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Abstract: Generalized varying coefficient models are particularly useful for ex-

amining dynamic effects of covariates on a continuous, binary or count response.

This paper is concerned with feature screening for generalized varying coefficient

models with ultrahigh dimensional covariates. The proposed screening procedure

is based on joint quasi-likelihood of all predictors, and therefore is distinguished

from marginal screening procedures proposed in the literature. In particular, the

proposed procedure can effectively identify active predictors that are jointly de-

pendent but marginally independent of the response. In order to carry out the

proposed procedure, we propose an effective algorithm and establish the ascent

property of the proposed algorithm. We further prove that the proposed proce-

dure possesses the sure screening property. That is, with probability tending to

one, the selected variable set includes the actual active predictors. We examine

the finite sample performance of the proposed procedure and compare it with

existing ones via Monte Carlo simulations, and illustrate the proposed procedure

by a real data example.

Key words and phrases: Generalized varying-coefficient models, ultrahigh dimen-
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sional data, variable screening.

1. Introduction

Generalized linear models have been well studied in the literature. Vari-

able selection via penalized likelihood has been developed for generalized

linear models with large dimensional covariates (Tibshirani,1996; Fan and

Li, 2001). Ultrahigh dimensional data have been collected in various re-

search areas such as genome-wide association studies, proteomics studies,

finance, tumor classification and biomedical imaging. Variable selection

methods based on penalized likelihood may not perform well for ultrahigh

dimensional data due to their algorithmic stability, computational cost and

statistical accuracy (Fan, et al., 2009). Fan and Lv (2008) advocates a two

stage approach: (a) reduce ultrahigh dimensional covariates to large di-

mensional by filtering out a large number of irrelevant covariates based on

a marginal screening procedure, and (b) apply variable selection methods

to the reduced model with large dimensional covariates. Fan and Lv (2008)

proposed a sure independence screening (SIS) procedure for linear models

using Pearson correlation coefficient as the marginal utility and further es-

tablished the sure screening property of their procedure under Gaussian lin-

ear model framework. Hall and Miller (2009) proposed a feature screening

procedure for transformation linear model by using generalized correlation
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and Li, et al. (2012) advocated using rank correlation for screening to deal

with heavy-tailed distribution and the presence of outlier. Fan, et al. (2009)

proposed a SIS procedure for generalized linear models based on marginal

likelihood estimate. More details about these marginal feature screening

procedures can be found at the recent review paper on feature screening by

Liu, et al. (2015).

Varying coefficient models (VCM) were proposed to deal with “curse of

dimensionality” (Cleveland, et al., 1992; Hastie and Tibshirani, 1993). As a

natural extension of linear regression models by allowing coefficients varying

over a variable such as age and time, the VCM are particularly useful for

exploring dynamic pattern of effects and have been used in various research

fields (See, e.g., Zhu, et al., 2011; Tan, et al, 2012; Liu, et al, 2014). Fea-

ture screening procedures for VCM with ultrahigh dimensional covariates

(referred to as ultrahigh dimensional VCM for short) have been proposed in

the literature. Liu, et al. (2014) developed an SIS procedure for ultrahigh

dimensional VCM by taking conditional Pearson correlation coefficients as

marginal utility for ranking importance of predictors. Fan, et al. (2014)

proposed an SIS procedure for ultrahigh dimensional VCM by extending

B-spline techniques in Fan, et al. (2011) for additive models. Xia, et al.

(2016) further extends the SIS procedure proposed in Fan, et al. (2014)
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to generalized varying coefficient models (GVCM). Cheng, et al. (2016)

proposed a forward variable selection procedure for ultrahigh dimensional

VCM based on techniques related B-splines regression and grouped variable

selection. Song, et al. (2014) extended the proposal of Fan, et al. (2014)

for longitudinal data without taking into within-subject correlation, while

Chu, et al. (2016) proposed an SIS procedure for longitudinal data based

on weighted residual sum of squares to use within-subjection correlation to

improve accuracy of feature screening. Although feature screening for ul-

trahigh dimensional VCM is an active research topic in the literature, there

is little work on joint feature screening for ultrahigh dimensional GVCM,

which is particularly useful to examine dynamic effects of covariates on a

binary, count or continuous response. For example, Li and Zhang (2011)

proposed a new semiparametric threshold model for censored longitudinal

data analysis. Cheng, et al. (2014) offered a new automatic procedure for

finding a sparse semivarying coefficient model, which is widely accepted for

longitudinal data analysis. This paper intends to fill this gap.

