Taylor & Francis
Taylor & Francis Group

Journal of the
American
Statistical

Association

@

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20

Error Variance Estimation in Ultrahigh-
Dimensional Additive Models

Zhao Chen, Jianging Fan & Runze Li

To cite this article: Zhao Chen, Jianging Fan & Runze Li (2018) Error Variance Estimation in
Ultrahigh-Dimensional Additive Models, Journal of the American Statistical Association, 113:521,
315-327, DOI: 10.1080/01621459.2016.1251440

To link to this article: https://doi.org/10.1080/01621459.2016.1251440

A
ﬁ View supplementary material &

% Accepted author version posted online: 16
Dec 2016.
Published online: 26 Sep 2017.

N
C/J Submit your article to this journal

||I| Article views: 601

P

(!) View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=uasa20


http://www.tandfonline.com/action/journalInformation?journalCode=uasa20
http://www.tandfonline.com/loi/uasa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2016.1251440
https://doi.org/10.1080/01621459.2016.1251440
http://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1251440
http://www.tandfonline.com/doi/suppl/10.1080/01621459.2016.1251440
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2016.1251440&domain=pdf&date_stamp=2016-12-16
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2016.1251440&domain=pdf&date_stamp=2016-12-16

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2018, VOL. 113, NO. 521, 315-327, Theory and Methods
https://doi.org/10.1080/01621459.2016.1251440

Taylor & Francis
Taylor &Francis Group

i W) Check for updates‘

Error Variance Estimation in Ultrahigh-Dimensional Additive Models

Zhao Chen?<, Jianging Fan®<, and Runze Li¢

aDepartment of Statistics, The Pennsylvania State University at University Park, PA; °School of Data Science, Fudan University; ‘Department of
Operations Research & Financial Engineering, Princeton University, Princeton, NJ; ¢Department of Statistics and The Methodology Center, The

Pennsylvania State University, University Park, PA

ABSTRACT

Error variance estimation plays an important role in statistical inference for high-dimensional regression
models. This article concerns with error variance estimation in high-dimensional sparse additive model.
We study the asymptotic behavior of the traditional mean squared errors, the naive estimate of error vari-
ance, and show that it may significantly underestimate the error variance due to spurious correlations that
are even higher in nonparametric models than linear models. We further propose an accurate estimate for
error variance in ultrahigh-dimensional sparse additive model by effectively integrating sure independence
screening and refitted cross-validation techniques. The root n consistency and the asymptotic normality of
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the resulting estimate are established. We conduct Monte Carlo simulation study to examine the finite sam-
ple performance of the newly proposed estimate. A real data example is used to illustrate the proposed
methodology. Supplementary materials for this article are available online.

1. Introduction

Statistical inference on regression models typically involves the
estimation of the variance of its random error. Hypothesis test-
ing on regression functions, confidence/prediction interval con-
struction, and variable selection all require an accurate estimate
of the error variance. In the classical linear regression analy-
sis, the adjusted mean squared error is an unbiased estimate of
the error variance, and it performs well when the sample size
is much larger than the number of predictors, or more accu-
rately when the degree of freedom is large. It has been empir-
ically observed that the mean squared error estimator leads to
an underestimation of the error variance when model is sig-
nificantly over-fitted. This has been further confirmed by the
theoretical analysis by Fan, Guo, and Hao (2012), in which
the authors demonstrated the challenges of error variance esti-
mation in the high-dimensional linear regression analysis, and
further developed an accurate error variance estimator by intro-
ducing refitted cross-validation techniques.

Fueled by the demand in the analysis of genomic, financial,
health, and image data, the analysis of high-dimensional data
has become one of the most important research topics during
last two decades (Donoho 2000; Fan and Li 2006). There have
been a huge number of research articles on high-dimensional
data analysis in the literature. It is impossible for us to give a
comprehensive review here. Readers are referred to Fan and
Lv (2010), Bithlmann and Van de Geer (2011), and references
therein. Due to the complex structure of high-dimensional
data, the high-dimensional linear regression analysis may be
a good start, but it may not be powerful to explore nonlinear
features inherent into data. Nonparametric regression modeling

provides valuable analysis for high-dimensional data (Raviku-
mar et al. 2009; Hall and Miller 2009; Fan, Feng, and Song
2011). This is particularly the case for error variance estima-
tion, as nonparametric modeling reduces modeling biases in
the estimate, but creates stronger spurious correlations. This
article aims to study issues of error variance estimation in
ultrahigh-dimensional nonparametric regression settings.

In this article, we focus on sparse additive model. Our pri-
mary interest is to develop an accurate estimator for error vari-
ance in ultrahigh-dimensional additive model. The techniques
developed in this article are applicable to other nonparametric
regression models such as sparse varying coefficient models and
some commonly used semiparametric regression models such
as sparse partial linear additive models and sparse semivary-
ing coefficient partial linear models. Since its introduction by
Friedman and Stuetzle (1981), additive model has been popular,
and many statistical procedures have been developed for sparse
additive models in the recent literature. Lin and Zhang (2006)
proposed COSSO method to identify significant variables in
multivariate nonparametric models. Bach (2008) studied penal-
ized least-square regression with group Lasso-type penalty
for linear predictors and regularization on reproducing kernel
Hilbert space norms, which is referred to as multiple kernel
learning. Xue (2009) studied variable selection problem in
additive models by integrating a group-SCAD penalized least-
square method (Fan and Li 2001) and the regression spline
technique. Ravikumar et al. (2009) modified the backfitting
algorithm for sparse additive models, and further established
the model selection consistency of their procedure. Meier, Van
de Geer and Bithlmann (2009) studied the model selection
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Figure 1. Distributions of the maximum “linear” and “nonparametric” spurious correlations for s = 1and s = 2 (left panel, n = 50 and p = 1000) and their consequences
on the estimating of noise variances (right panel). The legend “LM” stands for linear model, and “AM” stands for additive model, that is, nonparametric model.

and estimation of additive models with a diverging number
of significant predictors. They proposed a new sparsity and
smoothness penalty and proved that their method can select
all nonzero components with probability approaching to 1
as the sample size tends to infinity. With the ordinary group
Lasso estimator as the initial estimator, Huang, Horowitz and
Wei (2010) applied adaptive group Lasso to additive model
under the setting in which there are only finite fixed number
of significant predictors. Fan, Feng and Song (2011) proposed
a nonparametric independent screening procedure for sparse
ultrahigh-dimensional data, and established its sure screening
property in the terminology by Fan and Lv (2008).

