain that

γ̂ 2
n = εTPD̂∗ε

εTε
= Op

{(
2

1 − δ

)ŝ dn log(pdn)
n

}
. (A.14)

�
Proof of Theorem 1. Note that

σ̂ 2
D̂∗ = 1

n − ŝ dn

⎡⎣ ŝ∑
j=1

fTj (X j )Pc
D̂∗

ŝ∑
j=1

f j(X j )+2εTPc
D̂∗

ŝ∑
j=1

f j(X j )+εTPc
D̂∗ε

⎤⎦,

where f j(X j ) = ( f j(Xj1), . . . , f j(Xjn)
T , j = 1, . . . , p. To simplify the first

term in σ̂ 2
D̂∗ , let �1 = ∑ŝ

j=1 f
T
j (X j )Pc

D̂∗
∑ŝ

j=1 f j(X j ). Then

�1 =
⎧⎨⎩

ŝ∑
j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j ) +
ŝ∑

j=1

fn j(X j )

⎫⎬⎭
T

Pc
D̂∗

×
⎧⎨⎩

ŝ∑
j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j ) +
ŝ∑

j=1

fn j(X j )

⎫⎬⎭ ,

where fn j(X j ) = ( fn j(Xj1), . . . , fn j(Xjn))
T = (B j(Xj1)

T� j, . . . ,B j
(Xjn)

T� j )
T , j = 1, . . . , p. Define

�11 =
⎧⎨⎩

ŝ∑
j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j )

⎫⎬⎭
T

Pc
D̂∗

⎧⎨⎩
ŝ∑

j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j )

⎫⎬⎭ ,

�12 =
⎧⎨⎩

ŝ∑
j=1

fn j(X j )

⎫⎬⎭
T

Pc
D̂∗

⎧⎨⎩
ŝ∑

j=1

fn j(X j )

⎫⎬⎭ ,

�13 = 2

⎧⎨⎩
ŝ∑

j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j )

⎫⎬⎭
T

Pc
D̂∗

⎧⎨⎩
ŝ∑

j=1

fn j(X j )

⎫⎬⎭ .

Then �1 = �11 + �12 + �13. Note that Pc
D̂∗ is a projection matrix

on the complement of the linear space of �(D̂∗ ), and therefore
Pc
D̂∗ {

∑ŝ
j=1 fn j(X j )} = 0. Thus, both �12 and �13 equal 0. We next

calculate the order of �11. By the property of B-spline (Stone, 1985),
there exists a constant c1 > 0 such that

∥∥ f j − fn j
∥∥2 ≤ c1d−2d

n . Since
Pc
D̂∗ is a projection matrix, its eigenvalues equal either 0 or 1. By the

Cauchy-Schwarz inequality and some straightforward calculation, it
follows that �11 = Op(ŝ 2nd−2d

n ). Therefore �1 = Op(ŝ 2nd−2d
n ). Under

conditions in Theorem 1(i), Op(ŝ2d−2d
n ) = op(1). As a result, �1 = op(n).

Under conditions in Theorem 1(ii), ŝ = o(n(2d−1)/4(2d+1) ) and therefore
�1 = op(

√
n).
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Now we deal with the second term in σ̂ 2
D̂∗ . Denote �2 =

2εTPc
D̂∗
∑ŝ

j=1 f j(X j ). Since Pc
D̂∗ {

∑ŝ
j=1 fn j(X j )} = 0, it follows that

�2 = 2 εTPc
D̂∗

⎛⎝ ŝ∑
j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j )

⎞⎠ .

