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a b s t r a c t

The varying-coefficient Coxmodel is flexible and useful for modeling the dynamic changes
of regression coefficients in survival analysis. In this paper, we study feature screening
for varying-coefficient Cox models in ultrahigh-dimensional covariates. The proposed
screening procedure is based on the joint partial likelihood of all predictors, thus different
from marginal screening procedures available in the literature. In order to carry out the
new procedure, we propose an effective algorithm and establish its ascent property. We
further prove that the proposed procedure possesses the sure screening property. That is,
with probability tending to 1, the selected variable set includes the actual active predictors.
We conducted simulations to evaluate the finite-sample performance of the proposed
procedure and compared it withmarginal screening procedures. A genomic data set is used
for illustration purposes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Feature screening can effectively reduce ultrahigh dimensionality and therefore has attracted considerable attention
in the recent literature. Fan and Lv [12] proposed a marginal screening procedure for ultrahigh-dimensional Gaussian
linear model, and further showed that marginal screening procedures may possess a sure screening property under certain
conditions. Feature screening procedures for varying-coefficient models (VCM) with ultrahigh-dimensional covariates have
been proposed in the literature. Liu et al. [21] developed a sure independence screening (SIS) procedure for ultrahigh-
dimensional VCM by taking conditional Pearson correlation coefficients as a marginal utility for ranking the importance
of predictors. Fan et al. [13] proposed an SIS procedure for ultrahigh-dimensional VCM by extending B-spline techniques in
Fan et al. [10] for additive models. Xia et al. [26] further extended the SIS procedure proposed in [13] to generalized varying-
coefficient models (GVCM). Cheng et al. [5] proposed a forward variable selection procedure for ultrahigh-dimensional VCM
based on techniques related to B-splines regression and grouped variable selection. Song et al. [22] extended the procedure
in [13] to longitudinal data without taking into account within-subject correlation, while Chu et al. [6] proposed an SIS
procedure for longitudinal data based on aweighted residual sum of squares to usewithin-subjection correlation to improve
accuracy of feature screening. Kong et al. [17] proposed a new screening method that leaves a variable in the active set if it
has, jointly with some other variables, a high canonical correlation with the response.

∗ Corresponding author.
E-mail address: tygr@jnu.edu.cn (G. Yang).

https://doi.org/10.1016/j.jmva.2018.12.009
0047-259X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmva.2018.12.009
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2018.12.009&domain=pdf
mailto:tygr@jnu.edu.cn
https://doi.org/10.1016/j.jmva.2018.12.009


G. Yang, L. Zhang, R. Li et al. / Journal of Multivariate Analysis 171 (2019) 284–297 285

Survival analysis has been widely used in medical science, economics, finance, and social science, among others. In many
studies, survival data have primary outcomes or responses that are subject to censoring. The Cox model [7,8] is the most
commonly used regression model for survival data, and the partial likelihood method has become a standard approach
to parameter estimation and statistical inference. Recently, variable selection and parameter estimation in Cox regression
models have been considered by various authors (see, e.g., [4,9,14,18,19,30]). Huang et al. [15] studied the penalized partial
likelihood with the ℓ1-penalty for the Cox model with high-dimensional covariates. Yan and Huang [28] proposed the
adaptive group Lasso in a Cox regression model with time-varying coefficients. However, they have not considered varying-
coefficient models.

In this paper, we propose a new feature screening procedure for ultrahigh-dimensional varying-coefficient Cox models.
It is distinguished from SIS procedures [11,32] in that the proposed procedure is based on the joint partial likelihood of
potentially important features, rather than the marginal partial likelihood of individual features. Xu and Chen [27] proposed
a joint screening procedure and showed its advantage over SIS procedures in the context of generalized linear models. Yang
et al. [29] extended the procedures in [27] to the Cox models. This work further extends the joint screening strategy and
develops a feature screening procedure for varying-coefficient Cox models, which are natural extensions of Cox models and
can be useful to explore nonlinear interaction effects between a primary covariate and other covariates.

The asymptotic properties of the proposed procedure are studied systematically. It is technically challenging to establish
its sure screening property. The techniques used in [29] and other works related to SIS procedures cannot be applied for
the present setting. We first develop Hoeffding’s inequality for a sequence of martingale differences and then establish a
concentration inequality for the score function of a partial likelihood. Based on the concentration inequality, we prove the
screening property for our proposed sure joint screening procedure. We also conduct simulation studies to assess the finite-
sample performance of the proposed procedure and compare its performance with existing sure screening procedures for
ultrahigh-dimensional survival data. The proposedmethodology is demonstrated through an empirical analysis of a genomic
data set.

The rest of this paper is organized as follows. In Section 2, we propose a new feature screening procedure for the varying-
coefficient Cox model, develop an algorithm to carry it out, and demonstrate the ascent property of the proposed algorithm.
We study the sampling property of the proposed procedure and establish its sure screening property. In Section 3,we present
numerical comparisons and an empirical analysis of a real data set. Discussion is in Section 4. Technical proofs are in the
Appendix.

2. New feature screening procedure for varying-coefficient Cox model

Let T be the survival time and x and U be p-dimensional covariate vector and univariate covariate, respectively.
Throughout this paper, we consider the varying-coefficient Cox proportional hazard model given by

h(t|x,U) = h0(t) exp{x⊤α(U)}, (1)

where h0(t) is an unspecified baseline hazard function and α(U) = (α1(U), . . . , αp(U))⊤ consists of the unknown nonpara-
metric coefficient functions. It is assumed that the support of U is finite and denoted by [a, b]. In survival data analysis,
survival times are subject to a censoring time C . Denote the observed time by Z = min(T , C) and the event indicator by
δ = 1(T ≤ C). It is assumed throughout this paper that the censoring mechanism is noninformative. That is, given x and U ,
T and C are conditionally independent.

Suppose that (x1,U1, Z1, δ1), . . . , (xn,Un, Zn, δn) is a random sample from model (1). Let t01 < · · · < t0N be the ordered
observed failure times. Let (j) be the label for the subject failing at time t0j , so that the covariates associatedwith theN failures
are x(1), . . . , x(N) and U(1), . . . ,U(N). Denote the risk set right before time t0j by Rj = {i : Zi ≥ t0j }. The partial likelihood
function [8] of the random sample is

ℓp{α(U)} =

N∑
j=1

⎡⎣x⊤

(j)α(U(j)) − ln

⎡⎣∑
i∈Rj

exp{x⊤

i α(Ui)}

⎤⎦⎤⎦ . (2)

To estimate the nonparametric regression, we use a B-spline basis. Let Sn be the space of polynomial splines of degree
ℓ ≥ 1 and {ψj1, . . . , ψjdnj} denote a normalized B-spline basis with ∥ψjk∥∞ ≤ 1 and dnj = O(n1/5), where ∥ · ∥∞ is the
supremum norm. For any j ∈ {1, . . . , p} and αnj(U) ∈ Sn, we have

αnj(U) =

dnj∑
k=1

βjkψjk(U) = β⊤

j ψj(U) (3)

for some coefficients βj1, . . . , βjdnj
. Here we allow dnj to increase with n and differ for different j because different coefficient

functionsmay have different smoothness. Under some conditions, the nonparametric coefficient functions α1(U), . . . , αp(U)
can be well approximated by functions in Sn.
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Denote β = (β⊤

1 , . . . ,β
⊤

p )
⊤ and zi = (xi1ψ1(Ui)⊤, . . . , xipψp(Ui)⊤)⊤, and define z(j) similarly to x(j). Substituting (3) into

(2), the maximum partial likelihood estimate of (2) is to maximize

ℓp(β) =̂

N∑
j=1

⎡⎣z⊤

(j)β − ln

⎧⎨⎩∑
i∈Rj

exp(z⊤

i β)

⎫⎬⎭
⎤⎦ (4)

with respect to β. We next propose a feature screening procedure based on (4).

