Downloaded by North Carolina State University, Professor Shu Yang At 08:14 01 April 2019 (PT)

remeraldinsight

The Econometrics of Complex Survey Data
Nearest Neighbor Imputation for General Parameter Estimation in Survey Sampling
Shu Yang, ? Jae Kwang Kim,

Article information:

To cite this document: Shu Yang, ? Jae Kwang Kim, ® "Nearest Neighbor Imputation
for General Parameter Estimation in Survey Sampling" /n The Econometrics of
Complex Survey Data. Published online: 26 Mar 2019; 209-234.

Permanent link to this document:
https://doi.org/10.1108/S0731-905320190000039012

Downloaded on: 01 April 2019, At: 08:14 (PT)

References: this document contains references to 0 other documents.

To copy this document: permissions@emeraldinsight.com

Access to this document was granted through an Emerald subscription provided by
Token:BookSeriesAuthor:abea54e3-511b-4c6f-b9d9-6b463d639d8e:

For Authors

If you would like to write for this, or any other Emerald publication, then please
use our Emerald for Authors service information about how to choose which
publication to write for and submission guidelines are available for all. Please visit
www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society.
The company manages a portfolio of more than 290 journals and over 2,350 books and
book series volumes, as well as providing an extensive range of online products and
additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner
of the Committee on Publication Ethics (COPE) and also works with Portico and the
LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.



https://doi.org/10.1108/S0731-905320190000039012

Downloaded by North Carolina State University, Professor Shu Yang At 08:14 01 April 2019 (PT)

NEAREST NEIGHBOR IMPUTATION
FOR GENERAL PARAMETER
ESTIMATION IN SURVEY SAMPLING

Shu Yang? and Jae Kwang Kim®

“Department of Statistics, North Carolina State University, USA
bDepartment of Statistics, Iowa State University, USA

ABSTRACT

Nearest neighbor imputation has a long tradition for handling item nonre-
sponse in survey sampling. In this article, we study the asymptotic properties
of the nearest neighbor imputation estimator for general population param-
eters, including population means, proportions and quantiles. For variance
estimation, we propose novel replication variance estimation, which is
asymptotically valid and straightforward to implement. The main idea is to
construct replicates of the estimator directly based on its asymptotically lin-
ear terms, instead of individual records of variables. The simulation results
show that nearest neighbor imputation and the proposed variance estimation
provide valid inferences for general population parameters.
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1. INTRODUCTION

In survey sampling, nearest neighbor imputation is popular for dealing with item
nonresponse. In nearest neighbor imputation, for each unit with missing data,
the nearest neighbor is identifie among respondents based on the vector of fully
observed covariates and then is used as a donor for hot deck imputation (Little &
Rubin, 2002). Although nearest neighbor imputation has a long history of applica-
tion, there are relatively few papers on investigating its statistical properties. Sande
(1979) used nearest neighbor imputation in business surveys. Lee and Sédrndal
(1994) studied different methods of nearest neighbor imputation by simulation.
Chen and Shao (2000, 2001) developed asymptotic properties for the nearest neigh-
bor imputation estimator of population means. Shao and Wang (2008) proposed
methods for constructing confidenc intervals for population means and quan-
tiles with nearest neighbor imputation. Kim et al. (2011) applied nearest neighbor
imputation for the US Census long form data. However, most of these studies
focused on mean estimation or a one-dimensional covariate in the context of a
simple random sample, which is restrictive both theoretically and practically.

In the empirical economics literature, nearest neighbor imputation (also known
as matching) has been widely used in evaluation research for adjusting the dis-
tribution of covariates among different treatment groups; see Stuart (2010) for a
survey of matching estimators. Abadie and Imbens (2006, 2008, 2011, 2012,2016)
systematically studied the asymptotic properties of the matching estimators for the
average treatment effects with a finit number of matches. In particular, Abadie
and Imbens (2006, 2012) derived the asymptotic distribution for the matching
estimators that match directly on the covariates using a martingale representation.
Abadie and Imbens (2016) and Yang et al. (2016) further showed that the match-
ing estimators that match on the estimated propensity score are consistent and
asymptotically normal. However, these studies are restricted to mean estimation
and non-survey data.

Empirical researchers are often interested in various finit population quantities,
such as the population means, proportions and quantiles, to name a few (Francisco
and Fuller, 1991; Wu and Sitter, 2001; Berger and Skinner, 2003). Some corre-
sponding sample estimators should be treated differently than others. For example,
estimators of population quantiles involve nondifferentiable functions of estimated
quantities. Moreover, there often are more than one covariate available to facilitate
nearest neighbor imputation for survey data. The current framework of nearest
neighbor imputation does not fully cover inferences in these settings.

In this article, we provide a framework of nearest neighbor imputation for gen-
eral parameter estimation in survey sampling. In general, the nearest neighbor
imputation estimator is not root-n consistent Abadie and Imbens (2006), where n
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is the sample size. Based on a scalar matching variable summarizing all covariates
information, we show that nearest neighbor imputation can provide consistent esti-
mators for a fairly general class of parameters. If the matching variable is chosen
to be the mean function of the outcome given the covariates, our method resem-
bles predictive mean matching imputation (Rubin, 1986; Little, 1988; Heitjan
and Little, 1991). However, unlike predictive mean matching imputation, nearest
neighbor imputation does not require the mean function be correctly specified Its
consistency only requires the matching variable satisfy certain Lipschitz continuity
conditions; see Section 3 for details.

