Statistica Sinica Preprint No: SS-2017-0362

Title

Feature Screening in Ultrahigh Dimensional Generalized

Varying-coefficient Models

Manuscript ID

SS-2017-0362

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202017.0362

Complete List of Authors

Guangren Yang
Songshan Yang and

Runze Li

Corresponding Author

Guangren Yang

E-mail

tygr@jnu.edu.cn

Notice: Accepted version subject to English editing.




Statistica Sinica

Feature Screening in Ultrahigh Dimensional

Generalized Varying-coefficient Models

Guangren Yang', Songshan Yang? and Runze Li?

YJinan University, ? Pennsylvania State University

Abstract: Generalized varying coefficient models are particularly useful for ex-
amining dynamic effects of covariates on a continuous, binary or count response.
This paper is concerned with feature screening for generalized varying coefficient
models with ultrahigh dimensional covariates. The proposed screening procedure
is based on joint quasi-likelihood of all predictors, and therefore is distinguished
from marginal screening procedures proposed in the literature. In particular, the
proposed procedure can effectively identify active predictors that are jointly de-
pendent but marginally independent of the response. In order to carry out the
proposed procedure, we propose an effective algorithm and establish the ascent
property of the proposed algorithm. We further prove that the proposed proce-
dure possesses the sure screening property. That is, with probability tending to
one, the selected variable set includes the actual active predictors. We examine
the finite sample performance of the proposed procedure and compare it with
existing ones via Monte Carlo simulations, and illustrate the proposed procedure

by a real data example.
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sional data, variable screening.

1. Introduction

Generalized linear models have been well studied in the literature. Vari-
able selection via penalized likelihood has been developed for generalized
linear models with large dimensional covariates (Tibshirani,1996; Fan and
Li, 2001). Ultrahigh dimensional data have been collected in various re-
search areas such as genome-wide association studies, proteomics studies,
finance, tumor classification and biomedical imaging. Variable selection
methods based on penalized likelihood may not perform well for ultrahigh
dimensional data due to their algorithmic stability, computational cost and
statistical accuracy (Fan, et al., 2009). Fan and Lv (2008) advocates a two
stage approach: (a) reduce ultrahigh dimensional covariates to large di-
mensional by filtering out a large number of irrelevant covariates based on
a marginal screening procedure, and (b) apply variable selection methods
to the reduced model with large dimensional covariates. Fan and Lv (2008)
proposed a sure independence screening (SIS) procedure for linear models
using Pearson correlation coefficient as the marginal utility and further es-
tablished the sure screening property of their procedure under Gaussian lin-
ear model framework. Hall and Miller (2009) proposed a feature screening

procedure for transformation linear model by using generalized correlation
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and Li, et al. (2012) advocated using rank correlation for screening to deal
with heavy-tailed distribution and the presence of outlier. Fan, et al. (2009)
proposed a SIS procedure for generalized linear models based on marginal
likelihood estimate. More details about these marginal feature screening
procedures can be found at the recent review paper on feature screening by
Liu, et al. (2015).

Varying coefficient models (VCM) were proposed to deal with “curse of
dimensionality” (Cleveland, et al., 1992; Hastie and Tibshirani, 1993). As a
natural extension of linear regression models by allowing coefficients varying
over a variable such as age and time, the VCM are particularly useful for
exploring dynamic pattern of effects and have been used in various research
fields (See, e.g., Zhu, et al., 2011; Tan, et al, 2012; Liu, et al, 2014). Fea-
ture screening procedures for VCM with ultrahigh dimensional covariates
(referred to as ultrahigh dimensional VCM for short) have been proposed in
the literature. Liu, et al. (2014) developed an SIS procedure for ultrahigh
dimensional VCM by taking conditional Pearson correlation coefficients as
marginal utility for ranking importance of predictors. Fan, et al. (2014)
proposed an SIS procedure for ultrahigh dimensional VCM by extending
B-spline techniques in Fan, et al. (2011) for additive models. Xia, et al.

(2016) further extends the SIS procedure proposed in Fan, et al. (2014)
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to generalized varying coefficient models (GVCM). Cheng, et al. (2016)
proposed a forward variable selection procedure for ultrahigh dimensional
VCM based on techniques related B-splines regression and grouped variable
selection. Song, et al. (2014) extended the proposal of Fan, et al. (2014)
for longitudinal data without taking into within-subject correlation, while
Chu, et al. (2016) proposed an SIS procedure for longitudinal data based
on weighted residual sum of squares to use within-subjection correlation to
improve accuracy of feature screening. Although feature screening for ul-
trahigh dimensional VCM is an active research topic in the literature, there
is little work on joint feature screening for ultrahigh dimensional GVCM,
which is particularly useful to examine dynamic effects of covariates on a
binary, count or continuous response. For example, Li and Zhang (2011)
proposed a new semiparametric threshold model for censored longitudinal
data analysis. Cheng, et al. (2014) offered a new automatic procedure for
finding a sparse semivarying coefficient model, which is widely accepted for
longitudinal data analysis. This paper intends to fill this gap.

