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Abstract: For theoretical properties of variable selection procedures for Cox’s model,
we study the asymptotic behavior of partial likelihood for the Cox model. We find
that the partial likelihood does not behave like an ordinary likelihood, whose sample
average typically tends to its expected value, a finite number, in probability. Under
some mild conditions, we prove that the sample average of partial likelihood tends
to infinity at the rate of the logarithm of the sample size, in probability. We apply
the asymptotic results on the partial likelihood to study tuning parameter selection
for penalized partial likelihood. We find that the penalized partial likelihood with
the generalized cross-validation (GCV) tuning parameter proposed in Fan and Li
(2002) enjoys the model selection consistency property, despite the fact that GCV,
AIC and C), equivalent in the context of linear regression models, are not model
selection consistent. Our empirical studies via Monte Carlo simulation and a data
example confirm our theoretical findings.
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1. Introduction

The Cox model (Cox (1972)) has been the most popular model in the survival
data analysis during the past decades, and the partial likelihood (Cox (1975)) is
perhaps the most commonly-used technique for analysis of right censored data.
In practice, many risk factors and covariates are available for the initial analysis,
thus an important task is to identify the significant risk factors and covariates.
Variable selection is a useful technique in the analysis of survival data in the
presence of many covariates. Classical variable selection criteria for linear regres-
sion models can be extended for the Cox model by replacing the log-likelihood
by the log-partial likelihood (AIC (Akaike (1974)) and BIC (Schwarz (1978))).
The LASSO (Tibshirani (1996)) variable selection technique has been extended
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for the Cox model (Tibshirani (1997); Zhang and Lu (2007); Zou (2008)). Non-
concave partial likelihood variable selection procedures have been developed for
the Cox model (Fan and Li (2002); Bradic, Fan and Jiang (2011)). To investigate
the theoretical property of these procedures, we have to study the asymptotic
behavior of the partial likelihood.

There has been little work on the asymptotic behavior of the partial likeli-
hood, though the asymptotic properties of the partial likelihood estimator have
been extensively studied (Tsiatis (1981); Andersen and Gill (1982); Takemi and
Toshinari (1984)). Under mild regularity condition, the maximum partial likeli-
hood estimator behaves the same as the ordinary maximum likelihood estimator
of i.i.d. random samples in terms of asymptotic consistency, asymptotic nor-
mality and asymptotic efficiency. See, for example, Murphy and van der Vaart
(2000). In this paper, we first study the asymptotic behavior of the partial likeli-
hood, and prove that the ‘sample average’ of partial likelihood diverges to infinity
at a rate of the logarithm of the sample size. This clearly indicates that the Cox
partial likelihood does not behave like an ordinary likelihood in that under mild
regularity conditions, the sample average of the ordinary likelihood function con-
verges to its expectation (a finite value) in probability as the sample size tends
to infinity.

With the aid of the asymptotic property of partial likelihood, we study the
selection of regularization parameter in penalized partial likelihood for variable
selection. Tibshirani (1997) proposed penalized partial likelihood with LASSO
penalty for the Cox model. Fan and Li (2002) proposed the partial likelihood
with the SCAD penalty for the Cox models, and showed that under certain reg-
ularity conditions, the resulting estimate enjoys the oracle property. Zhang and
Lu (2007) and Zou (2008) further proposed adaptive LASSO for the Cox model
to improve the SCAD procedure in terms of computational efficiency, while re-
taining the oracle property. The oracle property depends on the choice of the
regularization parameter in penalized partial likelihood. It is well known that
the regularization parameter controls the model complexity of the selected mod-
els, and plays a crucial role in these variable selection procedures. The issue of
regularization parameter selection for penalized partial likelihood has not been
systematically studied, in part because the asymptotic behavior of partial likeli-
hood was not well understood. Wang, Li and Tsai (2007) studied the selection
of regularization parameter in the SCAD penalized least squares for linear re-
gression models. They showed that with a positive probability, the generalized
cross-validation (GCV, Craven and Wahba (1979)) selector yields an over-fitted



ASYMPTOTIC BEHAVIOR OF PARTIAL LIKELIHOOD AND APPLICATION 2715

model, and therefore this procedure does not enjoy the oracle property.

