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a b s t r a c t

Covariate measurement error is a common problem. Improper treatment of measurement
errors may affect the quality of estimation and the accuracy of inference. Extensive
literature exists on homoscedastic measurement error models, but little research exists on
heteroscedastic measurement. In this paper, we consider a general parametric regression
model allowing for a covariate measured with heteroscedastic error. We allow both the
variance function of the measurement errors and the conditional density function of the
error-prone covariate given the error-free covariates to be completely unspecified. We
treat the variance function using B-spline approximation and propose a semiparametric
estimator based on efficient score functions to deal with the heteroscedasticity of themea-
surement error. The resulting estimator is consistent and enjoys good inference properties.
Its finite-sample performance is demonstrated through simulation studies and a real data
example.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Covariate measurement errors arise frequently in areas such as chemistry, biological sciences, medicine and epidemi-
ological studies. Instead of a precise measurement, we have only error-prone surrogates of the unobservable covariate.
Measurement errors in covariates have received extensive attention, e.g., in linear models [7] and in nonlinear models [3];
see also [16] for awider range of applications, such as survival analysis and case-control studies. Existingmethods oftenmake
restrictive and unrealistic assumptions about the measurement error distribution such as normality and homoscedasticity.
However, in practice, the error densitymay violate these assumptions,which leads to erroneous estimation and inference [2].

Some research has been completed on the difficult problem of measurement error heteroscedasticity. Staudenmayer
et al. [14] found bias issues in density estimation in the presence of incorrect assumptions of homoscedasticity of the
measurement errors. Similarly, in regression problems, ignoring the heteroscedasticity of themeasurement errors can affect
both the accuracy of the estimation and the quality of the inference. In an attempt to properly treat the heteroscedastic
measurement error, Devanarayan and Stefanski [6] proposed the empirical SIMEXmethod to accommodate heteroscedastic
measurement error. However, they assumed normality of the measurement error and only provided an approximate
solution. Cheng and Riu [4] studied linear relationships in which both the response variable and the covariates are subject to
heteroscedastic errors using the maximum likelihood method, method-of-moments, and generalized least squares method,
under a critical but restrictive assumption that the variances of the normally distributedmeasurement and regression errors
for each observation are known. Guo and Little [8] extended the regression calibration and multiple imputation methods to
allow heteroscedastic measurement error, while assuming the normality of the conditional density of the measurement
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errors given the unobservable covariate and assuming that the variance function is a power function of the unobservable
covariate. Sarkar et al. [13] studied the regression model with heteroscedastic errors in covariates in a Bayesian hierarchical
framework and avoided assumptions about normality and homoscedasticity of the measurement and regression errors.
However, due to the complexity of using both B-splines and Dirichlet processes, the theoretical properties of the estimator
were not established.

In this article, we consider a general parametric regression model with one covariate measured with heteroscedastic
error when both the conditional density of the unobservable covariate given the error-free covariates and the variance
function of the measurement errors are unknown. We allow the distributions of the regression error and the measurement
error to have any form; in particular, they are not limited to the normal distribution family. This problem requires that
we estimate two nuisance functions. If the unknown variance function were parametric, this problem would be simpler.
Hence, we approximate the variance function with B-splines to convert the model to a simpler setting operationally.
Using a semiparametric approach, we also avoid performing deconvolution. A B-spline approximation has been used in the
measurement error model in the Bayesian framework [1,13], although the theoretical impact of the B-spline approximation
is unclear.

Recently, in the nonparametricmodel framework, Jiang andMa [12] proposed a spline-assisted semiparametric approach
to measurement error models, where the asymptotic properties of the nonparametric estimator were established in the
homoscedasticmeasurement error case. Although the B-spline approximationmakes the estimation of the variance function
feasible, we still face the challenge of handling the conditional density function of the unobservable covariate. We avoid
having to estimate it by proposing an estimator that allows for misspecification of the conditional density function. The final
estimator is obtained by solving estimating equations based on estimating functions that are approximatedwithout a closed
form. Hence it is very challenging to establish the asymptotic properties of the estimator. Themethod of analysis is also very
different from that of typical analyses of splines.

Our method enjoys good asymptotic properties in terms of convergence rate. Generally, estimating nuisance parameters
will alter (often inflate) the estimation variance for the parameter of interest. However, our method does not. Further, if the
density function of the unobservable covariate is correctly specified, the estimator of the parameter of interest is efficient.
We specify themodel for data withmismeasured covariate and heteroscedastic measurement error in Section 2 and develop
the estimation procedure in Section 3. Regularity conditions and asymptotic properties of the estimator are described in
Section 4. We explain how to implement our method in Section 5. To assess the performance of our method, we conduct
simulation studies and perform an empirical data analysis in Section 6.

2. Notation and model setup

2.1. Model specification

Throughout this paper, we use bold fonts for vectors and matrices and regular fonts for scalars. Let Y be the response
variable and Z be the vector of observed error-free covariates. Let X be an unobservable latent covariate that is measured in
an error-proneway. LetW be the observed surrogate of X .We assume the support of X to be finite;without loss of generality,
let the support be [0, 1]. We are interested in the relationship between the response variable Y and the true covariates (X, Z).
In particular, we link the response to the covariates using a parametric model

fY |X,Z(y, x, z, β), (1)

where fY |X,Z is the specified conditional probability density function or probability mass function of Y given X and Z, and β
is a p-dimensional vector of unknown parameters.

We further assume that W , the observed surrogate of X , is linked to X through a heteroscedastic measurement error
model

W = X + σ (X)U, (2)

where U is a random variable with a known density function fU (u), which is not restricted to the normal family. Without
loss of generality, we assume that U has mean zero and variance 1. We also assume that U is independent of X and Z. Let
σ (X) be an unknown positive nuisance function that describes the heteroscedasticity of the measurement error. Our goal is
to estimate the regression parameter β based on a sample (Y1,W1, Z1), . . . , (Yn,Wn, Zn).

2.2. Identifiability considerations

To ensure the identifiability of the model, we assume that two repeated measurements of the error-prone covariate
X are available. Let W1 and W2 be two measurements of X , which are independent with each other conditional on X . To
prove identifiability, we aim to show that if the density or mass function of the observed data conditional on Z satisfies
fY ,W1,W2|Z(y, w1, w2, z, β, σ , fX |Z) = fY ,W1,W2|Z(y, w1, w2, z, β̃, σ̃ , f̃X |Z), then (β, σ , fX |Z) = (̃β, σ̃ , f̃X |Z). Here fX |Z(x|z) is the
conditional density of X given Z. Note that

fY ,W1,W2|Z(y, w1, w2, z, β, σ , fX |Z) =

∫
fY |X,Z(y|x, z, β)fU

{
w1 − x
σ (x)

}
fU

{
w2 − x
σ (x)

}
fX |Z(x|z)

1
σ 2(x)

dx
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and, likewise,

fY ,W1,W2|Z {y, w1, w2, z, β̃, σ̃ , f̃X |Z} =

∫
fY |X,Z(y|x, z, β̃)fU

{
w1 − x
σ̃ (x)

}
fU

{
w2 − x
σ̃ (x)

}
f̃X |Z(x|z)

1
σ̃ 2(x)

dx.

When we leave the model of Y given X and Z as an arbitrary known parametric model, it is very difficult to prove
identifiability without adding many conditions that are difficult to check. Thus, we believe it is a better strategy to establish
identifiability in a case-by-case fashion. Here, as an example, we consider a specific situation where themainmodel is linear
with heteroscedastic normal or Laplace measurement errors, i.e., Y = β0 + Xβ1 + Z⊤β2 + ϵ and Wj = X + σ (X)Uj for
j ∈ {1, 2}, where ϵ has a mean zero normal distribution with variance σ 2

ϵ and U1,U2 are standard normal random variables
or Laplace random variables with mean 0 and variance 1. The identifiability of this specific model can be established by
computing the first and the second moments of Y , W1 and W2 given Z and using Fourier transform. The detailed proof is
given in Appendix A.1.

3. Methodology

3.1. Estimator of the original model

The score function of the parametric model given in (1) is ∂ ln{fY |X,Z(y|x, z, β)}/∂β. If the covariate X were observed
precisely, a consistent estimate of the parameter β could be obtained by solving the sample version of

E[∂ ln{fY |X,Z(Y |X, Z, β)}/∂β] = 0.

However, since X is unobservable and onlyW1 andW2 are available, we have to rely on the conditional density of (Y ,W1,W2)
given Z,

fY ,W1,W2|Z(y, w1, w2, z, β, σ , fX |Z) =

∫
1

σ 2(x)
fY |X,Z(y|x, z, β)fU (u1)fU (u2)fX |Z(x|z)dx,

where uj = (wj − x)/σ (x), for j ∈ {1, 2}. Here the p-dimensional parameter β is of interest, and infinite-dimensional
parameters fX |Z and σ are nuisance. The ‘‘observed’’ score function with respect to β is given as

Sβ(y, w1, w2, z, β, σ , fX |Z) =

∫
{∂ fY |X,Z(y|x, z, β)/∂β}fU (u1)fU (u2)fX |Z(x|z)/σ 2(x)dx∫

fY |X,Z(y|x, z, β)fU (u1)fU (u2)fX |Z(x|z)/σ 2(x)dx
,

which is the partial derivative of the logarithm of the likelihood fY ,W1,W2|Z with respect to the parameter β. Although
E{Sβ(Y ,W1,W2, z, β, σ , fX |Z)} = 0 at the true parameter values, it is impossible to estimateβ by solving

∑n
i=1 Sβ(yi, wi1, wi2,

z, β, σ , fX |Z) = 0 directly due to the presence of the nuisance parameters.
We thus take a different approach and try to construct estimators β̂n by directly identifying the influence functions. A

regular asymptotic linear estimator β̂n can be written as

√
n (̂βn − β) = n−1/2

n∑
i=1

φ(Yi,Wi1,Wi2, Zi, β) + op(1),

where φ(Yi,Wi1,Wi2, Zi, β) is a p-dimensional zero-mean random vector referred to as the ith influence function of the
estimator β̂n. From a geometric point of view, in the original model described by (1) and (2), an influence function of a
single observation lies in the Hilbert space H of all p-dimensional zero-mean measurable functions of the observed data
with finite variance, equipped with the inner product ⟨h1, h2⟩ = E{h1

⊤(Y ,W1,W2, Z)h2(Y ,W1,W2, Z)|Z}, where h1, h2 ∈ H.
Further, influence functions belong to the linear space orthogonal to the nuisance tangent space, which is defined as the
mean squared closure of the nuisance tangent spaces of parametric sub-models spanned by the nuisance score vectors.

