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Abstract: In this study, the strain transfer rate from an axially-loaded, inelastic concrete tube to a 

glass fiber reinforced polymer (GFRP) packaged optical fiber with Bragg gratings is derived when 

the radial deformation of an “equivalent elastic” concrete tube is constrained by the packaged fiber. 

The concrete strains, both undisturbed and disturbed by the presence of the fiber Bragg gratings 

sensor, are analytically evaluated and their difference (up to over 30%) is related to the 

development length at two free ends of the GFRP package. The mechanism of strain transfer is 

dominated by a ratio of average fiber and concrete strains in elastic range, and by the averaging 

effect and a ratio of disturbed and undisturbed concrete strains in inelastic range. The analytical 

strain transfer rate was significantly reduced from 0.95, when concrete behaved elastically, to less 

than 0.4, when concrete damaged severely. This result was experimentally validated with less than 

10% difference prior to concrete fracture. The validated model is applicable to fiber optic sensors 

that are embedded into concrete structures by a concrete cover of at least 10 times of the radius of 

the optic fiber. 
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INTRODUCTION 

 As high-consequence extreme events, such as the 2008 China, 2010 Chile, and 2011 Japan 

Earthquakes, occurred more frequently, the structural safety of critical constructed facilities has 

recently been brought to the forefront of most research activities worldwide. In this case, structures 

often experience large strain and inelastic deformation. For the purpose of safety assessment, the 

measurement of large strains becomes increasingly important. 

 Since 1989, fiber optic sensors have been extensively studied due to their unique 

characteristics such as high sensitivity, high accuracy, corrosion resistance, immunity to 

electromagnetic interference, and ability for distributed measurement (Morey 1989). To improve 

its ruggedness in various applications, a Fiber Bragg Gratings (FBG) sensor must be packaged 

with one or more coating layers. Due to presence of the package layer(s), the strain measured by 

the fiber optic sensor is less than that in surrounding host materials. This is known as the effect of 

strain transfer. 

 Pak (1992) conducted an analytical study on the strain transfer of a coated fiber optic sensor 

embedded in host composite matrix based on the mechanics of elasticity. The host matrix was 

assumed to be infinite and subjected to a far-field longitudinal shear load parallel to the optical and 

structural fibers. Closed-form solutions for the strain and strain transfer distributions were derived 

in idealized conditions and were experimentally validated by Sirkis and Haslach (1991). The 

derived strain transfer rate was related to the coating’s thickness and the Young’s Modulus ratio 

between the coating and the matrix. Cox (1952) carried out a theoretical analysis of the load 

transfer from a matrix to the fiber embedded in it, namely shear-lag theory. Based on the shear-lag 

theory, Ansari and Yuan (1998) proposed a simple strain transfer model for a coated optical fiber 

embedded in host matrix and experimentally validated the model using a white light Michelson 

interferometric sensor. They assumed that all materials were linearly elastic and perfectly bonded 

at their interfaces, and the optical fiber and the matrix were subjected to an equal strain change 

rate at the middle of the sensor. They found that the strain transfer rate was influenced by the 

mechanical properties of the coating material and the sensor length. The study by Ansari and Yuan 

(1998) was extended to take into account the elastoplastic properties of coating materials (Li et al. 

2002). The effect of coating behaviors (elastic, elastoplastic, plastic, and post-plastic) on the strain 

transfer rate was investigated and experimentally validated using a white light Michelson 

interferometric sensor. By lifting the equal strain change rate assumption between the matrix and 

its embedded FBG sensor with multilayer coatings at the middle of the sensor, Zhou et al. (2007) 

generalized the strain transfer model and concluded that the strain transfer rate fell in the range of 

0.90~0.95 based on extensive parametric analyses. Li et al. (2007) investigated the strain transfer model 

of FBG sensors in host matrix under non-axial stress conditions. They found that the sensor orientation 

could change the strain transfer rate from 0.90 to 0.92. Strain transfer behaviors of long-gauge FBG sensors 

and distributed sensors were quantitatively studied and implemented in condition monitoring (Glisic et al. 

2007; Glisic and Yao 2012; Calderon and Glisic 2012). In the last decade, the strain transfer rate of fiber 

optic sensors in asphalt pavements has been intensively investigated by Wang et al. (2014, 2016, 2018). 

Based on the previous understandings on strain transfer, fiber optic sensors have been applied to measure 

strains and detect damages in various civil engineering structures (Bao et al. 2016, 2017; Bursi et al. 2016; 

Lan et al. 2014; Sbarufatti et al. 2014). 