In this paper, we prove that the GCV selector for the SCAD method for
the Cox model enjoys model selection consistency, in contrast to its model selec-
tion inconsistency in the least squares setting as demonstrated in Wang, Li and
Tsai (2007). Although GCV is equivalent to AIC and the C), in the context of
linear regression models, AIC and C), yield an overfitted models with a positive
probability, and thus are not model selection consistent.

The rest of this paper is organized as follows. Section 2 studies the asymp-
totic behavior of the partial likelihood of the Cox model. We study the regu-
larization parameter selection for the penalized partial likelihood in Section 3.
Simulation study and a data example are presented in Section 4. Proofs are given
in the Appendix.

2. Asymptotic Behavior of Cox’s Partial Likelihood

Let T and X = (X1,...,X4)T be the survival time and associated d-dimen-
sional vector of covariates, respectively. Consider the Cox proportional hazard
regression model:

Bt |x) = ho(t) exp(x" B), (2.1)

where 3 is the regression coefficient vector, and h(t|x) is the conditional hazard
function of T' given X = x with hg(t) as an arbitrary baseline hazard function.
Suppose that (T1,x1),...,(Ty,Xy) is a random sample of (7', X), and the ob-
served right censored survival data are as follows: (Vi,01,%1),...,(Vi, dn,Xn),
where V; = min{T;,C;},d;, = I{T; < C;}, and C; is the right censoring vari-
able independent of T; given X = x;. Without loss of the generality, assume
that there are no ties among observed continuous random variables V;’s. The
log-partial likelihood function of the observed data is

e(B) = 6% B =) dilog (Z}‘:J {v; = va}exp(xfﬁ))- (2:2)
i=1 i=1

(Cox (1975)). The goal is to study the asymptotic behavior of £.(3). We first
illustrate the different behaviors of the log-partial likelihood and the likelihood
of an i.i.d. sample by an example.

Example 1. Suppose that we have an i.i.d. random sample {Y7,...,Y,} from
a population with probability density/mass function f(y;6), so £(0) = > I,
log{f(Y;;6)} is the log-likelihood function. By the weak law of large number,

n~1(0) — Elog{f(Y;0)} in probability under mild regularity conditions. Fur-
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Table 1. Values of U and the corresponding average censoring rates (1 — p1) together
with o =E{(T < C)X}.

U 10.00 5.00 2.75 1.80 1.20 0.80 0.50 0.30
(I-p1) 01222  0.2055 0.2991 0.3797 0.4613 0.5485 0.6393 0.7311
Ko 0.0968  0.1429 0.1775 0.1971 0.2007 0.2028 0.1921 0.1652

thermore, under mild regularity conditions, the maximum partial likelihood es-
timator, the maximizer of ¢.(3), behaves the same as the ordinary maximum
likelihood estimator, the maximizer of ¢(6), in terms of asymptotic consistency,
asymptotic normality and asymptotic efficiency. See, for example, Murphy and
van der Vaart (2000). Here, we numerically illustrate that

n"Y.(B8) = 00 as n— oco. (2.3)

We generated a random sample of size n from the proportional hazard model

h(t|x) = ho(t) exp(X ),

where ho(t) =1, 8 = 1 and X ~ N(0,1). The censoring variable C' was generated
from an exponential distribution with mean U. Therefore, the average censoring
rate varies with different values of U. We list several values of U in Table 1
together with their corresponding average censoring rates, 1 —E I(T < C)=1—py,
and take 10 different values of n ranging from 4 (= 22) to 1,024 (= 2!°). Figure 1
depicts the scatter plot of log(n) versus —n~!/, based on a set of typical samples
based on the different U listed in Table 1. Figure 1 clearly suggests that —n~1¢,.
increases at log(n) rate.

We next show that —n~14.(3) tends to infinite at the rate of log(n) using
techniques related to empirical processes. Let

G(ux—nlzf{v<vx,gx}ﬂ *1ZI{V<U<5*1} (2.4)
i=1
with G (v, x) and H (v) as the limits of the empirical dlstrlbutlon functions Gy, (v, x)
and H,(v), respectively. Take pg = E{I{T < C}X}, W(t) = [ [, exp(x"B)
dG(v,x), and p1 = EI{T < C}. The proof of the followmg theorem is given in
Appendix A.