In this paper, we propose a new feature screening procedure for ultrahigh-

dimensional GVCM. The proposed procedure is based on joint likelihood of

potential active predictors and therefore is distinguished from the existing

SIS procedures (Fan, et al., 2014; Liu, et al., 2014; Xia, et al., 2016) in
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that the proposed procedure is not a marginal screening procedure. Wang

(2009) proposed a forward regression approach to feature screening in ul-

trahigh dimensional linear models. Cheng, et al. (2016) further extended

the forward regression procedure for ultrahigh dimensional VCM based on

techniques related B-splines regression and grouped variable selection. Xu

and Chen (2014) proposed a feature screening procedure for generalized

linear models via the sparsity-restricted maximum likelihood estimator. As

demonstrated in Wang (2009), Xu and Chen (2014) and Cheng, et al.

(2016), their approaches can perform better than the sure independence

screening procedures, and can effectively identify predictors that are jointly

dependent but marginal independent of the response. In this paper, we

develop a new screening procedure for the ultra-high dimensional GVCM

based on joint likelihood of potential active predictors. The proposed pro-

cedure can effectively identify active predictors that are jointly dependent

but marginal independent of the response without performing an iterative

procedure. We develop a computationally effective algorithm to carry out

the proposed procedure and establish the ascent property of the proposed

algorithm. We further prove that the proposed procedure possesses the sure

screening property. That is, with probability tending to one, the selected

variable set includes the actual active predictors. In summary, this work
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makes the following major contributions to the literature. (a) We propose a

sure joint screening (SJS) procedure for ultrahigh dimensional GVCM. We

further propose an effective algorithm to carry out the proposed screening

procedure, and demonstrate the ascent property of the proposed algorithm.

(b) We establish the screening property for the proposed joint screening

procedure.

The rest of this paper is organized as follows. In Section 2, we propose

a new feature screening for the ultrahigh dimensional GVCM, and develop

an effective algorithm for the proposed screening procedure. We further

study theoretical properties of the proposed procedure and algorithm. In

Section 3, we present numerical comparisons and an empirical analysis of

a real data example. Some discussion and conclusion remarks are given in

Section 4. Technical proofs are given in the Appendix.

2. New feature screening procedure for generalized varying coef-

ficient models

Let Y be the response variable and {x, U} its associated covariates,

where x = (X1, · · · , Xp) and U be p-dimensional and univariate covariates

respectively. Further, let µ(x, U) = E(Y |x, U). The GVCM assumes that

η(x, U)=̂g{µ(x, U)} = xTα(U), (2.1)

where g(·) is a known link function and α(·) is a vector consisting of un-
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specified smooth regression coefficient functions. Here it is assumed that

all αj(·)’s are nonparametric functions and the support of U is finite and

denoted by [a, b].

Suppose that {Ui,xi, Yi}, i = 1, . . . , n, constitute an independent and

identically distributed sample and that conditionally on {Ui,xi}, the con-

ditional quasi-likelihood of Yi is Q{µ(Ui,xi), Yi}, where the quasi-likelihood

function is defined by Q(µ, y) =
∫ y
µ

s−y
V (s)

ds, or equivalently ∂Q(µ,y)
∂µ

= y−µ
V (µ)

,

for a specific variance function V (s). Denote by `{α(·)} the quasi-likelihood

(McCullagh and Nelder, 1989) of the collected data {(Ui,xi, Yi), i = 1, . . . , n}.

That is

`{α(·)} =
n∑
i=1

Q[g−1{xTi α(Ui)};Yi]. (2.2)

To estimate the nonparametric regression coefficient, we use B-spline

regression method. Let Sn be the space of polynomial splines of degree

l ≥ 1 and {ψjk, k = 1, . . . , dnj
} denote a normalized B-spline basis with

‖ψjk‖∞ ≤ 1 and dnj = O(n1/5), where ‖ · ‖∞ is the sup norm. For any

αnj ∈ Sn, we have

αnj(U) =

dnj∑
k=1

βjkψjk(U) = βTj ψj(U), j = 1, · · · , p, (2.3)

for some coefficients {βjk}
dnj

k=1. Here dnj
increases with n. We allow dnj

to

be different for different j since different coefficient functions may have dif-
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ferent smoothness. Under some conditions, each nonparametric coefficient

function αj(U), j = 1, · · · , p can be well approximated by functions in Sn.