In the original models from (1) and (2), the nuisance space is given as Λ = ΛfX |Z + Λσ , where

ΛfX |Z = {E{a(X, Z)|Y ,W1,W2, Z} : E{a(X, Z)|Z} = 0},
Λσ = {E {V (U1,U2)b(X)|Y ,W1,W2, Z} : ∀b(X)}.

Here V (U1,U2) = f ′

U (U1)U1/fU (U1)+ f ′

U (U2)U2/fU (U2)+2, where Uj = (Wj −X)/σ (X), for j ∈ {1, 2}. The detailed proof of the
result concerning Λ is in Appendix A.2. Note that the two subspaces ΛfX |Z and Λσ are not orthogonal to each other, hence
we write the orthogonal complement of Λ as Λ⊥

= Λ⊥

fX |Z
∩ Λ⊥

σ . Here, Λ
⊥

fX |Z
is the orthogonal complement of ΛfX |Z and has

the form

Λ⊥

fX |Z
= {h(Y ,W1,W2, Z) : E{h(Y ,W1,W2, Z)|X, Z} = 0 almost everywhere},

while Λ⊥
σ is the orthogonal complement of Λσ and is given by

Λ⊥

σ = {h(Y ,W1,W2, Z) : E {h(Y ,W1,W2, Z)V (U1,U2)|X, Z} = 0 almost everywhere} .
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Even without an explicit form of Λ⊥, we can still derive the orthogonal projection of Sβ(y, w1, w2, z, β, σ , fX |Z) onto
Λ⊥. We write the orthogonal projection as Seff(y, w1, w2, z, β, σ , fX |Z) and call it the efficient score. It is obvious that the
asymptotic variance of a regular asymptotically linear estimator equals the variance of its influence function. Consequently,
the optimal estimator among a class of regular asymptotically linear estimators is the one whose influence function has the
smallest variance, which we call the efficient influence function. The efficient score directly leads to the efficient influence
function through the form

φeff(Y ,W1,W2, Z, β) = [E{Seff(Y ,W1,W2, Z, β, σ , fX |Z)⊗2
}]

−1Seff(Y ,W1,W2, Z, β, σ , fX |Z),

where a⊗2
≡ aa⊤ for any vector or matrix a, and this convention is used throughout this article. Thus, for the purpose of

constructing estimating equations, we only need to identify Seff(Y ,W1,W2, Z, β, σ , fX |Z). It is easy to verify that

Seff(Y ,W1,W2, Z, β, σ , fX |Z)
= Sβ(Y ,W1,W2, Z, β, σ , fX |Z) − E{a(X, Z)|Y ,W1,W2, Z} − E {V (U1,U2)b(X)|Y ,W1,W2, Z} ,

where a(X, Z) and b(X) are functions that satisfy

E{Sβ(Y ,W1,W2, Z, β, σ , fX |Z)|X, Z}

= E[E{a(X, Z)|Y ,W1,W2, Z}|X, Z] + E[E{V (U1,U2)b(X)|Y ,W1,W2, Z}|X, Z],

and

E{Sβ(Y ,W1,W2, Z, β, σ , fX |Z)V (U1,U2)|X, Z}

= E[E{a(X, Z)|Y ,W1,W2, Z}V (U1,U2)|X, Z] + E[E{V (U1,U2)b(X)|Y ,W1,W2, Z}V (U1,U2)|X, Z].

By the definition of a(X, Z) and b(X), it is obvious that E{Seff(Y ,W1,W2, Z, β, σ , fX |Z)|X, Z} = 0. Hence, an efficient estimator
of β can be obtained by solving the estimating equation

∑n
i=1 Seff(Y ,W1,W2, Z, β, σ , fX |Z) = 0 if we know the true σ and

fX |Z.

Remark 1. One way to ensure the identifiability of a problem is to ensure that the efficient score is not always equal to zero.
This is true as long as Λ⊥ is not a zero space. In Appendix A.3, we show this to be the case for the logistic regression model
with normal measurement errors. In other models, when a rigorous proof for identifiability is difficult to obtain, numerical
calculation of S∗

eff can provide some insights to the identifiability issue. For example, in all the simulation studies and real
data examples conducted in this work, S∗

eff is not close to zero at any arbitrary parameter values, indicating the identifiability
of the corresponding models.

An interesting discovery here is that even without knowing the true σ and fX |Z, we can still construct the estimating
equation in the same fashion after adopting a working model f ∗

X |Z. A similar observation is made in [15]. Specifically, we find
that

E{S∗

eff(Y ,W1,W2, Z, β, σ , f ∗

X |Z)|X, Z} = E∗
{S∗

eff(Y ,W1,W2, Z, β, σ , f ∗

X |Z)|X, Z} = 0,

where the superscript ∗ denotes the corresponding quantities, such as the efficient score Seff(Y ,W1,W2, Z, β, σ , fX |Z) and
the expectations, calculated with the unknown fX |Z replaced by the possibly misspecified working model f ∗

X |Z everywhere it
appears in the construction. Thus,

n∑
i=1

S∗

eff(Yi,W1i,W2i, Zi, β, σ , f ∗

X |Z) = 0

is a consistent estimating equation set.

3.2. Estimator of the approximate model

We have seen that although we have obtained Seff(Y ,W1,W2, Z, β, σ , fX |Z), it is not realistic to use it. One reason is that
it relies on the unknown conditional density function fX |Z. We have circumvented this difficulty by adopting a working
model f ∗

X |Z as in Section 3.1. The other obstacle we encounter in implementing Seff(Y ,W1,W2, Z, β, σ , fX |Z) lies in σ , and
it also holds in implementing S∗

eff(Y ,W1,W2, Z, β, σ , f ∗

X |Z). To overcome this obstacle, we propose to estimate σ (X) using
spline approximation B(X)⊤γ . If a suitable estimator γ̂ can be obtained, then we can use σ̂ (X) = B(X)⊤γ̂ in place of σ (X) to
facilitate the construction of the estimating equations using S∗

eff(Y ,W1,W2, Z, β, σ̂ , f ∗

X |Z).
To estimate γ , we consider the approximate model

fY |X,Z(y|x, z, β) and W = X + B(X)⊤γU, (3)

which allows us to estimate γ at any β. In approximate model (3), the density of the observed data conditional on Z is given
by

fa,Y ,W1,W2|Z(Y ,W1,W2, Z, β, γ, fX |Z) =

∫
fY |X,Z(y|x, z, β)fU

{
w1 − x
B(x)⊤γ

}
fU

{
w2 − x
B(x)⊤γ

}
fX |Z(x|z)

1
{B(x)⊤γ}2

dx,
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where the p-dimensional parameter β is of interest, while the dγ -dimensional parameter γ and function fX |Z are nuisance
parameters. Here and throughout the text, we use the subscript a to denote quantities pertaining to approximate model
(3). In this model, the influence functions of a single observation for regular asymptotically linear estimators of β lie in the
Hilbert spaceHa of all p-dimensional zero-mean measurable functions of observed data with finite variance, equipped with
the inner product ⟨h1, h2⟩ = Ea{h1

⊤(Y ,W1,W2, Z)h2(Y ,W1,W2, Z)|Z}, where h1, h2 ∈ Ha.
As in Section 3.1, the nuisance tangent space is Λa = Λa,fX |Z + Λa,γ , where

Λa,fX |Z = {Ea{c(X, Z)|Y ,W1,W2, Z} : Ea{c(X, Z)|Z} = 0},
Λa,γ = {Ea{V (Ua,1,Ua,2)KB(X)|Y ,W1,W2, Z} : K is a p × dγ constant matrix},

and Ua,j = (Wj − X)/{B(X)⊤γ}, for j ∈ {1, 2}. If we treat γ as part of the parameters of interest, the efficient score
for γ is the residual of the score vector for γ after projecting it on to Λa,fX |Z . Following a derivation similar to that for
Seff(Y ,W1,W2, Z, β, σ , fX |Z), the efficient score for γ is given as

Sa,eff,γ (Y ,W1,W2, Z, β, γ, fX |Z) = Sa,γ (Y ,W1,W2, Z, β, γ, fX |Z) − Ea{c(X, Z)|Y ,W1,W2, Z}, (4)

where Sa,γ (Y ,W1,W2, Z, β, γ, fX |Z) ≡ ∂ ln{fa,Y ,W1,W2|Z(Y ,W1,W2, Z, β, γ, fX |Z)}/∂γ is the score vector for γ , and c(X, Z)
satisfies

Ea{Sa,γ (Y ,W1,W2, Z, β, γ, fX |Z)|X, Z} = Ea[Ea{c(X, Z)|Y ,W1,W2, Z}|X, Z]. (5)

The detailed derivation is in Appendix A.4. We can estimate γ as a function of β through solving the estimating equations∑n
i=1 S

∗

a,eff,γ (Yi,W1i,W2i, Zi, β, γ, f ∗

X |Z) = 0, where f ∗

X |Z is the working model.
Summarizing the above methods, we describe the detailed estimation procedure for β in approximate model (3) in the

following algorithm.