Theorem 1. If (V;,8;,%;), i =1,...,n, is a random sample from the Cox model
(2.1) and the censoring time C; is independent of T; given x;, then the following
statements hold.
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Figure 1. Plot of log(n) versus —n~14.. ‘0’ is the scatter plot of log(n) versus —n =1/,
based on a typical simulated data set. The solid line in each plot is log(n)p1 — 3" f1, with
B =1, where p; is an estimate of EI{T < C'} and f, is an estimate of E{I{T < C}X}.
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(a) If X has a finite bounded support, then
—n" Y (B) = prlogn — ul B+ 0,(1), as n — oco. (2.5)

(b) If py = [y  log W (t) dH (t) is well-defined, E|X;| < oo for all j =1,...,d,
and 0 < Eexp(XTB) < oo,

—nUe(B) = prlogn — pg B+ + 0p(1). (2.6)

When there is no censoring, it can be shown that W (t) = fr(t)/ho(t) and

p1 = [y " log(fr(t)/ho(t)) dFp(t), where fp(t) and Fp(t) are the probability den-

sity and cumulative distribution function of 7" in (2.1), respectively. Thus, the

assumption about py holds for many distributions, such as the exponential dis-
tribution.

Remark 1. From the proof of this theorem, the leading term p;log(n) comes
from log(n){(1/n) >, 6}, which does not depend on the regression coefficient
B and does not affect the first and second order derivatives of the partial likeli-
hood function. As the asymptotic normality of the maximum partial likelihood
estimator relies on the first and second order derivatives, the divergent behavior
of the partial likelihood function does not impact the asymptotic normality of
the partial likelihood estimator. On other hand, the tuning parameter selector
for penalized partial likelihood, studied in next section, depends on the partial
likelihood function itself. As a result, the asymptotic behavior of the partial
likelihood function directly affects the property of the tuning parameter selector.

3. Tuning Parameter Selector in Penalized Partial Likelihood

Take the penalized partial likelihood to be

d
ec(IB) _nzp)\“B]’)? (31)
j=1

where d is the dimension of 3, py(:) is a penalty function with a tuning pa-
rameter A (or more generally, A;s). The penalized partial likelihood estimate
of B8 maximizes (3.1) with respect to 3. Denote by B, the true value of f3,
and let By = (Bio,---,Ba)" = (BT, BL)T. Without loss of generality, we take
Boo = 0 with all components of 3;, nonzero. Under some regularity conditions,
Fan and Li (2002) showed that the nonconcave penalized likelihood estimator

A~

AT AT
B = (B;,85)T possesses the oracle property: with probability tending to 1, for
a certain choice of py, (-), we have By = 0 and

\/5(61 = Bio) = N(O,Il_l(ﬁlo,O)),
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where I1(819,0) is the Fisher information matrix for 3, knowing 3, = 0.

The oracle property depends on the choice of the tuning parameter. Thus,
the selection of tuning parameter is fundamental in the penalized likelihood pro-
cedure. Wang, Li and Tsai (2007) studied the selection of the tuning parameter
for penalized least squares for linear regression models. They showed that the
GCV tuning parameter of Fan and Li (2001) cannot yield an oracle estimator.
The issue of tuning parameter selection for the penalized partial likelihood has
not been studied. Based on the asymptotic results about the partial likelihood,
we show that the GCV tuning parameter selector for (3.1) possesses model se-
lection consistency, in contrast to the model selection inconsistency of the GCV
tuning parameter selector in the penalized least squares setting.

Let ,B y be the penalized partial likelihood estimator with tuning parameter
A. Define the GCV statistic to be

GCV(\) = m. (3.2)

When Agey = argmin, {GCV(A)} is selected, where the degree of freedom dfy
is set to be the number of the nonzero penalized partial likelihood estimate
corresponding to the tuning parameter \. It can be shown that with probability
tending to one, the effective number of parameters in Fan and Li (2002) is df)
by using related techniques in Zhang, Li and Tsai (2010).
We define the corresponding AIC and BIC statistics as
AIC(N) = —20.(3)) + 2dfy, (3.3)
BIC(A) = ~26,(3,) + log(n)dfy,
with the AIC and BIC tuning parameter selectors
Aarc = argminy, {AIC(A\)} and Agjc = argmin, {BIC(A)}

When t lies in the neighborhood of 0, (1 —#)72 ~ 1 — 2t so, when n is large
enough,

2nGCOV(\) ~ —20.(8)) + 4 {M} dfy.