In this paper, we propose a new feature screening procedure for ultrahigh-
dimensional GVCM. The proposed procedure is based on joint likelihood of
potential active predictors and therefore is distinguished from the existing

SIS procedures (Fan, et al., 2014; Liu, et al., 2014; Xia, et al., 2016) in
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that the proposed procedure is not a marginal screening procedure. Wang
(2009) proposed a forward regression approach to feature screening in ul-
trahigh dimensional linear models. Cheng, et al. (2016) further extended
the forward regression procedure for ultrahigh dimensional VCM based on
techniques related B-splines regression and grouped variable selection. Xu
and Chen (2014) proposed a feature screening procedure for generalized
linear models via the sparsity-restricted maximum likelihood estimator. As
demonstrated in Wang (2009), Xu and Chen (2014) and Cheng, et al.
(2016), their approaches can perform better than the sure independence
screening procedures, and can effectively identify predictors that are jointly
dependent but marginal independent of the response. In this paper, we
develop a new screening procedure for the ultra-high dimensional GVCM
based on joint likelihood of potential active predictors. The proposed pro-
cedure can effectively identify active predictors that are jointly dependent
but marginal independent of the response without performing an iterative
procedure. We develop a computationally effective algorithm to carry out
the proposed procedure and establish the ascent property of the proposed
algorithm. We further prove that the proposed procedure possesses the sure
screening property. That is, with probability tending to one, the selected

variable set includes the actual active predictors. In summary, this work
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makes the following major contributions to the literature. (a) We propose a
sure joint screening (SJS) procedure for ultrahigh dimensional GVCM. We
further propose an effective algorithm to carry out the proposed screening
procedure, and demonstrate the ascent property of the proposed algorithm.
(b) We establish the screening property for the proposed joint screening
procedure.

The rest of this paper is organized as follows. In Section 2, we propose
a new feature screening for the ultrahigh dimensional GVCM, and develop
an effective algorithm for the proposed screening procedure. We further
study theoretical properties of the proposed procedure and algorithm. In
Section 3, we present numerical comparisons and an empirical analysis of
a real data example. Some discussion and conclusion remarks are given in
Section 4. Technical proofs are given in the Appendix.
2. New feature screening procedure for generalized varying coef-
ficient models

Let Y be the response variable and {x,U} its associated covariates,
where x = (X3, -+, X,,) and U be p-dimensional and univariate covariates

respectively. Further, let u(x,U) = E(Y|x,U). The GVCM assumes that
n(x, U)=g{p(x,U)} = x"e(U), (2.1)

where ¢(+) is a known link function and «(-) is a vector consisting of un-
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specified smooth regression coefficient functions. Here it is assumed that
all a;(-)’s are nonparametric functions and the support of U is finite and
denoted by [a, b].

Suppose that {U;,x;,Y;}, i = 1,...,n, constitute an independent and
identically distributed sample and that conditionally on {U;,x;}, the con-

ditional quasi-likelihood of Y; is Q{u(U;, x;), Yi}, where the quasi-likelihood

function is defined by Q(u,y) = fj "}zg) ds, or equivalently %}’j’y) = gj—z}%,
for a specific variance function V' (s). Denote by ¢{a(-)} the quasi-likelihood
(McCullagh and Nelder, 1989) of the collected data {(U;, x;,Y;),i = 1,...,n}.

That is

n

Ha()} =) Qs {x/ai)}: Y. (2.2)

i=1

To estimate the nonparametric regression coefficient, we use B-spline
regression method. Let S, be the space of polynomial splines of degree
I > 1 and {¢j,k = 1,...,d,,} denote a normalized B-spline basis with
|kl < 1 and d,; = O(n'/%), where || - ||« is the sup norm. For any

ayj € Sy, we have

dn,
anj(U) = Zﬂjkw]k(U) = 6?¢](U)7 .7 = 17 LD (23)
k=1

. dn . .
for some coefficients {3 },;. Here dy,; increases with n. We allow d,,; to

be different for different j since different coefficient functions may have dif-
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ferent smoothness. Under some conditions, each nonparametric coefficient
function «;(U),j = 1,--- ,p can be well approximated by functions in S,,.
Substituting (2.3) into (2.2), the maximum quasi-likelihood estimate of

(2.2) is to maximize

(B)= Z Q@ [g_l {Zﬁ?'ﬁj(Ui)X@} ;Y

with respect to 3, where z; = (Xa9,(U)", -, X, (U;)")" and B =

n

=5 Qly @BV, (24)

=1

(BT, ,,BZ)T. With slight abuse notation, we use ¢{a(-)} in (2.2) and
¢(B) in (2.4). However, the notation will be clear in the context. In the
presence of ultrahigh dimensional covariate x, the corresponding optimiza-
tion problem becomes ill-posed. It is typical to assume sparsity. That is,

only a few z-covariates are significant, and the others do not have impact

on the response. We next propose a feature screening procedure for model

(2.1).