2.1. A new feature screening procedure

Denote ∥αj(·)∥2 = {Eα2
j (U)}1/2, the L2-norm of αj(·). For ease of presentation, denote s as an arbitrary subset of {1, . . . , p},

xs = {xj : j ∈ s} and αs(U) = {αj(U) : j ∈ s}. For a set s, τ (s) stands for the cardinality of s. Suppose the effect of x is sparse
and the true value of α(U) is α∗(U), where β∗ is the corresponding coefficients of α∗(U). Denote s∗ = {j : ∥αj(·)∥2 > 0}.
By sparsity, we mean that τ (s∗) is much less than p. The goal of feature screening is to identify a subset s such that s∗ ⊂ s
with overwhelming probability and τ (s) is also much less than p. According to (4), we propose screening features for the
varying-coefficient Cox model by the constrained partial likelihood

β̂m = argmax
β
ℓp(β) subject to τ ({j : ∥βj∥2 > 0}) ≤ m (5)

for a pre-specifiedm, which is assumed to be greater than the number of nonzero elements of β∗.
For high-dimensional problems, it becomes almost impossible to solve the constrained maximization problem (5)

directly. Alternatively, we consider a proxy of the partial likelihood function. It follows by the Taylor expansion for the
partial likelihood function ℓp(γ) at β lying within a neighborhood of γ that

ℓp(γ) ≈ ℓp(β) + (γ − β)⊤ℓ′

p(β) + (γ − β)⊤ℓ′′

p(β)(γ − β)/2,

where ℓ′
p(β) = ∂ℓp(γ)/∂γ|γ=β and ℓ′′

p(β) = ∂2ℓp(γ)/∂γ∂γ⊤
|γ=β . Denote Pt = dn1 + · · · + dnp. If ℓ′′

p(β) is invertible, the
computational complexity of calculating the inverse of ℓ′′

p(β) is O(P3
t ). For large Pt , small n problems (i.e., Pt ≫ n), ℓ′′

p(β)
becomes not invertible. Low computational cost is always desirable for feature screening. To deal with singularity of the
Hessian matrix and save computational cost, we propose using the approximation

h(γ|β) = ℓp(β) + (γ − β)⊤ℓ′

p(β) − u(γ − β)⊤W (β)(γ − β)/2 (6)

for ℓ′′
p(γ), where u is a scaling constant to be specified and W (β) = diag{W1(β), . . . ,Wp(β)}, a block diagonal matrix with

Wj(β) being a dnj × dnj matrix. Here (6) is the minimization of the original objective function, h(γ|β) ≤ ℓp(β), for all γ
under some conditions. Due to the properties of the majorization and minorization algorithm, using (6) we can obtain the
same estimates as the original objective function. The two functions themselves, however, are not numerically equal. Here
we allow W (β) to depend on β. This implies that we approximate ℓ′′

p(β) by −uW (β). Throughout this paper, we will use
Wj(β) = −∂2ℓp(β)/∂βj∂β

⊤

j .
It can be seen that h(β|β) = ℓp(β), and, under some conditions, h(γ|β) ≤ ℓp(β) for all γ . This ensures the ascent property.

See Theorem 1 for more details. Since W (β) is a block diagonal matrix, h(γ|β) is an additive function of γ j for any given β.
The additivity enables us to have a closed form solution for the maximization problem

max
γ

h(γ|β) subject to τ ({j : ∥γ j∥2 > 0}) ≤ m (7)

for givenβ andm. Define γ̃ j = βj+u−1W−1
j (βj)∂ℓp(β)/∂βj for j ∈ {1, . . . , p}, and γ̃ = (γ̃⊤

1 , . . . , γ̃
⊤

p )
⊤

= β+u−1W−1(β)ℓ′
p(β)

is the maximizer of h(γ|β). Denote gj = γ̃⊤

j Wj(βj)γ̃ j for j ∈ {1, . . . , p}, and sort gj so that g(1) ≥ · · · ≥ g(p). The solution of
the maximization problem (7) is the hard-thresholding rule defined below:

γ̂ j = γ̃ j1{gj > g(m+1)}.

This enables us to effectively screen features by using the following algorithm.

Feature Screening Algorithm of Varying Coefficient Cox’s Models
Step 1. Set the initial value β(0)

1 = · · · = β(0)
p = 0.

Step 2. For t ∈ {0, 1, . . .}, iteratively conduct Step 2a and Step 2b below
until the algorithm converges:
Step 2a. Calculate γ̃ (t)

j = β
(t)
j + u−1

t W−1
j (βj)∂ℓ(β

(t))/∂βj, and g (t)
j = {γ̃

(t)
j }

⊤Wj(β(t))γ̃ (t)
j .

Let g (t)
(1) ≥ · · · ≥ g (t)

(p), the order statistics of g (t)
j s. Set St = {j : g (t)

j ≥ g (t)
(m+1)},

the nonzero index set.
Step 2b. Update β by β(t+1)

= (β(t+1)
1 , . . . ,β(t+1)

p )⊤ as follows. If j ̸∈ St , set β
(t+1)
j = 0,

otherwise, set {β
(t+1)
j : j ∈ St} be the partial likelihood estimate of the submodel St .
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Theorem 1. Suppose that Conditions (D1)–(D4) in the Appendix hold. Let β(t) be the sequence defined in Step 2b in the above
algorithm. Denote

ρ(t)
= sup

β

[
λmax{W−1/2(β(t)){−ℓ′′

p(β)}W
−1/2(β(t))}

]
,

where λmax(A) stands for the maximal eigenvalue of a matrix A. If ut ≥ ρ(t), then ℓp(β(t+1)) ≥ ℓp(β(t)), where β(t+1) is defined in
Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut is appropriately chosen. That is, the proposed
algorithm may improve the current estimate within the feasible region (i.e., τ ({j : ∥αj(U)∥2 > 0}) ≤ m), and the resulting
estimate in the current step may serve as a refinement of the last step. This theorem provides us with some insights into
how to choose ut in practical implementation.