 The influence of the mechanical properties of multi-layer host matrix on the strain transfer 

from the matrix to an embedded FBG sensor was first considered by Ling et al. (2005) under 

uniform strain fields. The strain transfer model was developed by finite element analysis, taking 

into account the effect of the multi-layer host matrix. In this case, the FBG sensor revealed a 

broadened reflection spectrum or even with multiple peaks, which was different from a single 
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sharp peak observed under uniform strain fields. Li et al. (2009) further investigated the effect of 

various host materials on the strain transfer rate from the host matrix to its embedded coated FBG 

sensor. They showed that the strain transfer rate was approximately 0.95~0.96 and significantly 

affected by the mechanical properties of the host matrix (Young’s Modulus, shear modulus, and 

Poisson’s ratio), the thickness of the sensor coating, and the length of the sensor. The shear-lag 

theory widely used in the strain transfer model from a host matrix to its embedded optical fiber 

sensor was challenged in early development stage by Jiang et al. (1998). Instead of solely 

considering the strain transfer from the matrix to the sensor, they suggested that the influence of 

the embedded fiber on the mechanical response of the host matrix be taken into account.  

 The above review indicated that the previous studies have four shortcomings. First, the 

strain transfer rate from the elastic host matrix to the embedded FBG ranged from 0.90 to 0.96. 

These results reflected the practically-insignificant strain transfer problem since a good sensor 

design for an elastic host matrix naturally resulted in minimum interference on the strain in the 

host matrix to be measured and thus a constant strain transfer rate slightly less than 1.0. Only when 

the stiffness of the matrix changes significantly from the elastic to inelastic state, can the strain 

transfer rate of the FBG sensor designed for elastic materials be significantly less than 1.0 and 

practically significant. Second, although the influence of the mechanical properties of host matrix 

on strain transfer rate was considered in some models, the potential interference of the embedded 

fiber optical sensor on the strain field in the host matrix was neglected in most studies, which is 

not justifiable as the host matrix is softened. More importantly, although the strain in optical fiber 

except at the middle of gratings is transferred from the host matrix by shear, the shear-lag effect 

may be less significant, particularly near the gratings, since there is no clear eccentricity in load 

path from the host matrix to the fiber. Third, most, if not all, the derived solutions did not 

completely satisfy the principle of engineering mechanics, resulting in an unclear mechanism for 

strain transfer. For example, the compatibility condition between the FBG and the host matrix is 

often violated. Finally, many assumptions made during the analytical derivation were not validated 

with experimental results. The small difference between 1.0 and a theoretically-predicted strain 

transfer rate of 0.90-0.96 can be smeared by random variations in measurement during physical 

experiments. 

 In this study, the fundamentals of engineering mechanics are first applied to develop a 

simple strain transfer model from an axially-loaded concrete cylinder to a FBG sensor packaged 

with glass fiber reinforced polymer (GFRP) and placed along the centerline of the concrete cylinder. 

The strain transfer rate is analytically formulated, taking into account the inelastic behavior of 

concrete. The concrete strains, either undisturbed or disturbed by the presence of the optical fiber, 

are evaluated from the strain transfer rate. A finite element model of the concrete cylinder is then 

established and analyzed to understand the mechanism of strain transfer in inelastic medium and 

validate various assumptions about radial/longitudinal distributions of axial/shear strains made in 

the simple analytical model of strain transfer. Next, the analytical solution is validated by test 

results taken from two concrete cylinders. Finally, the applicability of the developed strain transfer 

model based on axially-loaded cylinders into other concrete members is discussed. 

 

PROBLEM STATEMENT 

 Consider a general cylinder subjected to an axial compression load as shown in Fig. 1(a). 

It consists of a thick-walled concrete tube with outer diameter (2rm), a thin-walled GFRP tube of 

outer diameter (2rp), and an optical fiber of outer diameter (2rf) with one FBG sensor. The sensor 

with a grating length of lf is packaged with the GFRP tube over a finite length of L, embedded in 
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the concrete along the centerline of the cylinder, and connected to an optical spectrum interrogator 