2.1 A new feature screening procedure

Denote [|o;(U)|l2 = [Ea?(U)]*/2, the Ly-norm of a;(U). For case of
presentation, s denotes an arbitrary subset of {1,...,p}, x, = {z;,7 € s}
and o (U) = {;(U),j € s}. For aset s, 7(s) stands for the cardinality of
s. Suppose the effect of x is sparse, and the true value of a(U) is a*(U),

so B is corresponding to B*. Denote s* = {j : ||a;(U)||2 > 0}. By sparsity,
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we means that 7(s*) is much less than p. The goal of feature screening is
to identify a subset s such that s* C s with overwhelming probability and
7(s) is also much less than p. Theoretically we may formulate this problem

to be an optimization problem as below:

Ig;g%ff{fl(‘)} subject to 7({j : [a;()[lz > 0}) < m, (2.5)

for a pre-specified m, which is presumed to be much less than p.
When the approximation error is negligible, we construct a feature

screening procedure by considering the following maximization problem:

max Ha, ()} subject to 7({j : [lan; ()5 > 0}) < m. (2.6)

Note that [|a,;(U)|13 = 8] E{e;(U)%;(U)"}B,. Under the assumption
that E{+;(U)y;(U)"} is finite positive definite for all j = 1,--- ,p, the

maximization problem in (2.6) is equivalent to
mﬁaxﬁ(ﬁ) subject to 7({j : [|3;]5 > 0}) < m. (2.7)

For high dimensional problems, it becomes almost impossible to solve
the constrained maximization problem (2.7) directly. Alternatively, we con-
sider a proxy of the quasi-likelihood function. It follows by the Taylor ex-
pansion for the quasi-likelihood function ¢() at 3 lying within a neighbor

of ~ that

tly) = (8) + (v~ B C(B) + 5 (v — B) ' (B)y — B),
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where ¢'(3) = 85(7)/8’)4,7:5 and ("(B) = 025(7)/8787T|,7:ﬁ. Denote
P = ?:1 dy;. If ¢"(B) is invertible, the computational complexity of
calculating the inverse of £/(3) is O(P?). For large P;, small n problems
(i.e. P > n), {"(B) becomes not invertible. Low computational cost
is always desirable for feature screening. To cope with singularity of the
Hessian matrix and save computational cost, we propose using the following

approximation for ¢’(«)

h(v18) = U(B) + (v = B)"('(B) — g(v -B)'WPB)(v-8), (28

where u is a scaling constant to be specified and W (8) = diag(W1(8), - -- , W,(8)),
a block diagonal matrix with W;(3) being a d,; x d,,; matrix. Here we al-
low W(B) to depend on B. This implies that we approximate ¢’(3) by
—uW (3). Throughout this paper, we will use W;(8) = —9%((8)/93,08] .

It can be seen that h(8|3) = ¢(8), and under some conditions, h(vy|38) <
¢(3) for all . This ensures the ascent property. See Theorem 1 below for
more details. Since W(8) is a block diagonal matrix, h(+y|3) is an additive

function of v; for any given 3. The additivity enables us to have a closed

form solution for the following maximization problem
maxh(y|B)  subject to 7({j : 7,112 > 0}) < m, (2.9)

for given B8 and m. Define 5, = B; + u™'W,(8,)00(8)/08; for j =
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L,---,p, and 4 = (37, --- ,’N)’I?)T =B+ u'W(B)¢'(B) is the maximizer

of h(v|B). Denote g; = 4 W;(B,)7, for j = 1,--- ,p, and sort g; so that
9a) > 9@) = -+ > g@p)- The solution of maximization problem (2.9) is the

hard-thresholding rule defined below

Y =149 > g1 }-

This enables us to effectively screen features by using the following

algorithm.
Step 1. Set the initial value 8" =0, j = 1,--- ,p.