The asymptotic results suggest that variance estimation can proceed based on a
large sample approximation to the normal distribution but requires additional esti-
mation for the variance function of the outcome given the covariates. To avoid such
complication, we consider replication variance estimation (Rust and Rao, 1996;
Wolter, 2007; Mashreghi et al., 2016), which has gained popularity in practice
because of its intuitive appeal. Intrinsically, the nearest neighbor imputation esti-
mator with fi ed number of matches is not smooth. The lack of smoothness makes
the conventional replication methods invalid for variance estimation (Abadie and
Imbens, 2008). This is because the conventional replication method distorts the
distribution of the number of times each unit is used as a match, k;. We provide a
heuristic illustration using an unrealistic but insightful example. Suppose in a sam-
ple of size 2n, let Sequence 1 be the firs n observations, and let Sequence 2 be the
last n observations. Further, suppose that each observation in Sequence 1 matches
to that of Sequence 2. Therefore, the distribution of k; is degenerated to 1 with
probability 1. On the other hand, for the conventional bootstrap, the distribution of
k}, where k is the number of times each unit is used as a match in the bootstrapping
sample, would have a different distribution from ;. Therefore, the conventional
bootstrap fails to preserve the distribution of k;. If the number of matches increases
with the sample size, such as in the “kernel matching” estimators of Heckman et al.
(1998), both k; and k" are infinit in the original and conventional bootstrapping
samples, and therefore the conventional bootstrap works in this setting. To address
the non-smoothness due to the fi ed number of matches, subsampling (Politis etal.,
1999) and m out of n bootstrap (Bickel et al., 2012) can be used; however, their con-
sistency relies critically on the choice of the size for subsampling. Unfortunately,
there is no clear guidance on how to choose these values in practice. Alternatively,
Otsu and Rai (2016) proposed a wild bootstrap method for the matching estimator
based on the full vector of covariates in the context of non-survey data. Adusumilli
(2017) developed a novel bootstrap procedure for the matching estimator based on
the estimated propensity score, built on the notion of “potential errors.” His simu-
lation study also demonstrated the superior performance of the bootstrap method
relative to using the asymptotic distribution for inference.
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We propose new replication variance estimation for nearest neighbor imputation
for general parameters in the context of survey data. To address the non-smoothness
ofthe matching estimator, we construct replicates of the estimator directly based on
the linear representation of the nearest neighbor imputation estimator. In this way,
the distribution of k; can be preserved, which leads to valid variance estimation.
Furthermore, our replication variance method is fl xible, which can accommodate
bootstrap and jackknife, among others. To assess the performance of the proposed
replicate variance estimator, we run a Monte Carlo simulation study. The sim-
ulation results show that the proposed estimator outperforms the conventional
replication estimator under various data-generating mechanisms and sampling
schemes.

The rest of the article is organized as follows. In Section 2, we introduce the
setup and notation and describe the nearest neighbor imputation estimators for
general parameters from survey data. In Section 3, we present the main results
of the article, which establish asymptotic distributions for the nearest neighbor
imputation estimators. In Section 4, we propose a replication method for variance
estimation and establish its consistency. In Section 5, we evaluate the finit sample
properties of the proposed procedure via Monte Carlo simulation studies under
different sampling schemes. Section 6 concludes. Technical details are deferred to
the Appendices.

2. BASIC SETUP

Let Fy ={(x;,i,6;):i=1,..., N} denote a finit population of size N, where
x; is a p-dimensional vector of covariates, which is always observed, y; is the
outcome that is subject to missingness, and §; is the response indicator of y;, i.e.,
8; =1 if y; is observed and §; = 0 if it is missing. The §;’s are define throughout
the finit population, as in Shao and Steel (1999) and Kim et al. (2006). We
assume that Fy is a random sample from a superpopulation model ¢, and N
is known. Our objective is to estimate the finit population parameter define
through p, =N"" ZlNzl g(y;) for some known g( - ), or &y =inf{& : Sy (&) > 0},
where Sy(§)=N""! Z,N=1 s(y; — &), and s( - ) is a univariate real function. These
parameters are fairly general, which cover many parameters of interest in survey
sampling. For example, let g(y) =y, ugs = N1 ZlNzl y; is the population mean
of y. Let g(y)=1(y <c) for some constant ¢, pz = N~! Z,N:1 I(y; <c) is the
population proportion of y less than c¢. Let s(y; —&)=1(y; — £ <0) —«, &y is
the population «th quantile.

Let A denote an index set of the sample selected by a probability sampling
design. Let I; be the sampling indicator function, i.e., /; = 1 if uniti is selected into
the sample, and /; = 0 otherwise. The sample size is n = Z,N: \ Ii. Suppose that 7;,
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the first-orde inclusion probability of unit i, is positive and known throughout the
sample. If y; were fully observed throughout the sample, the sample estimator of
Itg and &y are Mg =N~ ZzGA ;' g(yi) and € = inf{& : Sy (&) = 0} with Sy (&) =
N- ZlEA T 's(y; — €) and N= Yoiea T ~! is an estimator for N. Even with a
known N, it is necessary to use N; we articulate this point in Example 3.

We make the following assumption for the missing data process.

Assumption 1.
(Missing at random and positivity)The missing data process satisfies P(§ =
1x,y)=P(5=1]|x), denoted by p(x). With probability 1, p(x)> € for a
constant € > 0.

We focus on the imputation estimators of u, and &y given by fi,; =
N eam ! {Sig() + a-s 80P} and §r=inf{§:5/(5§)= 0}, respec-
tively, where SI(E) N~ ZIGA {8 s(vi — &)+ A =8)s(yf — 3;)}, and y;
is an imputed value of y; for unit i w1th 8; =0.

To fin suitable imputed values, we use nearest neighbor imputation. Let
d(x;,x;) be a distance function between x; and x;. For example, d(x;,x;)=
[lx; — x;||, where [|x]| = (x"x)!/2. Other norms of the form ||x||p = (x"Dx)'/?,
where D is a positive definit symmetric matrix D, are equivalent to the Euclidean
norm, because ||x||p = {(Qx)"(Qx)}/? =||Qx|| with QTQ D. In particular,
Mahalanobis distance is commonly used, where D = ¥~! with % the empirical
covariance matrix of x.

The classical nearest neighbor imputation can be described in the following
steps:

Step 1. For each unit i with §; =0, fin the nearest neighbor from the respon-
dents with the minimum distance between x; and x;, for je Ag={j €
A :§; =1}. Leti(1) be the index set of its nearest neighbor, which satisfie
d(xi),x;) <d(xj,x;), forall j € Ag.

Step 2. The nearest neighbor imputation estimators of 1, and &y are computed
by

flg i = —Z {8:20) + (1= 8y} » (1)

1€A

and Exng = Iinf{€ : Saai(€) > 0}, respectively, with

N 1 1
Sni(§) = % > p— {8is(vi = &) + (1 = 8)s(viy — §)} - 2

ied !
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In (1) and (2), the imputed values are real observations obtained from the current
sample.