(OSI) through a light transmission optical fiber that is unbonded with the concrete from the end of 

the GFRP tube. The OSI and the transmission fiber are not shown in Fig. 1 for clarity. Due to axis-

symmetry, half of the longitudinal cylinder section in r-z plane is shown in Fig. 1(b) with upward 

z axis originated at the middle of the cylinder. Sections 1-1, 3-3, and 4-4 represent the middle cross 

section of the cylinders and the FBG sensor, the end cross section of the GFRP tube, and the end 

cross section of the thick-walled concrete tube. Section 2-2 represents an arbitrary cross section of 

the cylinder and the GFRP-packaged sensor. The thick-walled concrete tube is subjected to a 

uniform compressive stress of σ0 at Section 4-4 or approximately σ0 at Section 3-3.  
 The main outcomes of this study include a simple model and mechanism of strain transfer 

from the concrete tube to the GFRP-packaged FBG sensor, an analytically-formulated strain 

transfer rate with experimental validations, and an evaluation approach of the undisturbed axial 

strain in the concrete tube based on the sensor measurement. In the following derivation, three 

assumptions are made: 

1) The thick-walled concrete tube, thin-walled GFRP tube, and optical fiber with an FBG 

sensor are perfectly bonded at their interfaces. 

2) When rp/rm ≤ 0.1, the axial stresses at Section 2-2 are uniform in the thick-walled 

concrete tube and the GFRP-packaged FBG sensor, respectively. 

3) The concrete tube is subjected to inelastic deformation while both the FBG sensor and 

GFRP tube remain elastic. 

According to the plastic deformation theory (Dill 2006), the constitutive law of concrete 

(Carreira and Chu 1985) can be expressed into: 
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in which σm and εm denote the stress and strain in concrete, respectively; mf
  and m    are the 

compressive strength of concrete and its corresponding strain;   is a function of mf
 and m   as 

well as the initial Young’s Modulus of concrete, Em; mE illustrates the Young’s Modulus of the 

damaged concrete; and w(εm) is a damage function of the concrete. The constant    can be 

determined from: 
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The damage function can be written into: 
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MECHANICAL MODEL OF STRAIN TRANSFER 

As seen from numerical simulations to be presented later, embedding a FBG sensor into a 

cylinder has little effect on the strain distribution in the cylinder when rp/rm ≤ 0.1. As such, the 

FBG sensor and its packaging GFRP tube are considered to act like a composite section. Together, 

they are attached to the thick-walled concrete tube as a constraint layer to the axial deformation in 

the concrete. For the GFRP-FBG composite section, the elastic stress-strain relationships of the 

GFRP and FBG materials are ( ) ( )p p pz E z = and ( ) ( )f f fz E z = , in which pE  and fE represent 
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the Young’s Modulus of the GFRP tube and the optical fiber, respectively; and the strain in the 

GFRP tube, ( )p z , and the strain in the FBG sensor, ( )f z , are considered equal. In this case, the 

Young’s Modulus of the composite section is equal to 2 2 2 2(1 / ) /− + p f p f f p pE r r E r r E   when 

/ 0.1f pr r , and pE  and fE  are in the same order. In other words, the material property of the 

composite section is dominated by that of the GFRP tube. For this reason, the Poisson ratio of the 

GFRP tube p is used for the composite section. 

 

Radial Displacement Compatibility for Strain Transfer Rate Formulation 

As stated in the third assumption, the concrete tube under axial loading in compression as 

shown in Fig. 1 is subjected to inelastic deformation while the GFRP tube and the optical fiber 

with one FBG sensor remain elastic. For simplicity, however, the concrete tube is treated as an 

elastic material with the Young’s Modulus Em under an axial stress equivalent to inelastic strain as 

expressed in Eq. (1). In this case, the stress field near z=0 remains unchanged over the length of 

the cylinder. The inner surface of the “equivalent elastic” thick-walled concrete tube and the outer 

surface of the elastic composite section expand together in radial direction. The radial expansions 

of the concrete tube and the composite section near z=0 can be respectively calculated by (Young 

1989): 
2
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where m is the Poisson ratio of concrete, and (0)m and (0)p are the longitudinal/axial stresses 

of the concrete and the composite section, respectively. For perfect interface bonding as stated in 

the first assumption, the radial expansion 
( ) (0)mr  at the inner surface of the thick-walled concrete 

tube must be equal to 
( ) (0)cr  at the outer surface of the composite section. This equality leads to 

the strain transfer rate a near n z=0 or the strain ratio between the composite section and the 

concrete:  
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after (0) (0)m m mE =   and (0) (0)p p pE =   have been introduced. The quantityn e nnen q. n 5) n

 ap asaetsnthe maximum strain transfer achieved when the concrete remains elastic or the damage 

function is set to zero, which is bounded by 1.0 since the strain in optical fiber is induced from the 

applied stress in concrete by shear effect at their interface. For normal weight concrete, the Poisson 

ratio is approximately 0.2 but likely increases as inelastic deformation is developed under 

compression. For example, Yaman et al. (2002) found that 0.228m  considering active and non-

active porosity in concrete. For the orthotropic GFRP packaging material, 0.25 ~ 0.35p   when 

the glass fibers are aligned with the loading direction (Dickerson and Di Martino 1966). Therefore, 

