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1. Introduction

Let y be a response variable, u be a univariate continuous covariate and x = (xq, ... ,xp)T be a p-dimensional covariate
vector. The partially linear model (PLM) assumes that

y=gu)+x B+e, (1)

where g is an unspecified baseline function, and g is a vector of unknown regression coefficients. The PLM thus assumes that
the regression function linearly depends on the covariates x while depending nonparametrically on u. This model increases
the flexibility of linear models by allowing the intercept to be a nonparametric function of the covariate u. It is one of the
most popular semiparametric regression models in the literature [12].

This work aims to develop a variable selection procedure for the PLM with ultrahigh dimensional x, i.e, p = O{exp(n?)}
for some positive constant a, where n is the sample size. PLM estimation has been well studied in the case where p is finite
and fixed; see, e.g., [7,13]. Variable selection procedures have also been developed in this case, e.g., by Fan and Li [5] via
penalized least squares, and by Liang and Li [9] who employed the penalized least squares method for variable selection in
the PLM in the presence of error in variables. Xie and Huang [ 15] studied the penalized least squares method with the SCAD
penalty [4] for variable selection in the PLM with p = o(/n).

In this paper, we propose a new variable selection procedure for PLM. This procedure differs from the aforementioned
penalized least squares methods in that itis a partial correlation learning procedure based on the notion of partial faithfulness

* Corresponding author.
E-mail address: rzli@psu.edu (R. Li).

https://doi.org/10.1016/j.jmva.2018.06.005
0047-259X/© 2018 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmva.2018.06.005
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2018.06.005&domain=pdf
mailto:rzli@psu.edu
https://doi.org/10.1016/j.jmva.2018.06.005

J. Liu et al. / Journal of Multivariate Analysis 167 (2018) 418-434 419

that was first advocated by Bithimann et al. [ 1] for normal linear models and further used for elliptical linear models in [8]. We
first utilize partial residual techniques to eliminate the nonparametric baseline function, and then conduct variable selection
by recursively testing the partial correlations between the partial residual of the response and that of the linear covariates.
That is, we recursively compare the partial correlations with some threshold values, and therefore refer to this method as
the thresholded partial correlation on partial residuals (TPC-PR). Thus, the TPC-PR can be carried out by using the algorithm
proposed in [8].

This paper’s main purpose is to study the theoretical properties of the TPC-PR, and to ensure that partial correlation
learning works properly for the PLM. Developing the asymptotic theory of the TPC-PR is challenging since we have to deal
with the approximation errors due to nonparametric estimation involved in the partial residuals. Furthermore, we need
to study the partial faithfulness under the PLM setting without assuming normality. We first establish the concentration
inequality of the partial correlations of the partial residuals. We then prove the model selection consistency of the TPC-PR
under the PLM with ultrahigh dimensional x. We further establish the /n-consistency of the regression coefficient estimate
and the asymptotic normality of the nonparametric baseline estimation.

The rest of the paper is organized as follows. In Section 2, we discuss partial faithfulness under the PLM setting, and
systematically study the asymptotic theory of partial correlations between partial residuals. We propose the TPC-PR in
Section 3, and carefully study its theoretical properties. Section 4 provides the results of Monte Carlo studies and a real
data example. Technical proofs are given in Section 5, along with the corresponding regularity conditions to facilitate the
proofs. A conclusion is provided in Section 6.

2. Partial faithfulness and partial correlations for the PLM

In model (1), assume that the random error € satisfies E(e|u) = E(e|x;) = Oforallj € {1,...,p}and E(e?) < oo. The
objective is to recover the truly active model A = {j € {1, ..., p} : B; # 0} with cardinality |.4], as well as to estimate g(u)
and the nonzero coefficients in B. As most variable selection procedures do, we impose here a sparsity assumption, namely
that |.4| = O(n®), where b is defined in Theorems 1 and 2.

2.1. Partial faithfulness in partially linear models

We first discuss a partial faithfulness assumption for the PLM in (1) as a theoretical basis for our proposed variable
selection procedure. This assumption, initially formulated by Biihlmann et al. [ 1], states that if the partial correlation between
a given predictor and the response is zero given some other predictors, then the correlation between this predictor and
the response is also zero given all other predictors. However, when the nonparametric baseline function is taken into
consideration in model (1), this assumption is not directly applicable. Thus we need to apply first a partial residual technique
to deal with the nonparametric part. Specifically, note that E(y|u) = g(u) + E(x" [u)B + E(e|u).

Model (1) can be written in the form

y* — X*Tﬂ + 6*, (2)
where y* =y — E(y|u) and x* = (x7, ..., x;)T = x — E(x|u) are called partial residuals of y and x on u, and €* = € — E(¢|u).
It is easy to show that when the covariance matrix of x*, denoted by 3+, is positive definite, we have

B == cov(y”, x*T). (3)
Therefore, whateverj € {1, ..., p},

B=0 & pby".xIx. ke (i) =0, (4)
where p(z1, z2]z3) represents the partial correlation between z; and z, after regressing on zs, and {j}* = {1,...,j — 1,j +
1, ..., p}. This provides the rationale for recovering the nonzero coefficients in .A by evaluating partial correlations.

However, the computation of p(y*, x|}, k € {j}°) is infeasible under the high-dimensional setting when p is large. To
address this issue, we adapt the concept of partial faithfulness [1] specifically for PLM, based on which we can convert the
problem of evaluating p(y*, x;‘ Ixg, k € {j}®) to recursively assess the partial correlations with lower dimensions in a backward
direction. The partial faithfulness of PLM is defined as follows.

Definition 1. The partially linear model (1) is said to be partially faithful if for every j € {1,...,p}, (", x'|x5) = O for
some S C {j}* implies that p(y*, lex?;, k € {j}°) = 0, where x;‘ and y* are defined in model (2), and x5 = {x]f" . j € S} for
some index set S.

To fully understand the implications of the partial faithfulness, recall that (4) indicates that for everyj € {1,...,p}in
model (2), B; = 0is equivalent to {p(y*, xf|x;, k € {j}*) = 0). Therefore,

:3j =0 & p(y*, X*IXTS) = 0 for some S C {j}cv
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or equivalently,
B#0 & py*.xIx5) # Oforalls C ().

That is, under the partial faithfulness assumption, the predictor x; may be removed if there exists one subset x5 such that
x; is no longer needed when x5 is in the model. When the subset is taken to be empty, the marginal correlation should
also be non-trivial. Thus the partial faithfulness rules out the situation where some predictors are marginally uncorrelated
with the response, but possess joint effects with other covariates. This coincides with the assumption of any sure screening
procedure, initiated by [6].

Lemma 1 provides sufficient conditions for partial faithfulness of PLM.