3. MAIN RESULTS

For asymptotic inference, we use the framework of Isaki and Fuller (1982), where
the asymptotic properties of estimators are established under a fxed sequence of
populations and a corresponding sequence of random samples. Specificall , let a
sequence of nested finit populations be given by Fy, C Fy, C Fn, C--- . Also,
let a sequence of samples of sizes {n;:t=1,2,3,...} be constructed from the
sequence of populations with an increasing sample size n; <n, <n3 <---. For
the ease of exposition, we omit the dependence of N, and n, on t. Denote Ep( - )
and varp( - ) to be the expectation and the variance under the sampling design,
respectively. We impose the following regularity conditions on the sampling
design.

Assumption 2.

(1) There exist positive constants Cy and C, such that C; < Nn~'m; < C,, for
i=1,...,N; (2) the sampling fraction is negligible; i.e., nN~'=o0(1); (3)
the sequence of the Horvitz—Thompson estimators [Lo utr = N -1 D iea ni_lg(yi)
satisfies varp(flgur)=0n") and {varp(fLeur)}"*(Agnr — pg) | Fy —
N(0, 1) in distribution, as n — oo.

Assumption 2 is widely accepted in survey sampling (Fuller, 2009).

We introduce additional notation. Let A= Ay U Ay, where A and A, are the
sets of respondents and nonrespondents, respectively. Defin d;; =1 if y;) =i,
i.e., uniti is used as a donor for unit j € Ay and d;; = 0 otherwise. We write [i, nni
in(1l)as

s
! Z&dijg(yi)

[LgNNI = % > %51‘8()’:’) +> 1 -

1

icA jea YV iea
= L 2 kg 3)
- N ' ]Tl' 1 g yl B
i€A
with .
k=) —(1—8))dy. “4)
jeA j

Under simple random sampling, k; =) jea (1 = 8;)d;; is the number of times that
unit i is used as the nearest neighbor for nonrespondents.
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We firs study the asymptotic properties of fto nni. Let g (x) = E{g(y) | x} and
aj (x)=var{g(y) | x}, where the expectation and variance are taken with respect
to the superpopulation model. We use the following decomposition:

n'?(fgnnt — 1hg) = Dy + By, ©)
where
1 1
Dy=n'"? [ﬁ > — {mg(xi) + 8i(1 + k){g(yi) — pe(xi)} — Mg} » (6)
iea !
and
n'/2 1
By=—r ZA; (1= 80t (xiqn) = pg)). Q)

The difference pg(x;1)) — pg(x;) accounts for the matching discrepancy, and
By contributes to the asymptotic bias of the matching estimator. In general,
if x is p-dimensional, Abadie and Imbens (2006) showed that d(x;q),x;)=
Op(n~'/P). Therefore, for nearest neighbor imputation with p > 2, the asymp-
totic bias is By = Op(n'/>~1/7) £ 0p(1). Abadie and Imbens (2011) proposed a
bias-adjustment using a nonparametric estimator [i,(x) that renders matching esti-
mators n'/2-consistent. This approach may not be convenient for general parameter
estimation.

To address for the matching discrepancy due to a non-scalar x, we propose
an alternative method. We firs summarize the covariate information into a scalar
matching variable m = m(x) and then apply nearest neighbor imputation based on
this matching variable. For simplicity of notation, we may suppress the dependence
of m on x if there is no ambiguity. Let f(m) and fy(m) be the conditional density
of m given § = 1 and § =0, respectively. We assume the superpopulation model ¢
and the matching variable m satisfy the following assumption.

Assumption 3.

(1) The matching variable m has a compact and convex support, with den-
sity bounded and bounded away from zero. Suppose that there exist constants
Cip and Ciy such that Cip < fi(m)/fo(m) < Cry; (2) pg(x) and pg(§,x)=
E{s(y — &) | x} satisfy a Lipschitz continuous condition: there exists a constant
Ca such that |1eg(xi) — po(x)| < Calmi — mj| and |iy(5,x) — po(,x))| <
Cylm; —mj| for any i and j; (3) there exists 6 > 0 such that E {|g(y)|2+5 |x}
is uniformly bounded for any x, and E { Is(y — &)]7+ | x} is uniformly bounded
for any x and & in the neighborhood of &y.
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Assumption 3 (1) a convenient regularity condition (Abadie and Imbens 2006).
Assumption 3 (2) imposes a smoothness condition for p,(x), us(§,x) and m(x),
which is not restrictive (Chen and Shao 2000). One simple example is when the
outcome distribution follows a single index model as E{g(y) | x} = ¢,(B;x), where
¢, is a smooth function. There exists some nonparametric estimator ;é that is root-n
consistent for By; see Li and Racine (2007) for a textbook discussion. In this case,
m(x) can be taken as the linear predictor ﬁTx. By a judicious choice, the scalar
matching variable should ensure that Assumption 3 holds. If the mean function
of the outcome given the covariates is feasible, we can choose the matching vari-
able to be the conditional mean function. We note that in this case the proposed
nearest neighbor imputation reduces to the predictive mean matching imputation.
However, our method is more general than predictive mean matching imputation,
because the latter requires the mean function to be correctly specified Assumption
3 (3) is a moment condition for establishing the central limit theorem.

We derive the asymptotic distribution of /i, nni in the following theorem, with
the proof deferred to the Appendices.

Theorem 1. Under Assumptions 1-3, n'/? (fgxni — 1g) = N(0, Vy) in dis-
tribution, as n — oo, where

Ve=Vi+ Vg ®)

with

<
=
I

1
= Jim S [V {Z —Mgw)” ,

icA

N 2
Ve = nlLrEO_E [Z {—8 (1 +k)— 1} cr,f(xi)],
i=1

and k; is defined in (4).

We now establish a similar result for éNNI, with the proof deferred to the
Appendices.