0.66 ~ 0.92e   when / 0.1p mr r = . The upper bound (0.92) lies between 0.90 and 0.96 as reported 

by other investigators (Li et al. 2006, 2009, Zhou et al. 2007). In the following analysis, however, 

0.95e =  is used as it is calibrated well with experimental data in the elastic range of concrete 

behavior as will be discussed later. 
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Equations of Equilibrium for Shear Transfer Mechanism 

The free-body diagram of an infinitesimal element dz of each of the three layers in Fig. 1 

is shown in Fig. 2 (only horizontal forces shown for clarity). Here, ( )f z  represents the axial 

stress applied at location z of the optical fiber. Due to the transferred shear stress through the GFRP 

tube, the axial stresses on the optical fiber and the concrete tube are uniformly distributed over 

their cross sections as illustrated in Fig. 2 according to the second assumption.  

Due to no external load applied over the dz length in Fig. 2, the total change in longitudinal 

forces of the concrete tube, GFRP tube, and optical fiber must be zero between any two sections 

in Fig. 2 and can be written as: 

2 2 2 2 2
( ) ( ) ( )

( ) ( ) 0
f p m

f p f m p

d z d z d z
r r r r r

dx dz dz
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+ − + − =                            (6) 

By integrating both sides of Eq. (6) over z and introducing the boundary conditions at z=L/2, 

( / 2) ( / 2) 0 = =p fL L  and 0( / 2) =m L , Eq. (6) becomes: 

2 2 2 2 2

0( ) ( ) ( ) ( )[ ( )]f f p f p m p mr z r r z r r z   + − = − −                            (7) 

Note that Eq. (7) is valid for both the elastic and inelastic behavior of concrete. 

For the axisymmetric problem about the centerline of the optical fiber, the shear stress 

along the perimeter of the optical fiber is the same. The equation of force equilibrium over the 

length dz of the optical fiber leads to:  
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in which ( ),f fz r is the shear stress at r=rf. Similarly, the force equilibrium over the length dz of 

the concrete with radius from r = rp to r = rm results in: 
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in which ( ),m pz r is the shear stress at r=rp. Note that the zero shear stress on the outer surface of 

the concrete tube was introduced in the derivation of Eq. (9). 

For the packaging layer, an infinitesimal element dz is taken with radius from r to r+dr as 

shown in Fig. 3. Both the shear stress ( ),p z r  and the axial stress ( )p z  are included in Fig. 3. 

The longitudinal force equilibrium over the element dz gives the following equation: 
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The solution of Eq. (10) with boundary conditions ( ), ( , )p f f fz r z r = and ( ), ( , )p p m pz r z r =  

taken at = fr r and = pr r  can be expressed into: 
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after Eq. (8) and Eq. (9) have been introduced. 

 

Disturbed and Undisturbed Strains in Host Matrix and the Applied Stress 0  

Each of the three layers (concrete, GFRP, and FBG) is mainly subjected to axial 
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deformation. After the stress-strain relations of the three layers and ( ) ( )p fz z =  in a composite 

section of optical fiber and package layer have been introduced, Eq. (7) can be rewritten into: 

( )2 2 2 2 2

0 ( ){1 [ ( )]} [ ( ) ] ( ) /m m m f f p f p f m pE z w z r E r r E z r r   = − + + − −               (12) 

Therefore, the applied stress 0  is composed of two parts: one on the thick-walled concrete tube 

and the other on the composite section. 

The strains at z=0 and z=L/2, (0)m and ( / 2)m L , are respectively defined as the disturbed 

and undisturbed strains in concrete associated with the presence of the FBG sensor. In applications, 

0 is unknown and only the strain (0)f measured from the FBG sensor is available. When a is 

directly related to the concrete strain at z=0, the disturbed and undisturbed strains in concrete can 

be evaluated according to the following four-step procedure: 

1)  Select an initial strain in concrete
( ) (0)
m

i  at z=0. 

2)  Calculate the strain transfer rate from Eq. (5) corresponding to
( ) (0)
m

i , termed as 
( )i

a . 

With the measured strain from the FBG sensor, a new strain in the concrete can be 

determined by
( 1) ( )(0) (0) /
m

i i

f a  + = . 