Denote �21 = ∑ŝ
j=1

∑n
i=1

(
f j(Xji) − fn j(Xji)

)
εi and �22 = (εTPD̂∗ )

(
∑ŝ

j=1 f j(X j ) −∑ŝ
j=1 fn j(X j )). Thus, �2 = 2(�21 − �22). To deal with

�21, we bound the tails of ( f j(Xji) − fn j(Xji))εi, i = 1, . . . , n j =
1, . . . , ŝ. For any m ≥ 2, because f j ∈ Cd ([a, b]) and fn j belongs to the
spline space S l ([a, b]), we have

E
∣∣( f j(Xji) − fn j(Xji)

)
εi
∣∣m = E

(∣∣ f j(Xji) − fn j(Xji)
∣∣m E

(
|εi|m

∣∣∣xi)) ,

which is bounded by Cm−2
6 E(| f j(Xji) − fn j(Xji)|2 E(|εi|m

∣∣∣xi)) for some
constantC6 by the property of B-spline approximation. There exists a con-
stant c1 > 0 such that

∥∥ f j − fn j
∥∥2 ≤ c1d−2d

n by the property of B-spline
(Stone, 1985). Applying Condition (C1) for E{exp(A1|εi|)|xi}, it follows
that

E
∣∣( f j(Xji) − fn j(Xji)

)
εi
∣∣m ≤ m!

(
C6

A1

)m−2 A2

A2
1
c1 d−2d

n .

DenoteC7 = c1A2/A2
1, andC8 = C6/A1. Using the Bernstein’s inequality, for

someM, we have

P

(
max
1≤ j≤p

∣∣∣∣∣
n∑

i=1

(
f j(Xji) − fn j(Xji)

)
εi

∣∣∣∣∣ > M

)

≤ 2 p exp
{
−1
2

M2

2C7 n d−2d
n −C8M

}
. (A.15)

If we takeM = C9

√
log(p) n d−2d

n , and for sufficiently largeC9, then the tail
probability (A.15) goes to zero. Thus,

�21 = Op

(
ŝ
√
log(p) n d−2d

n

)
. (A.16)

Under condition of Theorem 1(i), ŝ = o(n(4d+1)/2(2d+1) ) with ζ < 1. Thus,
Op(ŝd−d

n
√
log(pdn)) = op(

√
n). Following the similar arguments dealing

with �11, it follows that �21 = op(n). Under condition of Theorem 1(ii),
ŝ = o(nd/(2d+1)−ζ/2) with ζ < 3/(2d + 1). Thus, �21 = op(

√
n). By the

Cauchy-Schwarz inequality, it follows by Lemma 1 that

�22 ≤ ∥∥εTPD̂∗
∥∥
2 ·
∥∥∥∥∥∥

ŝ∑
j=1

f j(X j ) −
ŝ∑

j=1

fn j(X j )

∥∥∥∥∥∥
2

= Op

(( 2
1 − δ

)ŝ√
dn log(pdn)

)
· Op(ŝ n1/2 d−d

n )

= Op

(( 2
1 − δ

)ŝ√
log(pdn) d−d+1/2

n

)
.

When ζ < 4d/(2d + 1), and ŝ = Op(log(nα ), α ≤ 4d/(2d + 1) − ζ , it fol-
lows that �22 = op(n) under condition of Theorem 1(i). When ζ < (2d −
1)/(2(2d + 1)) and ŝ = log(nα ), α ≤ (2d − 1)/(2(2d + 1)) − ζ , (2/(1 −
δ))ŝ n1/2

√
log(pdn) d−d+1/2

n = op(
√
n). Thus, �22 = op(

√
n) under con-

dition of Theorem 1(ii). Comparing the order of �11,�21 and �22, we

obtain the order of ŝ in Theorem 1. Therefore, we have

YT

(
In − �(D̂∗ )

(
�(D̂∗ )

T
�(D̂∗ )

)−1

�(D̂∗ )
T
)
Y

= εT
(
In − PD̂∗

)
ε + �1 + �2

= εT
(
In − PD̂∗

)
ε + Op(ŝ 2n d−2d

n ) + Op

(
ŝ
√
log(p) n d−2d

n

)
+ �22.

and it follows by the definition of γ̂ 2
n that

σ̂ 2
D̂∗ = 1

n − ŝ dn
YT

(
In − �(D̂∗ )

(
�(D̂∗ )

T
�(D̂∗ )

)−1

�(D̂∗ )
T
)
Y

= 1
n − ŝ dn

εTε
(
1 − γ̂ 2

n
)+ Op

(
ŝ 2n d−2d

n

n − ŝ dn

)

+Op

⎛⎝
√
log(p) ŝ 2 n d−2d

n

n − ŝ dn

⎞⎠+ �22

n − ŝ dn
.