Theorem 2. Under Assumptions 1-3, suppose the population parameter &y
and the population estimating function Sy( - ) satisfy regularity conditions in
Assumptions B.1 and B.2. We obtain the following asymptotic linearization
representation of éNNI.'

n' (e — En) = =128 (En) T (Sai(En) — SnEN)) +op(1),  (9)
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where S'(Eny)=dS(éy)/dE. It follows that nl/z(éNM —&n)—> N(0, V) in
distribution, as n — 0o, where

Ve = §'(En) *var{Sai(En)), (10)

var{Swi(én)} = lim %E (Varp |:Z M:D

: T
iecA

n—o00

N I )
+ lim % ;E ({55;(1 + ki) — 1} var [s(y; — $N)|Xi]) , (1)

and k; is defined in (4).

For illustration, we use quantile estimation as an example.

Example 1: (Quantile estimation) The estimating function for the «th quantile is
s(yi —&)=1(y; —& <0) — «, and the population estimating equation S, x(§) =
Fn(§) — a, where Fy(§)=N"! Z,N:1 I(y; < &). The nearest neighbor imputation
estimator éa,NNI is define as

€, i = inf{€ : Sy xni(€) = 0},

where S i(§) = Fawi(§) — o, Faai§)=N"" 307 8(1+ k)1 (y; <§),
N= Yica 71171, and k; is define in (4). Let F(&) =P(y <&) be the cumulative
distribution function of y. Then, ﬁNNI(E) is a Hajek estimator for F(£), which is
asymptotically equivalent to the one using N instead of N. Even with a known N,
it is necessary to use N because ﬁNNl(g) for £ = oo should be 1. The limiting func-
tion of S, n(§) is Sy(§) = F(§) — . The asymptotic linearization representation
of &, i is

Fai(En) — Fa(Ew)
fé&n)

where f A(S )=dF(&)/d&. Expression (12) is called the Bahadur-type representa-
tion for &, nni (Francisco and Fuller, 1991). The asymptotic variance of &, nni 1S

then given by (10) with §'(£y) and Sxni(Ev) replaced by f(&y) and Fyyi(En),
respectively.

Eunng — Ey =— +op(n'"?), (12)
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4. REPLICATION VARIANCE ESTIMATION

Theorems 1 and 2 suggest that variance estimation for the nearest neighbor impu-
tation estimators can be obtained using the sample analogues of the asymptotic
variance formulas. This approach involves estimation of the variance function of
the outcome given the covariates. Alternatively, we consider replication variance
estimation (Rust and Rao, 1996; Wolter, 2007).

Let fi, be the Horvitz—Thompson estimator of j,. The replication variance
estimator of i, takes the form of

L
Vep(ile) = D cr(@® — i, %, (13)
k=1

where L is the number of replicates, ¢ is the kth replication factor and (" is

the kth replicate of fi,. For fi, =), , wig(y;), we can write the replicate of [i,
as ﬁ.(gk) = ica wfk) g(y:), where wfk) is the replication weight that account for the

complex sampling design. The replicates are constructed such that £ p { \A/rep(;l =
varp(fi {1 + o(1)).

Example 2: In the delete-1 jackknife method, we have L =n, ¢; =(n — )n™!,

(k) (l’l - 1)71 if i #k,
w. =
! 0 ifi =k,

under simple random sampling.

We now propose a new replication variance estimation for fiowni. Let
Wi = (i) + 8:(1 + k)8 () — pg(xi)} and oy =N~'3L ;. Then, the
Horvitz-Thompson estimator for py is Yur =) ;.4 wi ¥, where w; = N ’lni_l.
By Theorem 1, we have fionni — @HT =op(n~'/?). Moreover, we have Py —
g = Op(N~'/?). Therefore,

fgNNT — Mg = (flgNNT — Yur) + (Pt — y) + (g — g),
op(n™"?) + (Yur — y) + Op(N~'72).

With negligible sampling fractions, i.e., ntN ' = o(1), flgnni — g = Yt — My +
op(n~'7?). Then, itis sufficien to estimate var(Yur — iy )= E{varp(Yur — f1y)},



Downloaded by North Carolina State University, Professor Shu Yang At 08:14 01 April 2019 (PT)

Nearest Neighbor Imputation for General Parameter Estimation 219

which is essentially the sampling variance of Yrur. This suggests that we can treat
{¢; :i € A} as pseudo observations in applying the replication variance estimator.
Otsuand Rai (2016) used a similar idea to develop a wild bootstrap technique for the
matching estimators for the average treatment effects. To be specific we construct
replicates of @HT as follows: ‘}gr) = ica a)fk)l//i. The replication variance esti-
mator of I//}HT is obtained by applying Vrep( - ) in (13) for the above replicates I//}g{%
It follows that E{Viep(¥ur)} = var(Ymr — uy){1 + o(1)} = var(ftgnnt — {1 +
o(1)}. Because the pseudo observations /s involve unknown fi4(x), we use a non-
parametric estimator fi4(x). Concretely, we adopt sieves estimators (Geman and
Hwang, 1982; Chen, 2007) which includes power series estimators as examples;
see the Appendices for details.

In summary, the new replication variance estimation for [lg,NN] proceeds as
follows:

Step 1. Obtain a sieves estimator for 1,(x), denoted by fte(x).
Step 2. Construct replicates of [, w1 as

A=Y o g () + 8:(1 + k){g () — fg(xi)}], (14)
icA
where a)fk) is the kth replication weight for unit i.

Step 3. Apply Vrep( -) in (13) for the above replicates to obtain the replication
variance estimator of i ¢NNI-

We now consider a replication variance estimator for Eyn;. Following the previous

section, we obtain the asymptotic variance of Ennt using var {S‘NNI(é )} and S'(¢).