Step 2. Set t =0,1,2,---, iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a. Calculate ’y ﬁ(t + u{lmfl(ﬁj)aé(ﬁ(t))/ﬁﬁj, and
D= FYTWBDAY. Let gl > gl > - > gll), the
order statistics of gJ s. Set Sy={j: g](t) > gém 1) }, the nonzero

index set.
Step 2b. Update 8 by B+Y = (3] Hl), . ,ﬁ(tﬂ )T as follows. If
j & S, set ,Bg-tﬂ) = 0, otherwise, set {,Bg»tﬂ) : j € Si} be the

maximum likelihood estimate of the submodel S;.
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Remark: Unlike the screening procedures based on marginal partial
likelihood methods, our proposed procedure is to iteratively update 3 us-
ing Step 2. This enables the proposed screening procedure to incorporate
correlation information among the predictors through updating ¢ (3) and
£7(8). Thus, the proposed procedure is expected to perform better than
the marginal screening procedures when there are some predictors that are
marginally independent. Meanwhile, since each iteration in Step 2 can avoid
large-scale matrix inversion and, therefore, it can be carried out with low

computational costs.

Theorem 1. Let {ﬂ(t)} be the sequence defined in Step 2b in the above

algorithm. Denote

ﬂ“=SE9meﬂV*”MWU{4WBHW””%H@H]

Here and hereafter Amax(A) and Amin(A) stands for the mazimal and the

minimal eigenvalues of a matriz A, respectively. If uy > p®), then
(B"Y) = ¢(BY),
where BV s defined in Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if w,

is appropriately chosen. That is, the proposed algorithm may improve the
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current estimate within the feasible region (i.e. 7({j : ||o;(U)|l2 > 0}) <
m), and the resulting estimate in the current step may serve as a refinement
of the last step. This theorem also provides us some insights about choosing
u in practical implementation. For varying coefficient models: E(Y|U,x) =
x'a(U), we may set {a(-)} = =271 3" {V; — x;(U;)}?. In this case,
() in (2.4) is £(8) = ~271 S0, (Vi—al B). Thus, —"(8) = Y1, zal =

777, where Z is n x p, matrix with i-th row being z!. Thus,
P = A (ding (27 2)V2(27 Z)diag(27Z) /%),

which does not depend on the step of iteration t. If z;’s are marginally
standardized so that its marginal sample mean and sample standard devia-
tion equal 0 and 1, respectively, then diag(Z*Z)~/?(Z*Z)diag(Z"Z)~'/? is
the corresponding sample correlation matrix of z;’s. Thus, p is the largest

eigenvalue of the sample correlation matrix.

2.2 Sure screening property

For a subset s of {1,...,p} with size 7(s), recall notation x, = {x;,j €
s} and associated coefficients o, (U) = {a;(U),j € s} corresponding to
B, =1{B,,j € s} with B, = (8j1,...,Bja4,,)- We denote the true model by
s ={j: Eajz-(U) > 0,1 < j < p} with 7(s*) = ¢. The objective of feature

selection is to obtain a subset § such that s* C § with very high probability.
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We now provide some theoretical justifications for the screening proce-
dure for the GVCM. The sure screening property (Fan and Lv, 2008)) is
referred to as

Pr(s*C8§) —1, as n— oo. (2.10)

To establish this sure screening property for the proposed feature screening
method, we introduce some additional notations as follows. For any model
s, let £'(B,) = 00(B,)/08, and ("(B,) = 0%((8,)/08,08" be the score
function and the Hessian matrix of /() as a function of 3, respectively.
Assume that a screening procedure retains m out of p features such that

7(s*) = ¢ < m. So, we define
St ={s:s" Cs;lsllo<m} and S" ={s:s" ¢ s;[s]o <m} (2.11)

as the collections of the over-fitted models and the under-fitted models. We
investigate the asymptotic properties of ,@m under the scenario where p, ¢, m
and 8" are allowed to depend on the sample size n. We impose the following
conditions, some of which are purely technical and only serve to facilitate

theoretical understanding of the proposed feature screening procedure.
(C1) The support of U is bounded and is assumed to be [a, b].

(C2) The functions {a;(U)};_; belong to a class of functions F, whose rth
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(r)

derivative o exists and is Lipschitz of order 7,

F={as(): 1ol (s) = al ()] < Ks —t]" for 5,1 € [a,b]},

J

for some positive constant K, where r is a nonnegative integer and

n € (0,1] such that v =r+n > 0.5.

(C3) There exists wy,wy > 0 and for some non-negative constants 7, 7

such that 7 + m < 1/2 with

min
JjESs*

a;(U)]]2 >win™™ and ¢ <m < wyn™.

(C4) logp = O(n") for some 0 < k < 1 —2(1 + 7).
(C5) 1/(+)/V(-) is bounded by some constant M > 0.

(C6) There exist constants C7,Cy > 0, § > 0, such that for sufficiently

large n,
Cldﬁl < Amin[_nilgﬂ(ﬁs)] < Amax{_nilgll(ﬁs)] < C2dr:17

for B, € {B: 1B, — B:ll2 <} and s € S3™, where Ayin[-] and Apax|']

denote the smallest and largest eigenvalues of a matrix.

Under Conditions (C1) and (C2), the following two properties of B-

splines are valid.