Since ŝ dn = op(n) and lim sup γ̂ 2
n < 1, we have

σ̂ 2
D̂∗

(1 − γ̂ 2
n )

= 1
n − ŝ dn

εTε + Op(ŝ 2 d−2d
n )

+Op(
√
log(p) ŝ n−1/2 d−d

n ) + Op

(
�22

n

)
. (A.17)

Under conditions of Theorem 1(i), the small order term in (A.17) is
bounded by op(1). We have

σ̂ 2
D̂∗

1 − γ̂ 2
n

→ p σ 2. (A.18)

To establish the asymptotic normality, we should study the asymptotic bias
of the estimator. By the Central Limit Theorem, it follows that

1√
n

n∑
i=1

(ε2i − σ 2)
L−→N (0,Eε41 − σ 4). (A.19)

Note that under conditions of Theorem 1(ii), the small order term in (A.17)
is bounded by op(n−1/2). Therefore, the asymptotic normality holds. �

A.2 Proof of Theorem 2

Define eventsAn1 = {D∗ ⊂ D̂∗
1 },An2 = {D∗ ⊂ D̂∗

2 } andAn = An1 ∩ An2.
Unless specifically mentioned, our analysis and calculation are based on the
eventAn.

Let �(D̂∗
1 ) be the design matrix corresponding to D̂∗

1 , PD̂∗
1

=
�(D̂∗

1 )(�(D̂∗
1 )
T
�(D̂∗

1 ) )−1�(D̂∗
1 )
T
, and Pc

D̂∗
1

= I − PD̂∗
1
. Note that

Pc
D̂∗

1
(
∑ŝ1

j=1 fn j(X
(2)
j )) = 0. Thus,

(n/2 − ŝ1dn) σ̂ 2
D̂∗

1
= ε(2)TPc

D̂∗
1
ε(2)

+
⎛⎝ ŝ1∑

j=1

f j(X(2)
j )−

ŝ1∑
j=1

fn j(X(2)
j )

⎞⎠T

Pc
D̂∗

1

⎛⎝ ŝ1∑
j=1

f j(X(2)
j )−

ŝ1∑
j=1

fn j(X(2)
j )

⎞⎠ .

By the same argument as that in the proof of Theorem 1, the second term
in the above equation is of the order Op(ŝ 21 n d−2d

n ). Thus,

(n/2 − ŝ1dn)(σ̂ 2
D̂∗

1
− σ 2)

=
(
ε(2)Tε(2) − n

2
σ 2
)

−
(
ε(2)TPD̂∗

1
ε(2) − ŝ1dnσ 2

)
+ Op(ŝ 21 n d

−2d
n ).
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We next calculate the order of (ε(2)TPD̂∗
1
ε(2) − ŝ1dnσ 2). Note that

E
(

ε(2)TPD̂∗
1
ε(2) − σ 2tr(PD̂∗

1
)

∣∣∣∣X(2)
D̂∗

1

)
= 0.

We now calculate its variance

Var
(

ε(2)TPD̂∗
1
ε(2) − σ 2tr(PD̂∗

1
)

∣∣∣∣X(2)
D̂∗

1

)
= E

((
ε(2)TPD̂∗

1
ε(2)

)2 ∣∣∣∣X(2)
D̂∗

1

)
− σ 4tr2PD̂∗

1
. (A.20)

Denote by Pi j the (i, j)th entry of matrix PD̂∗
1
. The first term in the right-

hand side of the last equation can be written as

E

⎛⎝∑
i, j,k,l

εiε jεkεlPi jPkl

∣∣∣∣X(2)
D̂∗

1

⎞⎠ .

It follows by the independence between X and ε that

E
(

ε(2)TPD̂∗
1
ε(2)

∣∣∣∣X(2)
D̂∗

1

)

= E ε41

n/2∑
i=1

P2
ii + σ 4

∑
i�= j

PiiPj j + 2σ 4
∑
i�= j

P2
i j.