Substituting (2.3) into (2.2), the maximum quasi-likelihood estimate of

(2.2) is to maximize

`(β)=̂
n∑
i=1

Q

[
g−1

{
p∑
j=1

βTj ψj(Ui)Xij

}
;Yi

]
=

n∑
i=1

Q[g−1(zTi β);Yi], (2.4)

with respect to β, where zi = (Xi1ψ1(Ui)
T , · · · , Xipψp(Ui)

T )T and β =

(βT1 , · · · ,βTp )T . With slight abuse notation, we use `{α(·)} in (2.2) and

`(β) in (2.4). However, the notation will be clear in the context. In the

presence of ultrahigh dimensional covariate x, the corresponding optimiza-

tion problem becomes ill-posed. It is typical to assume sparsity. That is,

only a few x-covariates are significant, and the others do not have impact

on the response. We next propose a feature screening procedure for model

(2.1).

2.1 A new feature screening procedure

Denote ‖αj(U)‖2 = [Eα2
j (U)]1/2, the L2-norm of αj(U). For ease of

presentation, s denotes an arbitrary subset of {1, . . . , p}, xs = {xj, j ∈ s}

and αs(U) = {αj(U), j ∈ s}. For a set s, τ(s) stands for the cardinality of

s. Suppose the effect of x is sparse, and the true value of α(U) is α∗(U),

so β is corresponding to β∗. Denote s∗ = {j : ‖αj(U)‖2 > 0}. By sparsity,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Feature Screening in Ultrahigh Dimensional GVCM 9

we means that τ(s∗) is much less than p. The goal of feature screening is

to identify a subset s such that s∗ ⊂ s with overwhelming probability and

τ(s) is also much less than p. Theoretically we may formulate this problem

to be an optimization problem as below:

max
α(·)

`{α(·)} subject to τ({j : ‖αj(·)‖22 > 0}) ≤ m, (2.5)

for a pre-specified m, which is presumed to be much less than p.

When the approximation error is negligible, we construct a feature

screening procedure by considering the following maximization problem:

max
αn(·)

`{αn(·)} subject to τ({j : ‖αnj(·)‖22 > 0}) ≤ m. (2.6)

Note that ‖αnj(U)‖22 = βTj E{ψj(U)ψj(U)T}βj. Under the assumption

that E{ψj(U)ψj(U)T} is finite positive definite for all j = 1, · · · , p, the

maximization problem in (2.6) is equivalent to

max
β

`(β) subject to τ({j : ‖βj‖22 > 0}) ≤ m. (2.7)

For high dimensional problems, it becomes almost impossible to solve

the constrained maximization problem (2.7) directly. Alternatively, we con-

sider a proxy of the quasi-likelihood function. It follows by the Taylor ex-

pansion for the quasi-likelihood function `(γ) at β lying within a neighbor

of γ that

`(γ) ≈ `(β) + (γ − β)T `′(β) +
1

2
(γ − β)T `′′(β)(γ − β),
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where `′(β) = ∂`(γ)/∂γ|γ=β and `′′(β) = ∂2`(γ)/∂γ∂γT |γ=β. Denote

Pt =
∑p

j=1 dnj. If `′′(β) is invertible, the computational complexity of

calculating the inverse of `′′(β) is O(P 3
t ). For large Pt, small n problems

(i.e. Pt � n), `′′(β) becomes not invertible. Low computational cost

is always desirable for feature screening. To cope with singularity of the

Hessian matrix and save computational cost, we propose using the following

approximation for `′′(γ)

h(γ|β) = `(β) + (γ − β)T `′(β)− u

2
(γ − β)TW (β)(γ − β), (2.8)

where u is a scaling constant to be specified andW (β) = diag(W1(β), · · · ,Wp(β)),

a block diagonal matrix with Wj(β) being a dnj × dnj matrix. Here we al-

low W (β) to depend on β. This implies that we approximate `′′(β) by

−uW (β). Throughout this paper, we will use Wj(β) = −∂2`(β)/∂βj∂β
T
j .

