
CS FOR ALL ACADEMIC IDENTITIES
*

Madeline Zug, Hanna Hoffman, Forest Kobayashi, Miles President, Zachary Dodds

Computer Science Departments, Pomona College and Harvey Mudd College

Claremont, CA 91711

madelinezug@gmail.com, {hhoffman, fkobayashi, mpresident, zdodds}@hmc.edu

ABSTRACT

“CS for All” has set computing on an unusual journey. Those words ask

CS to change: to grow from a compelling discipline and useful mindset

into a full-fledged human literacy. Just as cogent writing, critical reading,

and compelling speaking are today’s hallmarks of literacy, so too will

leveraging computing for insight become part of the goals and

expectations we all share. This paper considers how Computer Science,

both as a discipline and as an academic department, can support this

journey. To map the landscape, we first survey the extent of computing’s

current curricular reach – beyond CS departments – at a sample of fifty

U.S. institutions. We then present findings from three experiments, local

to our institutions, which explored interdisciplinary course structures.

Both the local and the global overviews suggest that CS departments

have, now, a unique opportunity to help smooth computing’s

transformation into a modern literacy. It’s in the best interests of all

disciplines, together, to bring computing, its resources, and its roles into

their distinctive identities.

MOTIVATION

“CS for All” is a compelling call to action, but “for All” can be read in at least two

ways. On one hand, it captures our goals for universal inclusion: everyone is capable of

powerful, purposeful self-expression via computing’s toolsets. On the other hand, the

phrase can raise alarms: like it or not, here comes computing. In 2001, the New York

Times published an article titled “All Science is Computer Science,” and that sentiment

that has reverberated since. [6]. The words suggested a possibly overzealous “here to

* Copyright © 2018 by the Consortium for Computing Sciences in Colleges. Permission

to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the CCSC copyright notice and the

title of the publication and its date appear, and notice is given that copying is by

permission of the Consortium for Computing Sciences in Colleges. To copy otherwise,

or to republish, requires a fee and/or specific permission.

130

CCSC: Southwestern Conference

help” attitude among CSers, though not always certain of the form that help might take

— or how helpful it would really be. XKCD’s take is apt [8].

The words “CS for All” can reinforce a perception that CS is encroaching on other

disciplines, intentionally or not. Put another way, computing’s utility can seem like a

threat to some forms of academic identity. Here, “academic identity” is a term that refers

to one’s self perception as a learner: what fields are of interest, what efforts demonstrate

that interest, and what ambitions elicit those efforts [10]. 1 This is something that we, as

a field, must be cognizant of — for in an educational setting, people holding non-CS

identities are precisely those who determine computing’s future reach. Computing will

thrive to the extent that its mindset and toolset become part of other disciplines’ academic

identities. Today’s CS community neither owns nor controls computing’s future – but we

do have a unique opportunity to help guide its growth and reach. 1 “Major” or

“department” capture only the administrative senses of academic identity.

In this light, “All Science is Computer Science,” is meant in the same sense that

“All Science is cogent writing, critical reading, and compelling presentation.” After all,

no matter what discipline one chooses to study, practitioners rely on verbal literacy. All

academic fields embrace these skills, weaving them through their students’ experiences

in ways that amplify their disciplines’ goals and identities. We believe computing, i.e.,

the creation of task-motivated computational artifacts, is now joining this group of

literacies, both in academic and professional contexts.

THE CURRENT NATIONAL LANDSCAPE

Methods

In our investigation, we examined the currently-published curricula from Table

1’s sample of 50 institutions. We used the method of analysis described by Bowlick et

al. to examine the ways in which different schools interface with computation on a course

level [5]. In a nutshell, this entailed searching departments’ curricula for programs and

courses containing interdisciplinary content, as well as non-CS programs with computing

content. Table 2 shows how the courses/programs examined were placed into one of five

categories: (1) CS+X double majors or CS minors, (2) CS+X courses, (3)

Interdisciplinary majors (4) Flavored CS1 courses, and (5) CS2 for non-CS majors.