Therefore, it follows that the equation (A.20) equals to

E ε41

n/2∑
i=1

P2
ii + σ 4

∑
i�= j

PiiPj j + 2σ 4
∑
i�= j

P2
i j − σ 4

( n/2∑
i=1

Pii

)2

= E ε41

n/2∑
i=1

P2
ii + 2σ 4

∑
i�= j

P2
i j − σ 4

n/2∑
i=1

P2
ii .

Noting the fact that σ 4 = (E ε2)2 ≤ E ε4, the last equation is bounded by

E ε41

n/2∑
i=1

P2
ii − σ 4

n/2∑
i=1

P2
ii + σ 4

∑
i�= j

P2
i j + E ε41

∑
i�= j

P2
i j

= (E ε41 + σ 4)

n/2∑
i=1

n/2∑
j=1

P2
i j − 2σ 4

n/2∑
i=1

P2
ii . (A.21)

Note that

tr(PD̂∗
1

2) = tr(PD̂∗
1

TPD̂∗
1
) =

n/2∑
i=1

n/2∑
j=1

P2
i j,

tr(PD̂∗
1
) = tr(PD̂∗

1

2) =
n/2∑
i=1

Pii,

tr2(PD̂∗
1
) =

(
tr(PD̂∗

1
)
)2

=
n/2∑
i=1

P2
ii +

∑
i�= j

PiiPj j.

and that tr2(PD̂∗
1
) = (

∑n/2
i=1 Pii)

2 ≤ n
∑n/2

i=1 P
2
ii . It follows that

Var
(

ε(2)TPD̂∗
1
ε(2) − σ 2tr(PD̂∗

1
)

∣∣∣∣X(2)
D̂∗

1

)
≤ (Eε41 + σ 4) tr(PD̂∗

1
) − 2σ 4

n
tr2(PD̂∗

1
)

≤ (Eε41 + σ 4)ŝ1 dn.

since for the projection matrix PD̂∗
1
, tr(PD̂∗

1
) = ŝ1 dn. Consequently, by

Markov’s inequality, we obtain

ε(2)TPD̂∗
1
ε(2) − σ 2 ŝ1 dn = Op

(√
ŝ1 dn

)
(A.22)

Therefore, we have that

(n
2

− ŝ1dn
) (

σ̂ 2
D̂∗

1
− σ 2

)
=ε(2)Tε(2)− n

2
σ 2+Op

(√
ŝ1 dn

)
+Op

(
ŝ 21 n d

−2d
n

)
.

Similarly, it follows that

(n
2

− ŝ2dn
) (

σ̂ 2
D̂∗

2
−σ 2

)
=ε(1)Tε(1)− n

2
σ 2+Op

(√
ŝ2 dn

)
+Op

(
ŝ 22 n d

−2d
n

)
.

Finally, we deal with
√
n(σ̂ 2

RCV − σ 2). Take ŝ1 = o(n(2d−1)/4(2d+1) ), and
ŝ2 = o(n(2d−1)/4(2d+1) ) so that n/(n − 2ŝ1dn) = 1 + op(1) and n/(n −
2ŝ2dn) = 1 + op(1). Then

√
n
(
σ̂ 2
RCV − σ 2)

=
√
n

n − 2ŝ1dn

(
ε(2)Tε(2) − n

2
σ 2 + Op

(√
ŝ1 dn

)
+ Op(ŝ 21 n d

−2d
n )

)
+

√
n

n − 2ŝ2dn

(
ε(1)Tε(1) − n

2
σ 2 + Op

(√
ŝ2 dn

)
+ Op(ŝ 22 n d

−2d
n )

)
=
{

1√
n

n∑
i=1

(ε2i − σ 2)

}
{1 + op(1)} + op(1)

L−→N (0,E ε41 − σ 4), as n → ∞.

This completes the proof of Theorem 2.

Supplementary Materials
The supplementary material consists of a rigorous proof of (A.3).
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