In this article, we propose an error variance estimate in
ultrahigh-dimensional additive models. It is typical to assume
sparsity in ultrahigh-dimensional data analysis. By sparsity, it
means that the regression function depends only on a few sig-
nificant predictors, and the number of significant predictors is
assumed to be much smaller than the sample size. Because of the
basis expansion in nonparametric fitting, the actual number of
terms significantly increases in additive models. Therefore, the
spurious correlation documented by Fan, Guo, and Hao (2012)
increases significantly. This is indeed demonstrated in Lemma
1, which shows that the spurious correlation with the response
increases from ,/n~! log(p) using one most correlated predictor
among p variables to /d,n~"log(pd,) by using one most cor-
related predictor with d, basis functions. If s variables are used,
the spurious correlation may increase to its upper bound at an
exponential rate of s.

To quantify this increase and explain more clearly the con-
cept and the problem, we simulate n = 50 data points from
the independent normal covariates {X j}‘;’:1 (with p = 1000) and
also independently normal response Y. In this null model, all
covariates {X j}§=1 and the response Y are independent and fol-
low the standard normal distribution. As by Fan, Guo, and Hao
(2012), we compute the maximum “linear” spurious correla-
tion £, = max <<, |corr(X;, Y)| and the maximum “nonpara-
metric” spurious correlation N = max;<j<p |c/o\rr(fj X)), V)],
where fj (X;) is the best cubic spline fit of variable X; to the
response Y, using 3 equally spaced knots in the range of the vari-
able X; which create d,, = 6 B-spline bases for X;. The concept
of the maximum spurious “linear” and spurious “nonparamet-
ric” (additive) correlations can easily be extended to s variables,

which are the correlation between the response and fitted val-
ues using the best subset of s-variables. Based on 500 simulated
datasets, Figure 1 depicts the results that show the big increase
of spurious correlations from linear to nonparametric fit. As the
result, the noise variance is significantly underestimated.

The above reasoning and evidence show that the naive esti-
mation of error variance is seriously biased. This is indeed
shown in Theorem 1. This prompts us to propose a two-stage
refitted cross-validation procedure to reduce spurious correla-
tion. In the first stage, we apply a sure independence screen-
ing procedure to reduce the ultrahigh dimensionality to relative
large dimensional regression problem. In the second stage, we
apply refitted cross-validation technique, which was proposed
for linear regression model by Fan, Guo, and Hao (2012), for
the dimension-reduced additive models obtained from the first
stage. The implementation of the newly proposed procedure is
not difficult. However, it is challenging in establishing its sam-
pling properties. This is because the dimensionality of ultrahigh-
dimensional sparse additive models becomes even higher.

We propose using B-splines to approximate the nonparamet-
ric functions, and first study the asymptotic properties of the
traditional mean squared error, a naive estimator of the error
variance. Under some mild conditions, we show that the mean
squared error leads to a significant underestimate of the error
variance. We then study the sampling properties of the proposed
refitted cross-validation estimate, and establish its asymptotic
normality. From our theoretical analysis, it can be found that
the refitted cross-validation techniques can eliminate the side
effects due to over-fitting. We also conduct Monte Carlo sim-
ulation studies to examine the finite sample performance of the
proposed procedure. Our simulation results show that the newly
proposed error variance estimate may perform significantly bet-
ter than the mean squared error.

This article makes the following major contributions. (a)
We show the traditional mean squared errors as a naive esti-
mation of error variance is seriously biased. Although this
is expected, the rigorous theoretical development indeed is
challenging rather than straightforward. (b) We propose a
refitted cross-validation error variance estimation for ultrahigh-
dimensional nonparametric additive models, and further estab-
lish the asymptotic normality of the proposed estimator. The
asymptotic normality implies that the proposed estimator is



asymptotic unbiased and root n consistent. The extensions of
refitted cross-validation error variance estimation from lin-
ear models to nonparametric models are interesting, and not
straightforward in terms of theoretical development because
the bias due to approximation error calls for new techniques
to establish the theory. Furthermore, the related techniques
developed in this article may be further applied for refitted
cross-validation error variance estimation in other ultrahigh-
dimensional nonparametric regression models such as varying
coefficient models and ultrahigh-dimensional semiparametric
regression models such as partially linear additive models and
semiparametric partially linear varying coefficient models.

This article is organized as follows. In Section 2, we propose
anew error variance estimation procedure, and further study its
sampling properties. In Section 3, we conduct Monte Carlo sim-
ulation studies to examine the finite sample performance of the
proposed estimator, and demonstrate the new estimation proce-
dure by a real data example. Some concluding remarks are given
in Section 4. Technical conditions and proofs are given in the
Appendix.

2. New Procedures for Error Variance Estimation

Let Y be a response variable, and x = (X, ..., XP)T be a pre-
dictor vector. The additive model assumes that

P
Y=p+) fiX)+e, @1

j=1

where p is intercept term, {f;(:), j=1,...,p} are the
unknown functions and ¢ is the random error with E(g¢) =0
and var(¢) = o%. Following the convention in the literature,
it is assumed throughout this article that Ef;(X;) = 0 for j =
1,..., p so that model (2.1) is identifiable. This assumption
implies that & = E(Y). Thus, a natural estimator for u is the
sample average of Y’s. This estimator is root # consistent, and its
rate of convergence is faster than that for the estimator of non-
parametric function f;’s. Without loss of generality, we further
assume 1 = 0 for ease of notation. The goal of this section is to
develop an estimation procedure for o2 for additive models.

2.1. Refitted Cross-Validation

In this section, we propose a strategy to estimate the error vari-
ance when the predictor vector is ultrahigh-dimensional. Since
fj’s are nonparametric smoothing functions, it is natural to use
smoothing techniques to estimate f;. In this article, we employ
B-spline method throughout this article. Readers are referred
to De Boor (1978) for detailed procedure of B-spline construc-
tion. Let {Bjx(x), k=1,...,d;, a < x < b} be B-spline basis
of space S}([a, b]) with knots depending on j, the polynomial
spline space defined on finite interval [a, b] with degree [ > 1.
Approximate f; by its spline expansion

d;

fi@) ~ Y yuBj(x)

k=1

2.2)
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for some d; > 1. In practice, d; is allowed to grow with the sam-
ple size n, and therefore denoted by dj, to emphasize the depen-
dence of n. With slightly abuse of notation, we use d,, stands for
dj, for ease of notation. Thus, model (2.1) can be written as

d,

=

~
X

ijBjk(Xj) +&. (2.3)

j=1 k=1

Suppose that {(x;,Y;)}, i=1,...,n is a random sample
from the additive model (2.1). Model (2.3) is not estimable
when pd,, > n. It is common to assume sparsity in ultrahigh-
dimensional data analysis. By sparsity in additive model, it
means that only a few || f;[|* = Ef]-z(Xj) # 0 and other || fj|| =
0. A general strategy to reduce ultrahigh dimensionality is sure
independent feature screening, which enables one to reduce
ultrahigh dimension to large or high dimension. Some exist-
ing feature screening procedures can be directly applied for
ultrahigh-dimensional sparse additive models. Fan, Feng, and
Song (2011) proposed nonparametric sure independent (NIS)
screening method and further showed that the NIS screen-
ing method possesses sure screening property for ultrahigh-
dimensional additive models. That is, under some regularity
conditions, with an overwhelming probability, the NIS is able to
retain all active predictors after feature screening. Li, Zhong, and
Zhu (2012) proposed a model-free feature screening procedure
based on distance correlation sure independent screening (DC-
SIS). The DC-SIS is also shown to have sure screening property.
Both NIS and DC-SIS can be used for feature screening with
ultrahigh-dimensional sparse additive models, although we will
use DC-SIS in our numerical implementation due to its intuitive
and simple implementation.