n

If —(.(By)/{nlog(n)} — EI{T < C} as n — oo, then
2nGCV(N) ~ —20.(3,) + 4p1 log(n)dfy. (3.5)
For p; > 1/4, the GCV tuning parameter can yield a sparser model than the one

selected by the BIC-tuning parameter selector, as is seen in the simulation study
in Section 4.
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3.1. Definition and notation

We first need to define the candidate models considered in model selection.
Let @ = {1,...,d} denote the label of predictors for the full model. Hence «, the
subset of @, represents a candidate model including the predictors labelled by
«. For each candidate model «;, its model size and the corresponding coefficients
are df, and B,. Therefore, each tuning parameter A determined in the penalty
function results in a selected model «) with model size df,, and the corresponding
coefficients 3,. The collection of all candidate models is denoted by A.

For any given model a, we are able to obtain its non-penalized estimates
B; by maximizing the corresponding partial likelihood ¢.(3). Similarly, for any
selected model a, obtained from penalized partial likelihood with given X, we
are able to obtain the corresponding non-penalized estimates B;A

To study the asymptotic behaviors of the tuning parameter selectors for
penalized partial likelihood, we define a general tuning parameter selector

GICy, (B) = —2L(B) + K;nde, (3.6)

where B is the parameter estimator and df 3 is the corresponding degree freedom
associated with B Here k,, is a positive number that denotes different variable
selection criterion. When x, = 2, GIC,, is the AIC at (3.3), and when &, =
log(n), GIC,,, is the BIC at (3.4).

3.2. Theoretical property

In this section, we assume that the set of candidate models contain the unique
true model and that the number of parameters in the full model is finite. Assume
that the coefficients of the unique true model o in A are nonzero. Therefore,
any candidate model a 2 ap is an underfitted model while any model a D «y is
an overfitted model. We partition the tuning parameters into

Q. ={ :ax 2}, W={:ayx=a} and Qp ={\:a)Dag}.
We need the following conditions.

(E1) Amax depends on n and satisfies Apax — 0 as n — oo.

(E2) There exits a constant m such that the penalty py (&) satisfies p (§) = 0 for
&E>m.

(E3) If A, = 0 as n — oo, then the penalty function satisfies

. . /
hnrgloréfhra%)nf Vnp\ (&) = oo.
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(E4) For any candidate model o € A, there exits ¢, > 0 such that —n_lﬁc(éz)
—log(n)p1 — ¢q. In addition, for any underfitted model o 2 g, cq > Cay-

Conditions (E1)—(E3) are conditions on the penalty while condition (E4) is the
technical condition needed to investigate the asymptotic properties of the tuning
parameter selectors for penalized partial likelihood. Condition (E1) indicates a
smaller tuning parameter is required if the sample size is large; (E2) implies that
the penalty is chosen to have an asymptotic unbiased estimator; (E3) is used
to study the oracle property of the penalized estimator; (E4) assures that the
underfitted model yields a larger model deviance than that of the true model.

Theorem 2. Suppose that the partial likelihood function of the Cox’s model sat-
isfies Conditions (A)—(D) in Fan and Li (2002) and that Conditions (E1)—(E4)
hold.

(A) If there exits a positive constant M such that k, < M, then the tuning
parameter \ obtained by minimizing GICy, (\) satisfies P{j\ € Q_} —
0 and P{AeQ,.}>0.

(B) If kn — 00 and kn/\/n — 0, then the tuning parameter \ obtained by
minimizing GICy, (X\) satisfies P{as = ag} — 1.

(C) If p1 > 0, then the tuning parameter X obtained by minimizing the GCV
score defined in (3.2) satisfies P{a5 = ap} — 1.

The proof of Theorem 2 is given in the supplement (Li et al. (2016)).

Here, Theorem 2(A) implies that the GIC,, selector with bounded &,, tends
to overfit without considering which penalty function is used, while Theorem 2(B)
indicates that the GIC, selector with diverging k, enables us to identify the
true model consistently. Thus, the penalized partial likelihood with diverging ,,
possesses the oracle property. Theorem 2(C) implies that the penalized partial
likelihood estimator with the GCV selector also possesses the oracle property.
This is quite different from penalized least squares for the linear regression model;
as shown in Wang, Li and Tsai (2007), the GCV selector for the penalized least
squares with linear model results in an overfitted model with positive probability.