3)  Repeat Steps 1 and 2 with i replaced by (i+1) unless
( 1) ( ) ( )(0) (0) (0)
m m m

i i i e  + −   , 

where e (e.g. 5%) is a predetermined acceptable error. Note that, if
( ) 1i

a =  , 

( ) (0) (0)
m

i

f = . 

4)  Evaluate 0 from Eq. (12) with the measured (0)f  and the calculated
( 1) (0)
m

i +
 at z=0. 

The undisturbed strain in the concrete is then determined from

0( / 2)[1 ( ( / 2)]m m mE L w L  − = . Given 0 , the undisturbed strain is a function of the 

damage function of the concrete, which in turn is a function of the strain to be 

determined. Unless the concrete behaves elastically when the damage function is zero, 

iterations must be taken to evaluate the undisturbed strain. 

 

NUMERICAL VERIFICATION AND SENSITIVITY ANALYSIS 

Since the strain from each FBG sensor is measured over a very short grating length (e.g. lf 

= 2 mm), the analytical strain transfer rate at z=0, a  in Eq. (5), can be used to relate the FBG 

measurement to the strain in concrete. Even so, the strain of the ‘equivalent elastic” concrete tube 

near z=0, (0)m nenq. n5) , represents a certain average effect of the stress field over the length of 

GFRP tube. Therefore, to understand the longitudinal distribution of strains in concrete tube, GFRP 

tube, and optical fiber becomes a critical step towards the understanding of underlying mechanism 

of Eq. (5), the determination of an applicable range (z) of Eq. (5), and an appropriate length of the 

GFRP package tube in sensor design. 

Furthermore, when the proposed analytical model of strain transfer is applied into general 

RC structures, the diameter (2rm) of a “virtual” cylinder must be selected for an appropriate 

evaluation of strain transfer rate. This can only be accomplished by understanding the radial 

distribution of axial strains of the concrete tube. The second assumption about the stress 

distribution over Section 2-2 must also be justified. In addition, for the design of sensors and their 

package, the development length of packaged sensors must be determined. Therefore, parametric 

studies with a finite element model of the cylinder were conducted with various rp/rm ratios, 
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package lengths (L) of a FBG sensor, and loading levels ( 0 ). 

 

Concrete Cylinders and Material Properties 

Consider a 200 mm tall concrete cylinder with an embedded GFRP-packaged FBG sensor. 

The constitutive law of concrete under compression is given in Eq. (1). The material properties of 

28-day concrete are: 20mf MPa =  , 0.0019m  =  , 2 =  , and 21mE GPa=  (Dill 2006). These 

properties correspond to the upper-bound strain (0.000095) for linear behavior of the concrete 

cylinder when the damage function in Eq. (3) is set to zero. The packaging GFRP tube (rp = 1.5 

mm) and the optical fiber (rf = 62.5 μm) have a Young’s modulus of 50pE GPa= and 70fE GPa= , 

respectively. The Poisson ratios of the concrete and GFRP are taken to be 0.235m = and 0.25p = , 

respectively, so that ηe in Eq. (5) is equal to 0.95. Fig. 4(a) shows the stress-strain relationship of 

the concrete and the GFRP. It can be seen from Fig. 4(a) that, as the concrete experiences plastic 

damage, a small increase in stress will induce a large change in strain. However, the stiffer 

packaging material, GFRP, remains elastic till fracture. The strain difference between the two 

materials will increase dramatically with the increase of the plastic deformation in the concrete. 

Fig. 4(b) illustrates the corresponding damage function of the concrete as strain increases. For the 

20 MPa concrete, the damage function w(εm) is equal to 0.55 when εm = 0.0021. 

 

Finite Element Model and Strain Distribution 

A finite element model of the concrete cylinder was established in ANSYS platform and 

analyzed in a displacement/strain-controlled manner due to strong nonlinear behavior of concrete 

material. The model included two long cavities of the concrete tube extending outward from the 

two ends of the GFRP tube. The concrete tube with its material constitutive law represented by Eq. 

(1) was modeled using Solid 185 elements. The GFRP package and optical fiber were both 

modeled using Solid 45 elements. The entire model had 53,000 meshed elements. Due to axis-

symmetry, only one quarter of the cylinder was modeled. On the two cut planes, the out-of-plane 

displacement was restrained. In addition, the middle cross section of the model was also restrained 

from longitudinal displacement in z direction. Uniform compressive strains were applied on both 

end faces of the concrete cylinder. 