Lemma 1. Assume that

(A1) X+ is positive definite for all u;
(A2) {Bj;j € A} ~ f(b)db, where f denotes the density on a subset of R of an absolutely continuous distribution with respect
to Lebesgue measure.

Then (x*, y*) satisfies partial faithfulness almost surely with respect to the distribution generating non-zero regression
coefficients.

Conditions (A1) and (A2) are inspired by [1]. Condition (A1) guarantees the identifiability of 8 due to (3). Condition (A2)
may be interpreted from a Bayesian point of view. We can treat nonzero ;s as independently and identically distributed
random variables from a population with a non-trivial density. This condition is mild in the sense that from a Bayesian
perspective, the zero coefficients can arise in an arbitrary fashion. We remark here that though already mild, (A1) and (A2)
may not be the weakest conditions to guarantee partial faithfulness.

Based on Lemma 1, in order to identify nonzero g;s, it is sufficient to test recursively the above partial correlations with
index set S, with sequentially increasing cardinality |S|. Lemma 1 is a direct corollary from Theorem 1in [1].

2.2. Asymptotics of sample partial correlations for PLM

The problem of comparing p(y*, xflxj;) with 0 becomes testing the null hypothesis #, : p(y*, xf|x%) = 0 in practice.

This requires to study the asymptotic performance of the estimated partial correlations p(y*, x}‘lx*s), which is computed
through several estimated conditional means. We first apply local linear regression [3] to estimate E(y|u) and E(x|u) in y*
and x* based on the random sample (u1, xlT, Y1), - -+ (Un, X, yn). The smoothing matrix S(h) is computed as

(1, 04Z T (ur)W (uy, h)Z(u1)} ' Z T (w1 )W (uy, h)

S(h) = : ,
(1, OZ T (U )W (Un, R)Z(1n)} "' Z 7 (un)W (up, h)
where
1 uy—u
Z(u)=|: : and W(u, h) = diag{Ky(u; — u), ..., Kp(u, — u)},
1 u,—u

with Ky(-) = K(-/h)/h, and K being a kernel function with bandwidth h. Then the sample of the partial residuals y* and x*
can be obtained by

¥ ={(1-Sh)ly, X*=[{1-Sh)}Xi.....{1—S(h)}Xp]. (5)
where (X1,...,Xp) = X = (X1,....X,)",andy = (y1,...,¥n)", hy and h; are bandwidths for estimating E(y|u) and
E(xq[u), ..., E(xp|u). The marginal correlations between the partial residuals y* and x7, ..., x; are then estimated by the

Pearson correlation between y* and each column of X*, viz.
({1 =S(h)y. {1 - S(h))Xy)
({1 — SChy)}y {1 — S(hIX; |
Following [ 1], the partial correlations can be computed recursively, for any k € S, by

A Py, X X5\ 1g) — Py, xjj|x§\[k}),?)(x;‘, Xl X5\ (1) (6)
s [{1 - ﬁZ(Y*, X;|X§\{k))}{‘l - Z)Z(Xf» XZ|X>‘:§\(I<})}]1/2

Next, we discuss the asymptotic normality of the partial correlations p(y*, x]’-“ |x%) under a partially linear model setting.

P, Xf)
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Lemma 2. Foranyj € {1,...,p}and S C {j}%, under regularity conditions (B1)-(B8) in Section 5, we have
VB, X Ixs) — p(rF, XX} ~ N0, (14 1){1 — p°(v*, X[ 1x5)1],
where « is the marginal kurtosis for distribution of (u, X, y), and ~ denotes convergence in distribution.

3. Variable selection via partial correlations of partial residuals

Lemma 1 states that identifying nonzero coefficients is equivalent to recursively testing Ho : p(y*, x7|x%) = 0 for different

S. Lemma 2 further implies conducting Z test based on the asymptotically normal distribution of p(y*, x/|x%). We claim
Bj = 0 and delete x; if only one S € {j}® can be found such that #, cannot be rejected for this S.

Specifically, first set S = @, and by Lemma 1, we can delete x; if %, is not rejected for xf and x5 = ¢, and obtain the
first-step active set A!'l. Note that only marginal utilities are involved in this step, hence the procedure for obtaining .A!"
can be viewed as a feature screening technique for PLM. Among the candidate covariates x; in Al we continue to assess
the partial correlations given each individual x;, k € A!Y. The insignificant x;s are further deleted, and the second-step
active set A2 ¢ A"l is obtained. Then the partial correlations given two and more covariates in the current active set are
evaluated in a sequential fashion. The procedure naturally stops when the cardinality of the given covariate set exceeds that
of the current active set. Then any model fitting techniques for PLM in literature can be applied for estimating the nonzero
coefficients of the linear term, as well as the nonparametric baseline function. For the sake of simplicity, the least squared
estimates Bjs are computed for the nonzero coefficients, and the nonparametric function is estimated by g(u) = S(y — XB)
with the plug-in B We summarize the whole procedure in Algorithm 1, in which we follow [8] to set

exp {2VT+k @7 '(1—a/2)//n—[S[—1} -1
Cexp{2VT+ k@1 (1—a/2)/Jn—[S[— 1} +1
LI T Y G — %)
K=7Z371 n sz |
p = L3{n 2 ima (X — X))
where @~ is the inverse function of the cumulative distribution function of A/(0, 1), X; is the sample mean of the jthe element
of X, and x;; is the jth element of x;.

T(a,n, k,|S])

Algorithm 1 TPC-PR Procedure for PLM

1. Compute the sample partial residuals y* and X* by (5).

2. Set m = 1, construct the first-step estimated active set by evaluating the marginal correlations between partial
residuals:

A= e {1,....p}: |PO*. X)|> T(a, n, &, 0)}.
3. Let m = m + 1. Establish the mth-step estimated active set as
A = (j e AT Ryt XSS T(en &.m — 1), Vg gm-mg ISI=m — 1},
4. Repeat Step 3 until | A™|< m.

5. The estimated coefficient vectorfB = (ﬁl, e Bp)T is defined as follows: Bj = 0ifj ¢ A, Bj is the least squares
estimate by regressing the partial residuals for j € A™,

A

6. Obtain the estimated nonparametric baseline function by g(u) = S(y — Xg).

We remark here that bandwidths h used in the smoothing matrix S(h)s are chosen differently as h, and hy, ..., h, for
estimating the conditional means of y and every x;. Several bandwidth selection techniques can be adopted, and we use the
plug-in method by [11] rather than the cross-validation method for saving computational cost. In addition, one needs to
select the bandwidth again after the active predictors are detected and the nonparametric baseline function is refitted.

Next we discuss the theoretical properties of the proposed TPC-PR procedure. We first advocate the model selection
consistency in the following theorem under the ultrahigh dimensional PLM setting.