4. Numerical Results

We assessed the finite sample performance of proposed procedures. Since
there exist various comparisons among penalized partial likelihood with different
penalties such as the LASSO and SCAD. In our simulation studies, we focused
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on comparisons among different tuning parameter selectors for penalized partial
likelihood with the SCAD penalty. For simplicity, we refer to the SCAD penalized
partial likelihood with s, = 2 and log(n) in GIC,, tuning parameter selector
as SCAD-AIC and SCAD-BIC, respectively. Similarly we refer to the SCAD
method with the GCV as SCAD-GCV. The best subset selection with AIC and
BIC criteria for the Cox model are denoted by AIC and BIC in this section,
respectively. In our simulation, we employed the local linear algorithm (LLA,
Zou and Li (2008)) to compute the parameter estimates of the SCAD penalized
partial likelihood function.

Example 2. We adapted the model structure in Fan and Li (2002) to generate
the data with sample sizes n = 100, 200, and 400 from the Cox model with hazard
function

h(t|x) = ho(t) exp(x1 B),

where ho(t) = 1, 8 = (0.8,0,0,1,0,0,0,0,0,0.6,0,0)”, and x had a 12-dimensional
normal distribution, with the correlation between x; and x; as 0.5"=3. Accord-
ingly, u(x”3) = exp(—x’3). The censoring distribution was exponential with
mean U exp(—x' 3), where U was sampled from a uniform distribution over [1, 3].
Consequently, the average censoring percentage was 35%. We include the case
with no censoring as a benchmark. For each scenario, we conducted 1,000 simu-
lations.

To assess finite sample performance, we report the percentage of models
correctly fitted, underfitted, and overfitted with 1, 2, 3, 4, 5 or more parameters
by five variable selection procedures, as well as the simulated data fitted with
the true model over 1,000 simulations. We report the average number of zero
coefficients that were correctly (C) and incorrectly (IC) identified in the selected
models over 1,000 simulations. To compare model fittings, we calculated the
model error for the new observation (V, 9, x),

ME(B) = Ex{u(x"8) — n(x"B)},
where the expectation is taken with respect to the new observed covariate vector
x, and u(x’'B) = E(T|x,B3). We report the median of the relative model error
(MRME) over 1,000 simulations, where the relative model error is defined as
RME = ME/ME¢,, and MEy,; is the model error calculated by fitting the

data with the full model.
In Fan and Li (2002), it was shown that

ME(B) = Ex{u(x"B) — p(x"B)}* = Ex{exp(—x"B) — exp(—x"B)}*.
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Table 2. Simulation results for the Cox model (No Censoring).

MRME Zeros Under Exact Over Fitted (%)
n  Method (%) C IcC (%) (%) 1 2 3 4 >5
100 SCAD-AIC 45.75 7.255 0.001 0.1 37.5 153 16.1 13.1 85 94
SCAD-BIC 20.90 8.576 0.003 0.3 74.0 157 52 3.8 09 0.1
SCAD-GCV  17.29 8.940 0.059 5.6 89.2 49 0.3 0.0 0.0 0.0

AIC 52.52 7.349 0.001 0.1 20.1 294 269 153 6.0 2.2
BIC 25.68 8.666 0.004 0.4 725 226 34 1.1 0.0 0.0
Oracle 15.73  9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

200 SCAD-AIC  58.53 7.591 0.000 0.0 46.6 159 13.8 85 73 7.9
SCAD-BIC  36.33 8.867 0.000 0.0 90.1 73 18 0.8 0.0 0.0
SCAD-GCV  33.96 8.995 0.003 0.3 99.2 05 0.0 0.0 0.0 0.0

AIC 66.37 7.506 0.000 0.0 23.1 322 248 13.8 45 1.6
BIC 41.89 8.781 0.000 0.0 81.2 16.1 23 0.4 0.0 0.0
Oracle 33.95 9.000 0.000 0.0 1000 0.0 0.0 0.0 0.0 0.0

400 SCAD-AIC  68.14 7.553 0.000 0.0 45.1 14.7 154 93 9.1 64
SCAD-BIC  44.10 8.936 0.000 0.0 94.7 44 0.7 0.2 0.0 0.0
SCAD-GCV  42.33 8.999 0.000 0.0 999 0.1 0.0 0.0 0.0 0.0

AIC 74.71  7.530 0.000 0.0 22.6 334 25.7 122 5.0 1.1
BIC 47.38 8.875 0.000 0.0 88.6 10.5 0.7 0.2 0.0 0.0
Oracle 42.30 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

By using the moment generating function of the multinormal distribution, we
can simplify this to

ME(B) = exp(2B"8) + xp(28758) ~ 20w (5B + 81 5(5 4 5) ).
where ¥ is the covariance matrix of x. We use this formula to calculate model
errors for our simulations.