First, to estimate var {SNNI(S)}, we can use the similar replication variance esti-

mation earlier in this section by considering /(y < &) and u,(&, x) instead of y and
tg(x). Second, to estimate S'(£), we follow the kernel-based derivative estimation
of Deville (1999):

~ 1 1 _
$© =5 Lo [s0i- 0K (g - ’C) dx (s)
icA

where K(-) is a kernel function, K'(x)=dK(x)/dx, and A& is the bandwidth.
Under Assumption C.1 for the kernel function and bandwidth and previously stated
regularity conditions on the superpopulations and sampling designs, the kernel-
based estimator (15) is consistent for S’().
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In summary, the new replication variance estimation for &y proceeds as
follows:

Step 1. Obtain a sieves logit estimator for ,us(éNNI,x), denoted by ﬁs(éNNI,x);
see the Appendices for details.
Step 2. Construct replicates of Syni(énni) as

S = o LitsEnne. i) + 8:(1+ k) (s(vi — Exna) — fisEnnt ).

i€cA (16)
Step 3. Apply Vrep( -) in (13) for the above replicates to obtain the variance
estimator of S'NNI(éNNI), denoted as \A/rep{gNNI(éNNI)}.
Step 4. Obtain the kernel-based derivative estimator S’(éNNI), where 3”(5 ) is
define in (15).
Step 5. Calculate the variance estimator of é‘NNI as 3/(§NN1)‘2 ‘A/rep{S’NNI(éNNI)}.

For illustration, we continue with Example 3.

Example 3: (Quantile estimation (Cont.)) Obtain a sieves logit estimator for
F(§) = P(y <§) and a kernel-based estimator for f(§), denoted as F (¢)and f &),
respectively. Construct replicates of FNNI(Sa NNI) a8

FuEarnn) =Y o LF Eapent) + 81+ k) (i < Eapent) — Funm)}]-

icA

Apply Vrep( -) in (13) for the above replicates to obtain the replication variance
estimator of ﬁNNl(éa,NM), denoted as Vrep{l:"NNl(éo,,NM)}. Calculate the variance
estimator of &, xn1 as f (Eo.n1) ™% Viep{ Fanvi (Eanni)}-

We present the consistency results for the proposed replication variance
estimators, with the proof presented in the Appendices.

Theorem 3. Suppose assumptions in Theorem 2 and Assumptions D.1 and D.2
for the sieves estimators hold. Suppose further that Vrep(ﬁ ¢)in(13)is consistent
for var ,([L,). Then, the replication variance estimator for L NN iS consistent,
ie., n\Zep{[Lg,NNI}/ V, — 1 in probability, as n — oo, where the replicates of
fignn1 are given in (14), and V, is given in (8).

Given that the kernel-based estimator § "(&)in(15) is consistent for S'(&), the
replication variance estimator for éNM is consistent, i.e., nVrep{éNM} /Ve—1
in probability, as n — 0o, where the replicates of S'NN](éNN]) are given in (16),
and V¢ is given in (11).
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S. SIMULATION STUDY

In this section, we investigate the finite-sampl performance of the proposed repli-
cation method for variance estimation and constructing confidenc intervals and
comparing them to conventional competitors.

For generating finit populations of size N = 50, 000: first let x;, x; and x3; be
generated independently from Uniform[0, 1], and x4;, xs; and x¢; and e; be gener-
ated independently from A/(0, 1); then, let y; be generated under six mechanisms:
(P1) yi=—1+x1; +xu + e, (P2) yi =—1.5+ x1; + x2; + x3; +x4i + ¢;, (P3)

=—1.5+x; 4+ +x6 +ei, (P4 yi=—14xy; +x3 +x% +x3 —2/3+
e, (PS) yi = —1.5+ X1; + X2; +X3; + X4 + xlzl. —i—x%i - 2/3 +e; and (P6) Yi =
—15+x; 4+ +x6 + xlzi + x%i — 2/3 + e;. The covariates are fully observed,
but y; is not. The response indicator of y;, §;, is generated from Bernoulli( p;) with
logit{ p(x;)} = x] 1, where x; includes all corresponding covariates under each data-
generating mechanism and 1is a vector of 1 with a compatible length. This results in
a 75% response rate, on average. The parameters of interest are y = N ! Z,N= 1 Vi
n=N"! Z,N:1 I(y; < ¢), where c is the 80th percentile such that the true value of
is 0.8, and the median &. To generate samples, we consider two sampling designs:
(S1) simple random sampling with n =800 and (S2) probability proportional to
size sampling. In (S2), for each unit in the population, we generate a size variable s;
as log (|y; + v;| + 4), where v; ~N(0, 1) and specify the selection probability as
; =400s;/ Z,N=1 s;. Therefore, (S2) is endogenous (also known as informative),
where units with larger y; values have larger probabilities to be selected into the
sample.

For nearest neighbor imputation, the matching scalar variable m is set to be
the conditional mean function of y given x, m(x), approximated by power series
estimation. For investigating the effect of the matching variable, we consider
the power series including all firs and second order terms under (P1)—(P3) and
only firs order terms under (P4)—(P6), so that m(x) is correctly specifie for the
mean function under (P1)—(P3) but mlsspemﬁe under (P4)- (P6 We construct
95% confidenc intervals using (it; — Zo. 975V 2,;” + z0. 975V ), where ji; is
the point estimate and V; is the variance estimate obtained by conventional and
proposed jackknife variance estimation. In the conventional jackknife variance
estimation, the whole procedure of nearest neighbor imputation is repeated on
the replicated data sets for obtaining the replicates for the estimators. In the pro-
posed jackknife variance estimation, the kth replicates of finn, 7innt and é‘NNI are
given by

A =" P L) + 81+ k)lyi — A,

i=1
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At = > iy () + 81+ kU (i <€) — ()},
i=1

(G

= fEn) D o G, xi) + 81+ k(i < ) — fisEo, x)},

i=1

where fi,(x), fts(§,x) and f (x) are nonparametric estimators of p,(x) = P(y <
c|x), us(§,x)=P(y <& |x)and f(&), respectively. These are obtained by kernel
regression using a Gaussian kernel with bandwidth 2 = 1.5n~!/3. We note that k;
is the number of times that y; is selected to impute the missing values of y based
on the original data and therefore is kept the same across replicated data sets. The
variance estimators are compared in terms of empirical coverage rate and relative
bias, {E (\71) — V}/V, where V is the true variance estimated from Monte Carlo
samples.