Algorithm
1: Adopt a working model for fX |Z(x|z) and denote it as f ∗

X |Z(x|z).
2: Select a B-spline representation B(x)⊤γ for σ (x) with spline order r . Define the knots t−r+1 = · · · = t0 = 0 < t1 < · · · <

tN < 1 = tN+1 = · · · = tN+r , where N is the number of interior knots.
3: Solve the estimating equation for γ

n∑
i=1

S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z)

=

n∑
i=1

[S∗

a,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z) − E∗

a{c(X, Zi)|Yi,Wi1,Wi2, Zi}] = 0

to obtain γ̂(β), where c(X, Z) satisfies

Ea{S∗

a,γ (Y ,W1,W2, Z, β, γ, f ∗

X |Z)|X, Z} = Ea[E∗

a{c(X, Z)|Y ,W1,W2, Z}|X, Z]. (6)

4: Solve the estimating equation for β

n∑
i=1

S∗

eff{Yi,Wi1,Wi2, Zi, β, γ̂(β), f ∗

X |Z} =

n∑
i=1

[S∗

β{Yi,Wi1,Wi2, Zi, β, γ̂(β), f ∗

X |Z}

− E∗

a{a(X, Zi)|Yi,Wi1,Wi2, Zi} − E∗

a{V (Ua,i1,Ua,i2)b(X)|Yi,Wi1,Wi2, Zi}] = 0 (7)

to obtain β̂, where a(X, Z) and matrix b(X) satisfy

Ea[S∗

β{Y ,W1,W2, Z, β, γ̂(β), f ∗

X |Z}|X, Z]

= Ea[E∗

a{a(X, Z)|Y ,W1,W2, Z}|X, Z] + Ea[E∗

a{V (Ua,1,Ua,2)b(X)|Y ,W1,W2, Z}|X, Z], (8)

and

Ea[S∗

β{Y ,W1,W2, Z, β, γ̂(β), f ∗

X |Z}V (Ua,1,Ua,2)|X, Z]

= Ea[E∗

a{a(X, Z)|Y ,W1,W2, Z}V (Ua,1,Ua,2)|X, Z] + Ea[E∗

a{V (Ua,1,Ua,2)b(X)|Y ,W1,W2, Z}V (Ua,1,Ua,2)|X, Z].

S∗

eff{Yi,Wi1,Wi2, Zi, β, γ̂(β), f ∗

X |Z} is S
∗

eff(Yi,Wi1,Wi2, Zi, β, σ , f ∗

X |Z) with σ (Xi) replaced by B(Xi)⊤γ̂(β).

Note that all the calculations with ∗ should be conducted under the posited model f ∗

X |Z. We note that since the functions
a(X, Z) and c(X, Z) satisfy (8) and (6), they automatically satisfy E∗

a{a(X, Z)|Z} = 0, and E∗
a{c(X, Z)|Z} = 0. Hence,

E∗
a{c(X, Z)|Y ,W1,W2, Z} and E∗

a{a(X, Z)|Y ,W1,W2, Z} are indeed in Λ∗

a,fX |Z
.
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Remark 2. So far, we have assumed that there are at least two observations, W1 and W2, for each subject. Our method can
also be applied to the cases with partial replication. For the subjects with replication, we construct estimating equations
following the method given in Section 3 exactly. For the subjects that have only one W available, we simply modify our
model using one W , then construct corresponding estimating equations. A consistent estimator for θ can be obtained by
solving the two sets of estimating equations together. More details about the model with oneW are given in Appendix A.7.

4. Asymptotic properties

To facilitate the proof of the asymptotic results, we first provide a list of regularity conditions.

(C1) The true density fX |Z(x|z) at any z is a bounded function of xwith compact support.
(C2) The function σ (x) ∈ Cq([0, 1]), q > 1, is bounded with compact support.
(C3) The spline order r ⩾ q.
(C4) In B-splines approximation, let the number of interior knots N satisfy N → ∞, N−1n{ln(n)}−1

→ ∞ and Nn−1/(2q)
→

∞ as n → ∞. Let dγ denote the number of spline bases and dγ = N + r .
(C5) Let hj be the distance between the jth and (j − 1)th interior knots. Let hb = max1⩽j⩽N hj and hs = min1⩽j⩽N hj. There

exists a constant ch ∈ (0, ∞) such that hb/hs < ch. Hence, hb = O(N−1) and hs = O(N−1).
(C6) The equation set

E{S∗

eff(Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z)} = 0, E{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z)} = 0

has a unique root for θ = (β⊤, γ⊤)⊤ in the neighborhood of the true parameters θ0 = (β0
⊤, γ0

⊤)⊤. The derivatives
with respect to θ on the left-hand side are smooth functions of θ, with singular values bounded above and bounded
away from 0 in this neighborhood. Let the unique root be θ∗. Note that θ0 and θ∗ are functions of N , that is, for any
sufficiently large N; there is a unique root θ∗ in the neighborhood of θ0.

(C7) For amatrixA = (aij), denote ∥A∥∞ = maxi
∑

j |aij| and ∥A∥2 = λmax(A), whereλmax(A) represents the largest singular
value of matrix A. The following terms are integrable:

∥∂S∗

eff(yi, wi1, wi2, zi, β0, γ0, f
∗

X |Z)/∂γ0
⊤
∥∞, ∥S∗

eff(yi, wi1, wi2, zi, β0, σ , f ∗

X |Z)∥∞,

∥S∗

eff(yi, wi1, wi2, zi, β0, σ , f ∗

X |Z) {G⊤Sa,γ (yi, wi1, wi2, zi, β0, γ0, f
∗

X |Z)}
⊤
∥

∞

and

∥{G⊤Sa,γ (yi, wi1, wi2, zi, β0, γ0, fX |Z)}⊤fY ,W1,W2|Z(yi, wi1, wi2, zi, β0, σ , fX |Z)fZ(zi)∥∞,

where S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, σ , f ∗

X |Z) is defined as S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z) with B(Xi)⊤γ replaced by σ (Xi),
and G is arbitrary dγ × p matrix with ∥G∥2 = 1.

Remark3. From (C2) and (C5), there exists a dγ -dimensional spline coefficient vector γ0 such that supx∈[0,1] |B(x)⊤γ0 − σ (x)|
= O(hq

b) [5]. Note that the dimension of γ0 goes to infinity, as n → ∞.

We now establish the consistency of β̂n and γ̂n, as well as the asymptotic distribution property of β̂n. The proofs of the
following results are in Appendices A.5 and A.6.

Theorem 1. Assume that Conditions (C1)–(C6) hold. Let θ̂n satisfy

1
n

n∑
i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z) = 0,
1
n

n∑
i=1

S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z) = 0.

Then θ̂n − θ0 = op(1) element-wise.

The result in Theorem1 is used to further establish the asymptotic properties of the estimator of the parameters of interest
β̂n.

Theorem 2. Assume that Conditions (C1)–(C7) hold and let

Q ≡ E

[
∂S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)

∂β0
⊤

⏐⏐⏐⏐
B(X)⊤γ=σ (X)

]
.

Here the subscript B(X)⊤γ = σ (X) means replacing B(X)⊤γ with the true function σ (X). Then

√
n (̂βn − β0) = −Q−1 1

√
n

n∑
i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) + op(1).
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Consequently,
√
n (̂βn − β0) ⇝ N (0,V) in distribution when n → ∞, where

V = Q−1var{S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z)}(Q
−1)⊤.

In addition, if the working model f ∗

X |Z is correctly specified, i.e., if f ∗

X |Z(x|z) = fX |Z(x|z), then the estimator β̂ is semiparametric
efficient, where β̂ achieves the optimal estimation variance bound [E{Seff(Y ,W1,W2, Z, σ , fX |Z)⊗2

}]
−1.

Remark 4. Typically, estimating the nuisance parameters will alter, often inflate, the estimation variance for the parameter
of interest. However, in our construction, if we knew the true function σ (x) and used it in the estimating equation derived
in Section 3.1, the variance of the β estimation would not change, as shown in Theorem 2. In other words, the estimation of
σ (x) does not inflate the variance of β̂n asymptotically.

Remark 5. The semiparametric efficiency of our estimator β̂ relies on that the working model f ∗

X |Z is correctly specified. In
practice, the conditional density function fX |Z can be estimated consistently using B-splines approximation B(X |Z)⊤ζ. The
density function ofW1,W2 given Z is

fW1,W2|Z(w1, w2|z) =

∫
fW1|X,Z(w1|x, z)fW2|X,Z(w2|x, z)fX |Z(x|z)dx.

Since W1, W2 and Z are observable, a consistent estimator of ζ can be obtained by maximizing the log-likelihood of W1 and
W2 given Zwith respect to ζ. Specifically, the likelihood is given as

n∏
i=1

∫
fU

{
wi1 − x
σ̂ (x)

}
fU

{
wi2 − x
σ̂ (x)

}
σ̂ (x)−2B(x|zi)⊤ζdx,

where the estimated function σ̂ (x) = B(x)⊤γ̂ . One can then iteratively update the γ and ζ estimates. However, it is not clear
yet whether consistent estimation of fX |Z is sufficient to achieve efficiency in estimating β or whether a certain convergence
rate is needed. Therefore, we did not pursue this approach further.