Feature Screening in Ultrahigh Dimensional GVCM 16

(a) (de Boor, 1978) For k =1,...,d,, ¢¥;,(U) > 0 and Zz’;l Y (U) =1,
U € [a,b]. In addition, there exist positive constants C3 and Cy such

that ng;I < E¢?k<U) < C4d7_11.

(b) (Stone, 1982, 1985) If {a;,7 = 1,2,--- ,p} is a set of functions in F
described in condition (C2), there exists a positive constant Cs that
does not depend on «a;(U) so that the uniform approximation error has
the following bound. p = supy ey [(U) — ani(U)]l2 < Csd,", V5,

as d,, — oo.

Conditions (C1) and (C2) ensure properties (a) and (b), which are required
for the B-spline approximation and establishing the sure screening proper-
ties.

Note that ||ov,; (U)[|3 = 8] E{v;(U)e;(U)"}B;, based on the properties

(a), (b) and Condition (C3), we can derive that

min [|3; |z > wid,n™ ™. (2.12)
€s*

Condition (C3) states a few requirements for establishing the sure screen-
ing property of the proposed procedure. The first one is the sparsity of G*
which makes the sure screening possible with 7(5) = m > ¢. Condition
(C3) requires that the signal of the active components (||co;(U)l2,7 € s¥)

does not vanish. This is referred to as minimal signal condition in the lit-
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erature. Minimal signal condition is a commonly-imposed assumption in
existing work on marginal feature screening for other model (e.g, Liu, et
al., 2014). By (2.12), it is equivalent to requiring that the minimal compo-
nent in B does not degenerate too fast, so that the signal is detectable in
the asymptotic sequence. Condition (C4) has p diverge with n at up to an
exponential rate. Meanwhile, together with (C6), it confines an appropriate
order of m that guarantees the identifiability of s* over s for 7(s) < m. For

varying coefficient model discussed in Section 2.1, Condition (C6) requires
Cldy_Ll S /\min[n_lzzzs] S )\max[n_lzzzs] S 02d7717

where Z, is the corresponding design matrix of model s. We establish
the sure screening property of the quasi-likelihood estimation by the fol-
lowing theorem. In Fan and Song (2010), Condition D ensures the tail of
the response variable Y to be exponentially light, as shown in the follow-
ing Lemma 1. As for Condition D corresponds to our Condition (C6), so
Condition (C6) can ensure Y bound.

Remark: In particular, our proposed screening procedure is based on
joint quasi-likelihood of all predictors. However, Fan, Ma and Dai (2014)
investigate marginal nonparametric screening methods to screen variables in
sparse ultra-high-dimensional varying-coefficient models. As for conditions

(v)-(vi) in Fan, Ma and Dai (2014), conditions (v) and (vi) are requirements
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for the tail distribution of each covariate, and the noise, to establish the
sure screening property. However, errors need to be independent but not
normally distributed. Corresponding to our condition (C6), we only need

to assume the minimize and maximum eigenvalues of Hessian matrix are

bounded.

Theorem 2. Suppose we have n independent observations with p candidate
features from model (2.1) and conditions (C1)—(C7) are satisfied. Let § be

the features obtained by (2.5) of size m. Then, we have

Pr(s*C3)—1, as n — 0.

The proof is given in the Appendix. The sure screening property is an
appealing property of a screening procedure since it ensures that the true
active predictors are retained in the model selected by the screening pro-
cedure. We establish the sure screening property under weaker conditions
imposed in Fan, et al. (2014) and Xia, et al. (2016).

One has to specify the value of m in practical implementation. As to
the choice of m, there are two scenarios. The first one chooses m by a
data-driven method that described in Section 2.3. The second one is an
ad hoc method. In the literature of feature screening, it is typical to set

m = [n/log(n)] for a parametric model, where [a] indicates the integer
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part of a (Fan and Lv, 2008). Since we use a linear combination of d,
B-spline bases in our proposed screening procedure for the GVCM, we set
m = [(n/d,)/log(n/d,)] throughout in Examples 3.1, 3.2 and 3.3. Although
it is an ad hoc choice, it works reasonably well in our numerical examples.
With this choice of m, one is ready to further apply existing methods such as
the penalized quasi-likelihood method to further remove inactive predictors.
To be distinguished from the SIS procedure, the proposed procedure is
referred to as sure joint screening (SJS) procedure.
2.3 Choice of m

Feature screening may be used in various contexts. In some contexts,
people may treated m as a pre-specified value. For example, due to budget
constraint, a biologist may be able to examine up to m genes that poten-
tially associate with a certain phenotype. In other contexts, people may
treat m as a tuning parameter to control model complexity. In such cases,
it is desirable to develop an automatic data-driven method to determine m.
We propose to select m by minimizing the high-dimensional BIC score:

n

HBIC(m) = —20(3,,

Y

where Bj = (,@jl, e ,Bjdn), j=1,...,m, and C, is a sequence of numbers
that diverges to co. Wang, et al. (2013) proposed the HBIC for selecting

tuning parameter in the penalized least squares method for high dimensional
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linear models. Here we modified their proposal for high dimensional gener-
alized varying-coefficient models. In our simulation, we take C,, = loglogn,
and compare its performance with AIC and BIC tuning parameter selectors
defined in the same manner. It is worth to noting that the proposed tuning
parameter HBIC selector requires to search over m =1,2,--- | [n/d,]. This
is distinguished from that the classical AIC and BIC used for subset selec-
tion requires to search over subsets. Thus, the tuning parameter selector
does not require expensive computational cost.