1

“Major” or “department” capture only the administrative senses of academic

identity.

131

JCSC 33, 4 (April 2018)

Findings

CS+X double majors and CS minors. All fifty of the schools we surveyed had

options for students to either minor in CS or double major in CS and a non-CS discipline

in parallel, without having the connections between the disciplines explicitly established

by coursework.

CS+X courses. All fifty schools also offered at least one CS+X course. These

efforts require more than student initiative: typically, faculty from multiple departments

must collaborate to develop curriculum in unfamiliar territory [7]. We found that Biology

was the most common “X,” with over 40 of the schools offering some kind of

computational biology course.

Interdisciplinary majors. Slightly more than half of the schools offered

interdisciplinary majors. Such programs are distinct from CS+X in the way they approach

the intersection of the two disciplines. Interdisciplinary programs explicitly explore the

connection between CS and X in an “integrative experience” — a project, thesis, or

course that requires students to apply CS to their X. Implementing such a program usually

requires active collaboration on a departmental level. Because individual faculty members

typically have more flexibility than entire departments, it’s not surprising that

interdisciplinary programs are less common than CS+X courses.

Flavored CS1. Flavored CS1 comes in two main forms: upper-division and

lower-division. Upper-division CS1 courses cater to upperclassmen in a non-CS

discipline where CS skills are desired. These students have already developed a non- CS

identity and substantive knowledge in their domain, so they are able to apply CS1 skills

to solve discipline-specific problems that underclassmen don’t have the experience to

address. Example of upper-division flavored CS1 courses include CS+English,

computational thinking for architects, and music and computation [4, 9, 12].

Lower-division flavored CS1 courses aim to engage more students in computer

science before they are tend to have a strong academic identity. Three of the many

examples of lower-division flavored CS1s include six distinct contexts offered at Union

College, a socio-techno CS1 at Williams, and a computer music course at Yale [3].

Flavors we found most often through our analysis include biology, game development,

CS for engineers (usually taught in Matlab), and CS for scientists (most often taught in

132

CCSC: Southwestern Conference

Python or Matlab). Fewer than half of the schools surveyed offer lower-division flavored

CS1 within the CS department.

CS2 for non-CS majors.

Fewer than ten of the schools surveyed offered a CS2 course for non-majors

(CS2-NM). A common theme of the courses we found was application of CS — data

visualization, web scraping, and directory navigation. Popular languages (often used in

combination) included Python and R.We suspect that such courses are relatively rare not

only because they entail shared ownership of computing, as with flavored CS1, but also

because they explicitly support students with non-CS academic identities — curricular

areas where specialty matures into literacy.

LOCAL EXPERIMENTS

We have experimented at our institution with the above interdisciplinary

opportunities. We discuss here the effectiveness of flavored CS1 and CS2-NM, and we

describe bridges and injections created to meet demand for computing skills. Bridges are

CS1 extra-credit assignments introducing computing concepts not covered in CS1;

injections are collaboratively-created curricular facets used in non- CS courses.

A biologically-flavored CS1

Since fall 2009 we have offered a biology-flavored CS1 in addition to the standard

CS1 course. Students with no previous CS experience could choose between “unflavored”

and biology-flavored CS1. Over the last eight years, 839 students took unflavored CS1

and 193 took biology-flavored CS1. For each student, we gathered data on their CS1

course, the CS and biology classes they took in subsequent semesters, and the grades they

earned in those classes.

We first examined whether taking biology-flavored CS1 was a detriment for those

who continued studying CS. We found that students continued to take CS courses and

declare CS majors at similar rates, regardless of which CS1 course they took, as shown

in Table 3. Also, students who took the biology-flavored CS1 fared just as well as their

peers who took unflavored CS1 in subsequent CS classes, as Table 4 displays. This

suggests that our biology-flavored CS1 prepares its students for later CS courses at least

as well as our unflavored CS1.