The asymptotic covariance matrix V can be estimated using the sample version of the matrix Q and the variance of
S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z). The detailed formulation is given in Section 6.1.

5. Implementation

To simplify the implementation, instead of profiling γ as a function ofβ, we estimateβ and γ together. Let θ = (β⊤, γ⊤)⊤.
To estimate θ, we need to compute the efficient score for θ, denoted by S∗

a,eff,θ(Y ,W1,W2, Z, θ, f ∗

X |Z). This entails solving the
integral equations

Ea{S∗

a,θ(Y ,W1,W2, Z, θ, f ∗

X |Z)|X, Z} = Ea[E∗

a{a(X, Z)|Y ,W1,W2, Z}|X, Z]

to obtain a(X, Z), where

S∗

a,θ(Y ,W1,W2, Z, θ, f ∗

X |Z) ≡ ∂ ln{fa,Y ,W1,W2|Z(Y ,W1,W2, Z, θ, f ∗

X |Z)}/∂θ

is the score vector for θ. A simple approach to solving integral equations is discretization, which ismathematically equivalent
to approximating fX |Z(x|z) with a discrete distribution with mass at L points 0 < x1 < · · · < xL < 1 with the corresponding
weights d1, . . . , dL. We write

f ∗

X |Z(x|z) =

L∑
j=1

dj1(x = xj),

where dj ⩾ 0 and d1 + · · · + dL = 1.
The joint density of Y ,W1,W2 conditional on X = xj, Z = z is

fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ) = fY |X,Z(y|xj, z, β)fU
{

w1 − xj
B(xj)⊤γ

}
fU

{
w2 − xj
B(xj)⊤γ

}
1

{B(xj)⊤γ}2
.

Thus we obtain

S∗

a,β(y, w1, w2, z, θ, f ∗

X |Z) =

∑L
j=1

[
{∂ fY |X,Z(y|xj, z, β)/∂β}/fY |X,Z(y|xj, z, β)

]
fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj∑L

j=1 fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj
,

S∗

a,γ (y, w1, w2, z, θ, f ∗

X |Z) =

∑L
j=1

[
−V (uj1, uj2)B(xj)/{B(xj)⊤γ}

]
fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj∑L

j=1 fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj
,



M. Li, Y. Ma and R. Li / Journal of Multivariate Analysis 171 (2019) 320–338 327

and

E∗

a{a(X, Z)|Y ,W1,W2, Z, θ} =

∑L
j=1 a(xj, z)fa,Y ,W1,W2|X=xj,z(y, w1, w2, xj, z, θ)dj∑L

j=1 fa,Y ,W1,W2|X=xj,z(y, w1, w2, xj, z, θ)dj
, (9)

where ujk = (wk − xj)/{B(xj)⊤γ}, for j ∈ {1, . . . , L} and k ∈ {1, 2}. Note that

S∗

a,θ(y, w1, w2, z, θ, f ∗

X |Z) = {S∗

a,β(y, w1, w2, z, θ, f ∗

X |Z)
⊤, S∗

a,γ (y, w1, w2, z, θ, f ∗

X |Z)
⊤
}
⊤.

At any Z, let A(Z)(θ) be a L × Lmatrix with its (i, j) entry

A(Z)
ij (θ) =

∫ fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj∑L
j=1 fa,Y ,W1,W2|X=xj,Z(y, w1, w2, xj, z, θ)dj

fa,Y ,W1,W2|X=xi,Z(y, w1, w2, xi, z, θ)dydw1dw2.

Define H(Z)(θ) as a (p + dγ ) × Lmatrix whose ith column is given by

H(Z)
i (θ) =

∫
S∗

a,θ(y, w1, w2, z, θ, f ∗

X |Z)fY ,W1,W2|X=xi,Z(y, w1, w2, xi, z, θ)dydw1dw2.

Let a(Z) = (a(x1, z), . . . , a(xL, z)). Then we obtain H(Z)(θ) = a(Z) {A(Z)(θ)}⊤ and a(Z) = H(Z)(θ)[{A(Z)(θ)}⊤]
−1, as long as A(Z)(θ)

is nonsingular. To emphasize the dependence of the resulting a(X, Z) on θ, we write the solution as a(X, Z, θ). This allows us
to form E∗

a{a(X, Z, θ)|Y ,W1,W2, Z, θ} using (9). The resulting estimating equation for θ is thus

1
n

n∑
i=1

[
S∗

a,θ(yi, wi1, w12, zi, θ, f ∗

X |Z) − E∗

a{a(X, Zi, θ)|Yi,Wi1,Wi2, Zi, θ}
]

= 0. (10)

By solving (10), we can obtain semiparametric estimator θ̂n = (̂βn
⊤, γ̂n

⊤)⊤.

6. Empirical studies

6.1. Simulation studies

We conducted two simulation studies to investigate the finite-sample performance of the proposed method. We also
compared the results of our method with those of the method that ignores the measurement error and the method that
assumes the variance of the measurement error is constant. We set the sample size n = 1000 and generated 1000 samples
in each simulation study. The error-prone covariate Xi is generated from the uniform distribution from −2.7 to 0.7, and the
error-free covariate Zi is a Bernoulli random variable independent of Xi with success probability 0.5. Moreover, Ui1 and Ui2
are generated from independent standard normal distributions. We then formed Wik = Xi + σ (Xi)Uik, for each k ∈ {1, 2},
and i ∈ {1, . . . , n}.

We set discretization points of X to be xj = 3.4j/L − 2.7 for j ∈ {1, . . . , L} and set the working model

f ∗

X |Z(x|z) =

L∑
j=1

dj1(x = xj).

Two different working models are considered. In the first model, dj = 1/L, corresponding to a uniform working model. In
the second model,

dj =
φ{(xj + 1)/3.4}∑L
j=1 φ{(xj + 1)/3.4}

,

where φ is the density of standard normal distribution, corresponding to a normal working model.
In the first simulation study, the response Yi is generated from a logistic regression model

logit{Pr(Yi = 1|Xi, Zi)} = β0 + β1Xi + β2Zi,

with true values β = (β0, β1, β2)⊤ = (0.5, 0.2, −0.2)⊤ and the true σ (Xi) = (X2
i + 3)/13.5. We used quadratic splines

with six interior knots to approximate σ (x) and set L to be 20. We computed the sample mean and standard deviation of the
estimates β̂n over 1000 data sets and estimated the asymptotic covariancematrix using sandwich formula V̂ = Q̂−1Σ̂(̂Q−1)⊤,
where

Q̂ =
1
n

n∑
i=1

∂

∂β̂n
⊤

S∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z),
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Table 1
Results of the first simulation study.

β0 β1 β2
Truth 0.5 0.2 −0.2

No measurement error

Mean 0.4858 0.1869 −0.1970
Emp sd 0.1193 0.0629 0.1341
Est sd 0.1115 0.0630 0.1281
Emp cov 93.2% 94.0% 94.7%

β0 β1 β2 β0 β1 β2
Truth 0.5 0.2 −0.2 0.5 0.2 −0.2

Homoscedastic measurement error

Uniform working model Normal working model

Mean 0.5049 0.2058 −0.1970 0.5049 0.2058 −0.1970
Emp sd 0.1220 0.0678 0.1355 0.1220 0.0678 0.1355
Est sd 0.6240 0.1844 0.8492 0.6484 0.1914 0.8875
Emp cov 96.2% 90.3% 96.6% 96.4% 90.6% 96.6%

Heteroscedastic measurement error

Uniform working model Normal working model

Mean 0.5024 0.2038 −0.1948 0.5032 0.2043 −0.1954
Emp sd 0.1183 0.0665 0.1317 0.1180 0.0668 0.1318
Est sd 0.1149 0.0680 0.1283 0.1149 0.0680 0.1283
Emp cov 95.3% 95.3% 94.8% 94.7% 95.0% 94.9%

In Table 1, ‘‘emp sd’’ denotes the empirical standard deviation of the estimates, ‘‘est sd’’ denotes the estimated asymptotic standard deviation and ‘‘emp
cov’’ denotes the empirical coverage of the estimated 95% confidence intervals.

and

Σ̂ =
1
n

n∑
i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z)S
∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z)
⊤.

Further, 95% confidence intervals for β0, β1, β2 are constructed in each simulated data set based on the asymptotic normal
distribution of β̂n to compute the empirical percentage covering the true values. We compared the results of our method
with those of the naive logistic regression method, which ignores the measurement error and existing estimating equation
method, which incorrectly assumes a constant error variance, i.e., W = X + σU , σ > 0. The estimating equations are
constructed based on efficient scores that are derived by treating σ as a nuisance parameter and adopting working model
f ∗

X |Z(x|z). The results of the first simulation study are summarized in Table 1, where median of the estimated standard
deviation was reported as ‘‘est sd’’.

In the second method assuming homoscedastic measurement error, the estimated standard deviation of measurement
error is σ̂ = 0.4066 under both uniform and normal working models. Fig. 1 shows the performance of the B-spline
approximation of the nuisance function σ (x) of our method under different working models of fX |Z(x|z). The solid line
represents the true function σ (x), while the three dashed lines represent the 1/4, 1/2 and 3/4 sample quantiles of the
estimated function B(x)⊤γ̂n. Note that the median curve is almost overlapping with the true σ (x).

Following the comment of a referee, we also experimentedwith heteroscedastic Laplacemeasurement errors. The results
are given in Table 2 and Fig. 2. The performance of our method is still satisfactory.