Recall notation ST and S™ defined in (2.11). Theorem 3 below shows

that the HBIC selects the right model size almost surely.

Theorem 3. Suppose we have n independent observations with p candidate
features from model (2.1) and conditions (C3)—(C6) are satisfied. Let § be

the features obtained by (2.4) and (2.7) of size m. Then, we have
Pr {mén HBIC(1(s)) < HB]C(q)} — 0, (2.13)
ses™
where ¢ = 7(s*), and

Pr{ min  HBIC(7(s)) < HB[C’(q)} — 0. (2.14)

SEST sF£s*
In Example 3.4, we will examine the performance of the proposed HBIC
tuning parameter selector.

3. Numerical studies
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In this section, we conduct numerical studies to examine the finite sam-
ple performance of the proposed procedures and compare it with the ex-
isting ones. All simulation are conducted by using R code. Examples 3.1,
3.2 and 3.3 examine the performance of the proposed screening procedures.
Following the literature of feature screening (e.g, Fan and Lv, 2008), we set
m = [n/log(n)] in these examples. Example 3.4 examine the performance
of the proposed HBIC, and m is determined by minimizing the HBIC score.
3.1 Simulation studies

In our simulation, the covariate u and x are generated as follows: First
draw (U*,x)T from a p+1 dimensional normal distribution N (0, X), then set
U = ®(U*), where ®(-) is the cumulative distribution function of N(0,1).
Thus, U follows a uniform distribution U(0,1) and is correlated with x,
and all the predictors Xj,..., X, are correlated with each other. In our

simulation, we consider two scenarios for ¥ = (o)

21: Compound symmetric correlation structure: o;; = 1if ¢ = 7 and p

otherwise.
Yo: AR(1) correlation structure: o;; = pli=il,

In our numerical studies, we set the number of B-spline basis functions

tobed,, =5,j =1,---,pfor each coeflicient function. We use the following
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two criteria to assess the performance of the proposed procedure.

P,: The proportion of submodels M with size d that contain all the true

predictors among 1000 simulations.

P;: The proportion of submodels M with size d that contain X ; among

1000 simulations.

Example 3.1. This example is designated to compare the proposed screen-
ing procedure with existing SIS procedures for VCM. Since the proposal of
Xia, et al. (2016) under the setting of VCM coincides with that in Fan, et
al. (2014), which shares the same spirit as that of Liu, et al. (2014), and
Song, et al. (2014) and Chu, et al. (2016) were proposed for longitudinal
data, we will concentrate on our comparison with CC-SIS proposed by Liu,

et al. (2014). Given {U,x}, we generate a continuous response from
YIOél(U)X1+()62<U)X2+&3<U>X3+OL4(U)X4+€, (31)

where € ~ N(0,1). Model (3.1) implies that «o;(-) = 0 for j > 4 and

M, ={1,2,3,4}. We consider two sets of coefficient functions:
ay: Let ay(u) = as(u) = az(u) = 2+2sin?(27mu), and ay(u) = —3pxay(u).

o ay(u) = —(3+ 2cos*(5u)), as(u) = —(3+ 3u), as(u) = (2 —u)* +2,

ay(u) =3 + 2sin*(Zu).
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In this example, we consider p = 1000 and 2000, and the sample size
n = 200 and 400. All simulation results are based on 1000 replications.
Simulation results are summarized in Tables 14 and 3.

Table 14 shows the values of Py,---,P, and P, for continuous re-
sponse with ¥ = 3;. Under the design of a;, X, is jointly dependent
but marginally independent of Y. In this setting, the marginal screening
procedure fails to identify X,. As shown in Table 14, when there exists
marginal independence, CC-SIS is unable to detect X, whose values of
P, and P, are near zero as expected. However, our method can identify
X, in this setting and the corresponding values of P, and P, are close to
one. Therefore, our new procedure outperforms CC-SIS in the presence of
marginal independence. Under the design of ai, there is no predictor that
is jointly dependent but marginally independent of Y. Both CC-SIS and
the proposed procedure perform very well, as the detecting probabilities
are close to one. However, CC-SIS performs better when the sample size
increases and the dimensionality decreases. On the other hand, those fac-
tors have less influences on the new procedure than CC-SIS. Furthermore,
the corresponding values of P;s and P, of our new procedure are closer to
one in every case in this setting. In summary, when > = >;, regardless

of whether marginal independence exists, our new procedure outperforms
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CC-SIS.