Hereafter we always assume that all important variables have
been selected by screening procedure. Under such assumption,
we will overfit the response variable Y and underestimate the
error variance 2. This is because extra variables are actually
selected to predict the realized noises (Fan, Guo, and Hao 2012).
After feature screening, a direct estimate of o? is the mean
squared errors of the least-square approach. That is, we apply
a feature screening procedure such as DC-SIS and NIS to screen
x-variables and fit the data to the corresponding selected spline
regression model. Denoted by D* the indices of all true predic-
tors and D* the indices of the selected predictors, respectively,
satistying the sure screening property D* C D*. Then, we min-
imize the following least-square function with respect to y:

2
n

d,
Z Y — Z ZijBjk(Xij)

i=1 jeDr k=1

(2.4)

Denote by pj the resulting least-square estimate. Then, the non-
parametric residual variance estimator is

2
n

d
2 = S DT> PiBr(Xy)

n—|D*|-d, jeDr k=1

Hereafter |D| stands for the cardinality of a set D and we have
implicitly assumed that the choice of D* and d,, is such that
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Figure 2. Refitted cross-validation procedure.

n>> |D*| - d,,. It will be shown in Theorem 1 that 6%* signifi-

cantly underestimates o2, due to spurious correlation between
the realized but unobserved noises and the spline bases. Indeed
we will show that 6%* is inconsistent estimate when |D*| - d,,
is large. Specifically, let P5, be the corresponding projection
matrix of model (2.4) with the entire samples. Denoted by
72 =¢e"Pse/ee,wheree = (¢y, ..., &,)". We will show that
62,/(1— ;) converges to o' with root n convergence rate, yet
the spurious correlation y;* is of order

(<1i8) (2.5)

See Lemma 1 and Theorem 1 in Section 2.2 for details. Our first
aim is to propose a new estimation procedure of o by using
refitted cross-validation technique (Fan, Guo, and Hao 2012).
The refitted cross-validation procedure is to randomly split
the random samples into two datasets denoted by Z; and Z, with
approximately equal size. Without loss of generality, assume
through this article that 7; and Z, have the same sample size n/2.
We apply a feature screening procedure (e.g., DC-SIS or NIS)
for each set, Aand obtgin two index sets of selected x-variables,
denoted by D; and D,. Both of them retain all important pre-
dictors. The refitted cross-validation procedure consists of three
steps. In the first step, we fit data in Z; to the selected additive

D1 4 log(pd,)
n

) , forsomeé € (0, 1).

model 253_1 for I = 1 and 2 by the least-square method. These
results in two least-square estimate }7(3_1) based on Z;, respec-
tively. In the second step, we calculate the mean squared errors
for each fit:

2

6]2 =

du
: doqvi- > Z)?j(;f—l)Bjk(Xij)

1’[/2 = D5l - dy i€l jeD,_, k=1

for I = 1 and 2. Then the refitted cross-validation estimate of o2
is defined by

5}%cv = (‘}12 +&22) /2.

This estimator is adapted from the one proposed by Fan, Guo,
and Hao (2012) for linear regression models, however, it is much
more challenge in establishing the asymptotic property of 63y
for the large dimensional additive models than that for linear
regression models. The major hurdle is to deal with the approx-
imation error in nonparametric modeling as well as the cor-
relation structure induced by the B-spline bases. The proce-
dure of refitted cross-validation is illustrated schematically in
Figure 2.



2.2. Sampling Properties

We next study the asymptotic properties of 6 and 67 The
’D*
following technical conditions are needed to facilitate the proofs,
although they may not be the weakest.
(C1) There exist two positive constants A; and A, such that
Efexp(Ay[s])[x} < As.
(C2) Forall j, f;() € C4([a, b)), which consists of functions
whose rth derivative fj(r) exists and satisfies

@ = fP®| < Lls—t, fors,t € [a,b], j=1,....p,
(2.6)
for a given constant L > 0, where r <[ is the “integer
part” of d and @ € (0, 1] such that d = r + o > 2. Fur-
thermore, it is assumed that d,, = O(n"/?4+1), the opti-
mal nonparametric rate (Stone 1985).
The joint distribution of predictors X is absolutely con-
tinuous and its density g is bounded by two positive num-
bers b and B satisfying that b < g < B. The predictor
Xj, j=1,..., phasa continuous density function g;,
which satisfies that for any x € [a, b], 0 < A3 < g;(x) <
A4 < oo for two positive constants Az and Ay.
Condition (C1) is a tail condition on the random error. Con-
dition (C2) is a typical smoothness condition in the literature
of regression splines. Condition (C3) is a mild condition on the
densities of the predictors, and this condition was imposed by
Stone (1985) for low-dimensional additive models, and implies
that there is no collinearity between the candidate predictors
with probability one. The asymptotic properties of &I%)* are given
in the following theorem, in which we use p, to stand for p
to emphasize that the dimension p of the predictor vector may
depend on n. Since the DC-SIS and the NIS possess sure screen-
ing property, the resulting subset of predictors selected by the
used screening procedure contains all active predictors, with
probability tending to one. Thus, we assume that all active pre-
dictors are retained in the stage of feature screening in the
following two theorems. This can be achieved by imposing the
conditions by Li, Zhong, and Zhu (2012) for the DC-SIS and the
conditions by Fan, Feng, and Song (2011) for the NIS. We first
derive the orders of &" P5. € and 7,2 in next lemma, which plays
a critical role in the proofs of Theorems 1 and 2. The proofs of
Lemma 1 and Theorems 1 and 2 will be given in the Appendix.

(C3)

Lemma 1. Under Conditions (C1)|(C3), it follows that

eTPb*e =0, :(%) d, log(pdn)} ,
B 2 \° d,log(pd,)
=9 {(1 - 5) n } ’

where§ € (/1 — b?¢y/B?, 1) for some constant & € (0, 1) with
b and B being given in Condition (C3).