In the second simulation study, we consider a relatively more complex model, where σ (Xi) = 0.4 exp{−0.15(Xi + 1)2}.
We generate the response Yi from a quadratic logistic regression model, viz.

logit{Pr(Yi = 1|Xi, Zi)} = β0 + β1Xi + β2X2
i + β3Zi,

with true values for β = (β0, β1, β2, β3)⊤ = (−0.8, 0.5, 0.2, 2.0)⊤. We used similar working distribution models f ∗

X |Z (x|z)
with L = 20. A quadratic spline with seven knots was used to approximate the nuisance function σ (x). The results of the
three different methods in the second simulation study are summarized in Table 3.

In the second method, the estimated standard deviation of the measurement error is σ̂ = 0.3514 under both uniform
and normal working models, while Fig. 3 shows the performance of the B-splines approximation of the standard deviation
function σ (x) of the measurement error under different working models in our method.

In the simulation studies, our method performs well in both the simple and the complex model settings. The estimates
have very small biases, the median of estimated standard deviations closely approximate the empirical standard deviations,
and the empirical coverages of the estimated 95% confidence interval are close to the nominal level. Further, the results
of using different working models are similar in both simulations, which suggests the insensitivity of our method to the
misspecification of fX |Z(x|z). We also see that ignoring the measurement error or incorrectly assuming homoscedastic
measurement error can cause bias issues in estimation, especially the estimation of the coefficients associated with the
unobservable covariate, and affect the quality of influence.
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Fig. 1. Performance of the B-splines approximation of σ (x) under two working models of fX |Z in the first simulation study.

Table 2
Results of the first simulation study with heteroscedastic Laplace measurement errors.

β0 β1 β2
Truth 0.5 0.2 −0.2

No measurement error

Mean 0.4906 0.1852 −0.2046
Emp sd 0.1130 0.0619 0.1252
Est sd 0.1117 0.0631 0.1281
Emp cov 95.2% 94.6% 95.4%

β0 β1 β2 β0 β1 β2
Truth 0.5 0.2 −0.2 0.5 0.2 −0.2

Homoscedastic measurement errors

Uniform working model Normal working model

Mean 0.5054 0.2088 −0.2056 0.5053 0.2088 −0.2054
Emp sd 0.1168 0.0703 0.1298 0.1172 0.0703 0.1302
Est sd 0.1521 0.0553 0.1675 0.1518 0.0557 0.1705
Emp cov 93.8% 80.6% 93.9% 93.3% 80.1% 93.9%

Heteroscedastic measurement error

Uniform working model Normal working model

Mean 0.5051 0.2037 −0.2046 0.5042 0.2035 −0.2041
Emp sd 0.1168 0.0677 0.1303 0.1162 0.0675 0.1298
Est sd 0.1147 0.0675 0.1282 0.1147 0.0675 0.1282
Emp cov 94.7% 94.9% 94.2% 95.0% 95.0% 94.3%

In Table 2, ‘‘emp sd’’ denotes the empirical standard deviation of the estimates, ‘‘est sd’’ denotes the estimated asymptotic standard deviation and ‘‘emp
cov’’ denotes the empirical coverage of the estimated 95% confidence intervals.

6.2. Data analysis

In this section, we illustrate ourmethod by analyzing the data from the Childhood AsthmaManagement Program (CAMP).
CAMP is a longitudinal study designed to explore the long-term impact of several daily treatments for mild to moderate
asthma in children.

We formed the outcome variable Yi based on the average asthma symptoms (amsym) recorded in daily record of eight
months. amsym is a binary variable indicating the severity of the asthma symptoms for a child (indexed by i). If the average
amsym is greater than 0.5, then the outcome variable Yi equals 1, implying moderate asthma symptoms. Otherwise, the
outcome variable Yi equals 0, implying mild asthma. The FEV1/FVC ratio (preff) is an important index used in diagnosis of
asthma, which represents the proportion of a person’s vital capability to expire in the first second of forced expiration to the
full vital capacity. Four measurements of preffwere recorded during the 8-month study for each child.

We letXi be the unobservedpreff andWi be the average of fourmeasurementswith heteroscedasticmeasurement error.
Other error-free variables Zi are gender, age at baseline, and treatment group. Three treatment groups were included in the
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Fig. 2. Performance of the B-splines approximation of σ (x) under two working models of fX |Z in the first simulation study with heteroscedastic Laplace
measurement errors.

Table 3
Results of the second simulation study.

β0 β1 β2 β3
Truth −0.8 0.5 0.2 2.0

No measurement error

Mean −0.8201 0.4172 0.1611 2.0107
Emp sd 0.1236 0.1648 0.0749 0.1436
Est sd 0.1206 0.1675 0.0756 0.1441
Emp cov 94.3% 92.8% 91.8% 94.1%

β0 β1 β2 β3 β0 β1 β2 β3
Truth −0.8 0.5 0.2 2.0 −0.8 0.5 0.2 2.0

Homoscedastic measurement error

Uniform working model Normal working model

Mean −0.8042 0.5294 0.2143 2.0151 −0.8042 0.5294 0.2144 2.0151
Emp sd 0.1263 0.2133 0.0998 0.1447 0.1263 0.2133 0.0998 0.1447
Est sd 0.9700 0.7301 0.1419 1.1875 1.0717 0.7767 0.1555 1.2770
Emp cov 95.6% 92.1% 83.2% 99.8% 95.7% 91.9% 83.6% 99.8%

Heteroscedastic measurement error

Uniform working model Normal working model

Mean −0.8047 0.5097 0.2044 2.0132 −0.8045 0.5109 0.2050 2.0136
Emp sd 0.1220 0.1990 0.0915 0.1436 0.1223 0.2004 0.0930 0.1420
Est sd 0.1249 0.2105 0.0970 0.1453 0.1249 0.2112 0.0973 0.1452
Emp cov 96.4% 96.3% 96.5% 94.8% 96.1% 96.4% 96.6% 94.9%

In Table 3, ‘‘emp sd’’ denotes the empirical standard deviation of the estimates, ‘‘est sd’’ denotes the estimated asymptotic standard deviation and ‘‘emp
cov’’ denotes the empirical coverage of the estimated 95% confidence intervals.

study, and we coded them using two dummy variables trt1 and trt2, where trt1 = 1 if the treatment is budesonide,
trt2 = 1 if the treatment is nedocromil, and trt1 = trt2 = 0 if the treatment is placebo.

The data set consisted of 737 children for whom (Yi,Wi, Zi) were measured. We considered the linear logistic regression
model with heteroscedastic measurement error on Xi, viz.

logit{Pr(Yi = 1|Xi, Yi)} = β0 + βxXi + βzZi and Wi = Xi + σ (Xi)Ui,

where βz = (βz1, βz2, βz3, βz4)⊤, Zi is a vector of gender, age, trt1, trt2 for the ith child and Ui ∼ N (0, 1). We used a
uniform working model for the distribution of X and adopted L = 20 discretization points in the implementation. We used
quadratic splines with 6 knots to approximate σ (X).

We further compared the results from our analysis with those of the ‘‘naive’’ logistic regression method, which ignores
the existence of measurement error, and the estimating equations approach, which treats the measurement error variance
as constant. The results from all three methods are summarized in Table 4. In the second method which assumes constant
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Fig. 3. Performance of the B-splines approximation of σ (x) under two working models of fX |Z in the second simulation study.

Table 4
Analysis of the CAMP data under uniform working model.

β0 βx βz1 βz2 βz3 βz4
intercept preff gender age trt1 trt2

No measurement error

Est 0.3282 −2.8035 0.3774 0.0537 −0.7794 −0.3251
Est sd 0.5222 0.5297 0.1737 0.0411 0.2099 0.1978
p-value 0.5297 1.2e − 07 0.0298 0.1920 0.0002 0.1001

Homoscedastic measurement error

Est 0.4424 −2.9674 0.3859 0.0501 −0.7725 −0.3248
Est sd 0.4247 0.3518 3.8812 0.3296 0.5025 5.2613
p-value 0.2975 0.0000 0.9208 0.8791 0.1242 0.9508

Heteroscedastic measurement error

Est 0.4224 −2.9397 0.3846 0.0507 −0.7741 −0.3248
Est sd 0.1776 0.2655 3.2765 0.2263 0.4010 3.8781
p-value 0.0174 0.0000 0.9066 0.8226 0.0861 0.9332

measurement error variance, the estimated standard deviation is σ̂ = 0.0753. The estimated heteroscedastic error standard
deviation function σ̂ (x) in the third method is given in Fig. 4.

In the naive logistic regression model that ignores the measurement error, besides the error-prone variable preff, we
also detect variables gender and trt1 to significantly influence the severity of asthma at the significance level α = 0.05. In
the second and third methods considering measurement errors, only the error-prone variable preff is significant, with the
same sign and slightly greater absolute value as the estimate. The variable trt1 is almost significant with p-value < 0.1 in
the heteroscedastic measurement error model, but gender is not significant at all. This difference indicates that ignoring the
measurement error could lead to misleading results. Further, the B-spline approximation of σ (x) fluctuates with respect to
x and is not always close to σ̂ . Hence the assumption about constant measurement error variance may be too restrictive for
this data set. From Fig. 4, we can see that when x is close to 0 or 1, the measurement error variance tends to be larger.