Table 2 gives the results for the uncensored case, and shows that the MRME
of SCAD-BIC/GCV is smaller than that of SCAD-AIC. As the sample size in-
creases, the MRME of SCAD-BIC/GCV approaches that of the oracle estima-
tor, whereas the MRME of SCAD-AIC remains at the same level. Interestingly,
SCAD-BIC and SCAD-AIC have smaller MRME than that of the best subset
selection with BIC and AIC, respectively.

Table 2 also shows that SCAD-BIC/GCV has a higher probability of cor-
rectly estimating the true zero coefficients to zero than does SCAD-AIC. How-
ever, SCAD-BIC/GCV was more prone than SCAD-AIC to incorrectly set the
three nonzero coefficients to zero when the sample size was small, and SCAD-
GCV was more aggressive than SCAD-BIC with larger values in “IC” columns.
In addition, SCAD-BIC/GCV had a much higher probability of correctly identi-
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Table 3. Simulation results for the Cox model (35% Censoring).

MRME Zeros Under Exact Over Fitted (%)
n  Method (%) C IC (%) (%) 1 2 3 4 >5
100 SCAD-AIC 4243 7.235 0.012 1.2 334 188 16.6 12.0 85 9.5
SCAD-BIC 21.42 8.491 0.060 5.8 634 197 73 24 1.1 0.3
SCAD-GCV  19.04 8.800 0.153 136 716 123 21 03 0.1 0.0

AIC 50.03 7.370 0.016 1.6 204 30.0 259 136 6.5 2.0
BIC 23.45 8.648 0.036 3.6 688 237 35 04 0.0 0.0
Oracle 14.35 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

200 SCAD-AIC  59.24 7.535 0.000 0.0 423 195 132 102 7.7 7.1
SCAD-BIC  35.53 8.841 0.000 00 874 98 23 05 0.0 0.0
SCAD-GCV 3248 8.963 0.006 06 959 33 02 0.0 00 0.0

AIC 64.64 7.513 0.000 0.0 22.8 355 215 121 69 1.2
BIC 37.90 8.830 0.000 0.0 848 135 1.6 0.1 0.0 0.0
Oracle 31.45 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

400 SCAD-AIC  69.31 7.552 0.000 0.0 415 195 14.7 106 74 6.3
SCAD-BIC  45.07 8.920 0.000 00 932 57 1.0 0.1 0.0 0.0
SCAD-GCV  42.75 8.993 0.000 0.0 994 05 0.1 0.0 0.0 0.0

AIC 73.64 7.547 0.000 0.0 23.8 33.7 247 11.6 45 1.7
BIC 48.85 8.856 0.000 0.0 868 120 1.2 0.0 0.0 0.0
Oracle 43.47  9.000 0.000 0.0 1000 0.0 0.0 0.0 0.0 0.0

Table 4. Estimates and standard errors for heart attack data.

MPLE SCAD-AIC SCAD-BIC SCAD-GCV
age (1) 0.60(0.13) _ 0.56(0.09) _ 0.43(0.07) __ 0.41(0.05)
cpk (z2) 0.03(0.14) 0 () 0 () 0 ()
sex (z3) 0.17(0.14) 0 () 0 () 0 ()
chf (z4) 0.80(0.14)  0.80(0.13)  0.80(0.14)  0.82(0.13)
miord (zs) 0.42(0.14)  0.43(0.13)  041(0.13) 0 ()
age*sex(xg) —0.29(0.14) —0.22(0.13) 0 (-) 0 ()
age*chf (x7) —0.07(0.15) 0 () 0 () 0 ()
age*miord (zg) 0.03(0.15) 0 () 0 () 0 ()
cpk*sex (zg) —0.16(0.16) 0 () 0 () 0 ()
cpk*chf (z10) 0.19(0.15)  0.19(0.09) 0 (-) 0 ()
cpk*miord (z11)  0.29(0.15)  0.25(0.12)  0.21(0.05) 0 ()

fying the true model.