Tp.
. & PD*e

and y, =

elTe

Lemma 1 clearly shows that the spurious correlation 7?
increases to its upper bound at an exponential rate of § since
de(0,1)and2/(1 —3) > 2.

Theorem 1. Assume that limsup, 72 < 1. Let s = |ﬁ*| be

the number of elements in the estimated active index set D*.
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Assume that all active predictors are retained in the stage of fea-
ture screening. That is, D* contains all active predictors. Under
Conditions (C1)-(C3), the following statements hold:
(i) If log(ps) = O(n®), 0<¢ <1 and §= Opy(log(n)),
then 6% /(1 —7,) converges to o in probability as
n — 00;
(i) If log(p,) =0n), 0<¢<3/(2d+1) and §=
O,(log(n)), then it follows that

V(53 (1=72) —0?) SN (0. Eef o),
(2.7)

L .
where — stands for convergence in law.

Theorem 1 (i) clearly indicates that the naive error variance
estimator 62 underestimates o> by a factor of (1 — 7), yet by
Lemma 1, y? is of order given in (2.5) and is not small. Since
;2 cannot be estimated directly from the data, it is challeng-
ing to derive an adjusted error variance by modifying the com-
monly used mean squared errors. On the other hand, the refitted
cross-validation method provides an automatic bias correction

via refitting and hence a consistent estimator, as we now show.

Theorem 2. Assume that ’15}" contains all active predictors, for

j=1 and 2. Let §; = |2A)7| be the number of elements in

f);‘ Under Conditions (C1)-(C3), if §; = o(n®@d—1/4@d+1)y and
$) = o(n@d=D/4Cd+D) then

n c

Vi (6gcy — o) > N (0, Eef —o?). (2.8)

Comparing with the result in Theorem 1, the refitted cross-

validation method can eliminate the side-effect of the selected

redundant variables to correct the bias of the naive variance esti-

mator through the contributions of refitting. This bias factor can
be nontrivial.

Remark 1. This remark provides some implications and limita-
tions of Theorems 1 and 2 and some clarification of conditions
implicitly required by Theorem 2.
(a) From the proof of Theorems 1 and 2, it has been
shown that 65)*/(1 —72) =0%+0,(1/y/n) and
Grey = 0% 4 0,(1/4/n). As a result, the ratio of RCV
estimate to the naive estimator may be used to provide
one an estimate of the shrinkage factor 1 — 2.
(b) Theorem 2 is applicable provided that the active index
sets D%, j = 1and 2 include all active predictor variables.
Here, we emphasize that the RCV method can be inte-
grated with any dimension reduction procedure to effec-
tively correct the bias of naive error variance estimate,
and do not directly impose condition on the dimension
Pu- In practical implementation, the assumption that
both two active index sets include all important variables
implies further condition on p,,. In particular, the condi-
tion log(p,) = o(n) is necessary for DC-SIS (Li, Zhong,
and Zhu 2012) to achieve sure screening property. This
condition is also necessary for other sure screening pro-
cedures such as the NIS (Fan, Feng, and Song 2011) to
achieve sure screening property. In Theorems 1 and 2,
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Table 1. Simulation results for different § (62 = 1)

Table 2. Simulation results with different n (62 = 1)

a=0 a=0
Method §=20 $=30 §$=40 §=150 Method n =400 n = 600
Oracle  1.0042(0.0618)* 1.0042 (0.0618) 1.0042 (0.0618)  1.0042 (0.0618) Oracle 1.0044 (0.0646)* 0.9924 (0.0575)
Naive 0.8048 (0.0558)  0.7549 (0.0589) 0.7138 (0.0584)  0.6771(0.0584) Naive 0.6969 (0.0610) 0.7340 (0.0542)
RCV 1.0022 (0.0656)  0.9994 (0.0666) 0.9990 (0.0698) 0.9967 (0.0705) RCV 0.9905 (0.0837) 0.9845 (0.0729)
a=1//3 a=1//3
Oracle 1.0049 (0.0617)  1.0049 (0.0617)  1.0049 (0.0617)  1.0049 (0.0617) Oracle 1.0047 (0.0737) 0.9970 (0.0552)
Naive 0.9054 (0.0572)  0.8683(0.0592) 0.8387(0.0615)  0.8143 (0.0644) Naive 0.8390 (0.0815) 0.8533 (0.0555)
RCV 1.0704 (0.1300) 1.0493 (0.1187)  1.0374(0.1095)  1.0273 (0.1106) RCV 1.1273 (0.1528) 1.0144 (0.0954)
a=2/V3 a=2/3
Oracle 1.0072 (0.0618) 1.0072 (0.0618)  1.0072 (0.0618)  1.0072 (0.0618) Oracle 0.9903 (0.0687) 1.0075 (0.0643)
Naive 0.9618 (0.0647)  0.9618 (0.0647) 0.9306 (0.0687) 0.9194 (0.0780) Naive 0.9013 (0.0785) 0.9340 (0.0691)
RCV 1.0026 (0.0657)  1.0026 (0.0657)  1.0020 (0.0735)  1.0013 (0.0779) RCV 1.0241 (0.1886) 1.0031(0.0780)

NOTE: *Values in parentheses are standard errors.

(d)

we have imposed conditions on s, §;, and . These condi-
tions may implicitly require extra conditions on the DC-
SIS to ensure that the size of the subset selected by DC-
SIS is of order required by the conditions. For NIS, by
Theorem 2 by Fan, Feng, and Song (2011), we need to
impose some explicit conditions on the signal strength
as well as the growth of the operator norm of the covari-
ance matrix of covariates.

The RCV method can be combined with any feature
screening methods such as DC-SIS and NIS and variable
selection methods such as grouped LASSO and grouped
SCAD (Xue 2009) for ultrahigh-dimensional additive
models. The NIS method needs to choose a smooth-
ing parameter for each predictor. The grouped LASSO
and the grouped SCAD methods are expensive in terms
of computational cost. We focus only on DC-SIS in the
numerical studies to save space.

For sure independent screening procedures such as the
SIS and DC-SIS, the authors recommended to set s =
n/log(n). The diverging rate of s, s, and §, required in
Theorems 1 and 2 are slower than this due to the non-
parametric nature. It seems that it is difficult to further
relax the conditions in Theorems 1 and 2. This can be
viewed as a limitation of our theoretical results. From our
simulation studies and real data examples, the perfor-
mance of the naive method certainly relies on the choice
of s, while the RCV method performs well for a wide
range of §; and $;. As shown in Tables 1 and 2, the result-
ing estimate of the RCV method is very close to the ora-
cle estimate across all scenarios in the tables. Theoretical
studies on how to determine $§; and s, are more related to
the topic of feature screening than the variance estima-
tion and we do not intend to pursue further in this article.
In practical implementation, the choices of these param-
eters should take into account of the degree of freedoms
in the refitting stage so that the residual variance can be
estimated with a reasonable accuracy. We would recom-
mend considering several possible choices of §; and $; to
examine whether the resulting variance estimate is rel-
atively stable to the choices of §; and $,. This is imple-
mented in the real data example in Section 3.2.