Theorem 1. Assume regularity conditions (B1)-(B8) in Section 5 for the partially linear model (1). Further assume the partial
faithfulness from Definition 1. Then there exist a sequence o — 0 and constants a and b, where 0 < a + b < (1 — 2d)/5 with
d € (0, 1/2) such that for p = O{exp(n®)} and |.A| = O(n®), we have Pr(A™ £ A) — 0,asn — oo.
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Theorem 1 implies that the selected model successfully captures the true one with probability tending to 1. In the proof
of this theorem, we indeed show the probability of selected model being the true one tends to 1 at an exponential rate. The
result is more challenging than [8] since the approximation error of partial residuals has to be taken into consideration.
Theorem 2 states the /n-consistency of the estimated linear coefficients, as well as the asymptotical normality of the
estimated nonparametric baseline function.

Theorem 2. Under the same conditions as in Theorem 1, for p = O{exp(n®)} and |A| = O(n), where a and b are defined as
Theorem 1, we have || — B|| = Op(n‘l/z), where || - || refers to the L, norm. Furthermore,

Vnh (g(u) — g(u) — g"(Wuah?/2} ~ N0, a2 vo/f ()],

asn — oo, (hj = f WK(u)du, vy = f K?(u)du, and h is the bandwidth for computing the smoothing matrix for estimating the
nonparametric function in the last step of the algorithm.

From Theorem 2, we further derive the asymptotic bias and variance of g(u) at any given value of u, viz.

2
bias(§(u)) = g (w)uah?/2 + o(h?) + Op(n~/2),  var({g(u)} = n‘;ﬂ”fl){l +o(1)}.

Theorems 1-2 ensure the theoretical validity of using the selected TPC-PR model for subsequent inference.

4. Numerical studies

In this section, we conduct simulation studies to assess the finite-sample performance of TPC-PR and to empirically verify
the theoretical properties stated in the last section. We then illustrate the proposed methodology on a real data example.

4.1. Simulations studies

We evaluate the performance of TPC-PR by comparing it to the penalized regression on partial residuals, with the SCAD
penalty [4] and the LASSO penalty [14], respectively. That is, we transform the PLM to linear models via partial residual
technique, followed by the penalized least squared estimation procedure. The nonparametric baseline is estimated in the
same fashion as TPC-PR. Furthermore, the PC-simple algorithm proposed by [ 1] is also studied based on the partial residuals,
and is denoted as PC-PR. The distinction between TPC-PR and PC-PR is that we take the kurtosis into consideration in TPC-PR,
and hence the normality assumption is not necessary for conducting the algorithm. The PC-PR, however, relies heavily on
the normal distribution of the error term when sequentially testing the partial correlations.

To further enhance the finite-sample performance of TPC-PR, we in practice may consider a fine tuning on the critical
value. Specifically, we use cT(«, n, k, m) as the threshold, where ¢ is the tuning parameter chosen by minimizing the
extended Bayesian information criterion [2],

In(62) + df x In(p) x In(n)/n,

where 62 is the estimated error variance of the PLM and df is the number of nonzero estimated coefficients. The modified
TPC-PR is denoted by TPC-PR-EBIC.
We conduct the simulation study under three dimension settings: low dimension (p = 20), medium dimension (p = 200),

and high dimension (p = 500), with sample size n = 200. For each setting, we consider two distributions: normal
distribution and mixture normal distribution, to the covariate vector X. The normal samples with autoregressive correlation
are generated in the following fashion. We first draw (x1, . . ., X541 )T from a multivariate normal distribution A(0, X'), where

¥ is the covariance matrix with correlation p!~/ between x; and X, p = 0.5 and 0.8, and variance is taken to be 0.25 and 1
to represent strong and weak signal, respectively. Then let u = &(x,41), where @ is the cumulative distribution function of
standard normal distribution, A/(0, 1). By doing this, u and x are generated correlated, and u follows a uniform distribution.
In the same routine, we draw random samples from a mixture of two normal distributions, viz. 0.9N(0, X) 4+ 0.1A(0, 9X).
The true coefficient vector 8 = (3,1.5,0,0,2,0,...,0)7, and hence A = {1, 2, 5}. Finally, we define the nonparametric
baseline function g(u) = u? and sin(2ru) in two scenarios. The experiment is repeated 1000 times, and the following criteria
are adopted to assess the performance of all procedures.

(a) For evaluating model selection consistency:

- False positive number (FP): the number of zero coefficients erroneously detected to be nonzero, i.e.,

FP

Y 1B #£0,8=0).
j
- True positive number (TP): the number of nonzero coefficients correctly detected to be nonzero, i.e.,

p
1(
=1
n
p A
TP =) 1B #0.§ #0).
j=1
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Table 1

Simulation results for mixture of normals when p = 500 and p = 0.5.
Method ME(Devi) TP FP Under-fit Cor-fit Over-fit RASE(Devi)
0?2 =0.25,g(u) =u?
SCAD 0.0074 (0.0042) 3.000 1.245 0.000 0.640 0.360 0.0917 (0.0247)
LASSO 0.0446 (0.0120) 3.000 32.170 0.000 0.000 1.000 0.1027 (0.0267)
PC-PR 0.0096 (0.0051) 3.000 0.260 0.000 0.760 0.240 0.0893 (0.0255)
TPC-PR 0.0066 (0.0040) 3.000 0.005 0.000 0.995 0.005 0.0895 (0.0250)
TPC-PR-EBIC 0.0066 (0.0040) 3.000 0.000 0.000 1.000 0.000 0.0895 (0.0251)
0% =0.25,g(u) = sin(2wu)
SCAD 0.0072 (0.0040) 3.000 1.215 0.000 0.650 0.350 0.1117 (0.0204)
LASSO 0.0649 (0.0213) 3.000 28.750 0.000 0.005 0.995 0.1541(0.0322)
PC-PR 0.0142 (0.0100) 3.000 0.220 0.000 0.785 0.215 0.1351(0.0279)
TPC-PR 0.0117 (0.0076) 2.990 0.015 0.010 0.990 0.000 0.1340 (0.0281)
TPC-PR-EBIC 0.0114(0.0072) 3.000 0.000 0.000 1.000 0.000 0.1340 (0.0278)
o2 =1,g(u) =u?
SCAD 0.0342(0.0182) 3.000 4.965 0.000 0.535 0.465 0.1803 (0.0525)
LASSO 0.1736 (0.0430) 3.000 42.945 0.000 0.000 1.000 0.1913 (0.0488)
PC-PR 0.0605 (0.0274) 3.000 0.935 0.000 0.290 0.710 0.1763 (0.0513)
TPC-PR 0.0248 (0.0134) 3.000 0.040 0.000 0.960 0.040 0.1737 (0.0513)
TPC-PR-EBIC 0.0241(0.0134) 3.000 0.005 0.000 0.995 0.005 0.1737 (0.0508)
0% =1,g(u) = sin(2ru)
SCAD 0.0329(0.0170) 3.000 4.680 0.000 0.555 0.445 0.2010 (0.0395)
LASSO 0.1748 (0.0445) 3.000 41.800 0.000 0.000 1.000 0.2172 (0.0408)
PC-PR 0.0614 (0.0277) 3.000 0.920 0.000 0.295 0.705 0.1991 (0.0402)
TPC-PR 0.0257 (0.0140) 3.000 0.040 0.000 0.960 0.040 0.1968 (0.0402)
TPC-PR-EBIC 0.0250 (0.0136) 3.000 0.005 0.000 0.995 0.005 0.1947 (0.0419)

- Under-fit percentage (Under-fit): the proportion of missing at least one of truly active covariates in the linear
part.