Fig. 5(a) shows the overall distribution of axial strains in the concrete cylinder (rp/rm=0.07 

and L=100 mm) when subjected to 240 με (5 MPa) at each end. Figs. 5(b) and 5(c) illustrate the 

longitudinal distributions of axial compressive and interfacial shear strains, respectively, in both 

the FBG sensor and the concrete cylinder. Figs. 5(d, e) demonstrate the radial distributions of axial 

compressive and shear strains, respectively, at the four cross sections defined in Fig. 1(b). It can 

be observed from Fig. 5(a) that the strains in the cylinder are generally uniform unless in the 

proximity of the two ends of the GFRP tube. This observation is confirmed by the longitudinal and 

radial distributions of axial strains around the package layer as detailed in Figs. 5(b-e). In particular, 

the axial strain distributions over all but cross section 3-3 are generally uniform as indicated in Fig. 

5(d). By comparing Fig. 5(b) with Fig. 5(c), it can be seen that the first derivative of the axial strain 

in the concrete tube/FBG sensor with respect to z approximately corresponds to the shear strain in 

the concrete tube/FBG sensor. This comparison partially verifies the analytical relations in Eq. (8) 

and Eq. (9). It can also be seen that the longitudinal distribution of axial strain difference between 

the FBG sensor and the concrete tube as shown in Fig. 5(b) is closely related to that of the shear 

strain at the FBG-GFRP interface as illustrated in Fig. 5(c), indicating a shear transfer mechanism 

of strain from the concrete to the FBG sensor.  
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Parametric Studies 

Three parameters were considered: 1) rp/rm = 0.2, 0.1, and 0.07; 2) L = 50, 100, and 150 

mm; and 3) ε0= 240, 900, 1900, and 2100 με ( 0 = 5.0, 15.5, 20.0, and 19.9 MPa). Fig. 6(a) shows 

the shear strain at cross section 3-3 in Fig. 1(b) when ε0=240 με, L=100 mm, rp=1.5 mm, and rp/rm 

= 0.2, 0.1, and 0.07. The maximum shear strain occurred at the GFRP-concrete interface and 

remained nearly the same when the diameter of the concrete cylinder changed. Fig. 6(b) shows the 

distribution of strain transfer rate for the three rp/rm ratios. It can be clearly seen from Fig. 6 that 

both the shear strain distribution near the FBG sensor and the strain transfer rate remain nearly 

unchanged when rp/rm is less than 0.1. In other words, when rp =1.5 mm, the strain transfer rate 

derived from a concrete tube with 1.5 mm and 15 mm in inner and outer radius is applicable to 

other cases when the outer radius exceeds 15 mm. This requirement can easily be met in 

engineering practice through the use of concrete cover in RC structures. 

Fig. 7 illustrates the change in strain transfer rate distribution for various sensor package 

lengths of 50, 100, and 150 mm with rp/rm =0.07 and ε0=240 με. It is seen that the sensor package 

length has little or no effect on the shape of strain transfer rate curve. For all three sensors with 

different package lengths, the strain transfer rate is approximately 1.0 at the middle of sensor 

gratings, remains nearly unchanged over the middle 80% of the package length (L), and then is 

reduced dramatically to zero towards the end of the package layer. Due to symmetry, the remaining 

20% of half a package length (L/2) at each end is referred to as the development length of the 

packaged sensor required in design. Considering potential debonding at the end of package layer, 

a design factor of 2 is considered and the minimum package length can be considered as 2.5 times 

the grating length when the concrete tube experiences nearly elastic behavior. 

Thanaffactnofnlordnegn5co  aspoednegntonε0= 900, 1900, and 2100 με noenthanloegntudnerln

dnst nbutnoenofnst rnent resfa n rtannsnp asaetadnnenFng n8nwhaenL=100 mm and rp/rm=0.07 nItncrenban

obsa vadnf omnFng n8nthrtnthandavalopmaetnlaegthnofnthanGFRPntubannec arsasnf omnrpp oxnmrtalyn

20%nton80% (L/2)nrsnthanrpplnadnst rnennec arsasnf omn900nton2100 μεno nthancoec atannsnsoftaead n

Ienthnsncrsa,nthanmnenmumnlaegthnofnthanGFRPnlrya nnsn10ntnmasnthang rtnegnlaegth,nrccouetnegnfo n

rndasngenfrcto nofn2nfo npotaetnrlndaboedneg  

Both the numerical and analytical analyses took into account the nonlinear behavior of 

concrete such as cracks by introducing a damage function, w(εm), as given in Eq. (3). However, 

the numerical analysis was based on the three-dimensional (3D) finite element model of concrete 

cylinder, which allows the understanding of 3D stress/strain distributions and the determination of 

strain transfer rate at every point along the length of the GFRP package as illustrated in Fig. 8 at 

three strain levels. The analytical solution of strain transfer rate independent of z, Eq. (5), was 

developed for a prismatic cylinder with an overall effect of the stress field in concrete tube over 

the package length L. To understand this overall effect, three indices are calculated from numerical 

analysis at various applied strains as follows: 
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
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(0) ( / 2) ( / 2)

f m m

m m mL L

  