NOTE: *Values in parentheses are standard errors.

3. Numerical Studies

In this section, we investigate the finite sample performances of
the newly proposed procedures. We further illustrate the pro-
posed procedure by an empirical analysis of a real data exam-
ple. In our numerical studies, we report only results of the
proposed RCV method with DC-SIS to save space, although the
NIS method, the grouped LASSO, and the grouped SCAD (Xue
2009) can be used to screen or select variables. All numerical
studies are conducted using Matlab code.

3.1. Monte Carlo Simulation

Since there is little work to study the variance estimate for ultra-
high-dimensional nonparametric additive model, this simu-
lation study is designed to compare the finite sample per-
formances of two-stage naive variance estimate and refitted
cross-validation variance estimate. In our simulation study, data
were generated from the following sparse additive model:

y=a (X +0.75X; +2.25cos(Xs)) + ¢, (3.1)

where € ~ N(0,1), and {Xj, ..., X,} ~ N,(0, X) with ¥ =
{,ol-j}fj=1 where p; =1 and p;; = 0.2 for i # j. We set p =
2000 and n = 600. We take a = 0, 1/\/3, and Z/ﬁ to exam-
ine the impact of signal-to-noise ratio to error variance estima-
tion. When a = 0, the DC-SIS always can pick up the active sets
and the challenge is to reduce spurious correlation, while when
a = 2/+/3, the signal is strong enough to pick up active sets
so that DC-SIS performs very well. The case a = 1/+/3 corre-
sponds to the signal-to-noise equaling to 1. This is a difficult case
to distinguish signals and noises and is the most challenge one
for DC-SIS among these three cases considered: the first and the
third case are easy to achieve sure screening with relative fewer
number of selected variables and this reduces the biases of the
RCV method and leaves more degrees of freedoms for estimat-
ing the residual variance. We intended to design such a case to
challenge our proposed procedure, as sure screening is harder to
achieve.

As a benchmark, we include the oracle estimator in our sim-
ulation. Here the oracle estimator corresponds to the mean
squared errors for the fitting of the oracle model that includes
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Figure 3. Variance estimators for different signal-to-noise ratios.

only Xj, X,, and X; for a # 0, and include none of predictors
when a = 0. In our simulation, we employ the distance correla-
tion to rank importance of predictors, and screen out p — § pre-
dictors with low distance correlation. Thus, the resulting model
includes § predictors. We consider § = 20, 30, 40, and 50 to illus-
trate the impact of choices of § on the performance of the naive
estimator and the refitted cross-validation estimator.

In our simulation, each function f;(-) is approximated by a
linear combination of an intercept and five cubic B-splines bases
with three knots equally spaced between the minimum and
maximum of the jth variable. Thus, when § = 50, the reduced
model actually has 251 terms, which is near half of the sam-
ple size. Table 1 depicts the average and the standard error of
150 estimates over the 150 simulations. To get an overall picture
how the error variance estimates change over §, Figure 3 depicts
the overall average of the 150 estimates. In Table 1 and Figure 3,
“Oracle” stands for the oracle estimate based on nonparametric
additive models using only active variables, “Naive” for the naive
estimate, and “RCV” for the refitted cross-validation estimate.

Table 1 and Figure 3 clearly show that the naive two-stage
estimator significantly underestimates the error variance in the
presence of many redundant variables. The larger the value s,
the bigger the spurious correlation 2, and hence the larger the
bias of the naive estimate. The performance of the naive estimate
also depends on the signal-to-noise ratio. In general, it performs
better when the signal-to-noise ratio is large. The RCV estimator
performs much better than the naive estimator. Its performance
is very close to that of the oracle estimator for all cases listed in
Table 1.
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In practice, we have to choose one § in data analysis. Fan
and Lv (2008) suggested s = [n/ log(n)] for their sure indepen-
dence screening procedure based on Pearson correlation rank-
ing. We modify their proposal and set s = [n%/°/log(n*/°)] to
take into account effective sample size in nonparametric regres-
sion. Table 2 depicts the average and the standard error of 150
estimates over the 150 simulations when the sample size n = 400
and 600. The caption of Table 2 is the same as that in Table 1.
Results in Table 2 clearly show that the RCV performs as well as
the oracle procedure, and outperforms the naive estimate.

We further studied the impact of randomly splitting data
strategy on the resulting estimate. As an alternative, one may
repeat the proposed procedure several times, each randomly
splitting data into two parts, and then take the average as the
estimate of 2. Our findings from our simulations study are con-
sistent with the discussion by Fan, Guo, and Hao (2012): (a) the
estimates of o' for different numbers of repetitions are almost
the same; and (b) as the number of repetitions increases, the
variation slightly reduces at the price of computational cost. This
implies that it is unnecessary to repeat the proposed procedure
several times. As another alternative, one may randomly split the
sample data into k groups. Specifically, the case k = 2 is the pro-
posed RCV methods in the article. Similarly, we can use data
in one group to select useful predictors, data in other groups
to fit the additive model. We refer this splitting strategy to as
multi-folder splitting. Our simulation results implies that the
multi-folder splitting leads to (a) less accurate estimate for the
coeflicients and (b) increased variation of 612 used to construct
the RCV estimate. This is because this strategy splits the data
into many subsets with even smaller sample size. If the sample
size n is large, as nowadays Big Data, it may be worth to try mul-
tiple random splits, otherwise we do not recommend it.

3.2. AReal Data Example

In this section, we illustrate the proposed procedure by an
empirical analysis of a supermarket dataset (Wang 2009). The
dataset contain a total of n = 464 daily records of the number
of customers (Y;) and the sale amounts of p = 6398 products,
denoted as Xj, ..., Xj,, which will be used as predictors. Both
the response and predictors are standardized so that they have
zero sample mean and unit sample variance. We fit the following
additive model in our illustration.

Yi=p+ X))+ + f(Xp) +ei,

where ¢; is a random error with E(g;) = 0 and var(s;|x;) = o2.

Since the sample size n = 464, we set § = [n*/°/log(n*/°)] =
28. The naive error variance estimate equals 0.0938, while the
RCV error variance estimate equals 0.1340, a 43% increase of
the estimated value when the spurious correlation is reduced.
Table 3 depicts the resulting estimates of the error variance with
different values of §, and clearly shows that the RCV estimate

Table 3. Error variance estimate for market data.

s 40 35 30 28 25
Naive 0.0866 0.0872 0.0910 0.0938 0.0990
RCV 0.1245 0.1104 0.1277 0.1340 0.1271
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Figure 4. Quantile—quantile plot of x2-test values. “0” stands for x 2-test using naive
error variance estimate. “+” stands for x2-test using RCV error variance estimate.

of error variance is stable with different choices of §, while the
estimate of error variance by the naive method reduces as §
increases. This is consistent with our theoretical and simulation
results.