We also tried using a normal working model for the distribution of X in the second and third methods. The esti-
mates β̂ are almost the same as those under the uniform working model. Specifically, with the normal working model,
in the second method β̂ = (0.4435,−2.9689, 0.3860, 0.0501, −0.7725, −0.3248), while in the third method β̂ =

(0.4244, −2.9416, 0.3847, 0.0507, 0.7741, −0.3248). However, due to the near singularity of the matrix Q̂ in the sandwich
formula, the inference results are inaccurate, so we did not pursue the normal working mode further.

7. Discussion

In this paper, we proposed a newmethod in the area of generalmeasurement errormodel with heteroscedastic error. The
method can be applied to any parametric model with an unspecified heteroscedastic measurement error variance structure.
We have assumed the distribution of the error U to be known, but not restricted to the normal distribution. In practice, the
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Fig. 4. B-spline approximation of σ (x) under uniform working model.

density fU (u) needs to be determined using external information such as validation data. If fU (u) cannot be determined, one
may be able to approximate it with fU (u) ≈ exp{B(u)⊤α}/

∫
exp{B(v)⊤α}dv and estimate α together with other parameters,

provided that the problem is still identifiable. The identifiability issue in this case is difficult and warrants further research.
Overall, identifiability in measurement error models is difficult and is often established case by case. We have proved the
identifiability of the linear model with heteroscedastic normal and Laplace measurement errors rigorously. We have also
shown the identifiability of β for a logistic model with heteroscedastic normal measurement errors. In addition, fX |Z(x|z) is
estimable [14]. Then σ (X) is identifiable based onW1 −W2 = σ (X)(U1 −U2), where the distribution ofW1 −W2 is estimable
and the distribution of U1 − U2 is known. Therefore, the whole problem for the logistic model with heteroscedastic normal
measurement errors is identifiable.

We have assumed that the unobservable covariate X is a scalar for simplicity of presentation. If there is more than
one unobservable covariate X = (X1, . . . , Xm) in the model and the measurement Wj given Xj is independent of other
unobservable covariates, conceptually we can use B(Xj)⊤γ j to approximate the jth unknown function σj(Xj), then append the
estimating equations with these additional estimating equations obtained from the corresponding score functions for γ j, for
j ∈ {1, . . . ,m}. The computationmay bemore challenging. Additionally, for simplicity, we used B(X)⊤γ to approximate σ (X)
in our implementation. To ensure positivity of σ (X), we could instead use exp {B(X)⊤γ} to approximate σ (X). The theoretical
properties of β̂n would not change.

More generally, we would like to point out that multiple roots is a potential issue for estimating equations approaches.
Choosing the correct estimator from multiple roots of the estimating equations may not be straightforward. Heyde and
Morton [11] invented a criteria to discriminate the consistent estimator from multiple roots of estimating equations. More
discussion can be found in [9] and Section 13.3 of [10]. In practice, using empirical knowledge or using estimates frommore
primitive but simpler methods to form starting values for our method can be a sensible option.
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Appendix

A.1. Proof of the identifiability of the linear measurement error model

Computing the first and second order moments of Y , W1 andW2 given Z , we have

E(Y |Z) = β0 + β1E(X |Z) + Z⊤β2, E(W1|Z) = E(X |Z),
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var(Y |Z) = β2
1var(X |Z) + σ 2

ϵ , var(W1 + W2|Z) = 4var(X |Z) + 2E{σ 2(X)|Z},

var(W1 − W2|Z) = 2E{σ 2(X)|Z}, cov(W1, Y |Z) = β1var(X |Z).

From the above equations, we get var(X |Z) = {var(W1 + W2|Z) − var(W1 − W2|Z)}/4, hence var(X |Z) is identifiable.
Subsequently, we have β1 = 4cov(W1, Y |Z)/{var(W1 + W2|Z) − var(W1 − W2|Z)}, hence β1 is also identifiable. From

σ 2
ϵ = var(Y |Z) − β2

1var(X |Z) = var(Y |Z) −
4cov2(W1, Y |Z)

var(W1 + W2|Z) − var(W1 − W2|Z)
,

we obtain the identifiability of σ 2
ϵ . Further, we have

β0 + Z⊤β2 = E(Y |Z) − β1E(X |Z) = E(Y |Z) −
4cov(W1, Y |Z)E(W1|Z)

var(W1 + W2|Z) − var(W1 − W2|Z)
.

Then

β0 = E(Y |Z = 0) −
4cov(W1, Y |Z = 0)E(W1|Z = 0)

var(W1 + W2|Z = 0) − var(W1 − W2|Z = 0)
,

β2 = {E(ZZ⊤)}−1E
{
ZE(Y |Z) −

4Zcov(W1, Y |Z)E(W1|Z)
var(W1 + W2|Z) − var(W1 − W2|Z)

− β0Z
}

.

Therefore, β0 and β2 are also identifiable.
Having obtained the identifiability of β0, β1, β2 and σϵ , we proceed to prove the identifiability of the unknown function

σ (x) and the conditional density fX |Z(x|z). We first consider the normal measurement errors. Given the observed data
(Y ,W1,W2, Z) and the identifiability of β0, β1, β2 and σϵ , assume the model is still not identifiable. Then, there exist
{σ (x), fX |Z(x|z)} and {σ̃ (x), f̃X |Z(x|z)} that satisfy∫

+∞

−∞

fY |X,Z(y|x, z, β0, β1, β2, σϵ)fU

{
w1 − x
σ (x)

}
fU

{
w2 − x
σ (x)

}
fX |Z(x|z)

1
σ 2(x)

dx

=

∫
+∞

−∞

fY |X,Z(y|x, z, β0, β1, β2, σϵ)fU

{
w1 − x
σ̃ (x)

}
fU

{
w2 − x
σ̃ (x)

}
f̃X |Z(x|z)

1
σ̃ 2(x)

dx. (A.1)

We rewrite (A.1) as a convolution, viz.

g ◦ h =

∫
+∞

−∞

g(y − t)h(t)dt =

∫
+∞

−∞

g(y − t )̃h(t)dt = g ◦ h̃,

where t = β0 + xβ1 + z⊤β2,

g(y − t) = exp
{
−

(y − t)2

2σ 2
ϵ

}
,

h(t) = exp
[
−

{w1 − (t − β0 − z⊤β2)/β1}
2
+ {w2 − (t − β0 − z⊤β2)/β1}

2

2σ 2{(t − β0 − z⊤β2)/β1}

]
fX |Z {(t − β0 − z⊤β2)/β1|z}
β1σ 2{(t − β0 − z⊤β2)/β1}

,

h̃(t) = exp
[
−

{w1 − (t − β0 − z⊤β2)/β1}
2
+ {w2 − (t − β0 − z⊤β2)/β1}

2

2σ̃ 2{(t − β0 − z⊤β2)/β1}

]
f̃X |Z {(t − β0 − z⊤β2)/β1|z}
β1σ̃ 2{(t − β0 − z⊤β2)/β1}

.

By the convolution theorem of Fourier transforms, we have F(g)F(h) = F(g)F (̃h), then F(h) = F (̃h). Hence h(t) = h̃(t) for
any t ∈ R via the inverse Fourier transformation. Because w1, w2 can be any values, this directly leads to σ (x) = σ̃ (x) and
fX |Z(x|z) = f̃X |Z(x|z).

For Laplace measurement errors, we have

h(t) = exp
[
−

|w1 − (t − β0 − z⊤β2)/β1| + |w2 − (t − β0 − z⊤β2)/β1|
√
1/2σ {(t − β0 − z⊤β2)/β1}

]
fX |Z {(t − β0 − z⊤β2)/β1|z}
β1σ 2{(t − β0 − z⊤β2)/β1}

,

h̃(t) = exp
[
−

|w1 − (t − β0 − z⊤β2)/β1| + |w2 − (t − β0 − z⊤β2)/β1|
√
1/2σ̃ {(t − β0 − z⊤β2)/β1}

]
f̃X |Z {(t − β0 − z⊤β2)/β1|z}
β1σ̃ 2{(t − β0 − z⊤β2)/β1}

.

Note that σ (x) > 0 and σ̃ (x) > 0 for any x. Similar to the proof of normal measurement errors, we have σ (x) = σ̃ (x) and
fX |Z(x|z) = f̃X |Z(x|z). This completes the proof of the identifiability of all components in the model. □

A.2. The derivation of nuisance tangent space

For a parametric model, the nuisance tangent space is the linear space in H spanned by the nuisance score vector. For
semiparametric models, in which the nuisance parameter is infinite-dimensional, the nuisance tangent space is defined as
themean squared closure of all parametric submodel nuisance tangent spaces. The parametric submodel is a true parametric
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model contained in the semiparametricmodel. In our originalmodels (1) and (2), the nuisance score vector for the parametric
submodel fX |Z(x|z, ξ1) is

SfX |Z (Y ,W1,W2, Z, β, σ , ξ1) =

∫ [
{∂ fX |Z(x|z, ξ1)/∂ξ1}/fX |Z(x)

]
fY ,W1,W2,X |Z(y, w1, w2, x, z, β, σ , ξ1)dx∫

fY ,W1,W2,X |Z(y, w1, w2, x, z, β, σ , ξ1)dx

= E
{

∂

∂ξ1
fX |Z(X |Z, ξ1)

1
fX |Z(X |Z, ξ1)

⏐⏐⏐⏐Y ,W1,W2, Z
}

,

where E[{∂ fX |Z(x|z, ξ1)/∂ξ1}/fX |Z(x|z, ξ1)|Z] = 0. Thus the nuisance tangent spacewith respect to fX |Z isΛfX |Z = {E{a(X, Z)|Y ,

W1,W2, Z} : E{a(X, Z)|Z} = 0}. Similarly, the nuisance score vector for the parametric submodel σ (x, ξ2) is given as

Sσ (Y ,W1,W2, Z, β, ξ2, fX |Z) =

∫
−V (u1, u2)[{∂σ (x, ξ2)/∂ξ2}/σ (x, ξ2)]fY ,W1,W2,X |Z(y, w1, w2, x, z, β, ξ2, fX |Z)dx∫

fY ,W1,W2,X |Z(y, w1, w2, x, z, β, ξ2, fX |Z)dx

= E
{
−V (U1,U2)

∂

∂ξ2
σ (X, ξ2)

1
σ (X, ξ2)

⏐⏐⏐⏐Y ,W1,W2, Z
}

,

where ∂ ln{σ (x, ξ2)}/∂ξ2 can be any function of x. Thus the nuisance tangent space with respect to σ is Λσ = {E{V (U1,U2)
b(X)|Y ,W1,W2, Z} : ∀b(X)}. It is easy to verify that E{V (U1,U2)} = 0. Since U is independent of X and Z, E{V (U1,U2)b(X)|Z}

= E[E{V (U1,U2)|X, Z}b(X)|Z] = 0 for arbitrary b(X). Thus

E {V (U1,U2)b(X)|Y ,W1,W2, Z} ∈ H.