Tables 1 and 2 present the simulation results under simple random sampling
and probability proportional to size sampling, respectively, based on 2,000 Monte
Carlo samples. Under both sampling designs, the nearest neighbor imputation
estimator has small biases for all parameters w, n and &, under (P1)—(P3) with m(x)
correctly specifie for the mean function and (P4)—(P6) with m(x) misspecifie for
the mean function. For variance estimation, as expected, the conventional jackknife
variance estimator is severely biased, indicating that the lack of smoothness of
the matching estimator needs to be taken into account in variance estimation. In
contrast, the proposed jackknife variance estimators provide satisfactory results
under both sampling designs and for all parameters. The relative biases are small
and the empirical coverage rates are close to the nominal coverage of 95% of
confidence Overall, the simulation results suggest that the proposed replication
variance estimation works reasonably well under the settings we considered.

6. CONCLUDING REMARKS

We focus on inference of general population parameters when the outcome is
missing at random in survey data using nearest neighbor imputation, a hot-deck
type of imputation. The superiority of the hot deck imputation methods over the
mean, ratio and regression imputation methods is that the hot deck imputation
methods provide not only asymptotically valid mean estimators but also valid dis-
tribution and quantile estimators. This article establishes asymptotic properties of
the nearest neighbor imputation estimators based on a scalar variable summarizing
all covariate information. Because of the non-smooth nature of nearest neighbor



Downloaded by North Carolina State University, Professor Shu Yang At 08:14 01 April 2019 (PT)

Nearest Neighbor Imputation for General Parameter Estimation 223

Table 1. Simulation Results for The Population Mean u, the Population
Proportion = 0.8 and the Population Median & Under Simple Random
Sampling: Bias (x 10%) and Standard Error (SE x 10?) of the Point Estimator,
Relative Bias of Jackknife Variance Estimates (RB x 10%) and Coverage Rate
(CR %) 0f 95% Confidenc Intervals.

Simple Random Sampling
Prop JK Conv JK

m(x) Bias SE RB CR RB CR

n (P1) c 0.00 4.87 0.1 94.9 >1,000 100
(P2) c 0.12 6.08 0.5 95.3 >1,000 100

(P3) c 1.09 8.42 22 95.3 >1,000 100

(P4) m —0.10 5.41 3.6 96.0 >1,000 100

(P5) m 0.20 6.59 0.1 95.4 >1,000 100

(P6) m 1.17 8.81 0.3 94.8 >1,000 100

n (P1) c 0.00 1.77 0.4 95.0 >1,000 100
(P2) c 0.00 1.53 —0.1 94.9 >1,000 100

(P3) c —0.01 1.50 —5.1 94.7 >1,000 100

(P4) m 0.03 1.63 6.1 95.4 >1,000 100

(P5) m 0.05 1.48 43 95.5 >1,000 100

(P6) m —0.01 1.47 —-0.7 94.9 >1,000 100

& (P1) c —0.25 6.15 2.7 94.8 >1,000 100
(P2) c —0.40 7.60 2.5 94.7 >1,000 100

(P3) c —0.37 10.19 4.0 94.6 >1,000 100

(P4) m —0.25 7.09 32 94.6 >1,000 100

(PS) m —0.35 8.17 7.2 96.0 >1,000 100

(P6) m —0.54 10.78 1.8 94.1 >1,000 100

Prop JK: Proposed jackknife variance estimation; Conv JK: conventional jackknife variance estimation.
c: correctly specifie and m: misspecified

imputation, we propose a novel replication method for variance estimation based
on linearization of the estimator, which is asymptotically valid, while the con-
ventional replication methods are not. Simulation results show that, under various
scenarios, the proposed method outperforms the conventional counterparts. Cou-
pled with the proposed replication procedure, the nearest neighbor imputation
inference is straightforward to implement requiring only software routines for
existing estimators.

In the empirical economic literature, as an important example in evaluation
research, causal inference of treatment effects can be viewed from a missing data
perspective (e.g., Ding and Li, 2018). Propensity score matching has been recently
proposed for inferring causal effects of treatments in the context of survey data;
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Table 2. Simulation Results for the Population Mean p, the Population
Proportion = 0.8 and the Population Median & Under Probability Proportional
to Size Sampling: Bias (x 10?) and Standard Error (SE x 10?) of the Point
Estimator, Relative Bias of Jackknife Variance estimates (RB x 10%) and
Coverage Rate (CR %) of 95% Confidenc Intervals.

Probability Proportional to Size

Prop JK Conv JK

m(x) Bias SE RB CR RB CR

w (P1) c 0.07 4.71 1.8 95.4 >1,000 100
(P2) c 0.20 5.71 6.1 95.9 >1,000 100

(P3) c 0.73 7.71 6.0 96.1 >1,000 100

(P4) m —0.06 5.29 2.4 95.5 >1,000 100

(P35) m 0.22 6.08 7.0 95.9 >1,000 100

(P6) m 0.99 8.23 5.4 95.1 >1,000 100

n (P1) c —0.01 1.89 —6.0 94.5 >1,000 100
(P2) c 0.02 1.63 -1.9 95.3 >1,000 100

(P3) c 0.08 1.66 —55 94.4 >1,000 100

(P4) m 0.02 1.79 —4.0 95.2 >1,000 100

(P5) m 0.03 1.60 1.8 95.2 >1,000 100

(P6) m 0.08 1.67 —-8.7 93.7 >1,000 100

& (P1) c —0.31 6.34 6.2 94.8 >1,000 100
(P2) c —0.06 8.30 0.8 94.5 >1,000 100

(P3) c —0.42 11.36 5.4 94.6 >1,000 100

(P4) m —0.32 7.57 4.1 94.0 >1,000 100

(P35) m —0.34 8.91 7.0 94.8 >1,000 100

(P6) m —0.49 12.22 22 94.4 >1,000 100

Prop JK: Proposed jackknife variance estimation; Conv JK: conventional jackknife variance estimation;
c: correctly specifie and m: misspecified

however, their asymptotic properties are underdeveloped (Lenis et al., 2017). The
proposed methodology here can be easily generalized to investigate the asymptotic
properties of propensity score matching estimators with survey weights.