Regarding the selected models with § predictors as a correct
model and ignoring the approximation errors (if any) due to
B-spline, we further employ the Wald’s x2-test for hypothesis
whether (yj1, ..., yjdj)T equals zero, namely, whether the jth
variable is active in presence of the rest variables. Such Wald’s
x* statistics offer us a rough picture whether X; is significant
or not. The Wald’s x2-test with the naive error variance esti-
mate concludes 12 significant predictors at significant level 0.05,
while the Wald’s x2-test with the RCV error variance estimate

concludes seven significant predictors at the same significant
level. Figure 4 depicts the Q-Q plot of values of the x 2-test statis-
tic of those insignificant predictors identified by the Wald’s test.
Figure 4 clearly shows that the x2-test values using naive error
variance estimate systematically deviate from the 45-degree line.
This implies that the naive method results in an underestimate
of error variance, while the RCV method results in a good esti-
mate of error variance.

The Wald’s test at level 0.05 is in favor that seven predictors,
Xll) X139, X3, X39, Xﬁ, X62> and X42, are Signiﬁcant. We refit the
data with the additive model with these seven predictors. The
corresponding mean squared errors is 0.1207, which is close
to the 63y = 0.1340. Note that 0% is the minimum possible
prediction error. It provides a benchmark for other methods to
compare with and is achievable when modeling bias and estima-
tion errors are negligible.

To see how the above selected variables perform in terms
of prediction, we further use the leave-one-out cross-validation
(CV) and five-fold CV to estimate the mean squared prediction
errors (MSPE). The leave-one-out CV yields MSPE = 0.1414,
and the average of the MSPE obtained from five-fold CV based
on 400 randomly splitting data yields is 0.1488 with the 2.5th
percentile and 97.5 percentile being 0.1411 and 0.1626, respec-
tively. The MSPE is slightly greater than 63 This is expected as
the uncertainty of parameter estimation has not been accounted.
This bias can be corrected from the theory of linear regression
analysis.

Suppose that {x;,Y;}, i=1,...,n is an independent and
identically distributed random sample from a linear regres-
sion model Y = x’ B + &, the linear predictor V=xT B, where
B is the least-square estimate of B, has prediction error
at a new observation {x,y.}: E{(y: — XI/})2|X} =0o2(1+
xI' (XTX)"!x,), where o is the error variance and X is the
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Figure 5. Estimated functions based on 7 variables selected from 28 variables that survive DC-SIS screening by the x2-test with the RCV error variance estimator.
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Figure 6. Estimated functions based on 2 variables selected from 28 variables that
survive DC-SIS screening by the x2-test with the RCV error variance estimator and
the Bonferroni adjustment.

corresponding design matrix. This explains why the MSPE
is slightly greater than 63-,. To further gauge the accu-
racy of the RCV estimate of o2, define weighted prediction
error |y, — xf,f9|/\/1 + xI'(XTX)~!x,. Then the leave-one-out
method leads to the mean squared weighted predictor error
(MSWPE) 0.1289 and the average of five-fold CV based on
400 randomly splitting data yields MSWPE 0.1305 with the
2.5th percentile and 97.5 percentile being 0.1254 and 0.1366,
respectively. These results imply (a) the seven selected variables
achieve the benchmark prediction; (b) the modeling biases using
the additive models of these seven variables are negligible; (c)
63y provides a very good estimate for o2

Their estimated functions f i(x;) are depicted in Figure 5,
from which it seems that all predictors shown in Figure 5 are not
significant since zero crosses the entire confidence interval. This
can be because we have used too many variables, which increases
the variance of the estimate.

We further employ the Wald’s test with Bonferroni correction
for 28 null hypotheses. This leads only two significant predictors,
X11 and X, at level 0.05. We refit the daAta with the two selected
predictors. Figure 6 depicts the plot of fi;(x11) and fg(xe).

4. Discussions

In this article, we proposed an error variance estimator in
ultrahigh-dimensional additive model by using refitted cross-
validation technique. This is particularly important given the
high level of spurious correlation induced by the nonparametric
models (see Figure 1 and Lemma 1). We established the root n
consistency and asymptotic normality of the resulting estimator,
and examined the empirical performance of the proposed esti-
mator by Monte Carlo simulation. We further demonstrated the
proposed methodology via an empirical analysis of supermarket
data. The proposed estimator performs well with moderate sam-
ple size. However, when the sample size is very small, the refit-
ted cross-validation procedure may be unstable. How to con-
structan accurate error variance estimate with very small sample
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size is challenging and will be an interesting topic for future
research.

Appendix: Proofs

A.1Proofs of Lemma 1and Theorem 1

Let W be the corresponding design matrix of model (2.3).
Specifically, W is a nx (pd,) matrix with ith row being
(Bu(Xa), -, Big, (X)), Bu(X2), .. Bpa, (Xp)).  Denote by ™

the corresponding design matrix of model D*, and P, the correspond-
ing projection matrix. That is, Ps, = w® (\II(D*)T\I’(D*>)’1\II(D*)T.
Denote P>, =1, — Pp,. Without loss of generality, assume that the first
s non-parametric components are nonzero and others are all zero. By the
assumption that all active predictors are retained by DC-SIS screening
procedure. For ease of notation and without loss of generality, assume that
D* =1{1,2,..., 35}, where § = |D*|.

Proof of Lemma 1. Note that

-1
P* ¥ T P* P* T
e'Pye=e"W? >(\It<73) w® >) w@

2

®
IA

Do (\I"f’*’T\I'@*)) H ¥ (A1)

2

where Apmin(A) stands for the minimal eigenvalue of matrix A. To show

CNY S
Lemma 1, we need to derive the bound of eigenvalue of matrix WP g,
Note that WP = (W, ..., W;) with

Bj1 (Xj1) Bja,(Xj1)
v, = .
Bj1 (Xjn) Bja, Xjn)

j=1,...,8 (A.2)

Let b= (b!,...,b])” and [IbJ2 =b"b = 1. Then we have Wb =
W¥,b; + - + ¥:b;. As shown in Lemma S.5 in the supplemental material
of this paper, it follows that

1-38 -1 5
—— ) (bl o+ Wbl

o T AL
< [[ Wby + -+ 4+ Wbgl|2 = bT WP WPy, (A.3)

This yields that

(A4)