A.3. Nontrivial orthogonal complement of the nuisance tangent space for logistic model with heteroscedastic normalmeasurement
errors

Following the proof in [15], if we can find a nonzero function h(Y ,W1,W2, Z) such that E{h(Y ,W1,W2, Z)|X, Z} = 0 and
E{h(Y ,W1,W2, Z)V (U1,U2)|X, Z} = 0, simultaneously, then the orthogonal complement of the nuisance tangent space is
nontrivial. Hence, the root-n estimators exist, which means the parameters are estimable and the problem is identifiable.

Consider the logistic regression model logit Pr(Y = 1|X, Z) = β0 + β1X + β2Z , and W = X + σ (X)U , where U is
standard normal. Since Y is binary, any function of Y , W1, W2, Z can be written as h(Y ,W1,W2, Z) = Yh1(W1,W2, Z) −

h2(W1,W2, Z). Since Y and Wj are conditionally independent given X and Z for j ∈ {1, 2}, then E{h(Y ,W1,W2, Z)|X, Z} =

E(Y |X, Z)E{h1(W1,W2, Z)|X, Z} − E{h2(W1,W2, Z)|X, Z}. The conditional expectation E{h(Y ,W1,W2, Z)|X, Z} = 0, if

E{h1(W1,W2, Z)|X, Z} = {1 + exp(−β0 − β1X − β2Z)}E{h2(W1,W2, Z)|X, Z}.

When the conditional distribution of Wj given X = x, Z = z is N [x, σ 2(x)] for j ∈ {1, 2}, then standard calculations for
normal densities yield

E{exp(β1W )|X, Z} = exp(β1X) exp{β2
1σ

2(X)/2}.

Further, since U1 and U2 are independent, thenW1 − W2 given X = x and Z = z is N [0, 2σ 2(x)]. Similarly, we have

E[exp{β1(W1 − W2)/
√
2}|X, Z] = exp{β2

1σ
2(X)/2}.

Let h2(W1,W2, Z) = exp(β0 + β2Z) exp(β1W1). Then

E{h1(W1,W2, Z)|X, Z} = E{h2(W1,W2, Z)|X, Z} + exp{β2
1σ

2(X)/2}.

Hence, a nontrivial solution exists by choosing h1(W1,W2, Z) = h2(W1,W2, Z)+exp{β1(W1−W2)/
√
2}. It can be verified that

this nontrivial solution h(Y ,W1,W2, Z) also satisfies E{h(Y ,W1,W2, Z)V (U1,U2)|X, Z} = 0 based on standard calculations.
Therefore, the orthogonal complement of the nuisance tangent space is nontrivial and β = (β0, β1, β2) is identifiable.

A.4. The derivation of Sa,eff,γ (Y ,W1,W2, β, γ, fX |Z)

To estimate γ at each β in the approximate model (3), we treat β, γ as parameters of interest and fX |Z as a nuisance. The
nuisance tangent space is

Λa,fX |Z = {Ea{c(X, Z)|Y ,W1,W2, Z} : Ea{c(X, Z)|Z} = 0},

and its orthogonal complement is

{h(Y ,W1,W2, Z) : Ea{h(Y ,W1,W2, Z)|X, Z} = 0 almost surely}.

The score vector for γ is easily verified to be

Sa,γ (y, w1, w2, z, β, γ, fX |Z) =

∫
−V (ua,1, ua,2)/{B(x)⊤γ}fa,Y ,W1,W2,X |Z(y, w1, w2, x, Z, β, γ, fX |Z)B(x)dx∫

fa,Y ,W1,W2,X |Z(y, w1, w2, x, Z, β, γ, fX |Z)dx
.

Therefore the efficient score Sa,eff,γ is the projection of Sa,γ onto the orthogonal complement of the nuisance tangent space
and is easily verified to be as in (4), where c(X, Z) satisfies (5).
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A.5. Proof of Theorem 1

By the definitions of S∗

eff(Yi,Wi1,Wi2, Zi, β, σ , f ∗

X |Z) and S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z), we have

E{S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z)|X, Zi} = 0 and Ea{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β0, γ0, f
∗

X |Z)|X, Zi} = 0.

Then the non-conditional expectations also equal 0 almost everywhere, i.e.,

E{S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z )} = 0 and Ea{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β0, γ0, f
∗

X |Z)} = 0.

This leads to

E{S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ0, f
∗

X |Z)} = op(1) and E{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β0, γ0, f
∗

X |Z)} = op(1),

element-wise by Remark 3. Condition (C6) ensures that as a vector function of θ,

(E{S∗

eff(Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z)}
⊤, E{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ, f ∗

X |Z)}
⊤)⊤

is invertible near θ∗ and the first derivative of the inverse function is bounded in the neighborhood of its zero. Therefore,
∥θ∗

− θ0∥2 = op(1). Moreover, since

1
n

n∑
i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z) = 0 and
1
n

n∑
i=1

S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z) = 0,

we have

E{S∗

eff(Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z)} = o(1) and E{S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β̂n, γ̂n, f
∗

X |Z)} = o(1)

element-wise. Using the same argument, we obtain ∥̂θn − θ∗
∥2 = op(1). Hence ∥̂θn − θ0∥2 = op(1). This concludes the proof

of Theorem 1. □

A.6. Proof of Theorem 2

To prove asymptotic normality, we first expand the estimating function (7) as a function of β about β0 keeping function
γ̂n(β) fixed, to obtain T1 + T2 (̃βn)

√
n (̂βn − β0) = 0, where

T1 =
1

√
n

n∑
i=1

S∗

eff{Yi,Wi1,Wi2, Zi, β0, γ̂n(β0), f
∗

X |Z} and T2(β) = T21(β) + T22(β)
∂

∂β
γ̂n(β).

Here

T21(β) =
1
n

n∑
i=1

∂

∂β⊤
S∗

eff(Yi,Wi1,Wi2, Zi, β, γ̂n, f
∗

X |Z)

and

T22(β) =
1
n

n∑
i=1

∂

∂ γ̂n(β)⊤
S∗

eff{Yi,Wi1,Wi2, Zi, β, γ̂n(β), f
∗

X |Z},

and β̃n is on the line connecting β0 and β̂n. Since γ̂n(β) satisfies n−1 ∑n
i=1 S

∗

a,eff,γ {Yi,Wi1,Wi2, Zi, β, γ̂n(β), f
∗

X |Z} = 0 for any
β,

1
n

n∑
i=1

∂

∂β⊤
S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ̂n, f
∗

X |Z) +
1
n

n∑
i=1

∂

∂ γ̂n(β)⊤
S∗

a,eff,γ {Yi,Wi1,Wi2, Zi, β, γ̂n(β), f
∗

X |Z}
∂

∂β⊤
γ̂n(β) = 0.

Then ∂ γ̂n(β)/∂β⊤
= −{T23(β)}−1T24(β), where

T23(β) =
1
n

n∑
i=1

∂

∂ γ̂n(β)⊤
S∗

a,eff,γ {Yi,Wi1,Wi2, Zi, β, γ̂n(β), f
∗

X |Z}

and

T24(β) =
1
n

n∑
i=1

∂

∂β⊤
S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β, γ̂n, f
∗

X |Z).
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Hence T2 (̃βn) = T21 (̃βn) − T22 (̃βn) {T23 (̃βn)}−1T24 (̃βn). We further expand T1 as a function of γ̂n(β0) about γ0(β0) to obtain
T1 = T11 + T12 {̃γn(β0)}

√
n {̂γn(β0) − γ0(β0)}, where

T11 =
1

√
n

n∑
i=1

S∗

eff{Yi,Wi1,Wi2, Zi, β0, γ0(β0), f
∗

X |Z}

and

T12 {γ(β0)} =
1
n

n∑
i=1

∂

∂γ(β0)⊤
S∗

eff{Yi,Wi1,Wi2, Zi, β0, γ(β0), f
∗

X |Z},

and γ̃n(β0) is a value between γ̂n(β0) and γ0(β0).
By the consistency of B(x)⊤γ̃n to σ (x), for arbitrary dγ × p matrix Gwith ∥G∥2 = 1, we have

T12 {̃γn(β0)}G = E

{
∂

∂γ⊤
S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)G
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
{1 + op(1)},

where

E

{
∂

∂γ⊤
S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)G
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}

=

∫ {
∂

∂γ⊤
S∗

eff(yi, wi1, wi2, zi, β0, γ, f ∗

X |Z)G
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
×

fY |W1,W2,Z(yi, wi1, wi2, zi, β0, σ , fX |Z)fZ(zi)dyidwi1dwi2dzi.