Our methodology and theoretical results for nearest neighbor imputation rep-
resent an important building block for future developments. Such developments
can follow three lines. First, extending the current theory to non-negligible sam-
pling fractions is possible; see, e.g., Mashreghi et al. (2014). For non-negligible
sampling fraction, note that

var (fLgnni — g ) = var (tﬁm - w) + var (py — pg) +o(n™")
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and var (uy — pg) = O(N~"). Thus, we can add a model-based estimator of

var (uy — i) in addition to the replication variance estimator for var(Yur — iy ).
Second, instead of choosing the nearest neighbor as a donor for missing items, we
can consider fractional imputation (Kim and Fuller, 2004; Yang et al., 2013; Kim
and Yang, 2014; Yang and Kim, 2016) using K (K > 1) nearest neighbors. Third,
writing y; = x; R; and using the fact that x; is always observed, we can apply near-
est neighbor imputation only to impute R;, which can be called nearest neighbor
ratio imputation.
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APPENDICES

The Appendices include proofs of Theorems 1-3 and additional technical details.

APPENDIX A: PROOF FOR THEOREM 1

With a scalar matching variable m, we have

n1/2 1
BN = Tg;(l _‘Si){/'l“g(xi(l)) _Mg(xi)}

nl/2

1
< 2 ieZA ;,»(l = &) Imiqy —m; |=0p(1),

where < in the second line followed by Assumption 3 (2). Based on the
decomposition in (5), we can write

n'(fignnt — Hg) =Dy + op(1), (A.1)

where Dy is define in (6). Then, to study the asymptotic properties of
n'2(fugnnt — ig), we only need to study the asymptotic properties of Dy . For sim-
plicity, we introduce the following notation: pg; = je(x;) and e; = g(;) — [y,
We express

b w12
NTON

1 N
> — e T +ker} — Zg(yi)}
i i=l

icA

12 N

2 & n L
~ Z(;—l) Mg,i-i-TZ{;(Si(]‘Fki)_l}ei’ (A2)
i=1 ! '

i=

and we can verify that the covariance of the two terms in (A.2) is zero. Thus,
12 N I 12 N I
n i n i
var(Dy) =var{7 [E_l (ﬂ_, — 1>;Lg,,~} + Var|:T [E_l {ﬂ—i&-(l + ki) — 1} e .

As n — 00, the firs term becomes
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and the second term becomes
e . N I; ?
Vg:phmmz ﬂ—i&(l +ki)— 1% var(e; | x;).

The remaining is to show that V= O(1). To do this, the key is to show that the

moments of k; are bounded. Under Assumption 2, it is easy to verify that
wki < ki < ki, (A3)

for some constants w and @&, where k; = > jeA (1 = §;)d;; is the number of unit
i used as a match for the nonrespondents. Under Assumption 3, k; = Op(1) and
E(k;)and E (121-2) are uniformly bounded over n (Abadie and Imbens 2006, Lemma
3); therefore, together with (A.3), we have k; = Op(1) and E(k;) and E(k?) are
uniformly bounded over n. Therefore, a simple algebra yields Vy = O(1).

Combining all results, the asymptotic variance of n'/2(fignn1 — 1g) is V' +
V. By the central limit theorem, the result in Theorem 1 follows.

APPENDIX B: PROOF FOR THEOREM 2

Assumption B.1.
The following conditions hold for the population parameter &y and the
population estimating function Sy( - ):

1. The population parameter &y lies in a closed interval T¢;

2. the function s( - ) is bounded;

3. the population estimating function Sy(&) converges to S(&§) uniformly on I
as N — oo, and the equation S(£) =0 has a unique root in the interior of
Ig N

4. the limiting function S(§) is strictly increasing and absolutely continuous
with finite first derivative in I¢, and the derivative S'(€) is bounded away
from 0 for & inZg; and

5. the population quantities

ESU%) N*Sy(En + N7%€) — Sn(En) — SCEv + N7%E) — S(En)| — 0,

and

N
sup NN " Is(vi — En — N7E) — s(yi — &)l = Op(N ™),
S€Ls i=1

where I is a large enough compact set and o € (1/4,1/2].
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Assumption B.1 (5) holds with probability one under suitable assumptions on
the probability mechanism generating the y;’s and on the function s( - ), and there-
fore it is justifiable Under Assumption B.1, by the standard arguments from the
theory on M-estimators (Serfling 1980), éNNI is consistent for &y . We further make
the following assumption.

Assumption B.2.
The nearest neighbor imputation estimator &y is root-n consistent for &y.

Now, we give proof for Theorem 2. Under Assumptions B.1 and B.2, we can
write

Ssni(Eann) — Sw(En) = {Saa(En) — Sv(En)} + S'En)Ennt — Ex) + 0p(n 7).
(B.1)
By Assumption B.1 (4), S(£) is smooth, and therefore Sy(£y)= Op(N1),
Sani(Eni) = Op(n~1), and the left hand side of (B.1) is op(n~'/2). Therefore,
we can obtain a linearization for &xy; as in 9).
Based on the linearization (9), the asymptotic variance is

Ve = §'(n) 2var{Sani(En))-

Following a similar derivation in the proof for Theorem 1, it is easy to show that

var($y(6)) = lim —E (Varp [ZA E{“YN;S)WD
. n & I; 2
+ lim 3 12:1: {;51'(1 + ki) — 1} var [s(yi — &) | x:].

i

APPENDIX C: ASSUMPTIONS FOR KERNEL FUNCTIONS

Assumption C.1.
The following conditions hold for kernel function K ( - ) and bandwidth h:

1. the kernel function K(-) is absolutely continuous with nonzero finite
derivative K'(-) and [ K(x)dx=1;

2. the bandwidth h — 0 and nh — 0o as n — oo;

3. there exists a constant c, such that |h='K'(x,/h) — h™'K'(x2/ h)| <c|x; —
X3| for any x1, x and an arbitrarily small h.
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Assumption C.1 states conditions on the smoothness and tail behavior of the
kernel functions. Popular kernel functions, including Epanechnikov, Gaussian and
triangle kernels, satisfy the required conditions.

APPENDIX D: SIEVES ESTIMATION

The method of sieves (Geman and Hwang, 1982) offers a powerful tool for estima-
tion for nonparametric or semiparametric models. See Chen (2007) for a textbook
discussion. In particular, the sieves can be constructed using linear spans of power
series. For illustration, we describe the power series estimator for p,(x) (Newey,
1997) and the series logit estimator for sz(x)=I(y — & <0) — o (Hirano et al,,
2003; Ichimura and Linton, 2005).