2.2. Sure screening property

For a subset s of {1, . . . , p} with size τ (s), recall the notation xs = {xj : j ∈ s} and associated coefficients αs(U) =

{αj(U) : j ∈ s} corresponding to βs = {βj : j ∈ s} with βj = (βj1, . . . , βjdnj
)⊤. We denote the true model by

s∗ = {j : Eα2
j (U) > 0, 1 ≤ j ≤ p} with τ (s∗) = q. The objective of feature screening is to obtain a subset ŝ such that

s∗ ⊂ ŝwith very high probability.
We now provide some theoretical justifications for the proposed screening procedure for the ultrahigh-dimensional

varying-coefficient Cox model. The sure screening property [12] is referred to as

lim
n→∞

Pr(s∗ ⊂ ŝ) = 1. (8)

To establish this sure screening property for the proposed screening procedure, we introduce some additional notation as
follows. For anymodel s, let ℓ′(βs) = ∂ℓ(βs)/∂βs and ℓ′′(βs) = ∂2ℓ(βs)/∂βs∂β

⊤

s be the score function and the Hessianmatrix
of ℓ as a function of βs, respectively. Assume that a screening procedure retainsm out of p features such that τ (s∗) = q < m.
So, we define

Sm
+

= {s : s∗ ⊂ s, ∥s∥0 ≤ m} and Sm
−

= {s : s∗ ̸⊂ s, ∥s∥0 ≤ m}

as the collections of the over-fitted models and the under-fitted models, respectively. We investigate the asymptotic
properties of β̂m under the scenariowhere p, q,m andβ∗ are allowed to depend on the sample size n.We impose the following
conditions, some of which are purely technical and merely serve to facilitate theoretical understanding of the proposed
feature screening procedure. For ease of presentation and without loss of generality, it is assumed that dn1 = · · · = dnp=̂dn.

(C1) The support of U is bounded on [a, b].
(C2) The functions α1(U), . . . , αp(U) belong to a class of functions F , whose rth derivative α(r)

j exists and is Lipschitz of
order η,

F = {αj : |α
(r)
j (s) − α

(r)
j (t)| ≤ K |s − t|η for s, t ∈ [a, b]},

for some positive constant K , where r is a nonnegative integer and η ∈ (0, 1] such that ν = r + η > 0.5.
(C3) There exist w1, w2 > 0 and some non-negative constants τ1, τ2 such that τ1 + τ2 < 1/2 and

min
j∈s∗

∥αj(U)∥2 ≥ w1n−τ1 and q < m ≤ w2nτ2 .

(C4) ln p = O(nκ ) for some 0 ≤ κ < 1 − 2(τ1 + τ2).
(C5) There exist constants C1, C2 > 0, δ > 0, such that for sufficiently large n,

C1d−1
n ≤ λmin{−n−1ℓ′′

p(βs)} ≤ λmax{−n−1ℓ′′

p(βs)} ≤ C2d−1
n ,

for βs ∈ {β : ∥βs −β
∗

s ∥2 ≤ δ} and s ∈ S2m
+

, where λmin and λmax denote the smallest and largest eigenvalues of a matrix,
respectively.

Under Conditions (C1)–(C2), the following two properties of B-splines are valid.

(a) de Boor [3]: For k ∈ {1, . . . , dn},ψjk(U) ≥ 0 andψj1(U)+ · · · +ψjdn (U) = 1, U ∈ [a, b]. In addition, there exist positive
constants C3 and C4 such that C3d−1

n ≤ Eψ2
jk(U) ≤ C4d−1

n .
(b) Stone [23,24]: If {α1, . . . , αp} is a set of functions in F described in Condition (C2), there exists a positive constant C5

that does not depend onαj(U); then the uniformapproximation error satisfiesρ = supU∈[a,b] ∥αj(U)−αnj(U)∥2 ≤ C5d−ν
n

for all j ∈ {1, . . . , p}, as dn → ∞.

Conditions (C1)–(C2) ensure properties (a) and (b), which are required for the B-spline approximation and establishing
the sure screening properties. Note that ∥αnj(U)∥2

2 = β⊤

j E{ψj(U)ψj(U)⊤}βj. Based on properties (a) and (b) and Condition
(C3), we can derive that

min
j∈s∗

∥βj∥2 ≥ w1dnn−τ1 .
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Table 1
Censoring rates.

ρ = 0.25 ρ = 0.5 ρ = 0.75

Σ (a1) (a2) (a3) (a1) (a2) (a3) (a1) (a2) (a3)

S1 .276 .367 .223 .277 .356 .260 .277 .340 .248
S2 .275 .365 .265 .279 .358 .283 .278 .347 .245

Condition (C3) states a few requirements for establishing the sure screening property of the proposed procedure. The first
one is the sparsity of α∗(U), which makes the sure screening possible with τ (ŝ) = m > q. Also, it requires that the minimal
component inα∗(U) does not degenerate too quickly, so that the signal is detectable in the asymptotic sequence.Meanwhile,
togetherwith (C4), it confines an appropriate order ofm that guarantees the identifiability of s∗ over s for τ (s) ≤ m. Condition
(C5) assumes that p diverges from n at up to an exponential rate; it implies that the number of covariates can be substantially
larger than the sample size.

We establish the sure screening property of the quasi-likelihood estimation in the following theorem.

Theorem 2. Suppose that Conditions (C1)–(C5) and Conditions (D1)–(D7) in the Appendix hold. Let ŝ be the model obtained by
Eq. (5) of size m. We have Pr(s∗ ⊂ ŝ) → 1 as n → ∞.

The proof is given in the Appendix. The sure screening property is an appealing property of a screening procedure because
it ensures that the true active predictors are retained in the model selected by the screening procedure. To be distinguished
from the SIS procedure, the proposed procedure is referred to as a sure joint screening (SJS) procedure.

3. Numerical studies

In this section, we assess the finite-sample performance of the proposed procedure, compare it with existing procedures
via simulation, and illustrate the proposed procedure by an empirical analysis of a genomic data set.

3.1. Simulation studies

The main purpose of our simulation studies is to assess the performance of the proposed procedure by comparing it with
the SIS [11] and the SJS [29] procedures for the Cox model. The model sizes selected by the three methods are set to be the
same for comparison.We vary the dimension of predictors p, sample size n and sample correlation ρ to examine their impact
on the performance of the proposed procedure. We use the success rate of active predictors being selected and computing
time as our criteria to compare the performance of screening procedures.

In our simulation, the predictors x are generated froma p-dimensional normal distributionwithmean zero and covariance
matrixΣ = (σij). Two commonly used covariance structures are used in our simulation:

(S1) Σ is compound symmetric, (i.e., σij = ρ for i ̸= j and equal 1 for i = j). We choose ρ ∈ {0.25, 0.5, 0.75}.
(S2) Σ has autoregressive structure with AR(1), (i.e., σij = ρ|i−j|). We choose ρ ∈ {0.25, 0.5, 0.75}.