It can be seen that h(β|β) = `(β), and under some conditions, h(γ|β) ≤

`(β) for all γ. This ensures the ascent property. See Theorem 1 below for

more details. Since W (β) is a block diagonal matrix, h(γ|β) is an additive

function of γj for any given β. The additivity enables us to have a closed

form solution for the following maximization problem

max
γ

h(γ|β) subject to τ({j : ‖γj‖22 > 0}) ≤ m, (2.9)

for given β and m. Define γ̃j = βj + u−1W−1
j (βj)∂`(β)/∂βj for j =
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1, · · · , p, and γ̃ = (γ̃T1 , · · · , γ̃Tp )T = β + u−1W−1(β)`′(β) is the maximizer

of h(γ|β). Denote gj = γ̃TjWj(βj)γ̃j for j = 1, · · · , p, and sort gj so that

g(1) ≥ g(2) ≥ · · · ≥ g(p). The solution of maximization problem (2.9) is the

hard-thresholding rule defined below

γ̂j = γ̃jI{gj > g(m+1)}.

This enables us to effectively screen features by using the following

algorithm.

Step 1. Set the initial value β
(0)
j = 0, j = 1, · · · , p.

Step 2. Set t = 0, 1, 2, · · · , iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a. Calculate γ̃
(t)
j = β

(t)
j + u−1t W−1

j (βj)∂`(β
(t))/∂βj, and

g
(t)
j = {γ̃(t)

j }TWj(β
(t))γ̃

(t)
j . Let g

(t)
(1) ≥ g

(t)
(2) ≥ · · · ≥ g

(t)
(p), the

order statistics of g
(t)
j s. Set St = {j : g

(t)
j ≥ g

(t)
(m+1)}, the nonzero

index set.

Step 2b. Update β by β(t+1) = (β
(t+1)
1 , · · · ,β(t+1)

p )T as follows. If

j 6∈ St, set β
(t+1)
j = 0, otherwise, set {β(t+1)

j : j ∈ St} be the

maximum likelihood estimate of the submodel St.
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Remark: Unlike the screening procedures based on marginal partial

likelihood methods, our proposed procedure is to iteratively update β us-

ing Step 2. This enables the proposed screening procedure to incorporate

correlation information among the predictors through updating `′p(β) and

`′′p(β). Thus, the proposed procedure is expected to perform better than

the marginal screening procedures when there are some predictors that are

marginally independent. Meanwhile, since each iteration in Step 2 can avoid

large-scale matrix inversion and, therefore, it can be carried out with low

computational costs.

Theorem 1. Let {β(t)} be the sequence defined in Step 2b in the above

algorithm. Denote

ρ(t) = sup
β

[
λmax{W−1/2(β(t)){−`′′(β)}W−1/2(β(t))}

]
.

Here and hereafter λmax(A) and λmin(A) stands for the maximal and the

minimal eigenvalues of a matrix A, respectively. If ut ≥ ρ(t), then

`(β(t+1)) ≥ `(β(t)),

where β(t+1) is defined in Step 2b in the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut

is appropriately chosen. That is, the proposed algorithm may improve the
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current estimate within the feasible region (i.e. τ({j : ‖αj(U)‖2 > 0}) ≤

m), and the resulting estimate in the current step may serve as a refinement

of the last step. This theorem also provides us some insights about choosing

ut in practical implementation. For varying coefficient models: E(Y |U,x) =

xTα(U), we may set `{α(·)} = −2−1
∑n

i=1{Yi − xiα(Ui)}2. In this case,

`(β) in (2.4) is `(β) = −2−1
∑n

i=1(Yi−zTi β)2. Thus, −`′′(β) =
∑n

i=1 ziz
T
i =

ZTZ, where Z is n× pt matrix with i-th row being zTi . Thus,

ρ(t) = λmax(diag(ZTZ)−1/2(ZTZ)diag(ZTZ)−1/2),

which does not depend on the step of iteration t. If zi’s are marginally

standardized so that its marginal sample mean and sample standard devia-

tion equal 0 and 1, respectively, then diag(ZTZ)−1/2(ZTZ)diag(ZTZ)−1/2 is

the corresponding sample correlation matrix of zi’s. Thus, ρ is the largest

eigenvalue of the sample correlation matrix.