For the censored case, Table 3 shows findings similar to those presented
in Table 2. Accordingly, SCAD-BIC/GCV was superior to SCAD-AIC in both
identifying the true model, and in reducing the model error and complexity.
When the data was 35% censored, all methods declined slightly in their efficacy,
while the relative performance of SCAD-BIC/GCV versus SCAD-AIC remained
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Figure 2. The left panel is the GIC scores with k,, = 2 versus A, the middle panel is the
GIC score with log(n) versus A, and the right panel is the GCV scores versus .

the same as in the uncensored case. This is consistent with our theoretical
analysis in Section 3.

Example 3. (Heart attack data) We applied the proposed regularization pa-
rameter selection procedures to the heart attack data set used in Hosmer and
Lemeshow (1999). The data were collected in the Worcester Heart Attack Study
which describes trends over time in survival rates following hospital admission
for acute myocardial infarction. The total length of follow-up on the admission
of 481 hospital patients was recorded for years 1975, 1978, 1981, 1984, 1986, and
1988. Among those patients, 249 died and the rest were censored at the rate of
48%.

To model survival time, Hosmer and Lemeshow (1999) suggested fitting the
Cox proportional hazards model with five explanatory variables: xi-age; xs-
cpk (peak cardiac enzymes in international units); x3-sex (male = 0 and female
= 1); x4-chf (left heart failure complications, yes = 1 and no = 0); xs-miord
(MI order, first = 0 and recurrent = 1). In addition to these variables, we
included the six interactions between the two continuous variables (age and cpk)
and the three indicator variables (sez, chf, and miord). Thus, there were 11
variables in our full model. We applied the penalized partial likelihood approach.
The resulting regularization parameters selected by SCAD-AIC, SCAD-BIC, and
SCAD-GCV were 0.0533, 0.0878, and 0.1326, respectively. The corresponding
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tuning parameters selector curves are depicted in Figure 2.

Table 4 presents the maximum partial penalized likelihood estimates (MPLE)
from the full model as well as the SCAD-AIC/BIC/GCV parameter estimates,
together with their standard errors. The full model contained six insignificant
variables (z2, x3, and x7 to z19) at level 0.05, SCAD-AIC included two insignif-
icant variables (xg and z19) at level 0.05. In contrast, the four variables z1, x4,
x5, and 11, selected by SCAD-BIC were significant at level 0.05. For this data
set, SCAD-GCV looks to be overly aggressive in that it excludes x5, and z1;.

Based on Table 4, the p-values of the partial likelihood ratio test for exam-
ining the SCAD-AIC, SCAD-BIC, and SCAD-GCV model versus the full model
are 0.6752, 0.1749, and 0.0034, respectively. Consequently, there is no evidence
of lack of fit in the SCAD-BIC model. The SCAD-GCV model may be too ag-
gressive, consistent with our simulation results that GCV tends to be underfitted
when the sample size is not large enough.

5. A Tribute to Peter Hall

Professor Peter Hall made wide ranging and ground-breaking contributions
to many statistical fields and played major leadership roles throughout the sta-
tistical profession. He was a true scholar, and a mentor and friend of many of
us. We grieve his loss.

Runze Li (RL) had the great fortune to learn from Peter and interact with
him directly when they jointly served as Editors of the Annals of Statistics from
2013 to 2015. As an eminent scientist, Peter was an extremely kind, modest and
optimistic person. Peter was always super fast, and handled whatever came to
him promptly. His speed was unbeatable. Once, RL was asked to review a grant
proposal by an international grant agency within a tight deadline. When RL
sent back his report the next day, he was told that Peter’s report had already
been received.

Professor Peter Hall had a huge influence on RL’s research on variable selec-
tion and feature screening, although he never collaborated with Peter on a paper.
Many of RL’s works were inspired by Peter’s ideas. For example, Hall and Miller
(2009) proposed using generalized correlation to conduct feature screening and
the use of the bootstrap to quantify the uncertainty of feature ranking. Moti-
vated by this work, Li, Zhong and Zhu (2012) proposed using distance correlation
for feature screening.

Professor Peter Hall will be remembered forever as a legendary statistician,
a great scholar, beloved colleague, mentor and friend, and his work will continue
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to have a far-reaching impact on statistical methodology and theory.