We generate the survival time from the Cox model with h0(t) = 1 and the censoring time from a uniform distribution
U[0, 10]. Three different coefficient function settings α(u)s are considered:

(a1): α(1)
1 (u) = 1 + 2 sin(2πu), α(1)

2 (u) = 1 − 2 cos(2πu), α(1)
3 (u) = 0.5 + 2u2;

(a2): α(2)
1 (u) = 5 sin(2πu), α(2)

2 (u) = 5 cos(2πu), α(2)
3 (u) = 2.5 + 5u2;

(a3): α(3)
1 (u) = e0.5u, α(3)

2 (u) = 2(u3
+ 1.5(u − 0.5)2), α(3)

3 (u) = 2u.

We consider n ∈ {200, 400}, and p ∈ {2000, 5000}. For the feature screening model size, we follow Liu et al. [21] and
set m = ⌊n0.8/ln(n0.8)⌋, where ⌊a⌋ denotes the integer part of a. For each combination of different inputs, we conduct 1000
repetitions.

To illustrate the performance of a statistical procedure in survival data analysis, we want the censoring rates to lie within
a reasonable range. Table 1 depicts the censoring rates for the 18 combinations of covariance structure, sample correlation
ρ and the values of α(u). The censoring rates range from 22% to 37%, which is reasonable for simulation studies.

We compare the performance of feature screening procedures using the following two criteria: Ps, the probability that
an individual active predictor is selected, and Pa, the probability that all active predictors are selected. It is expected that
the performance of the proposed varying-coefficient SJS (VSJS) procedure depends on the following factors: the structure of
the covariance matrix, the values of α(u), the dimension of all candidate features p, the sample correlation ρ and the sample
size n.

Tables 2–3 report Ps and Pa of VSJS, SIS and SJS for the active predictors under (S1). Overall, VSJS outperforms both SIS
and SJS for all the three sets of α(u) in terms of Ps and Pa. For (a1), VSJS achieves a high success rate in detecting signals of
α
(1)
1 and α(1)

2 , while SIS and SJS fail from time to time.
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Table 2
Comparison between VSJS, SIS and SJS withΣ = (1 − ρ)I + ρ11⊤ (n = 200).

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 200, p = 2000 and ρ = .25

α(1) .989 1 1 .989 74.5 .796 .747 .990 .580 9.5 .499 .419 .936 .190 3.6
α(2) .999 .998 .999 .996 67.7 .016 .002 1 0 8.3 .018 .037 .999 .002 2.4
α(3) 1 .810 .993 .803 82.2 1 .771 .992 .763 6.0 1 .785 .996 .781 2.8

n = 200, p = 2000 and ρ = .5

α(1) .970 .976 .915 .868 68.9 .621 .557 .968 .325 9.2 .392 .311 .863 .092 2.9
α(2) .922 .922 .990 .848 66.8 .006 .003 1 0 7.8 .020 .052 .997 0 2.5
α(3) .998 .617 .938 .581 74.8 .999 .611 .932 .573 5.3 1 .574 .932 .542 3.2

n = 200, p = 2000 and ρ = .75

α(1) .628 .670 .682 .259 62.4 .357 .316 .879 .093 9.4 .247 .211 .701 .031 3.0
α(2) .485 .535 .738 .204 67.3 .005 .001 1 0 6.8 .018 .059 .935 0 3.4
α(3) .910 .361 .686 .247 62.5 .987 .341 .736 .250 5.3 .958 .286 .644 .181 3.4

n = 200, p = 5000 and ρ = .25

α(1) 1 1 .993 .993 464.0 .721 .649 .983 .456 15.4 .391 .326 .865 .097 32.9
α(2) .996 .994 1 .990 416.3 .004 .004 1 0 18.1 .007 .016 .994 0 17.6
α(3) 1 .708 .984 .694 451.5 1 .684 .974 .667 15.2 1 .627 .980 .615 16.8

n = 200, p = 5000 and ρ = .5

α(1) .925 .930 .845 .725 412.7 .496 .430 .954 .199 22.9 .281 .224 .779 .040 16.8
α(2) .856 .876 .976 .740 423.7 .005 .002 1 0 16.1 .007 .030 .968 0 18.9
α(3) .992 .508 .884 .446 390.4 .999 .455 .866 .38 15.2 .998 .435 .878 .383 24.0

n = 200, p = 5000 and ρ = .75

α(1) .510 .501 .504 .121 398.1 .261 .218 .803 .042 15.3 .135 .140 .541 .010 20.3
α(2) .372 .399 .625 .093 396.6 .002 0 .999 0 14.9 .006 .022 .867 0 22.2
α(3) .892 .276 .597 .158 369.5 .977 .258 .624 .159 13.3 .909 .164 .493 .075 24.7

We next consider the performance of VSJS under (a2). For the zero-centered α(2)
1 and α(2)

2 , VSJS successfully detects their
variation signal and achieves high success rates. As a comparison, SIS and SJS fail to identify α(2)

1 and α(2)
2 as active predictors

completely in (a2). In general, VSJS still performs better to some extent in (a3), though SIS slightly outperforms VSJS in a few
cases.

Tables 2–3 clearly show how performance is affected by sample correlation ρ, predictor dimension p, and sample size n.
When ρ increases, n decreases, or p increases, the three methods perform worse under (S1). Compared to SIS and SJS, the
performance of VSJS ismore resistant to these changes. Also, Tables 2–3 suggest that VSJS ismore computationally inefficient
than SIS and SJS.

Tables 4–5 report Ps and Pa of VSJS, SIS, and SJS for the active predictors under (S2). Overall, VSJS still outperforms SIS
and SJS. It is worth noting that the three methods have much better performance under (S2) than previous cases under (S1),
especially when the correlation ρ is larger. In (a1), VSJS and SIS both perform perfectly and slightly better than SJS. Whenwe
consider (a2), SIS and SJS perform better under (S2) and successfully identify α(2)

1 and α(2)
2 from time to time. However, VSJS

again outperforms them in (a2). For (a3), the three methods achieve almost 100% success rate for selecting active predictors.
SJS misses some active predictors in a few cases.

We can conclude from Tables 4 and 5 that SIS and SJS tend to perform better when ρ increases, n increases, or p
decreases. For VSJS, it performs perfectly in all three settings under (S1). Similarly, Tables 4 and 5 show that VSJS is more
computationally intensive than SIS and SJS.

3.2. Real data analysis

We analyze The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/) data on liver hepatocellular carcinoma to
illustrate the proposed procedure. Liver hepatocellular carcinoma is the most common form of liver cancer and the third
cancer death cause worldwide. Zhang and Sun [31] studied 17,255 patients in the Surveillance, Epidemiology, and End
Results Program (SEER ;https://seer.cancer.gov/) cancer registry and suggested that age is a prognostic factor for liver cancer.
Therefore, we consider age as the univariate covariate for coefficient functions, allowing the effects of gene expression on
survival time to vary with age. After removing five subjects whose survival time is zero, we obtain 354 subjects with gene
expressions (IlluminaHiSeq RNA-seq v2 platform), age at diagnosis, and survival months. We apply a log 2 transformation
to gene expressions and analyze 14,683 genes that have more than 90% nonzero observations.