Power Series Estimator for jLg(x)

We consider continuous g(y) and power series estimation for 11,(x) with K terms
in the series, where K increases with n. Let p be the dimension of X. Consider a
sequence of power functions

PX@)=pi(x),..., px(x)', (D.1)

where p;(x)=x =x;"" x -+ x xy” with A;j=(j1,....Ajp), and |[Aj|=
>%_, Ajx is nondecreasing in j.

For simplicity of the presentation, let the firs r units be the respondents,
ie., 8;=1 for i=1,...,r. From the observations {(x;,y;):i=1,...,r}, the
power series estimator of u.(x) can be calculated as the predicted value
obtained from a weighted regression of g(y;) on pX(x;). To be precise, let P =
(PX @), ..., p’((xr))T and G, = (g(31),...,g(y.)". A power series estimator of
Mg (x) takes the form

f(x)=pX(x)"(P"WP)" P"WG,, (D.2)

where W is a diagonal matrix with the ith diagonal element ni_l, and (P"WP)~
denotes a generalized inverse of a matrix PTW P.

Suppose the following assumption holds for establishing the fast convergence
rate of [i,(x) in (D.2).

Assumption D.1.

1. The support of x is a Cartesian product of compact intervals;
2. pg(x) is s-times continuously differentiable at x with s/p > 1;
3. the number of series K = O(n") with0 <v < 1/3.
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Assumption D.1 (2) requires u,(x) to be sufficientl smooth, depending on
the dimension of x and the number of derivatives of u,(x). Assumption D.1 (3)
requires the number of series increases at a certain rate.

Lemma D.1. Under Assumption D.1, the power series estimator [iL4(x) in (D.2)
satisfies that sup, |flo(x) — pe(x)| = Op (\/K3/n + Kl’s/”) =op(1).

The proof of Lemma D.1 can be found in Newey (1997).

Series Logit Estimator for uy(§,x)=E{I(y — &£ <0)|x} — «

Denote p:(x)= E{I(y <&)|x}and logit(a) = {1 + exp ( — a)}~". The series logit
estimator for pg(x) can be obtained as

pe () = logit(p* (x)" Ak ), (D.3)

where pX(x) is define in (D.1), and

g = argmngni_l (I(y,- — & < 0)logit{p* (x;,)"m }+
icA

1y — & > O[1 — logit(p* (x))"}1) .

Suppose that the following assumption holds for establishing the fast convergence
rate of the series logit estimator pg(x) in (D.3).

Assumption D.2.

The support of x is a Cartesian product of compact intervals;
pe(x) is s times continuously differentiable with s/p > 3;
pe(x) is bounded away from zero and one on the support of x;
the density of x is bounded away from zero on the support of x;
the number of series K = O(n") withv < 1.

LR~

Lemma D.2. Under Assumption D.2, the series logit estimator pg(x) in (D.3)
satisfies that sup, | ps(x) — ps(x)| = Op (VK/n + K'~0/2P))

The proof of Lemma D.2 can be found in Hirano et al. (2003).
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Remark 4. When the dimension of x, p, becomes larger, Assumption D.1 (2)
and Assumption D.2 (2) typically require more stringent smoothness on [i4(x)
and pg(x) in x. Alternatively, we can estimate q(x) and pe(x) by applying the
power series constructed based on m; =m(x;), i.e., using the 1-dimensional
variable m;.

APPENDIX E: PROOF FOR THEOREM 3

The replication method implicitly induces replication random variables u; and
weights w* such that E*(ofu;)=N""'n," and E*{(0}u;)*} = N72(1 — )7, 2,
fori=1,...,N, where E*( - ) denotes the expectation for resampling given the
observed data. For example, in delete-1 jackknife under simple random sampling
with nN~!=o0(1), we have m; =nN~', L=n, ¢, =(n — 1)n~" and wl{k) =(n—
1)~'ifi #k and a),(ck) =0. The induced random variables u; follows a two-point
mass distribution as

1

1, with probability (n — Dn~!,
Ui = . .
0, with probability n™",

and weights o} = (n — 1)~ It is straightforward to verify that E*(wfu;)=n""=
N~z " and E*{(wfu;*} =(n — 1) "'n ' A N72(1 — )7, 2.

In what follows, we use P*( -) to denote the probability mass or density func-
tion induced from resampling given the observed data and use the supscript * to
indicate the random variables resulting from one replication sampling. Then, the
kth replication of fi, N1, ,&gff\]m, can be viewed as one realization of

Wit = 3 0f[Ag(xi) + 81+ kg () — fig (i)} uy

icA
= " 0 [g() + 81+ k){g() — pex)}uy
i€A
+ Zw?{(l —8;) + Siki Hitg (i) — pg(xi)}u;
€A
= ) oY + Ry, (E.D)
icA

where Ry, =34 o {(1 — &) + 8iki Mg (xi) — 1o (xi)}u;.
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We now show E* {(nl/ 2 R}k\,)z} — 0 in probability. We write

Ty

1
= nNE {(wju1)*} v Z{(l — 8) + 8iki Y {fig(xi) — pg(xi))
i€eA

1
+2nN(N — D)E* (o} wiuus) YO =D D A= 8) + ik}
i£jeA

XA = 8;) + 8k Hig(x;) — pg(xi)Hig(xj) — pg(xj)}.

Because of Assumption 2 (1), and the facts that n N E {(w}u;)*} = O(1), aN(N —
1)E* (w}wjuus) = O(1), the uniform convergence of [i4(x) to fi(x) in Lemma
D.1, and E(k!) is uniformly bounded over n and for any />0, we obtain
E* {(nl/ 2 R}*V)z} — 0 in probability. Then, by the Markov inequality, we obtain
for any €, P* (n'/?|R}| > €) — 0 in probability.

It then becomes straightforward to verify that Vrep( -) applied to ﬂg})\ml is

consistent for var(v,) and therefore for var(t ¢.NNI)-
The proof for the second part of Theorem 3 is similar and therefore omitted.
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