Table 2 shows the values of Pjs and P, for continuous response with
Y) = Y. There is no predictor that is jointly dependent but marginally in-
dependent of Y. Hence both of the CC-SIS and the new procedure perform
well, as most of the values of P, are greater than 0.9. Table 2 also indicates
that when the sample size increases and the dimensionality decreases, both
CC-SIS and our new procedure perform better. Furthermore, this table
also shows that those factors have less effect on our new procedure. For
instance, when n = 200, some values of P, obtained by CC-SIS are less
than 0.8, but the corresponding values of P, of the new procedure are close
to one. Besides, Table 2 shows that the new procedure performs better
than CC-SIS in every case, which is consistent with our theoretical analysis
since our new procedure has the sure screening property. Hence, our new
procedure also outperforms CC-SIS in the setting of ¥ = 3.

In addition, comparing the two methods with different p’s, Tables 14
and 2 show that when p increases, the performance of CC-SIS and the new
procedure become worse. This is expected because when the predictors are
highly correlated, the unimportant predictors may be selected due to their
strong correlations with the true predictors.

We also examine the computational efficiency and empirical conver-
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gence of the proposed algorithm for VCM. Table 3 shows the medians and
median of absolute deviations (MADs) of computing time (seconds), and
the number of iterations over 1000 replications. When p = 1000, most of
the medians of the computing times are below 5 seconds, and the MAD is
pretty small; when p = 2000, the computing time increases, but the me-
dians are still mostly below 9 seconds and the MADs are also small. In
general, the algorithm converges faster as the sample size increases. As
shown in Table 3, the algorithm converges after 5 iterations when n = 400
and it usually converges after 10 iterations when n = 200. All of the facts

above show that the proposed algorithm is reasonably efficient.

Example 3.2. This example is designated to examine the performance of
the proposed procedures for binary response. Given {U,x}, we generate a

binary response with the probability of Y = 1 being p(U, x) defined below:

logit{p(U,x)} = a1(U) X1 + az(U) X5 + a3(U) X35 + oy (U) Xy, (3.2)

where logit(t) = log{t/(1 — t)}, the logit link in the logistic regression.

Model (3.2) implies that a;(-) =0 for j > 4 and M, = {1,2,3,4}. In this

example, the coefficients are set to be the same as those in Example 3.1.
In this example, we consider p = 1000 and 2000, and the sample size

n = 300 and 500. All simulation results are based on 1000 replications, and
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are summarized in Tables 4 and 5.

Table 4 shows the values of P;s and P, for the binary responses. Under
the design of 31 and ay, X} is jointly dependent but marginally independent
of Y. As shown in Table 4, the values of P, and P, are very close to one,
which means our method is able to identify the predictor that is jointly
important but marginally independent of the response. In general, P, is
the largest and this is because the absolute value of a4(U) is no less than
those of the other three coefficient functions, which makes X, much easier
to be identified. If there is no marginal independence, the values of P;s
and P, are very close to one. From the table, we see that the values of P,
are mostly greater than 0.9. In addition, our procedure performs better as
the sample size increases and the dimensionality decreases, which is also
consistent to the sure screening property of the new method.

Furthermore, comparing the performances of the new procedure under
different p’s, Table 4 shows that the new procedure performs better as the
value of p decreases. This is the same as the pattern for Example 3.1.

Table 5 presents the medians and MADs of computing time (seconds)
and the number of iterations for binary response over 1000 simulations. In
general, the computing time increases as the sample size and the dimension

of predictors increases. The algorithm converges in 5 iterations and it is not
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influenced by the sample sizes and the dimension of the predictors. This
implies that the proposed algorithm works well for GVCM with binary
response.

Example 3.3. This example is designated to examine the performance of
the proposed procedures for GVCM with count response. Given {U,x}, we
generate a count response from a Poisson distribution with mean (U, x)

defined below.
log{\(U,x)} = a1 (U) X1 + a2(U)Xs + a3(U) X5 + as(U) Xy. (3.3)

Model (3.3) implies that o;(-) =0 for j > 4 and M, = {1,2,3,4}. In this

example, we consider two sets of coefficient functions:

a;: Let aj(u) = as(u) = as(u) = {2 + 2sin®(2mu)}/4, and ay(u) =

—0.75p * a1 (u).

o o (u) = —{3+ 2cos*(5u)}/6, as(u) = —(3+ 3u)/6, az(u) = {(2 —

u)? +2}/6, au(u) = {3+ 2sin*(Zu)}/6.