2.2 Sure screening property

For a subset s of {1, . . . , p} with size τ(s), recall notation xs = {xj, j ∈

s} and associated coefficients αs(U) = {αj(U), j ∈ s} corresponding to

βs = {βj, j ∈ s} with βj = (βj1, . . . , βjdnj
). We denote the true model by

s∗ = {j : Eα2
j (U) > 0, 1 ≤ j ≤ p} with τ(s∗) = q. The objective of feature

selection is to obtain a subset ŝ such that s∗ ⊂ ŝ with very high probability.
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We now provide some theoretical justifications for the screening proce-

dure for the GVCM. The sure screening property (Fan and Lv, 2008)) is

referred to as

Pr(s∗ ⊂ ŝ) −→ 1, as n→∞. (2.10)

To establish this sure screening property for the proposed feature screening

method, we introduce some additional notations as follows. For any model

s, let `′(βs) = ∂`(βs)/∂βs and `′′(βs) = ∂2`(βs)/∂βs∂β
T
s be the score

function and the Hessian matrix of `(·) as a function of βs, respectively.

Assume that a screening procedure retains m out of p features such that

τ(s∗) = q < m. So, we define

Sm+ = {s : s∗ ⊂ s; ‖s‖0 ≤ m} and Sm− = {s : s∗ 6⊂ s; ‖s‖0 ≤ m} (2.11)

as the collections of the over-fitted models and the under-fitted models. We

investigate the asymptotic properties of β̂m under the scenario where p, q, m

and β∗ are allowed to depend on the sample size n. We impose the following

conditions, some of which are purely technical and only serve to facilitate

theoretical understanding of the proposed feature screening procedure.

(C1) The support of U is bounded and is assumed to be [a, b].

(C2) The functions {αj(U)}pj=1 belong to a class of functions F , whose rth
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derivative α
(r)
j exists and is Lipschitz of order η,

F =
{
αj(·) : |α(r)

j (s)− α(r)
j (t)| ≤ K|s− t|η for s, t ∈ [a, b]

}
,

for some positive constant K, where r is a nonnegative integer and

η ∈ (0, 1] such that υ = r + η > 0.5.

(C3) There exists w1, w2 > 0 and for some non-negative constants τ1, τ2

such that τ1 + τ2 < 1/2 with

min
j∈s∗
‖αj(U)‖2 ≥ w1n

−τ1 and q < m ≤ w2n
τ2 .

(C4) log p = O(nκ) for some 0 ≤ κ < 1− 2(τ1 + τ2).

(C5) µ′(·)/V (·) is bounded by some constant M > 0.

(C6) There exist constants C1, C2 > 0, δ > 0, such that for sufficiently

large n,

C1d
−1
n ≤ λmin[−n−1`′′(βs)] ≤ λmax[−n−1`′′(βs)] ≤ C2d

−1
n ,

for βs ∈ {β : ‖βs − β∗s‖2 ≤ δ} and s ∈ S2m
+ , where λmin[·] and λmax[·]

denote the smallest and largest eigenvalues of a matrix.

Under Conditions (C1) and (C2), the following two properties of B-

splines are valid.
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(a) (de Boor, 1978) For k = 1, . . . , dn, ψjk(U) ≥ 0 and
∑dn

k=1 ψjk(U) = 1,

U ∈ [a, b]. In addition, there exist positive constants C3 and C4 such

that C3d
−1
n ≤ Eψ2

jk(U) ≤ C4d
−1
n .

(b) (Stone, 1982, 1985) If {αj, j = 1, 2, · · · , p} is a set of functions in F

described in condition (C2), there exists a positive constant C5 that

does not depend on αj(U) so that the uniform approximation error has

the following bound. ρ = supU∈[a,b] ‖αj(U) − αnj(U)‖2 ≤ C5d
−υ
n , ∀j,

as dn →∞.

Conditions (C1) and (C2) ensure properties (a) and (b), which are required

for the B-spline approximation and establishing the sure screening proper-

ties.