- Correctly-fit percentage (Cor-fit): the proportion of identifying exactly the truly active set.

- Over-fit percentage (Over-fit): the proportion of identifying all the truly active covariates, but including at least
one inactive covariate erroneously.

(b) For evaluating the /n-consistency of linear coefficients:
- Model error (ME) due to the linear part: ME = E[{x(ﬁ - B = (ii — ﬂ)Tcov(x)(B - p).
(c) For evaluating the performance of the estimated nonparametric baseline:

- Square root of average squared errors (RASE) defined by

Ng 1/2
1
RASE = { — > {8(ve) — g’ ¢
Ng k=1
where vy, ... ., vy, are the grid points at which the functions are evaluated, and N is the number of grid points.

The medians of ME and RASE, along with the respective medians of their absolute deviations (Devi) among the 1000
simulations are recorded. For other criteria, we report the average over the 1000 simulations.

We present the simulation results in Table 1 for the high-dimensional case (p = 500) with mixture normal distribution
imposed on the error term and the correlation p = 0.5, and in Table 2 for that with p = 0.8. The rest of results are attached
in the Online Supplement.

From Table 1-2, the methods developed in this paper (TPC-PR and TPC-PR-EBIC) can successfully identify the three truly
active covariates (TP ~ 3), with fairly low average numbers of falsely including inactive covariates (FP ~ 0). Similarly, the
correct-fit rates approach 1, illustrating the model selection consistency. The under-fit and over-fit rate are both close to 0.
The model error (ME) and the square root of average squared errors (RASE) are small enough to show the /n-consistency
of the coefficient estimations and the validity of the nonparametric baseline estimation.

In terms of comparison, the selection methods based on partial correlations favors sparser models than the penalized
regression approaches in general. According to Tables 1 and 2, the last three methods consistently outperform the first
two penalized regression approaches, especially LASSO, which, as expected, overfits data and yields conservative models.
Although the correct-fit probability for SCAD (around 0.6) is much larger than LASSO, but is still left behind by the other
three methods. The ME and RASE illustrate the same phenomenon, no matter which functional form of the baseline g(u) is
assumed.
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Table 2

Simulation results for mixture of normals when p = 500 and p = 0.8.
Method ME(Devi) TP FP Under-fit Cor-fit Over-fit RASE(Devi)
02 =0.25,g(u) = u?
SCAD 0.0100 (0.0057) 3.000 1.185 0.000 0.640 0.360 0.1121(0.0316)
LASSO 0.0658 (0.0204) 3.000 29.150 0.000 0.000 1.000 0.1915 (0.0571)
PC-PR 0.0121(0.0067) 3.000 0.195 0.000 0.815 0.185 0.1089 (0.0345)
TPC-PR 0.0107 (0.0064) 2.995 0.015 0.005 0.985 0.010 0.1089 (0.0332)
TPC-PR-EBIC 0.0101 (0.0060) 3.000 0.000 0.000 1.000 0.000 0.1084 (0.0328)
02 = 0.25, g(u) = sin(2wu)
SCAD 0.0102 (0.0060) 3.000 1.120 0.000 0.660 0.340 0.1272 (0.0293)
LASSO 0.0902 (0.0300) 3.000 32.095 0.000 0.000 1.000 0.2326 (0.0555)
PC-PR 0.0150 (0.0099) 2.975 0.215 0.025 0.800 0.175 0.1527 (0.0313)
TPC-PR 0.0122 (0.0084) 2.950 0.065 0.050 0.935 0.015 0.1529 (0.0318)
TPC-PR-EBIC 0.0117 (0.0078) 2.995 0.020 0.005 0.980 0.015 0.1512 (0.0304)
o2 =1g)=u?
SCAD 0.0459 (0.0232) 3.000 4.160 0.000 0.515 0.485 0.2121(0.0557)
LASSO 0.1736 (0.0430) 3.000 42.945 0.000 0.000 1.000 0.1913 (0.0488)
PC-PR 0.0605 (0.0274) 3.000 0.935 0.000 0.290 0.710 0.1763 (0.0513)
TPC-PR 0.0248 (0.0134) 3.000 0.040 0.000 0.960 0.040 0.1737 (0.0513)
TPC-PR-EBIC 0.0241(0.0134) 3.000 0.005 0.000 0.995 0.005 0.1737 (0.0508)
0?2 =1,g(u) = sin(2wu)
SCAD 0.0456 (0.0235) 3.000 4.120 0.000 0.540 0.460 0.2277 (0.0504)
LASSO 0.2464 (0.0676) 3.000 37.635 0.000 0.000 1.000 0.3521(0.0853)
PC-PR 0.0595 (0.0307) 3.000 0.730 0.000 0.430 0.570 0.2317 (0.0504)
TPC-PR 0.0343(0.0193) 2.970 0.055 0.030 0.945 0.020 0.2296 (0.0550)
TPC-PR-EBIC 0.0327 (0.0176) 3.000 0.000 0.000 1.000 0.000 0.2290 (0.0544)

Among the three partial-correlation-based methods, PC-PR yields the worst results, especially when the noise-to-signal
ratio is high (¢ = 1): PC-PR yields only about 29% among all experiments that can identify the true model, while the
TPC-PR and TPC-PR-EBIC both exceed 95%. This is due to the fact that PC-PR uses the wrong variance estimation for the
testing statistics when normality assumptions are not satisfied. Meanwhile, TPC-PR involves the kurtosis into the limiting
distribution of the partial correlations, and hence corrects the variance estimations. Under the normal distribution setting
(the corresponding results are provided in the Online Supplement), PC-PR and TPC-PR perform similarly, since the asymptotic
distributions are identical for the two testing statistics under normality assumption. TPC-PR with EBIC fine tuning indeed
enhances the finite-sample performances, although TPC-PR already behaves satisfactory under most circumstances and is
sufficient for practical application. The same pattern can be observed for both signal-to-noise ratios and both values that
correlation p takes.