For VSJS, we use a linear combination of five B-spline basis functions to approximate the varying-coefficient functions. As
a result, VSJS retains 23 = ⌊3540.8/ln(3540.8)⌋ genes and the partial likelihood function value for the correspondingmodel is

http://cancergenome.nih.gov/
https://seer.cancer.gov/
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Table 3
Comparison between VSJS, SIS and SJS withΣ = (1 − ρ)I + ρ11⊤ (n = 400).

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 400, p = 2000 and ρ = .25

α(1) 1 1 1 1 217.7 1 .960 1 .960 8.8 .859 .805 .999 .686 5.8
α(2) 1 1 1 1 205.9 .020 .001 1 0 7.9 .010 .076 1 0 5.6
α(3) 1 1 1 1 215.3 1 .974 1 .974 8.3 1 .997 1 .997 4.9

n = 400, p = 2000 and ρ = .5

α(1) 1 1 1 1 190.2 .900 .871 .999 .779 8.5 .736 .607 .998 .437 4.6
α(2) 1 1 1 1 184.3 .010 .001 1 0 8.5 .023 .133 1 .002 6.3
α(3) 1 .988 1 .988 199.5 1 .918 .997 .916 8.2 1 .944 1 .944 5.1

n = 400, p = 2000 and ρ = .75

α(1) .984 .991 .976 .955 169.0 .655 .566 .997 .349 8.6 .474 .356 .955 .155 6.3
α(2) .998 .995 1 .994 162.2 .001 0 1 0 9.5 .035 .193 .999 .004 6.6
α(3) 1 .733 .982 .719 162.8 1 .676 .968 .657 8.2 1 .576 .938 .540 6.1

n = 400, p = 5000 and ρ = .25

α(1) 1 1 1 1 1202 .963 .957 1 .920 21.6 .963 .957 1 .920 21.6
α(2) 1 1 1 1 1164 .006 .001 1 0 20.6 .004 .038 1 .001 31.1
α(3) 1 1 1 1 1180 1 .960 1 .960 18.2 1 .993 1 .993 36.5

n = 400, p = 5000 and ρ = .5

α(1) 1 1 1 1 1086 .849 .798 .999 .669 21.0 .849 .798 .999 .669 21.1
α(2) 1 1 1 1 1101 .001 0 1 0 22.2 .011 .071 1 .002 32.1
α(3) 1 .975 1 .975 1071 1 .840 .998 .838 19.6 1 .872 1 .872 40.3

n = 400, p = 5000 and ρ = .75

α(1) 1 1 .980 .980 929.0 .562 .426 .994 .224 21.0 .336 .267 .933 .073 35.9
α(2) .994 .992 .997 .988 936.7 .001 0 1 0 20.8 .016 .109 1 .001 35.3
α(3) .995 .621 .926 .586 909.6 1 .580 .935 .535 18.3 .999 .446 .900 .401 46.1

−544.9. With the same number of genes retained, the resulting partial likelihood function values for SIS and SJS are −589.2
and−588.4, respectively. Simultaneousmodeling of the 23 retained genes shows a clear advantage of VSJS in terms of higher
partial likelihood value.

To better understand the screening result of VSJS,we apply the backward selection procedure to those 23 genes and obtain
a more parsimonious model. Specifically, each backward elimination step removes a gene with the smallest likelihood ratio
test statistic until all the genes are significant at level 0.05. Table 6 provides the final list of 11 genes after applying the
backward elimination, and Fig. 1 depicts their varying coefficients.

Our literature search reveals that those 11 genes are all associated with cancer risk and some genes. For example,
GTPBP4 [20] and SLC2A2 [16] are promising prognostic factors for hepatocellular carcinoma. To test whether those 11 genes
have varying coefficients versus constant coefficients, a test of H0: αj(u) = αj for some constant αj versus H1: αj(u) ̸≡ αj
can be conducted for each j in the selected gene set. The test result is shown in Table 7, and all the genes except DYNC1LI1
have significant varying-coefficient functions of age at the 5% level of significance. There is no evidence of their time-varying
effects in the current medical literature, but our study may suggest some evidence for potential granular investigation on
those genes.

4. Discussion

We have proposed an SJS procedure for the varying-coefficient Cox model with ultrahigh-dimensional covariates based
on partial likelihood. The proposed SJS is distinguished from the existing SIS procedure in that the proposed procedure is
based on the joint likelihood of potential candidate features.We also proposed an effective algorithm to carry out the feature
screening procedures and show that the proposed algorithmpossesses an ascent property.We studied the sampling property
of SJS and established the sure screening property for SJS.

Theorem 1 ensures the ascent property of the proposed algorithm under certain conditions, but it does not imply that
the proposed algorithm converges to the global optimizer. If the proposed algorithm converges to a global maximizer of (5),
then Theorem 2 shows that such a solution enjoys the sure screen property.
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Table 4
Comparison between VSJS, SIS and SJS withΣ = (ρ|i−j|) (n = 200).

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time
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Appendix

We use the following notation to present the regularity conditions for the partial likelihood and the Cox model. Most
notations are adapted from Andersen and Gill [1], in which counting processes were introduced for the Cox model and the
consistency and asymptotic normality of the partial likelihood estimate were established. Denote N i(t) = 1(Ti ≤ t, Ti ≤ Ci)
and Ri(t) = {Ti ≥ t, Ci ≥ t}. Assume that there are no two component processes Ni(t) jumping at the same time. For
simplicity, we work on the finite interval [0, τ ].

In Cox’s model, properties of stochastic processes, such as being a local martingale or a predictable process, are relative
to a right-continuous nondecreasing family {Ft : t ∈ [0, τ ]} of sub σ -algebras on a sample space (Ω,F,P); Ft represents
everything that happens up to time t . Throughout this section, we defineΛ0(t) =

∫ t
0 h0(u) du.

By stating that N i(t) has intensity process hi(t) =̂ h(t|xi,Ui), we mean that the processes Mi(t) defined, for each i ∈

{1, . . . , n}, by

Mi(t) = N i(t) −

∫
⊤

0
hi(u)du,

are local martingales on the time interval [0, τ ]. For k ∈ {0, 1, 2}, define

S(k)(β, t) =
1
n

n∑
i=1

Ri(t) exp(z⊤

i β)z
⊗k
i , s(k)(β, t) = E{S(k)(β, t)}

and

E(β, t) = S(1)(β, t)/S(0)(β, t), V(β, t) = S(2)(β, t)/S(0)(β, t) − E(β, t)⊗2,
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Table 5
Comparison between VSJS, SIS and SJS withΣ = (ρ|i−j|) (n = 400).