Note that ‖αnj(U)‖22 = βTj E{ψj(U)ψj(U)T}βj, based on the properties

(a), (b) and Condition (C3), we can derive that

min
j∈s∗
‖βj‖2 ≥ w1dnn

−τ1 . (2.12)

Condition (C3) states a few requirements for establishing the sure screen-

ing property of the proposed procedure. The first one is the sparsity of β∗

which makes the sure screening possible with τ(ŝ) = m > q. Condition

(C3) requires that the signal of the active components (‖αj(U)‖2, j ∈ s∗)

does not vanish. This is referred to as minimal signal condition in the lit-
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erature. Minimal signal condition is a commonly-imposed assumption in

existing work on marginal feature screening for other model (e.g, Liu, et

al., 2014). By (2.12), it is equivalent to requiring that the minimal compo-

nent in β∗ does not degenerate too fast, so that the signal is detectable in

the asymptotic sequence. Condition (C4) has p diverge with n at up to an

exponential rate. Meanwhile, together with (C6), it confines an appropriate

order of m that guarantees the identifiability of s∗ over s for τ(s) ≤ m. For

varying coefficient model discussed in Section 2.1, Condition (C6) requires

C1d
−1
n ≤ λmin[n−1ZT

s Zs] ≤ λmax[n
−1ZT

s Zs] ≤ C2d
−1
n ,

where Zs is the corresponding design matrix of model s. We establish

the sure screening property of the quasi-likelihood estimation by the fol-

lowing theorem. In Fan and Song (2010), Condition D ensures the tail of

the response variable Y to be exponentially light, as shown in the follow-

ing Lemma 1. As for Condition D corresponds to our Condition (C6), so

Condition (C6) can ensure Y bound.

Remark: In particular, our proposed screening procedure is based on

joint quasi-likelihood of all predictors. However, Fan, Ma and Dai (2014)

investigate marginal nonparametric screening methods to screen variables in

sparse ultra-high-dimensional varying-coefficient models. As for conditions

(v)-(vi) in Fan, Ma and Dai (2014), conditions (v) and (vi) are requirements
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for the tail distribution of each covariate, and the noise, to establish the

sure screening property. However, errors need to be independent but not

normally distributed. Corresponding to our condition (C6), we only need

to assume the minimize and maximum eigenvalues of Hessian matrix are

bounded.

Theorem 2. Suppose we have n independent observations with p candidate

features from model (2.1) and conditions (C1)—(C7) are satisfied. Let ŝ be

the features obtained by (2.5) of size m. Then, we have

Pr(s∗ ⊂ ŝ)→ 1, as n→∞.

The proof is given in the Appendix. The sure screening property is an

appealing property of a screening procedure since it ensures that the true

active predictors are retained in the model selected by the screening pro-

cedure. We establish the sure screening property under weaker conditions

imposed in Fan, et al. (2014) and Xia, et al. (2016).

One has to specify the value of m in practical implementation. As to

the choice of m, there are two scenarios. The first one chooses m by a

data-driven method that described in Section 2.3. The second one is an

ad hoc method. In the literature of feature screening, it is typical to set

m = [n/ log(n)] for a parametric model, where [a] indicates the integer

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Feature Screening in Ultrahigh Dimensional GVCM 19

part of a (Fan and Lv, 2008). Since we use a linear combination of dn

B-spline bases in our proposed screening procedure for the GVCM, we set

m = [(n/dn)/ log(n/dn)] throughout in Examples 3.1, 3.2 and 3.3. Although

it is an ad hoc choice, it works reasonably well in our numerical examples.

With this choice of m, one is ready to further apply existing methods such as

the penalized quasi-likelihood method to further remove inactive predictors.

To be distinguished from the SIS procedure, the proposed procedure is

referred to as sure joint screening (SJS) procedure.

2.3 Choice of m

Feature screening may be used in various contexts. In some contexts,

people may treated m as a pre-specified value. For example, due to budget

constraint, a biologist may be able to examine up to m genes that poten-

tially associate with a certain phenotype. In other contexts, people may

treat m as a tuning parameter to control model complexity. In such cases,

it is desirable to develop an automatic data-driven method to determine m.

We propose to select m by minimizing the high-dimensional BIC score:

HBIC(m) = −2`(β̂m) + dnm
Cn log(dnp)

n
,

where β̂j = (β̂j1, . . . , β̂jdn), j = 1, . . . ,m, and Cn is a sequence of numbers

that diverges to ∞. Wang, et al. (2013) proposed the HBIC for selecting

tuning parameter in the penalized least squares method for high dimensional
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linear models. Here we modified their proposal for high dimensional gener-

alized varying-coefficient models. In our simulation, we take Cn = log log n,

and compare its performance with AIC and BIC tuning parameter selectors

defined in the same manner. It is worth to noting that the proposed tuning

parameter HBIC selector requires to search over m = 1, 2, · · · , [n/dn]. This

is distinguished from that the classical AIC and BIC used for subset selec-

tion requires to search over subsets. Thus, the tuning parameter selector

does not require expensive computational cost.