Comparing Tables 1 and 2, we observe that as p increases from 0.5 to 0.8, it becomes slightly more challenging to identify
the true covariates. The model tends to be overfitted and the covariates are highly correlated with each other. And in the high-
correlation scenario, the improvement by TPC-PR-EBIC is more significant. Finally, when the signal-to-noise ratio increases
from 0.25 to 1, PC-PR works dramatically worse, but the other methods behave relatively robust. We have also compared
computing times of these methods. In general, the LASSO method uses the least computing time. For a simulated data set
with p = 500, the TPC-PR takes about 20 s, while the LASSO takes 0.1 s, and the one-step SCAD takes about 3 s. It is clear
that the TPC-PR is slower than the LASSO and the one-step SCAD due to the recursive nature of the proposed Algorithm 1.
However, TPC-PR can be carried out with a reasonable amount of time.

4.2. Supermarket data analysis

In this section, we apply the TPC-PR method to analyze a high dimensional data set from a supermarket. The data set
consists of 464 daily records of the number of customers entering the supermarket, as well as the sales volume of 6398
products in the market. We suspect nonlinear relation between the dates and popularity of the store, thus a partially linear
model is a plausible choice for fitting the data.

We apply SCAD, LASSO, PC-PR, TPC-PR, and TPC-PR-EBIC as the stock example. The model sizes and the prediction errors
are reported in Table 3. SCAD and LASSO still yields much more conservative models with 28 and 39 selected variables
than the partial correlation based methods, while the corresponding prediction errors are higher. Compared with PC-PR and
TPC-PR, the TPC-PR-EBIC model is even sparser, with a slight sacrifice of prediction error. The time effect on the number of
customers are depicted in Fig. 1. Some periodic pattern is observed.
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Table 3

Model sizes and prediction errors for the market data analysis.
Approach Model size Prediction error
SCAD 28 16.87
LASSO 39 17.53
PC-PR 10 16.36
TPC-PR 10 16.36
TPC-PR-EBIC 7 16.97

Nonparametric relation between the number of customers and day

0.5 1.0 1.5
|

Nonparametric effect of date
0.0
\

2 - — SCAD

! - - LASSO
PC-PR

© -—=- TP-PRC

- - TPC-PR(EBIC)

T T T T I
0 100 200 300 400

Day

Fig. 1. The estimated curve of the number of customers against dates.

5. Conditions and proofs

5.1. Regularity conditions and lemmas

The following regularity conditions are imposed to facilitate the proofs.

(B1)

(B2)

(B3)

Forj € {1,..., p}, the conditional expectations E(y|u), E(x;|u), E(yx;|u), E(y*|u), and E(x’|u) are all uniformly bounded
in U, where U is the bounded support of u. Furthermore, we assume there exists §; > 0 such that (i) E{var(y|u)} > §;
and (ii) E{var(xj|u)} > é;.

x; and y satisfy the sub-exponential tail probability uniformly in u. That is, there exists so > 0 such that for s € (0, sp),

sup max E{exp(ssz)|u} <00, sup max E{exp(sxjy)lu} < oo, sup E{exp(sy?)|u} < oo.
uet je{l,....p} ueU je{l,....p} uel

The partial correlations p(y*, X5 |x§) satisfy
inf{| p(y*, X [x5)l i € {1,....p}. S S ()°. IS| < AL p(y*. X7 Ix5) # O} > ca,
where ¢, = O(n~9),and d € (0, 1/2).
The partial correlations p(y*, xf|xjg) and ,o(xj*.‘, X |X5) satisfy
(i) sup{lp(*. X7 Ixg) :je{l,...ph.SC{fIsI <A <t <1
(i) sup{lp(x;, xF x5l i je{1,...phi#i, S C{i i, S| <A} <7 < 1.
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(B5) Letf(u)be the density function of u € U. Assume f(u) is bounded from 0; and f(u), its first derivative f'(u) and second
derivative f”(u) are bounded uniformly in u. That is, there exist §3 > 0 and M; > 0 such that

inflf ()| = 83, suplf(u)l < M, suplf'(u)] < My, suplf”(u)] < M.
ue

uet uel ue

(B6) The kernel function K is a symmetric density function, and it is bounded and has finite second moment, i.e.,

sup|K(u)| < oo and / w?K(u)du < oo.
uelU

uelU

(B7) (v, X, y) has an elliptical distribution EC,»(#, %, ¢), and there exists a function ¥ such that the o-field generated by
u = yY(v) is the same as that generated by v.
(B8) The bandwidths satisfy h, — 0, h; — 0, nh}? — 00, and nhf‘ — oo, forallj e {1,...,p}.

We further state some lemmas to facilitate the technical proofs of theorem. The proofs of Lemmas 3 to 5 follow the same
techniques as in [10].

Lemma 3. We adopt the following notation for simplicity:

1 — 1 P —
Ziuh) = ZKh(u,- —uw. Zuh ==Y (” - ”) Ki(u; — u)

i=1

Z3(u, h) = — Z (u' ) Kn(ui — u),  Za(u, h) = quk,,
Zs(u, h) = qu< )Kh( —u), Zs(u, h) Zy,Kh
Z;(u, h) = Zyl( )Kh( - u).

Then under conditions (B1), (B3)-(B6) and (B8), for some small s > 0, and any € > 0, we have the following results:
(1) sup,ey Pr{|Zy(u. h) — f(u)| > €} < 4(1 — se/4)",
(2) sup,cy Pr [lZz(u, hy — fu) [ K (t)de | > e} < 4(1 — se /4y,
(3) supyey Pr {|z3(u, hy — f(u) [ 2K(6)dt] > e} < 4(1 — se/a)",
(4) supyey Pr{lZa(u, h) — f(WE(x;|u)| > €} < 4(1 — se/4)",
(5) supyeu Pr{1Zs(u, h) — FOOECyIu) [123 K (6)de] > €} < 41 = se/4y,
)
)

(6) supyey Pr{lZs(u, h) — f(WE(y|u)l > €} < 4(1 —se/4)",
(7) sup,cy Pr[|Z7(u, h) — FaE(yIu) [+ K (E)de| > e] < 4(1 — se /).