That is, we re-scale the a(+)s in Example 3.1 so that their ranges lie between
—1 and 1 since the mean function A\(U, x) is in the exponential scale of a(-)s.

In this example, we consider p = 1000 and 2000, and the sample size
n = 300, and 500. All the simulation results are based on 1000 replications,

and are summarized in Tables 6 and 7.
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Table 6 shows the values of P;s and P, for the count responses. In
most cases, the values of P;s and P, are very close to one, regardless of
whether there exists the marginal independence. In general, the proposed
procedure performs better as the sample size increases and the dimension-
ality decreases. Similar to those in Examples 3.1 and 3.2, the proposed
procedure has a better performance with smaller p’s.

Computing time and the number of iterations of the proposed algorithm
are summarized in Table 7. Compared with those in Example 3.2 for binary
response, the computing time for count response is relatively shorter. In
general, the computing times also become larger as n and p increases. The

algorithm converges in fewer steps than the binary case.

Example 3.4. This example is designed to examine the performance of
HBIC tuning parameter selector. We set n = 500, p = 1000, 2000, > = >
with p = 0.5 and o = @y is the coefficient functions. We set C,, = log(logn)
in HBIC, and compare the performance of HBIC with those of the AIC and
BIC tuning parameter selectors. The following three criteria are used to

evaluate the performances:

1. P: the probability that the true model is selected;

2. C: the number of correctly selected predictors from four active pre-
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dictors;

3. I: the number of predictors incorrectly selected as active ones from all

inactive predictors.

The simulation results based on 200 replications are summarized in Table
8.

Table 8 shows that the AIC, BIC and HBIC tuning parameter selectors
can reduce model complexity significantly, while retain all active predictors.
As seen from Table 8, the HBIC performs much better than the AIC and
theBIC in terms of controlling the false positives in linear varying coefficient
model. For the HBIC, the probability of obtaining the true model is close
to one and the number of false positives is close to zero. For logistic model
and Poisson model, the HBIC performs much better than the AIC and the
BIC in terms of selecting the true model. The BIC also works well for
logistic model and Poisson model, since the probabilities of obtaining the

true model are very close to those of the HBIC.

3.2 An application
We illustrate the proposed methodology by an empirical analysis of a
subset of data collected the Framingham Heart Study (FHS, for short).

See Dawber, et al. (1951) and Jaquish (2007) for details about FHS. The
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data subset consists of data for 977 subjects. Of interest is to investigate
the impact of dynamic genetic effects on obesity. In our analysis, we focus
on nonrare SNPs. Here, nonrate SNPs are referred to those SNP whose
the minor allele frequency of a SNP is great than 0.05. In our analysis,
we include 4395 nonrare SNPs with missing rates being less than 0.02.
According to Wikipedia, a BMI equal to or greater than 25 is considered
overweight and above 30 is considered obese. Thus, we define the response
variable to be 1 if this subject’s BMI is greater than 25 and 0 otherwise.
The response variable indeed stands for the status of overweight or obese.
The goal is to identify the SNPs strongly associated with the response.
To examine the dynamic (age-dependent) effect of SNPs and gender on the
response. We consider a logistic varying coefficient models with u being age,
and 8791 covariates since for each SNP, both dominant effect and additive
effect are considered, in addition to include gender as a covariate in our
analysis. This leads to high-dimensional logistic varying coefficient model
with the sample size n = 977.

We first apply the proposed screening procedure to the logistic varying
coefficient model with the number of knots being d, = 6 ~ 1.5n'/°. Note
that the gender variable is not subject to screening. Thus, there are total

29 variables after screening.
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We further apply group lasso to the model obtained from the screening
procedure. HBIC is used to select the tuning parameter. The lasso-HBIC
selects a model with 20 SNPs. Figure 1 depicts the plots of the estimated
coefficient functions along with their pointwise confidence intervals for the
model selected by lasso-HBIC. From Figure 1, it can be seen that the inter-
cept function changes over age, and coefficient functions of some SNP are
also changing over age too, although they hover around zero.

4. Discussions

In this work, we proposed a SJS feature screening procedure for GVCM
with ultrahigh dimensional covariates. The proposed SJS is distinguished
from the existing SIS in that the SJS is based on the joint likelihood of
potential candidate features. We proposed an effective algorithm to carry
out the feature screening procedure, and show that the proposed algorithm
possesses an ascent property. We study the sample property of SJS, and
establish the sure screening property for SJS. We also conduct numerical
study to access the empirical performance of the proposed procedure. The
numerical results implies that the proposed algorithm converges quickly and

computing time is reasonable.

Supplementary Materials

Supplementary materials include Proofs of Theorem 1-3 in Section 2, Table
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1-8 in Sections 3 and Figure 1 in Section 3.
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