VSJS SIS SJS

Ps Pa Time Ps Pa Time Ps Pa Time

α(U) X1 X2 X3 all (s) X1 X2 X3 all (s) X1 X2 X3 all (s)

n = 400, p = 2000 and ρ = .25

α(1) 1 1 1 1 229.6 1 1 1 1 8.6 .991 .979 1 .970 6.3
α(2) 1 1 1 1 223.3 .083 .251 1 .036 8.5 .047 .040 1 .001 5.2
α(3) 1 1 1 1 240.1 1 1 1 1 11.9 1 1 1 1 7.0

n = 400, p = 2000 and ρ = .5

α(1) 1 1 1 1 225.9 1 1 1 1 7.5 .992 .959 1 .951 5.3
α(2) 1 1 1 1 226.1 .387 .922 1 .382 8.8 .070 .263 1 .031 5.2
α(3) 1 1 1 1 236.8 1 1 1 1 8.5 1 1 1 1 7.3

n = 400, p = 2000 and ρ = .75

α(1) 1 1 1 1 217.9 1 1 1 1 8.9 .979 .907 1 .886 6.4
α(2) 1 1 1 1 218.4 .969 1 1 .969 9.1 .139 .598 1 .080 5.8
α(3) 1 .999 1 .999 227.8 1 1 1 1 11.9 1 .997 1 .997 7.6

n = 400, p = 5000 and ρ = .25

α(1) 1 1 1 1 1264 1 1 1 1 20.6 .988 .962 1 .952 29.5
α(2) 1 1 1 1 1265 .054 .183 1 .018 18.7 .029 .032 1 0 28.8
α(3) 1 1 1 1 1215 1 1 1 1 20.8 1 1 1 1 33.8

n = 400, p = 5000 and ρ = .5

α(1) 1 1 1 1 1274 1 1 1 1 20.5 .976 .924 1 .900 32.5
α(2) 1 1 1 1 1256 .318 .884 1 .312 19.9 .038 .162 1 .017 29.1
α(3) 1 1 1 1 1194 1 1 1 1 20.6 1 .999 1 .999 35.6

n = 400, p = 5000 and ρ = .75

α(1) 1 1 1 1 1202 1 1 1 1 20.7 .969 .902 1 .871 36.9
α(2) 1 1 1 1 1225 .954 1 1 .954 21.9 .085 .548 1 .051 29.9
α(3) 1 1 1 1 1139 1 1 1 1 29.5 1 .995 1 .995 34.6

Table 6
Genes selected by backward elimination.
Gene Name ANLN CEP55 DYNC1LI1 GTPBP4

LRT Stat 15.869 14.137 18.171 22.658
p-value 0.00723 0.0148 0.00274 < 0.001

Gene Name SLC2A1 KIF2C KIF20A KPNA2
LRT Stat 18.465 26.261 15.839 14.511
p-value 0.00241 < 0.001 0.00731 0.0127

Gene Name LIMS2 TRIP13 UCK2
LRT Stat 23.093 17.517 14.671
p-value < 0.001 0.00361 0.0119

Table 7
LRT statistics and p-values for the varying coefficients of the final selected genes.
Gene Name ANLN CEP55 DYNC1LI1 GTPBP4

LRT Stat 15.058 10.495 8.268 19.036
p-value 0.00458 0.0328 0.0822 0.000773

Gene Name SLC2A1 KIF2C KIF20A KPNA2
LRT Stat 17.473 24.253 15.183 14.238
p-value 0.00156 0.000071 0.00433 0.00657

Gene Name LIMS2 TRIP13 UCK2
LRT Stat 23.097 16.191 13.803
p-value 0.000121 0.00277 0.00795

where z⊗0
i = 1, z⊗1

i = zi and z⊗2
i = ziz⊤

i . Note that S(0)(β, t) is a scalar, S(1)(β, t) and E(β, t) are p-vector, and S(2)(β, t) and
V(β, t) are p × p matrices. Define

Qj =

n∑
i=1

∫ tj

0

⎧⎨⎩zi −
∑
i∈Rj

zi exp(z⊤

i β)
/∑

i∈Rj

exp(z⊤

i β)

⎫⎬⎭ dMi.
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Fig. 1. Estimated coefficient functions and the pointwise conference intervals of selected genes. The red line represents the average level of the varying-
coefficient functions.

Here, E(Qj|Fj−1) = Qj−1, i.e., E(Qj − Qj−1|Fj−1) = 0. Let bj = Qj − Qj−1, then b1, b2, . . . is a sequence of bounded martingale
differences on (Ω,F, P). That is, bj is bounded almost surely and E(bj|Fj−1) = 0 as for j ∈ {1, 2, . . .}.

(D1) Finite interval:Λ0(τ ) =
∫ τ
0 h0(t)dt < ∞.

(D2) Asymptotic stability: There exist a neighborhood B of β∗ and scalar, vector and matrix functions s(0), s(1) and s(2)
defined on B × [0, τ ] such that for k ∈ {0, 1, 2},

sup
t∈[0,τ ],β∈B

∥S(k)(β, t) − s(k)(β, t)∥
p

→ 0.

(D3) Lindeberg condition: There exists δ > 0 such that

n−1/2 sup
i,t

|zi|Ri(t)1{β⊤

0 zi > −δ|zi|}
p

→ 0,

(D4) Asymptotic regularity conditions: Let B, s(0), s(1) and s(2) be as in Condition (D2) and define e = s(1)/s(0) and
v = s(2)/s(0) − e⊗2. For all β ∈ B, t ∈ [0, τ ],

s(1)(β, t) = ∂s(0)(β, t)/∂β, s(2)(β, t) = ∂2s(0)(β, t)/∂β2,

s(0)(·, t), s(1)(·, t) and s(2)(·, t) are continuous functions of β ∈ B, uniformly in t ∈ [0, τ ], s(0), s(1) and s(2) are bounded
on B × [0, τ ]; s(0) is bounded away from zero on B × [0, τ ], and the matrix

S =

∫ τ

0
v(β0, t)s

(0)(β0, t)h0(t)dt

is positive definite.
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(D5) The function S(0)(β∗, t) and s(0)(β∗, t) are bounded away from 0 on [0, τ ].
(D6) There exist constants C1, C2 > 0, such that maxij |zij| < C1 and maxi |z⊤

i β
∗
| < C2.

(D7) b1, b2, . . . is a sequence of martingale differences and there exist nonnegative constants c1, . . . , cN such that for
every real number t and all j ∈ {1, . . . ,N}, E{exp(tbj)|Fj−1} ≤ exp(c2j t

2/2) almost surely. For each j ∈ {1, . . . ,N}, the
minimum of those cj is denoted by η(bj) and |bj| ≤ Kj as and E(bj1 , bj2 , . . . , bjk ) = 0 for bj1 < · · · < bjk .

Note that the partial derivative conditions on s(0), s(1) and s(2) are satisfied by S(0), S(1) and S(2); furthermore, S is
automatically positive semidefinite. Moreover, the interval [0, τ ] in the conditions may everywhere be replaced by the set
{t : h0(t) > 0}.