Recall notation Sm+ and Sm− defined in (2.11). Theorem 3 below shows

that the HBIC selects the right model size almost surely.

Theorem 3. Suppose we have n independent observations with p candidate

features from model (2.1) and conditions (C3)—(C6) are satisfied. Let ŝ be

the features obtained by (2.4) and (2.7) of size m. Then, we have

Pr

{
min
s∈Sm

−
HBIC(τ(s)) ≤ HBIC(q)

}
−→ 0, (2.13)

where q = τ(s∗), and

Pr

{
min

s∈Sm
+ ,s6=s∗

HBIC(τ(s)) ≤ HBIC(q)

}
−→ 0. (2.14)

In Example 3.4, we will examine the performance of the proposed HBIC

tuning parameter selector.

3. Numerical studies
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In this section, we conduct numerical studies to examine the finite sam-

ple performance of the proposed procedures and compare it with the ex-

isting ones. All simulation are conducted by using R code. Examples 3.1,

3.2 and 3.3 examine the performance of the proposed screening procedures.

Following the literature of feature screening (e.g, Fan and Lv, 2008), we set

m = [n/ log(n)] in these examples. Example 3.4 examine the performance

of the proposed HBIC, and m is determined by minimizing the HBIC score.

3.1 Simulation studies

In our simulation, the covariate u and x are generated as follows: First

draw (U ∗,x)T from a p+1 dimensional normal distribution N(0,Σ), then set

U = Φ(U ∗), where Φ(·) is the cumulative distribution function of N(0, 1).

Thus, U follows a uniform distribution U(0, 1) and is correlated with x,

and all the predictors X1, ..., Xp are correlated with each other. In our

simulation, we consider two scenarios for Σ = (σij)

Σ1: Compound symmetric correlation structure: σij = 1 if i = j and ρ

otherwise.

Σ2: AR(1) correlation structure: σij = ρ|i−j|.

In our numerical studies, we set the number of B-spline basis functions

to be dnj
= 5, j = 1, · · · , p for each coefficient function. We use the following
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two criteria to assess the performance of the proposed procedure.

Pa: The proportion of submodels M̂ with size d that contain all the true

predictors among 1000 simulations.

Pj: The proportion of submodels M̂ with size d that contain Xj among

1000 simulations.

Example 3.1. This example is designated to compare the proposed screen-

ing procedure with existing SIS procedures for VCM. Since the proposal of

Xia, et al. (2016) under the setting of VCM coincides with that in Fan, et

al. (2014), which shares the same spirit as that of Liu, et al. (2014), and

Song, et al. (2014) and Chu, et al. (2016) were proposed for longitudinal

data, we will concentrate on our comparison with CC-SIS proposed by Liu,

et al. (2014). Given {U,x}, we generate a continuous response from

Y = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4 + ε, (3.1)

where ε ∼ N(0, 1). Model (3.1) implies that αj(·) = 0 for j > 4 and

M∗ = {1, 2, 3, 4}. We consider two sets of coefficient functions:

α1: Let α1(u) = α2(u) = α3(u) = 2+2 sin2(2πu), and α4(u) = −3ρ∗α1(u).

α2: α1(u) = −(3 + 2 cos2(π
2
u)), α2(u) = −(3 + 3u), α3(u) = (2− u)2 + 2,

α4(u) = 3 + 2 sin2(π
2
u).
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In this example, we consider p = 1000 and 2000, and the sample size

n = 200 and 400. All simulation results are based on 1000 replications.

Simulation results are summarized in Tables 14 and 3.

Table 14 shows the values of P1, · · · ,P4 and Pa for continuous re-

sponse with Σ = Σ1. Under the design of α1, X4 is jointly dependent

but marginally independent of Y . In this setting, the marginal screening

procedure fails to identify X4. As shown in Table 14, when there exists

marginal independence, CC-SIS is unable to detect X4 whose values of

P4 and Pa are near zero as expected. However, our method can identify

X4 in this setting and the corresponding values of P4 and Pa are close to

one. Therefore, our new procedure outperforms CC-SIS in the presence of

marginal independence. Under the design of α2, there is no predictor that

is jointly dependent but marginally independent of Y . Both CC-SIS and

the proposed procedure perform very well, as the detecting probabilities

are close to one. However, CC-SIS performs better when the sample size

increases and the dimensionality decreases. On the other hand, those fac-

tors have less influences on the new procedure than CC-SIS. Furthermore,

the corresponding values of Pjs and Pa of our new procedure are closer to

one in every case in this setting. In summary, when Σ = Σ1, regardless

of whether marginal independence exists, our new procedure outperforms
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CC-SIS.