  
=          (13) 

The first and second indices in Eq. (13) represent an average of the longitudinal distribution 

of strain transfer rate, as illustrated in Fig. 8, and a ratio of the averaged strains in FBG sensor and 

concrete tube, respectively. The third index in Eq. (13) is a formal definition of strain transfer rate, 

which is a ratio of the sensor measurement and the undisturbed concrete strain. This definition 

signifies the effect of sensor placement on the change of concrete strain (hereafter referred to as 
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the disturbance effect) since the strain transfer rate at z=0 is approximately equal to one as 

illustrated in Fig. 8. Fig. 9 compares the three indices of stress field effect under various applied 

strains when L=100 mm and rp/rm=0.07. All the indices clearly indicate a reduced strain transfer 

rate when the concrete behavior changes from elastic to inelastic. The averaging effects 

represented by 1 nredn 2 r anear lynp opo tnoerlntonarchnotha  nIencompr nsoenwnthnthanrva rgnegn

affacts,nthandnstu brecanaffactn ap asaetadnbyn 3 nnsnsngenfncretlynmo ansaesntnvantonthanchregannen

lr gan st rne nAtn smrlln st rnes,n than plrcamaetn ofn rn saeso n hrsn lnttlan o n eon affactn oen than st assn

dnst nbutnoennencoec atantuba  

 

EXPERIMENTAL VALIDATION OF STRAIN TRANSFER MODEL 

 

Test Setup 

To validate the proposed mechanical model of strain transfer considering the plastic 

damage in host matrix, two concrete cylinders with 50 mm in diameter and 200 mm in height were 

tested. One FBG sensor was embedded along the centerline of and in the middle portion of each 

concrete cylinder. Fig. 10(a) illustrates the schematic view of each test specimen. The two FBG 

sensors used in this experiment are shown in Fig. 10(b). For protection, each sensor was packaged 

with a GFRP layer with 3 mm in diameter. To produce the same boundary condition as shown in 

Fig. 1, a small PVC tube was bonded to each end of the GFRP-FBG sensor by epoxy in order to 

make the sensor ends free of stress. One representative cast specimen is presented in Fig. 10(c). 

On the side face of each cylinder, two 76 mm long strain gauges were installed to measure axial 

strains of the concrete. 

A load frame (MTS2550) was used to apply the axial load on each specimen at a loading 

rate of 445 N/sec. The loading process continued until the fracture of the concrete specimen. Data 

from the FBG sensor were collected by Optical Sensing Interrogator (OSI, Model SM125, Micron 

Optics, Inc). The strains from both the FBG sensor and electrical resistance strain gauges were 

recorded at a 1.0 Hz sampling frequency. Figs. 11(a, b) show the partial test setup and the 

schematic view of the complete test system, respectively.  

 

Results and Discussion 

Two specimens tested were designated as #1 and #2. The stress determined from the 

applied loading is plotted in Figs. 12(a) and 13(a), respectively, as a function of the strain from the 

FBG sensor and the average strain measured from the two strain gauges. The stress-strain curves 

in Figs. 12(a) and 13(a) based on the strain gauge readings were best fitted to estimate the 

constitutive law parameters: 6.16mf MPa =  , 0.00028m  =  , 25mE GPa=  , and 2 =   for 

specimen #2, and 8.06mf MPa = , 0.0004m  = , 22mE GPa= , and 2 =  for specimen #3. The 

strain ratio between the FBG sensor and the two strain gauges represents the experimental strain 

transfer rate, which is presented in Figs. 12(b) and 13(b), respectively, and compared with the 

analytical strain transfer rate from Eq. (5) using the compressive strengths obtained from the tests. 