Lemma 4. Assume A(u) and B(u) are two uniformly bounded functions of u. That is, there exist M4 and Ms such that
sup|A(u)| < My, sup|B(u)| < Ms.
uel

uelU
For any given u, A(u) and B(u) are estimates of A(u) and B(u) based on n samples. Suppose there exist C, ..., Cq4 and q > 0 such
that

sup Pr{|A(u) — A(u)| > €} < Cin{(1 — Ge*/n*!)" + exp(—Csn?)},

uel

sup Pr{|B(u) — B(u)] > €} < Cin{(1 — Coe%/n*)" + exp(—C3n)}.

uel
Then

sup Pr{|A(u)B(u) — Aw)B(u)| > €} < Cin{(1 — Ge*/n*)" + exp(—Csn?)}.

uel

Furthermore, if inf,cy|B(u)| > 83 > 0, then

sup Pr{|A(u)/B(u) — A(u)/B(u)| > €} < Cin{(1 — C;e2/n*1)" 4 exp(—C3n)}.

uelU

sup Pr{|{B(u)}"/? — (B(w)}"?| > €] < Cin{(1 — Ce*/n*)" + exp(—C3n%)}.

uelU
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Lemma 5. Define
Z3(u, h)Zs(u, h) — Zy(u, h)Zs(u, h) Z3(u, h)Zg(u, h) — Z(u, h)Z;(u, h)
Wj(u, h) = . V(u,h)= .
Zy(u, h)Z3(u, h) — Za(u, h)Zy(u, h) Zy(u, h)Z3(u, h) — Zy(u, h)Zy(u, h)
Then under the same conditions as Lemma 3, we have
(1) supyey Pr{IW;j(u, h) — E(xj|u)| > €} < 4(1 —se/4)".
(2) supyey Pr{|V(u, h) — E(y|u)| > €} < 4(1 — se/4)".

5.2. Proof of Theorem 1

We divide the proof into six steps.
Step 1: First note that
A(J’* ) — p", X PX XE)
[{1- (y* XOH1 = p2(x;, X312
is a function of p(y*, x1), p(y*, x;), and p(x7, x;). Let g(x, y, z) = (x — yz)//(1 —y2)(1—2z2),and x,y,z € (—1, 1), then all

the first and second derivatives are bounded away from 1, given y and z are bounded away from 1.
By Theorem 1in [8],

PO, X %) =

Pr{|p(y*, X} Ixg) — p(y", X |x)| > €} = Pr{Ig{p(y", ), Py, %), P(X, X )} — glo(v™, X7), pV*, X), p(X]', X} > €}
pLY*, x7) (", X5)
PV x) | — | PO %) || > Ce
PX;, Xp) p(x;,x;) ) 12

< Pr{lp(y*, x1) — p(y*. 1) > Ce/v/3} + Pr{|p(y*, X)) — p(y*, x| > Ce//3)
+Pr{Ip(. x7) — p(xf, %) > Ce/V/3)
< 3Cin{(1 — Ge?/n™)" + exp(—Csn)}.
Similarly, for any S C {j}%, and |S| < |.A|, we can have

Pr{|p(y*, X7 1x5) — p(v*. X 1X5) > €} < 351Cin{(1 — G /n*)" + exp(—C3n%)}.

Step 2: If the distribution is assumed to be elliptical, we can use the sample version of the marginal kurtosis, viz.
p 1 . 30 . 2
= Z 1D ‘5‘1)4/{11 > —5‘1)2} 7
i=1 i=1

to estimate the kurtosis. Similar to the proof in Step 1, we can obtain the following inequality:

Pr(|k — k| > €) < Cyexp(—Csn'™¥e?) + Conexp(—Cin?).
Step 3: To study Pr(|2n(y*, XFXS)/ N1+ Kk — Za(y*, xf|xf‘s)/«/1 + k| > €), define go(u, v) = In{(1 + u)/(1 —u)} /(2+~/ 1+ v)
forallu e (—1,1)and v € (—1, 00). Then

Ly XSV 1+ & =2p0 . X5). &) and Zy(y*. X X5)/V T+ Kk = &{p(y". X IX5). .

All the first and second derivatives are continuous and bounded foru € (—7, t), v € (—3§, +00). By Theorem 1 in [8], under

(B3) and (B5),
ferljee7) (59

Pr [
< Pr(Ip(y", X [X5) — p", % 1X5)] > Ce/v/2) + Pr(|k — k| > Ce/v/2)
< 3+ 1)Gn{(1 — Ge?/n*)" + exp(—C3n?)}
< 3¥ICin{(1 — Ge? /)" + exp(~Csn)}.

Zn(y* . XIx5)  Za(y*. XEIXE)
V14 k& V14K

Step 4: Next we compute Pr(Ejs). When testing the jth predictor given S C {j}°, denote the event

Ejis = {an error occurs when testing p(y*, x|x%) = 0} = Ej s UE]s,
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1
where E; 5

Els = {(n— 18| — D2|Z,y", X 1x5)/vV 1+ &| > @7'(1 — a/2) when Z,(y*, x/[xs) = O}.
Then

denotes Type I error while Ej; represents Type Il error. We have

Za(y*, X5 |X%)

Pr(Ejs) =Pr{(n—s|— 1)/ > @~ '(1 - a/2) when Z,(y*, X|x%) = 0}

NG
Zuy* XEIXE)  Zaly*, XEIXE)
<Pri{(n—1s|—1)"? ] - J > @ (1 —a/2)
m V14«
o L XIS LS XS T n G
= — >
NS 1+« n—|8—12J/1+«
. Zny* XFIXS)  Zaly*, XEIXS) Cn
— >
- J1+& V14« 21+«

< 3°1Cin{(1 — Goe/n™)" + exp(—Csn)),
by choosing o = 2{1 — &(c,+/n/(1 + «)/2)}. Furthermore,
Els = {(n— IS| — DV21Z,0%, & 1x5)/V/1 + k] < @711 — @/2) when Zy(y*, x}[xs) # O).
By choosing o = 2[1 — ®{/n/(1 + k) c,/2}], we can get the following inequality:

Pr(Ejls) = Pri(n — 15| = 21Z:(y", % W5)/V/1+ &1 = @7'(1 = a/2) when Z,(y", X/ X5) # 0}

A I
<Pr Zo(y*, X7IX%) B 2n(y*,x]’.*|xg)_Zn(y*,XﬂX*s) <ﬁ T }
= itk Viti Vite | “Vn-Isl-12y/T+«
(B0 20 )| (a0 _ﬁ G }
JitE | JTee Vit | Vnmiemtayvicf

Let g5(u) = (1/2) x In{(1 + u)/(1 — u)}, then |gs(u)| = |1/2 x In{(1 + u)/(1 — u)}| > |u|, forallu € (—1, 1), and according
to (B4), |o(y*, x;‘|xg)| > ¢, then

Z * X xk Zan(y*, x¥|x*
Pr(El's) < Pr n(y*, X; |A5) L K Ixs) L / n Cn
1+% V14« N n—I|8—-12J/1+«

N L O N L Ol N (1 o 1)
1+¢& 1+« 1+« n—|s|—12
LU X)Ly I e,
V1+k V14K T 8J/1+«k
< 3ICin{(1 — Gy /n*)" + exp(—Csn?)},
as for large n, «/n/(n — |S| — 1) < 5/4. Combining the above results, we have
Pr(Ejs) = Pr(Ejs) + Pr(Ejls) < 3'°ICin{(1 — Gyc; /n*)" + exp(—C3n?)}.