— §s—1 § L
<¥) D b Wb, | <bTw ) w0,
i=1

since ||W¥;b;||, > 0. Furthermore,
1=\ [~y o
<T) > bl Wb,
i=1

1-5\" R
> (T) D i (¥ ) bb;

b7b;£0

Recalling Lemma 6.2 of Zhou, Shen and Wolfe (1998), there exists two pos-
itive constants C; and C, such that, forany 1 <i <35,

Cid, 1 < hmin (U] W) < Anax (W] W) < Cod, 1. (A.5)
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Thus,

1—36 s—1
(T) Y i (¥ W) b/ b;

b7b,£0

1—§ §—1 1—-6 §—1
> Cl(T) dn_ln Z b!Tbt = Cl (T) dn_lf’l.

b/ b0

(A.6)

The last equation is valid due to Hbll% =b'b=1. Combining the equa-
tion (A.4) and (A.6), we have

T 1-68\"
Amin(\II(D ) @ >> > cl(—) d'n. (A7)
2
Thus, it follows by using (A.1) that
2 \! |2
sTPﬁ*s < — d,n~ | WP e (A.8)
1-6 )
By the notation (A.2), we have
> it Bin (Xin)ek
Y ko1 B (Xik)ex

> ko1 Bia, (Xin)ex

Recalling that 0 < B;;(-) < 1, forany i, jand E |B;;(Xy)|* < C,d;" (Stone,

1985), we note the fact that for m > 2, E|B,-j(X,-k)‘m <E }B,-j(X,-k)|2 <
Cyd;*. Observe that, using Condition (C1), for any integers i and j

E|B;(Xw)ex|” = E [Bi;(X)|" - E le|™

< E|B;j(X)|" E (m! ™ exp{le:| /a}) . (A.10)

Taking A; = 1/a and A, = b in Condition (C1), it follows that the right
hand side of above inequality will not exceed

Cym!a™d'E (exp{|81| /a}) < %m! 2dba*)am 2. (A.11)

Using Bernstein’s Inequality (see Lemma 2.2.11 of Van der Vaart and
Wellner 1996), we have

max
Pl 1<i<p
1<j<d,

pr
< ZP(
i=1 j=1

i

n

> Bij(Xa)ex

k=1
- )
MZ

" 22d;ba?n + aM)

>M

n

> Bij(Xa)ex

k=1

S

§2pdnexp{

1
=2 I d,) (1 — .
P { 0g(pdn) < 4log(pd,) nd;'ba?M—242 log(pdn)aM*I)}

When we take M = Cs/n log(pd,)/d,, with M — 0 and suf-
ficiently large Cs, the power in the last equation goes to nega-
tive infinity. Thus, with probability approaching to one, we have

max |Y7_, Bij(Xu)ex| < Csy/n log(pd,)/d, and
1<i<p
1<j<d,

2

5\ o
eTPﬁ*E <! (71 5) dn” | WP e

2

s—1
<ag! (%5) d, log(pd,). (A.12)

1

Due to the independent and identically distributed random errors with
mean 0 and variance o2, by the law of large numbers, we have

I as 1, as,
7Zg,-—>0, fZ£i2—>02. (A-13)
e et
Thus, we obtain that
. €Tpse 2\ d,log(pd,)
2 — D" 0 . A.14
Vn elTe ’ { <1 - 8) n ( )
O

Proof of Theorem 1. Note that

1 s ~ s s
A2 T C T pc Tpc
=i DO XHPL Y (X2 P Y f(X))+e" P e,
j=1

j=1 j=1

where f;(X;) = (fj(Xj1), ..., fj(Xj,,)T, j=1,..., p. Tosimplify the first
term in cré let Ay =3, f]T(xj)P%* Y= £(X;). Then

T

§ 8 §
A=Y 65D - D 6K+ Y E(Xp PG
=1 j=1 =1

XY HX) =Y £ XD+ X)) ¢
j=1 j=1 j=1

where f,,j(Xj) = (fnj(le)s R f"j(Xjn))T — (Bj(le)Tl“j, o Bj
X;)TT)T, j=1,..., p.Define
B $ T ¢ B
A= 1D 60X =3 6 X P12 6D =D (X)) ¢,
j=1 j=1 j=1 j=1
s r s
A= 1D fy(X) ¢ PE D £,(X) ¢
j=1 j=1
. R T .
s $ $
A= 21D HX) =D £y XDt Py 1) £(X)
j=1 j=1 j=1

Then A; = Ay + A + Ajs. Note that P%* is a projection matrix

on the complement of the linear space of WP, and therefore
P%*{ZLI f,j(X;)} = 0. Thus, both Aj; and Aj;; equal 0. We next
calculate the order of Ay;. By the property of B-spline (Stone, 1985),
there exists a constant ¢; > 0 such that H fi— f,,jH2 <ad, 2 Since
P’ is a projection matrix, its eigenvalues equal either 0 or 1. By the
Cauchy-Schwarz inequality and some straightforward calculation, it
follows that A} = OP(§2nd;2d). Therefore A = OP(§2nd;2"’). Under
conditions in Theorem 1(i), Op(?d;z‘i) = 0,(1). Asaresult, A} = o0,(n).
Under conditions in Theorem 1(ii), § = o(n?4-1/42d+1)y and therefore

Ay = 0p(ﬁ)~



2. Denote A,
’D*

Now we deal with the second term in &
2€TP%* Zi.:l f;(X;). Since P%*{Zi.:l £,;(X;)} = 0, it follows that

_ Tpc
A2—2€ P’ﬁ*

D X)) = > (X))
j=1 j=1

Denote AZI = Zj 127 1 (f](X],) — fn/(X/,)) & and Azz = (ETPA )
(ZJ (X)) — £,i(X;)). Thus, A; = 2(Az — A). To deal with
Asy, we bound tﬂe talls of (fj(Xj)— fuj(Xji))ei, i=1,...,n j=
1,...,S. For any m > 2, because fie c? ([a, b]) and f,; belongs to the
spline space S! ([a, b]), we have

E|(f;,G) — fuj (X)) 8i|m =E (|fj(in) - fnj(in)|m

£ ).

which is bounded by Cg”’z E(lfi(X;) — f,,j(Xﬁ)l2 E(|&;|™ ‘x,-)) for some
constant Cs by the property of B-spline approximation. There exists a con-
stant ¢; > 0 such that HfJ — f"jH2 < ¢1d;* by the property of B-spline
(Stone, 1985). Applying Condition (C1) for E{exp(A;|e;])|x;}, it follows
that

. G m— ZA
BJ(f0G) = fuyX) & " < m (;) e d

Denote C; = ¢1A;/A%,and Gy =
some M, we have

Cs/A;. Using the Bernstein’s inequality, for

P(lrgja;:i7 Z(fj(Xﬂ) fuj(Xj) & >M)
M2
<2pexp{ 330 d T G (A.15)

If we take M = Cy4/log(p) nd,; 24 and for sufficiently large Cy, then the tail
probability (A.15) goes to zero. Thus,

Ay =0, (s}/log(p) nd;”) .