By Remark 3, the latter is equal to∫ {
∂

∂γ0
⊤

S∗

eff(yi, wi1, wi2, zi, β0, γ0, f
∗

X |Z)G + Op(h
q
b)

}
×

{
fa,Y ,W1,W2|Z(yi, wi1, wi2, zi, β0, γ0, fX |Z)fZ(zi) + Op(h

q
b)

}
dyidwi1dwi2dzi

Given that ∥∂S∗

eff(yi, wi1, wi2, zi, β0, γ0, f
∗

X |Z)/∂γ0
⊤
∥∞ is integrable by condition (C7) and in view of the fact that fa,Y ,W1,W2|Z

(yi, wi1, wi2, zi, β0, γ0, fX |Z)fZ(zi) is absolutely integrable, the latter expression is also equal to∫
∂

∂γ0
⊤

S∗

eff(yi, wi1, wi2, zi, β0, γ0, f
∗

X |Z)G × fa,Y ,W1,W2|Z(yi, wi1, wi2, zi, β0, γ0, fX |Z)fZ(zi)dyidwi1dwi2dzi + Op(h
q
b).

Calling again on Remark 3, we can rewrite this expression as
∂

∂γ0
⊤

∫
{S∗

eff(yi, wi1, wi2, zi, β0, σ , f ∗

X |Z) + OP (h
q
b)}G ×

{fY ,W1,W2|Z(yi, wi1, wi2, zi, β0, σ , fX |Z)fZ(zi) + Op(h
q
b)}dyidwi1dwi2dzi

−

∫
{S∗

eff(yi, wi1, wi2, zi, β0, σ , f ∗

X |Z) + OP (h
q
b)}G

×
∂

∂γ0
⊤

fa,Y ,W1,W2|Z(yi, wi1, wi2, zi, β0, γ0, fX |Z)fZ(zi)dyidwi1dwi2dzi + OP (h
q
b)

Given that E{S∗

eff(Yi,Wi1,Wi2, Zi, β, σ , f ∗

X |Z)} = 0, this expression reduces to

−

∫
S∗

eff(yi, wi1, wi2, zi, β0, σ , f ∗

X |Z) {G⊤Sa,γ (yi, wi1, wi2, zi, β0, γ0, fX |Z)}⊤ ×

×fY ,W1,W2|Z(yi, wi1, wi2, zi, β0, σ , fX |Z)fZ(zi)dyidwi1dwi2dzi + Op(h
p
b) = Op(h

q
b).

For the last equality, first note that for any p × dγ matrix K, there exists a function b(X) such that KB(X) = b(X). Then by
Remark 3 and the definitions of Λσ and Λa,γ , for any dγ × pmatrix G, there exists a function g(Yi,Wi1,Wi2, Zi, β0, σ ) ∈ Λσ

such that

sup
X

|G⊤Sa,γ (Yi,Wi1,Wi2, Zi, β0, γ0, fX |Z) − g(Yi,Wi1,Wi2, Zi, β0, σ )| = Op(h
q
b).

Further, S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) is orthogonal to any function in Λσ , thus the last equality holds. Hence, we obtain
∥T12 {̃γ(β0)}∥2 = Op(h

q
b).

Based on the asymptotic results of Proposition 4 in [12], we have ∥̂γn(β0) − γ0(β0)∥2 = Op{(nhb)−1/2
}. Then we have

∥T12 {̃γn(β0)}
√
n {̂γn(β0) − γ0(β0)}∥2 = Op(h

q−1/2
b ).
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Further, by Remark 3 we have

T11 = n−1/2
n∑

i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) + Op(n1/2hq
b).

Given that hq−1/2
b = op(n1/2hq

b), we have

T1 = n−1/2
n∑

i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) + Op(n1/2hq
b).

Note that n1/2hq
b = op(1) by conditions (C4) and (C5).

Now consider T2 (̃βn). By the consistency of β̃n to β0 and B(x)⊤γ̂n to σ (x), we have

T21 (̃βn) = E

{
∂

∂β0
⊤

S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
{1 + op(1)}

and

T24 (̃βn) = E

{
∂

∂β0
⊤

S∗

a,eff,γ (Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
{1 + op(1)}.

We also have

T22 (̃βn) = E

{
∂

∂γ⊤
S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
{1 + op(1)}.

We have already proved that E[{∂S∗

eff(Yi,Wi1,Wi2, β0, γ, f ∗

X |Z)/∂γ⊤
}G|B(X)⊤γ=σ (X)] = Op(h

q
b) element-wise for any arbitrary

dγ × pmatrix Gwith ∥G∥2 = 1 by showing that for any dγ × pmatrix G, there exists a function g ∈ Λσ , which is orthogonal
to S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z), such that supX |G⊤Sa,γ (Yi,Wi1,Wi2, Zi, β0, γ0, fX |Z) − g(Yi,Wi1,Wi2, Zi, β0, σ )| = OP (h
q
b).

For T23 (̃βn), based on the proof of Proposition 4 in [12], we have ∥T23 (̃βn)−1
∥2 = Op(h−1

b ). Then we have T22 (̃βn)
{T23 (̃βn)}−1T24 (̃βn) = Op(h

q−1
b ), where q > 1 by condition (C2). Thus

T2 (̃βn) = E

{
∂

∂β0
⊤

S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}
{1 + op(1)} + OP (h

q−1
b ).

Therefore,

√
n (̂βn − β0) = −

[
E

{
∂

∂β0
⊤

S∗

eff(Yi,Wi1,Wi2, Zi, β0, γ, f ∗

X |Z)
⏐⏐⏐⏐
B(X)⊤γ=σ (X)

}]−1

1
√
n

n∑
i=1

S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) + op(1).

Since n−1/2 ∑n
i=1 S

∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z) is the sum of independent zero-mean random vectors, this will converge in
distribution to a multivariate normal distribution with mean 0 and covariance matrix

[E{S∗

eff(Yi,Wi1,Wi2, Zi, β0, σ , f ∗

X |Z)
⊗2

}]
−1.

This concludes the proof of Theorem 2. □

A.7. Estimating equations for subjects without replication of W

In the approximate model, the conditional density of (Y ,W ) given Z is

f (1)a,Y ,W |Z(y, w, z, β, γ, fX |Z) =

∫
fY |X,|Z (y|x, z, β)fU {(w − x)/B(x)⊤γ}fX |Z(x|z)

B(x)⊤γ
dx.

We use the superscript (1) to denote the corresponding quantities that are calculated when only one W is available. The
corresponding scores for β and γ are given as

S(1)a,β(y, w, z, β, γ, fX |Z) =

∫
{∂ fY |X,Z(y|x, z, β)/∂β}fU {(w − x)/B(x)⊤γ}fX |Z(x|z)/{B(x)⊤γ}dx∫

fY |X,Z(y|x, z, β)fU {(w − x)/B(x)⊤γ}fX |Z(x|z)/{B(x)⊤γ}dx
,
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and

S(1)a,γ (y, w, z, β, γ, fX |Z) =

∫
−V (1)(ua)fY |X,Z(y|x, z, β)fU {(w − x)/B(x)⊤γ}fX |Z(x|z)B(x)/{B(x)⊤γ}

2dx∫
fY |X,Z(y|x, z, β)fU {(w − x)/B(x)⊤γ}fX |Z(x|z)/{B(x)⊤γ}dx

,

where V (1)(ua) = uaf ′

U (ua)/fU (ua) + 1 and ua = (w − x)/B(x)⊤γ . Following the derivations in Section 3, the approximate
efficient score for β with working model f ∗

X |Z is

S∗(1)
a,eff(Y ,W , Z, β, γ, f ∗

X |Z) = S∗(1)
a,β (Y ,W , Z, β, γ, f ∗

X |Z) − E∗(1)
a {a(X, Z)|Y ,W , Z} − E∗(1)

a {V (1)(Ua)b(X)|Y ,W , Z},

where a(X, Z) and b(X) satisfy that

E(1)
a {S∗(1)

a,β (Y ,W , Z, β, γ, f ∗

X |Z)|X, Z} = E(1)
a [E∗(1)

a {a(X, Z)|Y ,W , Z}|X, Z] + E(1)
a [E∗(1)

a {V (1)(Ua)b(X)|Y ,W , Z}|X, Z]

and

E(1)
a {S∗(1)

a,β (Y ,W , Z, β, γ̂(β), f ∗

X |Z)V (Ua)|X, Z}

= E(1)
a [E∗(1)

a {a(X, Z)|Y ,W , Z}V (Ua)|X, Z] + E(1)
a [E∗(1)

a {V (Ua)b(X)|Y ,W1,W2, Z}V (Ua)|X, Z].

The efficient score for γ is given as

S∗(1)
a,eff,γ (Y ,W , Z, β, γ, f ∗

X |Z) = S∗(1)
a,γ (Y ,W , Z, β, γ, f ∗

X |Z) − E∗(1)
a {c(X, Z)|Y ,W , Z},

where c(X, Z) satisfies

E(1)
a {S∗(1)

a,γ (Y ,W , Z, β, γ, f ∗

X |Z)|X, Z} = E(1)
a [E∗(1)

a {c(X, Z)|Y ,W , Z}|X, Z].

The corresponding estimating equations can then be constructed based on

S∗(1)
a,eff(Y ,W , Z, β, γ, f ∗

X |Z) and S∗(1)
a,eff,γ (Y ,W , Z, β, γ, f ∗

X |Z).
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