Supplementary Materials

The proof of Theorem 2 is in the supplemental materials of this paper.
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Appendix

Proof of Theorem 1

Without loss of generality, assume that there are no ties among V;’s in the
observed data, and that
Vi<Va<-o <V, (A1)

This simplifies n=14.(3) to
n~.(8) =n"18T Z Sixi—n 1 E d; log (exp(x;frﬁ) +-- -+exp(x£ﬁ)). (A.2)
i=1 i=1

It follows by the Weak Law of Large Numbers (WLLN) that (n=2 3" | §;x;)T8 =
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pulB+op(1). Let

R,=n""! Z 0i log (exp(xiT,B) +-+ exp(xgﬂ)). (A.3)
i=1
Thus,
—n"Ue(B) = —pg B+ Ry + op(1), (A4)

From (A.1), we have
exp(x; B) + -+ + exp(x; B)

— i]{v > V;}eX B
//I{U>V}exp (x'B)d {ZI{V <vxj<x}}

://>V exp(xTﬂ)d{ZI{Vj <v,X; <x}} = nW,(V;), (A.5)

where W, ( ffv>t exp(x”'B) dGp(v,x) with Gy, (v,x) given in (2.4). Here
J; is a blnary random variable, n= 1Y 6, = p; + Op(1/y/n). With A, =
Jo " log(Wi(t)) dHy(t), it follows that

R,=n"" Xn:éi log (nW,(V;)) = nl/o log (nW ) {Z(S {v; < t}}

i=1

= h n n = n — Lin An
/0 {logn + log (W (t))}dH (t) logn<H (oc0) — H, (O)) +
=logn (nl Z(Z) + A, = p1logn + logn <n1 Zéi — p1> + A,

i=1 i=1
= prlogn + Op(n~?logn) + A, = p1logn+ A, + op(1), (A.6)
To prove Part (a), we next deal with A,,. Since
(n—1i+1) min exp(x B) < Zexp (x; 8) < (n—i+1) max exp(x B)

i<j<n 1<j<n
Jj=i

and X has a finite bounded support, it follows

n n T T
Ay =n"1) ilog (Wa(V;)) =n"1) 6&log (exp(xi B exp(xnﬂ)>
S (109) - 53 :
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= n"10p (Zz:;log (”‘;“)) =nl0p <log <ZL>> =0p(1). (A7)

The last equality is due to Sterling’s formula. and this completes the proof of

(a).

For Part (b), it suffices to show that
An LR 11, as n — oo. (A.8)

From (2.4), we know that H,(v) is the empirical process of a random sample of
Vi’s with &; = 1. Thus, ||H, — H|| = sup, |H,(v) — H(v)| = Op(n"'/?) by the
DWK inequality (van der Vaart (1998)) since EI{d; = 1} = p; > 0. Hence, from
(2.4), (A.5), and integration by parts, we have

Vi Vi
A= [ 1og(W ) dH(0) = B+ [ 1og(Wa(0) d{Ha(t) - H(D)

0 0
- V.
- 0 {Hn(t) - H(t)}d{log(Wn(t))}
‘/’Vl

= Bn 4+ {Hn(Va) = H(Va)} log(Wn(Va)) — | {Hn(t) — H(t)}d{log(Wn(t))}

= By + {Hn(t) — H(t)}og(Wa(1))|

0
exX XT Va
=Bt (V) - H (V) og (PO ) [, o)~ m(oation (v, )

ogn Ve
RER) [0 - H)agox(T (), (A.9)

where B,, = fov" log(W,,(t))dH (t) by using the fact that x. 3 = Op(1), since
E(|X; ]) < 00 by the assumption on E|X;| < oo for all j =1,...,p. From (2.4)

5o,

and (A.5), we have
/ {H,(t) — H(t) yd{log(W, )}‘ < |[Hn — H|| % |log Wy (Vi) — log Wi (0)]
— O (Y210 exp(x] B) + - - + exp(x}. B)
O ( o)

By the assumption in Part (b) and the WLLN, (1/n)> ", exp( ,8)
exp{X” B}. This implies that log(}>_7_, exp(x!3)) — log(n) = Op(1). Fur—
thermore, log(exp(x.3)) = XT,B = Op(1). Thus,

€exX X : ex XT

eXp(X’;ffJ’)
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It then follows that
Vi ogn
[t - renaorov)| =0, (). (o)

0
Therefore, (A.8) follows from (A.9)—(A.10), the assumption about up, and the
Dominated Convergence Theore.Thus,

B, Lif M1, as n — oo. (A.11)
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