Under condition of Theorem 1(i), § = o(n“4+D/224+D)) with ¢ < 1. Thus,

0,(5d,; 4 flog(pd,)) = 0,(+/n). Following the similar arguments dealing
with Ay, it follows that Ay = 0,(n). Under condition of Theorem 1(ii),

§ = o(n?/@+D=4/2) with ¢ < 3/(2d + 1). Thus, Ay = 0,(+/n). By the
Cauchy-Schwarz inequality, it follows by Lemma 1 that

(A.16)

>
N
A

< ey, - | Do 65X =Y (X))
j=1 j=1 )

= Op(<1 i 5)§W> - 0p(Sn'? d,; %

_ Op((ﬁfmdn—dﬂ/z).

When¢ < 4d/(2d + 1),and$§ = O,(log(n*), a < 4d/(2d 4+ 1) — ¢, itfol-
lows that Ay, = 0,(n) under condition of Theorem 1(i). When ¢ < (2d —
1)/(2(2d + 1)) and s = log(n*), < 2d — 1)/2Q2d + 1)) — ¢, 2/(1 —

8))°n'/? Jlog(pd,) d;irz - 0,(y/n). Thus, Ay, = 0,(+/n) under con-
dition of Theorem 1(ii). Comparing the order of Aj;, Ay and Ay, we

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 325

obtain the order of s in Theorem 1. Therefore, we have
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and it follows by the definition of 2 that
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Since §d,, = 0,(n) and limsup 2 < 1, we have

62

1
D _ T 22 g-2d
=97 = a3, e e+ 0,(57d, ")

+0,(y/log(p snl2d; d)+O ( ) (A.17)

Under conditions of Theorem 1(i), the small order term in (A.17) is
bounded by 0, (1). We have

A2
D*

(A.18)
1— yn

—P s

To establish the asymptotic normality, we should study the asymptotic bias
of the estimator. By the Central Limit Theorem, it follows that

3 (62— 0?) 5 N (0, Eef — o). (A.19)

1
Vg

Note that under conditions of Theorem 1(ii), the small order term in (A.17)
is bounded by o, (n~"/2). Therefore, the asymptotic normality holds. [

A.2 Proof of Theorem 2

Define events A, = {D* C ﬁf}, A, ={D* C ﬁ;‘} and A, = A, N A,;.
Unless specifically mentioned, our analysis and calculation are based on the
event A,,.

Let WP be the design matrix corresponding to 151‘, Pﬁi‘ =
\I,(f)]*)(\I,(ﬁT)T\I,(ﬁT))—l\I,(ﬁT)T

and P. =1-— P;.. Note that
A 2 1
P (X £(X))) = 0. Ths,
1
_2 22 _ @Tpe @
(n/2 sld,,)aﬁf_s Pﬁfe
. . T . .
S1 S1 S1 S1
@) @) @ @
266X | Py | D OG- 6 (XP)
j=1 j=1 j=1 j=1

By the same argument as that in the proof of Theorem 1, the second term
in the above equation is of the order O, (5 n d;?*). Thus,

(n/2 = 51d,) (62,

T n T . IO
= (s(z) e?® — 502) - (e(z) Py e? — Sld,,(72> + 0, nd, 2dy
1

_02)



326 (&) Z.CHEN,J.FAN,ANDR.LI
We next calculate the order of (¢® TPﬁ*s(2> — §d,0?). Note that
1

X)) =0
Dy '

@Tp, @ _ 2 .
E (e PD,fe o tr(PDT)

We now calculate its variance
OTp, @ _ 2 R @)
Var <e PDI*E o tr(PDT) ' Xﬁ?)

2
—E <<e(2)TP75*e(2)> ‘x@) Py,
1 2

Denote by P; the (i, j)th entry of matrix P.. The first term in the right-
1
hand side of the last equation can be written as

(A.20)

X(Z)

E i€ jexe PPy

i,j.k,1

It follows by the independence between X and & that
@Tp, @
E (e P@Te

X
Dy
n/2

- Ea;‘ZPZ +o* Y PP +20 ) P}

i#j i#j

Therefore, it follows that the equation (A.20) equals to

n/2 n/2

EetY P+o*Y PPj+20*) Pl-o (ZP”)

=1 i i
n/2 n/2

:Ea‘fz : + 201 ZPZ—U4Z
i=1

i#]

Noting the fact that 0 = (E&2)? < E&*, the last equation is bounded by

n/2 n/2
ZOITRD T WA ED G
i=1 i oy
n/2 nj/2 n/2
= (Eef+0")) Y Pi—20") P (A.21)
i=1 j=1 i=1
Note that
n/2 n/2
tr(Pp. ) = tr(Ps "Pp) = D D P,
i=1 j=1
n/2

tr(Pi);) = tr(Pﬁrz) = Zpiia
i=1
n/2

trz(Pﬁr) = (tl’(PD* ) Z i+ ZPnP]]

i#]

and that tr? (PDk) = (Z"/Z P> <n Z”/Z P2 Tt follows that

i=1"ii*
@Tp, @ _ 2 A @)
Var (e pre o tr(PD;) ’Xﬁ*)

20
< (Bej +0") tr(P,) — tr (P5.)

< (Eef + 0514

since for the projection matrix Py, tr(Ps.) = §; dy. Consequently, by
1

Markov’s inequality, we obtain

(A.22)

T A =
e® P75*€(2> —028d, = 0, (\/ ) d,,)
1

Therefore, we have that

(g _gld") (&7251*

Similarly, it follows that

n_s S JRCVEDNCIN
(5-8h) (63, -0°)=

Finally, we deal with /n(63.y — 02). Take § = o(n®4~1D/4C2d+Dy angd
§ = o(n@4-1/4Q4HDY 5o that n/(n —28d,) =1+ 0,(1) and n/(n—
25d,) =14 0,(1). Then

n_,

T
—02)23(2) e?— P +0,

(V51 da)+0, (57 nd, ).

20740, (Vi dy)+0, (S nd; ™).

i (e — 0?)
_ (€<2>T€<z>

n— 2§1dn

~ 2% 4.0y (Vi) + 0,6 nd; )
- (s(”Te“) naz + 0, (\/711) +0,(5; ”d"_Zd))

H—ZSAzdn
1 n

= {ﬁ Z(sf —02)} {14 0,(1)} +0,(1)
i=1

c
— N(0,Eef — o), asn — oo.

This completes the proof of Theorem 2.

Supplementary Materials

The supplementary material consists of a rigorous proof of (A.3).
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