<Pr

Step 5: To study Pr(A™ £ A), we consider allj € {1, ..., p}and all § C {j}° subject to |S| < |.A]|, for any b > 0, under the
partial faithfulness assumption and (B2), forj € {1, ..., p}, define K; = {S C ()¢ 2 S| < | A]}. Now

Pr{A™ £ A} = Pr{an error occurs for some j and some S}

=Pr U Eis ¢ = Z Pr(Ejs)

Jjel1,....p},SeK; Jjel1,....p},S€ekK;

<pxp? sup  Pr(Es) < 3MpMFICn{(1 — Goef /n*)" + exp(—Can?)}.
Jjel1,....p},SekK;j
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The second last inequality holds since the number of possible choices of j is p, and there are p“!l possible choices for &S.
Furthermore, similar to lemma 3 in [1], we can show that Pr(m = |A|) — 1.
Step 6: Under (B2), for p = O{exp(n®)} = C4exp(n®), and |.A] = O(n®) = Csn®, we have

Pr(A™ £ A) < 3M1Cn(p) AT Cin{(1 — G2 /n*)" + exp(—C3n?)).
Therefore,

In{Pr(A™ #£ A)} < |A|In3 4+ (JA] + 1)In(p) + In(Cin) + In{(1 — Coc?/n*)" + exp(—C3n?)}.
< Gi(JAl + 1)In(p) + In{{(1 — Cyc7 /n™)" + exp(—C3n?)}}
< Ci(Csn® + 1)(In G4 + n®) + In{(1 — Coc2 /)" 4 exp(—C3n?)}.

Note thate™ < 1 — x/2, forx € [0, In2]. Since q € (0, 1), then C3/n'~9 € [0, In2].
exp(—Csn?) = {exp(—Csn?/n)}" < (1= C3/2n'~9)" = (1 — C3/n'~9)".

Therefore,
In{Pr(A™ 3£ A)} < C4(Gsn® + 1)(InCq + n%) + In{(1 — G/n* )" 4 (1 — C/n'~9)").

Let (1 —2d)/5 < q < (1 —a—b — 2d)/4, then 1/n**% < 1/n'~9, Thus 1 — C,/n?***% > 1 — C3/n'~9. Then
In{Pr(A™ £ A)} < C;n**? + In{2(1 — Go/n®* 4"} < Cin*? + nin{(1 — Cy/n?d+49)}.

Since 2d 4+ 5(a + b) < 1, then (1 — 2d)/5 < (1 — a — b — 2d)/4, then n*? < n(1=¢-b=2d)/4 then

na+b na+b - C2 n4q

o~ ~ _ -0
nin{(1 — G/n2+40)} ~ nGy/m2@+4{—1+ o(1)} ni-a—b—2d
and
CinIn{(1 — C/m** ™) &~ GGy /m* {1 4 o(1)) — —c0.
Thus,
ln{Pr(,ﬁlmJ # .A)} < ClntH—b + nln{(] _ C2/ﬂ2d+4q)}
na+b
< Ginln{(1 = Go/n?**40)) +1¢ — —oo.

nin {(1 — Cy/n2d+49)}

As aresult, Pr(A™ =£ A) — 0. This completes the proof of Theorem 1. O

5.3. Proof of Theorem 2

Since we are applying the least squares on the estimated active set, thenasn — oo, ||/§— Bll = 0y( —n'2ywhen AM = A.
And according to Theorem 1, Pr(A™ = A) — 1.Thus || — B|| = Op(—n'/?).

We next focus on the asymptotic normality of the nonparametric estimation of g(u). We complete the proof in three
steps.

Step 1: First we derive the bias of g(u). After obtaining the estimated active set, for any fixed u, we have

Blu) = (90(“)> — argmin’> (v — %7 B — bo — bi(us — o) 2Ky(u; — ) = (2] WuZa) ™2 Waly — XB)
by(u) bo.b1 4=
where
1 uyy—u
Zy=1: and W, = diag{Kn(u; — u), ..., Ky(u, — u)}.
1 u,—u

We note the following facts:

(1) E(y — XBIX, u) = g(u). .
(2) (ZJWuZu)ilzJWux = Op“)v and || — Bl = Op(nil/z)-
(3) g(u;) = bo + by(uj — u) + by(u; — u)* + - - -, and g(u) = bo.
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Now

E(b[X, u) = (Z, WuZ,)"'Z] W,E(y — XBIX, u) = (Z W,Z,)"'Z] W,E(y — XB + XB — XBIX, u)
= (Z] WuZ,)"'Z] W, {g(u) + XE(B — BIX, u))
bo + b1(uq — u)+ g(u) — bop — b1(uq — u)

= (2, WuZ,) 2] W, : + 0p(n~12)
bo + b1(un — u) + g(u) — bo — b1(un — u)
ba(uy — u)* + -+
= (Z?) +(2, WuZu) 12/ W, : +0p(n™1?)
ba(ty — u)* + -+ -

(52) 5+ 0

Set
n n
D oKn(wi—u) Y (s — w)Kn(u — u)
Si=Z,WiZy=| , = i , H:((l) 2)
D (i — wKn(ui —u) > (u; — u) K — u)
i=1 i=1
Then
1 n
D Kn(ui — ) - Z — Ky (u; — 1)
lH—lan—l _ . i=1
n
— > (i — w)Kn(u ZZ i — uKn(u — u)
nh = nh
1
=f(u)(0 15 ) + o{h+ /1/(nh)}.
Next,

nh+t & fu— )\ !
Z ( ) Kh(u,- — ll)

Then J; can be expressed as follows:

ba(uy — U)Z +
h =@ w.z) 'zt w, :

nh® sy —u\’
(uy — u) o p Kn(u; — u)
ZuTWu : =1

— sz,](n,lH,]an,]),]H,] i:n1
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= byh*H '(n"'H7'S,H~1)™!

= byl’H™! [f‘l(u) (5 : /(Lz) +Oplh + \/1/(nh)}} [f(UJ (Zi) +Oplh + Jl/(nh)}} + o(h®)
= byh*H~ 1[<M Tt > + Op{h + /1/(nh) }] + o(h?).

Thus,

E(§(u)[X, u) = (1 0)E(BIX, u) = by + boh?*[112 + Oplh + v/1/(nh)}] + o(h?) + Op(n~"/?)
= by + bypah? + R20,{1 + /1/(nh3)} + o(h?) + Op(n~"/?)
= by + bauzh® + o(h?) + Op(n~"/?),
and the last equality holds because nh® — oo,asn — 0. Note that the right-hand side does not depend on X and u. Therefore,

E {8} = bo + bapah® + o(h*) + 0p(n~12) = g(u) + g"(W)pah? /2 + o(h?) + Op(n™"/2).