Conditions (D1)–(D5) are standard requirements for the proportional hazards model [1], which are weaker than those
required by Bradic et al. [4], and S(k)(β0, t) converges uniformly to s(k)(β0, t). Condition (D6) is a routine one, which is needed
to apply the concentration inequality for general empirical processes. For example, the bounded covariate assumption is
used by Huang et al. [15] for discussing the Lasso estimator of proportional hazards models. Condition (D7) is needed for the
asymptotic behavior of the score function ℓ′

p(β) of partial likelihood because the score function cannot be represented as a
sum of independent random vectors, but it can be represented as sum of a sequence of martingale differences.

Proof of Theorem 1. Applying the Taylor expansion to ℓp(γ) at γ = β, one finds

ℓp(γ) = ℓp(β) + ℓ′

p(β)(γ − β) + (γ − β)⊤ℓ′′

p(β̃)(γ − β)/2,

where β̃ lies between γ and β.

(γ − β)⊤{−ℓ′′

p(β̃)}(γ − β) = (γ − β)⊤W 1/2(β)W−1/2(β){−ℓ′′

p(β̃)}W
−/2(β)W 1/2(β)(γ − β)

≤ λmax[W−1/2(β){−ℓ′′

p(β̃)}W
−1/2(β)](γ − β)⊤W (β)(γ − β),

where W (β) is a block diagonal matrix with Wj(β) being a dnj × dnj matrix. Given that −ℓ′′(β) is non-negative definite,
λmax[W−1/2(β){−ℓ′′

p(β̃)}W
−1/2(β)] ≥ 0. Thus, if u > λmax[W−1/2(β){−ℓ′′

p(β̃)}W
−1/2(β)] ≥ 0, then

ℓp(γ) ≥ ℓp(β) + ℓ′

p(β)(γ − β) − u(γ − β)⊤W (β)(γ − β)/2 = h(γ|β).

Thus it follows that ℓp(γ) ≥ h(γ|β) and ℓp(β) = h(β|β) by the definition of h(γ|β). The solution of ∂h(γ|β)/∂γ = 0 is
γ = β + u−1W (β)ℓ′(β). Hence, under the conditions of Theorem 1, it follows that

ℓp(β∗(t+1)) ≥ h(β∗(t+1)
|β(t)) ≥ h(β(t)

|β(t)) = ℓ(β(t)).

The second inequality is due to the fact that

τ [{j : ∥β
∗(t+1)
j ∥2 > 0}] = τ [{j : ∥β

(t)
j ∥2 > 0}] = m

and β∗(t+1)
= argmaxγ h(γ|β(t)) subject to τ [{j : ∥γ j∥2 > 0}] ≤ m. By definition of β(t+1), ℓp(β(t+1)) ≥ ℓp(β∗(t+1)) and

τ [{j : ∥β
(t+1)
j ∥2 > 0}] = m. This proves Theorem 1. □

Proof of Theorem 2. For a given model s, a subset of {1, . . . , p}, let α̂s(U) be the partial likelihood estimate of αs(U) based
on the spline approximation. The theorem is implied if Pr(ŝ ∈ Sm

+
) → 1. Thus, it suffices to show that

lim
n→∞

Pr

[
max
s∈Sm

−

ℓp{α̂s(U)} ≥ min
s∈Sm

+

ℓp{α̂s(U)}

]
= 0, (A.1)

For each j ∈ {1, . . . , p}, we approximate the coefficient function αj(U) by

αnj(U) =

dn∑
k=1

βjkψjk(U) = β⊤

j ψj(U), (A.2)

whereψj1(U), . . . , ψjdn (U) are basis functions and dn is the number of basis functions, which is allowed to increase with the
sample size n. For αnj(U), define the approximation error for each j ∈ {1, . . . , p}, by

ρj(U) = αj(U) − αnj(U) = αj(U) − β⊤

j ψj(U).

Let dist{αj(U), Sj} = infαnj(U)∈Sj supU∈[a,b] ∥ρj(U)∥2, and take ρ = max1≤j≤p dist{αj(U), Sj}. Let αn(U) = (αn1(U),
. . . , αnp(U))⊤ and α(U) = (α1(U), . . . , αp(U))⊤. For any s,

αs(U) =

⎛⎜⎝ ψ1(U)
. . .

ψs(U)

⎞⎟⎠
s×sdn

⎛⎜⎝ β1
...

βs

⎞⎟⎠
sdn×1

+

⎛⎜⎝ ρ1(U)
...

ρs(U)

⎞⎟⎠ =̂Ψs(U)βs + ρs(U),
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where Ψs(U) = diag{ψ1(U), . . . ,ψs(U)} with ψj(U) = (ψj1(U), . . . , ψjdn (U)), and βj = (βj1, . . . , βjdn )
⊤ for all j ∈ {1, . . . , s}.

For any s ∈ Sm
−
, define s′ = s ∪ s∗ ∈ S2m

+
. So, we have

ℓp{αs′ (U)} − ℓp{α
∗

s′ (U)} = ℓp{Ψs′ (U)βs′ + ρs′ (U)} − ℓp{Ψs′ (U)β∗

s′ + ρ∗

s′ (U)}

= ℓp{Ψs′ (U)βs′} + ℓ′

p{Ψs′ (U)β̃s′}ρs′ (U) − ℓp{Ψs′ (U)β∗

s′} − ℓ′

p{Ψs′ (U)β̃
∗

s′}ρ
∗

s′ (U),

where β̃s′ and β̃
∗

s′ are two immediate values. Denote

∆1 = {ℓp(βs′ ) − ℓp(β∗

s′ )}, ∆2 = ℓ′

p(β̃s′ )ρs′ (U), ∆3 = ℓ′

p(β̃
∗

s′ )ρ
∗

s′ (U).

Thus, we have ℓp{αs′ (U)} − ℓp{α
∗

s′ (U)} = ∆1 +∆2 +∆3. For∆2, by the Cauchy–Schwarz inequality, we have

E|∆2| = E|ℓ′

p(β̃s′ )ρs′ (U)| ≤

√
E∥ℓ′

p(β̃s′ )∥2
√
E∥ρs′ (U)∥2.