It can be clearly observed from Figs. 12(a) and 13(a) that the strains measured from the strain 

gauges and the FBG sensor are in excellent agreement when the concrete cylinder behaved 

elastically, both proportional to the applied loading. The analytical results start to deviate from the 

measured data once the concrete cracking as illustrated in Fig. 14(a) was initiated. Their difference 

reached a maximum at concrete fracture as illustrated in Fig. 14(b). As also shown in Figs. 12(b) 

and 13(b), both the analytical and experimental strain transfer rates are nearly constant in elastic 
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range and then decay exponentially with the applied loading as concrete is subjected to light to 

severe damages. Represented by the damage function of concrete, the light damage is related to 

minor longitudinal cracks in concrete, as shown in Fig. 14(a), and the severe damage is to 

significant splitting cracks or concrete fracture, as shown in Fig. 14(b). The softened concrete 

provided a reduced constraint to the embedded FBG sensor. Therefore, the sensor was less strained 

as additional loads were applied on the concrete. Overall, the maximum difference between the 

analytical and experimental strain transfer rates prior to concrete fracture is less than 10%, which 

validates the proposed mechanical model of strain transfer from the concrete to the embedded FBG 

sensor. 

At the completion of all tests, the two tested specimens were collected as shown in Fig. 

14(c). Their fracture failure modes are representative to any concrete cylinder tests and consistent 

between them under compressive loading. These results ensured the repeatability of the test 

process and results.  

 

CONCLUSIONS 

This paper presents a combined analytical, numerical, and experimental study of strain 

transfer mechanism from an axially loaded concrete cylinder to an embedded GFRP-packaged 

FBG sensor. Both elastic and inelastic behaviors of the concrete were considered in the evaluation 

of strain transfer rate, GFRP package development length, and undisturbed concrete strain. Based 

on the analysis and experiment, the following conclusions can be drawn: 

1)  A simple strain transfer model, Eq. (5), was developed based on the radial displacement 

compatibility between the concrete and its concentric GFRP-packaged optical fiber 

with Bragg gratings. The undisturbed and disturbed concrete strains by the presence of 

the fiber optic sensor are related by the longitudinal force equilibrium. The mechanism 

of strain transfer is dominated at small strains by a ratio of average fiber and concrete 

strains and, at large strains, by the averaging effect and a ratio of disturbed and 

undisturbed concrete strains.  

2)  The strain transfer rate changes with a damage function of the concrete, and geometries 

and material properties of the concrete and a composite section of the sensor and 

package. It was approximately 0.95, independent of external loading when the concrete 

remained elastic, but exponentially reduced to less than 0.4 as the concrete experienced 

cracking to fracture mainly through the reduction in Young’s modulus. It was validated 

by experimental results up to concrete fracture with less than 10% difference. 

3)  Due to elasticity of the package layer, the strain in the optical fiber became steady 

beyond a development length that varies from 20% to 80% of the package length as the 

concrete behaves from cracking to fracture under compression. Therefore, it is 

recommended that the GFRP package length exceed 10 times the grating length of a 

packaged sensor in practical design, considering a design factor of 2 accounting for 

potential debonding at the end of GFRP package. 

4) When the analytical strain transfer rate is directly related to the concrete strain at z=0 

(or z=L/2), the undisturbed concrete strain can be determined based on the sensor 

measurement according to the proposed four-step analysis procedure (or directly 

estimated from a ratio of the sensor measurement and the analytical strain transfer rate). 

The effect of sensor deployment on the concrete strain can be over 30%. The 

undisturbed concrete strain and the experimentally-validated strain transfer model are 

applicable to RC members and structures where the concrete cover over a packaged 
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sensor exceeds 10 times the radius of the package layer. 
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    (a) Axially loaded cylinder   (b) Half of the longitudinal section   (c) Cross section at 2-2 

Fig. 1 Schematic view of thick-walled concrete, thin-walled GFRP, and FBG sensor 

 

  

 

Fig. 2 Shear stress transfer among various layers  
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Fig. 3 Free-body diagram of an infinitesimal element of the package layer 
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(a) Axial strain field 
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(b) Axial strains in FBG sensor and concrete cylinder     (c) Shear strains at interfaces 
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Fig. 5 Strain field and distribution 
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Fig. 8 Effect of loading on the distribution of strain transfer rate: L=100 mm and rp/rm=0.07 
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     (a) Schematic view (b) GFRP-packaged FBG sensors (c) Representative specimen 

Fig. 10 Test specimen and instrumentation 

 

 

 

    

(a) One specimen tested to failure    (b) Schematic view 

Fig. 11 Experimental setup  
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         (a) Stress-strain relations        (b) Analytical vs. experimental strain transfer rate 

Fig. 12 Constitutive law and strain transfer rate of cylinder specimen #1 
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Fig. 13 Constitutive law and strain transfer rate of cylinder specimen #2  
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(a) Crack initiation      (b) Failure mode  (c) Tested specimens 

Fig. 14 Concrete behavior of the tested specimens 

 