Next, we wanted to see whether biology-flavored CS1 was allowing students to

retain and foster their interests in biology. Table 3 shows that students who took

unflavored CS1 took an average of 1.8 biology courses and declared biology majors at

a rate of 3 percent. Students who took biology-flavored CS1 took 3.8 biology courses and

declared biology majors at a rate of almost 19 percent. This suggests that students who

arrived with biology interests retained this identity through biology-flavored CS1. Taken

together, these data suggest that flavored CS1 is an effective way to let students retain

and/or develop a non-CS academic identity, while still teaching the skills needed to

succeed in later CS courses.

Although flavored CS1 is a good way to give students with non-CS identities an

introduction to computing concepts, it often doesn’t provide as much expertise as students

133

JCSC 33, 4 (April 2018)

would like in order to apply computing in their non-CS academic work. To address this

concern, we explored ways of teaching computational skills to non-CS majors beyond

CS1: (1) bridges, which are built out of CS1 in the general direction of other disciplines,

(2) injections, which are inserted into non-CS courses, and (3) CS2 for non-majors, which

is a CS course aimed at non-CS majors with a CS1 prerequisite. The bridges and

injections described below are freely available [1].

Bridges

One of the most common complaints about our CS1 course is that it is taught in

only one language, Python; students want exposure to more languages. Bridges are one

to two hour extra credit assignments offered to students in CS1 with the goal of providing

an introduction to new languages and skills that could be more directly applicable to their

academic identity than those learned in CS1. Some of the bridges built and offered for

these purposes are shown in Table 5.

Injections

In pursuing this work, we interviewed many professors outside of computing

about their relationship to that field. Several sought curricular injections that could be

used in their courses. Injections are assignments or demonstrations with a computational

component that are integrated into a non-CS course [3]. We developed these

collaboratively, creating assignments and demonstrations in the context of each course’s

and discipline’s independent curriculum. The injection topics included 3D mechanics

using GlowScript, an n-body simulator using the Barnes-Hut algorithm, history-of-

science searching via the NYTimes archives’ API, an R tutorial, and a linear-algebra

animation engine.

CS2 for NonCS Majors

In an effort to understand the types of non-CS students who are interested in CS2,

we analyzed student major data from the second course in our institution’s intro sequence

from 2009 to 2017. Engineering, CS, and CS-Math majors account for 51% of the total

enrollment of 1643 students, non-CS majors account for 38%, and undecided students

11%.4 The results for the major breakdown of non-CS students are shown in Figure 1.

In the early 2010s, CS2 demand from non-CS majors was dominated by students with a

STEM identity. More recently, demand for CS2 has increased among economics, politics,

and other social science majors.

134

CCSC: Southwestern Conference

Figure 1 clarifies the trend from red-and- orange hashing (fields traditionally

considered to have a computational overlap) to green-and- blue fill (fields more recently

embracing computing as part of their undergraduate experience) is clear. Specifically, the

majors represented each year, listed from bottom to top are physics; mathematics;

computational or mathematical biology; other natural sciences; economics; politics,

international relations, and philosophy; social sciences; art, languages, and media studies;

independently-created programs of studies. Taken as a whole, our institution sees clear

evidence that the demand for computational skills, well-established to be growing, comes

from students with increasingly diverse academic identities.

To serve this growing population, our institution began offering a CS2 course for

non-CS majors in 2015. A syllabus excerpt reads: “it is a course that builds computing

skillsets and mindsets for all students wanting to leverage computing’s resources for

deeper insights into a their own (non-CS) field of interest.” Student surveys taken

corroborate this evidence of increasing demand from non-CS fields, reinforcing that

computational skills are becoming one of the foundational literacies for more and more

academic identities. For example, from a media studies major: “I think CS is extremely

relevant to my major and would love for the media studies students to feel less

intimidated by CS” or, from a politics major: “I see CS as incredibly relevant to data

analysis and data visualizations. Politics is a series of narratives and narratives are

becoming increasingly quantitative.”