Step 2: Derive the variance of (). Note that var(b|X, u) = (Z] W,Z,)~'Z] W,var(y — XBIX, w)W,Z,(Z] W,Z,)~", and
var(y — XB|X, u) = var(y — XB + XB — XB|X, u)
= var(y — XB|X, u) + var(XB — XB|X, u) + 2cov(y — X8, XB — XB|X, u)
= {0 + Op(n~2)I,.
Then

var(b|X, u) = (Z] W,Z,)"'Z] Wy {0l + 0p(n~ )W, Zu(Z] W,Z,) !

Zu)”
= {02+ 0y(n 1/2)}5,;1(;,T W2z,)s,’
= {02+ 0p(n~ )}H”(H’]SHH”)’]H” (z, W2z, )H \(H'S,H™ ")
= {o? + Op(n" ).

Furthermore,

_ _ 1 0 i i 1 0
H ](ZuTWqu)H '= (0 1/h> n ! <0 1/h>

ZKhz(ui —u) > (u,- ]: u) Ki(u; — u)
n 2
Z(w—u) (i — u) Z(w;u) K2 — )
i=1 i=1

= }(l )<v1 )+n(9p {1+ +/1/(nh3)}

a

and

b= %H_l(n_lH_lan_l)_1{n_lH_1(ZJWUZZu)H_l}(n_lH_lan_l)_lH—l
1
= _H [f—l(u) (é 1/(2 ) +Oplh + W}} [f(”) (:? “j;) +O0p{1 + W}]
x |:f*1(U)<(1) 1/t > +(’)p{h+\/7i|H 1
IR e I A VR VY P .
~nh i [f(u) <V1/M2 Vz/Mz) + Opth + W}] H
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Therefore,

2 -1/2
var {§(u)|X, u} = (1 0)var(b|X, u)(10)" = %}f”) [f(iu)vonLOp{h—i—\/l/(nh)}]

1
= @ [0%vo + Op(n™"2) + Op{h + y/1/(nh)}].

Notice that the right-hand side does not depend on X and u. Therefore,

[02v0 + Op(n™"2) + Oplh + y/T/(n)}].

. 1
var {g(u)} = ThF)

Step 3: In order to derive the asymptotic distribution of g(u), we can use the following facts:

)= (10)b = (10)(Z] WaZ,)~'Z] Wuly — XB).

8(u 0)
E{Zw)IX, u} = (10)E(bIX, u) = g(u) +g"(u)uzh?/2 + Op(n~"?) + o(h?).
E{(8(u)IX, u} = (10)(Z] W,Z,)~'Z] W,E(y — XBIX, u).

y-— Xﬂ E(y xﬂ|xa u) = (617 ) EH)T-

We first study g(u) — g(u) — g”(u)uzh?/2:

8(u) — g(u) — g"(Wpah?/2 = §(u) — EEw)|X, u) + Op(n~ ) + o(h?)
= (10)(Z, WaZu)"'Z, Waly — XB — E(y — XBIX, w)} + 0,(n~"/?) + o(h?)
= (10)S;'Z] Wuly — XB + X(8 — B) — E(y — XB + X(B — B)IX, w)} + Op(n~") + o(h?)
=(10)S, 'z W,{y — XB — E(y — XBIX, u)

+X(B — B) — E(X(B — B)IX, w)} + 0p(n~2) + o(h?).
Because S, 'Z] W,X = 0,(1), |B — BIl = 0,(n~"/2), then

8(u) — g(u) — g"(wuah?/2 = [101S, '] W, {y — XB — E(y — XBIX, w)} + Op(n~ /%) + o(h?)
=[101S;'Z] Wy(er, ..., en)" + 0p(n~?) 4 o(h?)
= [10]H ' (nHS; '"H)H " "{Z[ Wy(e1, ..., €)" /n} + Op(n™"?) + o(h?).

(1)
(2)
(3)
(4)

Furthermore, given that

n'H1S,H ' 2 fu) <(]) O)

n2
we have
-1 P 1 1 0
M”*MQUQ'
Moreover,
1< 1¢
) 0 E ZKh(u,- — U)Ei E ZKh(ui - u)e,—
—1yp—15T Ty _ i=1 _ i=1
{b ZuWu(e1,...,€n)}—(o 1/h> 1i( » ) I (uf—u>K( )
— u; — u)Kp(u; — u)e; - h U)e
e nig N\ h

We now turn to n‘lz?ﬂl{h(ui — u)¢; and find

n 2
£2 = var {Z % Kp(u; — u)eil = % E{KZ(u; — u)e?} = % E{KZ(u; — u)}.

i=1
Note that

2
E(KZ(u; — u) = / {h”K (%)} fludu; = h™! / K2(0)f (u + th)de

=h! /Kz(f){f(U) + thf'(u) + o(h)ydt = h™"'{f(u)vo + hf'(u)v: + o(h)}.
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Thus £2 = o 2{f (u)vo + hf’(u)v; + o(h)}/(nh) = 02{C; + o(h)}/(nh). Similarly, we have
n

ZE|I<h —wei/n® = n2E|K3(u; — u)| x E|e?| = n72h™2{C, + o(h)}.

Therefore, as n — o0, nh® — 0o, we have nh — oo, then

C n*h?)
5 LS ik — we T = (G + ol () — 0
& i=1

By the Lyapunov Central Limit Theorem, we get
nU Y Kn(u — u)e

Vo2 FWve + b (s + o(h)}/(nh)
That is,

N(O, 1).

h/n ZK,, Ui — u)e; ~ N0, o 2f (u)vg].
Similarly,
WZh u; — WKn(; — w)e; ~ N0, o f(u)vy].

Applying Slutsky s Lemma, we find
Vnh{g(u) — g(u)—g" (uzhy/2)
= Vnh(10)H'(nHS; "HH{Z] Wy(e1, ..., )T /n} + Op(v/h) + o(~/nh3)

Vvh/n ZKh(ui — u)e;

= (10)H (nHS; 'H) + 0,(v'h) + o(~/nh5)
Vh/n Z h= (i — w)Kn(u; — u)e;

1
v —— NT0, o *f(u)vo] = N0, o?vo/f(u)],
f(u)

which completes the proof of Theorem 2. O
6. Conclusion

In this paper, we advocated a new approach to select significant variables in the partially linear models via partial
correlation learning. Under the partial faithfulness framework, the nonparametric smoothing techniques are adopted to
obtain the partial residuals, and then the recursive hypothesis tests of partial correlations between partial residuals are
conducted to select linear covariates in a backward direction. Model selection consistency is proved and empirically verified
through simulations. Furthermore, the /n-consistency of the estimated linear coefficients and the asymptotic normality of
the nonparametric baseline estimations are provided. The performance of the method is further illustrated by supermarket
data analysis.
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Appendix A. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2018.06.005. The

Online Supplement includes two parts. The first half provides the proof of Lemma 2 and the second half reports the additional
simulation results mentioned in Section 4.
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