By Condition (C5) and Corollary 1 in [25], we obtain∆2 = op(1). Similarly to∆2, we can also conclude that∆3 = op(1).
Next, we consider the term∆1. For any s ∈ Sm

−
, define s′ = s∪ s∗ ∈ S2m

+
. Under Condition (C3), we consider βs′ close to β

∗

s′
such that ∥βs′ −β

∗

s′∥ = w1dnn−τ1 for somew1, τ1 > 0. Clearly, when n is sufficiently large, βs′ falls into a small neighborhood
of β∗

s′ , so that Condition (C5) becomes applicable. Thus, it follows from Condition (C5) and the Cauchy–Schwarz inequality
that

ℓp(βs′ ) − ℓp(β∗

s′ ) = (βs′ − β∗

s′ )
⊤ℓ′

p(β
∗

s′ ) + (1/2)(βs′ − β∗

s′ )
⊤ℓ′′

p(β̃s′ )(βs′ − β∗

s′ )

≤ (βs′ − β∗

s′ )
⊤ℓ′

p(β
∗

s′ ) − (C1d−1
n /2)n∥βs′ − β∗

s′∥
2
2

≤ w1dnn−τ1∥ℓ′

p(β
∗

s′ )∥2 − (C1dn/2)w2
1n

1−2τ1 , (A.3)

where β̃s′ is an intermediate value between βs′ and β
∗

s′ . Thus, we have

Pr{ℓp(βs′ ) − ℓp(β∗

s′ ) ≥ 0} ≤ Pr{∥ℓ′

p(β
∗

s′ )∥2 ≥ (C1w1/2)n1−τ1} = Pr

⎡⎣∑
j∈s′

{ℓ′

j(β
∗

s′ )}
2

≥ (C1w1/2)2n2−2τ1

⎤⎦
≤

∑
j∈s′

Pr[{ℓ′

j(β
∗

s′ )}
2

≥ (2m)−1(C1w1/2)2n2−2τ1 ].

Also, by (C3), we havem ≤ w2nτ2 , and also the following probability inequality

Pr{ℓ′

j(β
∗

s′ ) ≥ (2m)−1/2(C1w1/2)n1−τ1} ≤ Pr{ℓ′

j(β
∗

s′ ) ≥ (2w2nτ2 )−1/2(C1w1/2)n1−τ1}

= Pr{ℓ′

j(β
∗

s′ ) ≥ cn1−τ1−0.5τ2} = Pr{ℓ′

j(β
∗

s′ ) ≥ ncn−τ1−0.5τ2}, (A.4)

where c = C1w1/(2
√
2w2) denotes some generic positive constant. Recall (2), by differentiation and rearrangement of terms,

it can be shown as in [1] that the gradient of ℓp(β) is

ℓ′

p(β) ≡ ∂ℓp(β)/∂β =
1
n

n∑
i=1

∫
∞

0
{zi − z̄n(β, t)}dN i(t), (A.5)

where z̄n(β, t) =
∑

i∈Rj
zi exp(z⊤

i β)/
∑

i∈Rj
exp(z⊤

i β). As a result, the partial score function ℓ′
p(β) no longer has a martingale

structure, and the large deviation results for continuous time martingale in [4] and [15] are not directly applicable. The
martingale process associated with N i(t) is given by

Mi(t) = N i(t) −

∫
⊤

0
Ri(u) exp(z⊤β∗)dΛ0(u).

For each j ∈ {1, . . . ,N}, let tj be the time of the jth jump of the process
∑n

i=1

∫
∞

0 Ri(t)dN i(t), and set t0 = 0. Then, tj are
stopping times. For j ∈ {0, . . . ,N}, further define

Qj =

n∑
i=1

∫ tj

0
bi(u)dN i(u) =

n∑
i=1

∫ tj

0
bi(u)dMi(u), (A.6)

where bi(u) = zi − z̄n(β, u) for all i ∈ {1, . . . , n} are predictable, provided that no two component processes jump at the
same time, (D6 holds), and |bi(u)| ≤ 1.

Since Mi(u) are martingales and bi(u) are predictable, {Q0,Q1, . . .} is a martingale with the difference |Qj − Qj−1| ≤

maxu,i |bi(u)| ≤ 1. Recall definition of N in Section 2, we define C2
0n ≤ N , where C0 is a constant. So, by the martingale

version of Hoeffding’s inequality [2] and under Condition (D7), we have

Pr(|QN | > nC0x) ≤ 2 exp{−n2C2
0 x

2/(2N)} ≤ 2 exp(−nx2/2).
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By (A.6), QN = nℓ′
p(β) if and only if

∑n
i=1

∫
∞

0 Ri(t)dN i(t) ≤ N . Thus, the left-hand side of (3.15) in Lemma 3.3 of [15] is no
greater than Pr(|QN | > nC0x) ≤ 2 exp(−nx2/2). Now (A.4) can be rewritten as follows:

Pr{ℓ′

j(β
∗

s′ ) ≥ ncn−τ1−0.5τ2} ≤ exp{−0.5nn−2τ1−τ2} = exp{−0.5n1−2τ1−τ2}. (A.7)

By the same arguments, we have

Pr{ℓ′

j(β
∗

s′ ) ≤ −m−1/2(C1w1/2)n1−τ1} ≤ exp{−0.5n1−2τ1−τ2}. (A.8)

Inequalities (A.7) and (A.8) imply that,

Pr{ℓp(βs′ ) ≥ ℓp(β∗

s′ )} ≤ 4m exp{−0.5n1−2τ1−τ2}.

Consequently, by Bonferroni’s inequality and under conditions (C3)–(C4), we have

Pr

{
max
s∈Sm

−

ℓp(βs′ ) ≥ ℓp(β∗

s′ )

}
≤

∑
s∈Sm

−

Pr{ℓp(βs′ ) ≥ ℓp(β∗

s′ )}

≤ 4mpm exp{−0.5n1−2τ1−τ2} = 4 exp{logm + m log p − 0.5n1−2τ1−τ2}

≤ 4 exp{logw2 + τ2 log n + w2nτ2 c̃nκ − 0.5n1−2τ1−τ2}

= 4w2 exp{τ2 log n + w2c̃nτ2+κ
− 0.5n1−2τ1−τ2}

= a1 exp{τ2 log n + a2nτ2+κ
− 0.5n1−2τ1−τ2} = o(1), (A.9)

as n → ∞ for some generic positive constants a1 = 4w2 and a2 = w2c̃. By Condition (C5), ℓp(βs′ ) is concave in βs′ and (A.9)
holds for any βs′ such that ∥βs′ − β∗

s′∥ = w1dnn−τ1 .
For any s ∈ Sm

−
, let β̆s′ be β̂s augmented with zeros corresponding to the elements in s′/s∗, i.e., s′ = {s ∪ (s∗/s)} ∪ (s′/s∗).

By Condition (C3),

∥β̆s′ − β∗

s′∥2 = ∥β̆s∗∪(s′/s∗) − β∗

s∗∪(s′/s∗)∥2 = ∥β̆s∗∪(s′/s∗) − β∗

s∗∥2 ≥ ∥β∗

s∗∪(s′/s∗) − β∗

s∗∥2 ≥ ∥β∗

s′/s∗∥2 = w1dnn−τ1 .

Consequently,

Pr

{
max
s∈Sm

−

ℓp(β̂s) ≥ min
s∈Sm

+

ℓp(β̂s)

}
≤ Pr

{
max
s∈Sm

−

ℓp(β̆s′ ) ≥ ℓp(β∗

s′ )

}
= o(1).

So, we have shown that

lim
n→∞

Pr

[
max
s∈Sm

−

ℓ{α̂s(U)} ≥ min
s∈Sm

+

ℓ{α̂s(U)}

]
= 0.

Therefore, the theorem is proved. □
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