PATHS FORWARD

The data we gathered indicate a strong demand for computing knowledge from

students across a wide variety of disciplines. Looking forward, a central objective of the

CS community, we believe, should be to better facilitate this learning in a way that

supports all disciplines’ computing interests, while encouraging their distinctive academic

identities.

135

JCSC 33, 4 (April 2018)

We foresee advantages for institutions requiring an introductory CS1 course

across all — or a broad set of — majors. Similar to a writing or public speaking

requirement, having a central starting point from which other disciplines can build is

crucial to mitigating the “Tower of Babel” problem, in which superficial differences in

communication prevent collaboration.

That said, a variety of CS1 flavors can open paths to making computing part of

the identity of non-CS fields. Our first decade of experimentation with this approach

demonstrates definitively that both CS and partnering disciplines benefit. In addition,

while it is reasonable to maintain non-computing paths through many disciplinary

specialties, we sense an emerging, bottom-up tension among students who want to

leverage computing’s mindset and skillsets without adopting a CS identity. This is where

bridges from CS1 and injections into other courses offer particular promise: if all students

have acquired a basic background in computing, it makes the process of using computing

elsewhere more collaborative and natural: that “basic background” is the heart of the call

to “CS for All.”

As CSers, we relish our role as stewards of many facets of computation. Yet “CS

for All” means much less ownership and much more fellowship with respect to

computing. The call is to the varied and growing opportunities for collaboration and the

multitude of widely-branching curricular paths, to which all disciplines will contribute.

We look forward to the journey. It’s a great era for computing!

ACKNOWLEDGMENTS

We acknowledge and thank the NSF for making this work possible, specifically

through the support of projects #1612451 and #1659805. We also acknowledge the

support of the Harvey Mudd College CS summer research program.

REFERENCES

[1] M. Zug, H. Hoffman, F. Kobayashi, M. President, and Z. Dodds. Supplemental

Materials, CS35 https://www.cs.hmc.edu/~dodds/cs35/ (2018).

[2] J. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation

algorithm. Nature 324 (Dec. 1986), 446–449.

[3] Valerie Barr. 2016. Disciplinary Thinking, Computational Doing: Promoting

Interdisciplinary Computing While Transforming Computer Science Enrollments.

ACM Inroads 7, 2 (May 2016), 48–57.

[4] Heather Bort, Mimi Czarnik, and Dennis Brylow. 2015. Introducing Computing

Concepts to Non-Majors: A Case Study in Gothic Novels. In Proceedings of the

46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).

ACM, New York, NY, USA, 132–137.

[5] Forrest J. Bowlick, Daniel W. Goldberg, and Sarah Witham Bednarz. 2017.

Computer Science and Programming Courses in Geography Departments in the

United States. The Professional Geographer 69, 1 (2017), 138–150.

136

CCSC: Southwestern Conference

[6] George Johnson. 2001. The World: In Silica Fertilization; All Science Is

Computer Science. New York Times (Mar 2001).

[7] Darakhshan J. Mir, Sumita Mishra, Paul Ruvolo, Lori Pollock, and Sam Engen.

2017. How Do Faculty Partner While Teaching Interdisciplinary CS+X Courses:

Models and Experiences. J. Comput. Sci. Coll. 32, 6 (June 2017), 24–33.

[8] Randall Monroe. 2017. Here to Help. (2017). https://xkcd.com/1831/

[9] John Peterson and Greg Haynes. 2017. Integrating Computer Science into Music

Education. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA,

459–464.

[10] Steven A. Quigley. Academic identity: A modern perspective. Educate 11(1)

(2011), 20–30.

[11] Grant Sanderson. 2017. manim. https://github.com/3b1b/manim.git. (2017).

[12] Nick Senske. 2017. Evaluation and Impact of a Required Computational Thinking

course for Architecture Students. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education (SIGCSE ’17). ACM,

New York, NY, USA, 525–530.

137

	CS FOR ALL ACADEMIC IDENTITIES
	Madeline Zug, Hanna Hoffman, Forest Kobayashi, Miles President, Zachary Dodds
	Pomona College and Harvey Mudd College