Table 2 shows the values of Pjs and Pa for continuous response with

Σ = Σ2. There is no predictor that is jointly dependent but marginally in-

dependent of Y . Hence both of the CC-SIS and the new procedure perform

well, as most of the values of Pa are greater than 0.9. Table 2 also indicates

that when the sample size increases and the dimensionality decreases, both

CC-SIS and our new procedure perform better. Furthermore, this table

also shows that those factors have less effect on our new procedure. For

instance, when n = 200, some values of Pa obtained by CC-SIS are less

than 0.8, but the corresponding values of Pa of the new procedure are close

to one. Besides, Table 2 shows that the new procedure performs better

than CC-SIS in every case, which is consistent with our theoretical analysis

since our new procedure has the sure screening property. Hence, our new

procedure also outperforms CC-SIS in the setting of Σ = Σ2.

In addition, comparing the two methods with different ρ’s, Tables 14

and 2 show that when ρ increases, the performance of CC-SIS and the new

procedure become worse. This is expected because when the predictors are

highly correlated, the unimportant predictors may be selected due to their

strong correlations with the true predictors.

We also examine the computational efficiency and empirical conver-
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gence of the proposed algorithm for VCM. Table 3 shows the medians and

median of absolute deviations (MADs) of computing time (seconds), and

the number of iterations over 1000 replications. When p = 1000, most of

the medians of the computing times are below 5 seconds, and the MAD is

pretty small; when p = 2000, the computing time increases, but the me-

dians are still mostly below 9 seconds and the MADs are also small. In

general, the algorithm converges faster as the sample size increases. As

shown in Table 3, the algorithm converges after 5 iterations when n = 400

and it usually converges after 10 iterations when n = 200. All of the facts

above show that the proposed algorithm is reasonably efficient.

Example 3.2. This example is designated to examine the performance of

the proposed procedures for binary response. Given {U,x}, we generate a

binary response with the probability of Y = 1 being p(U,x) defined below:

logit{p(U,x)} = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4, (3.2)

where logit(t) = log{t/(1 − t)}, the logit link in the logistic regression.

Model (3.2) implies that αj(·) = 0 for j > 4 and M∗ = {1, 2, 3, 4}. In this

example, the coefficients are set to be the same as those in Example 3.1.

In this example, we consider p = 1000 and 2000, and the sample size

n = 300 and 500. All simulation results are based on 1000 replications, and
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are summarized in Tables 4 and 5.

Table 4 shows the values of Pjs and Pa for the binary responses. Under

the design of Σ1 andα1, X4 is jointly dependent but marginally independent

of Y . As shown in Table 4, the values of P4 and Pa are very close to one,

which means our method is able to identify the predictor that is jointly

important but marginally independent of the response. In general, P4 is

the largest and this is because the absolute value of α4(U) is no less than

those of the other three coefficient functions, which makes X4 much easier

to be identified. If there is no marginal independence, the values of Pjs

and Pa are very close to one. From the table, we see that the values of Pa

are mostly greater than 0.9. In addition, our procedure performs better as

the sample size increases and the dimensionality decreases, which is also

consistent to the sure screening property of the new method.

Furthermore, comparing the performances of the new procedure under

different ρ’s, Table 4 shows that the new procedure performs better as the

value of ρ decreases. This is the same as the pattern for Example 3.1.

Table 5 presents the medians and MADs of computing time (seconds)

and the number of iterations for binary response over 1000 simulations. In

general, the computing time increases as the sample size and the dimension

of predictors increases. The algorithm converges in 5 iterations and it is not
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influenced by the sample sizes and the dimension of the predictors. This

implies that the proposed algorithm works well for GVCM with binary

response.

Example 3.3. This example is designated to examine the performance of

the proposed procedures for GVCM with count response. Given {U,x}, we

generate a count response from a Poisson distribution with mean λ(U,x)

defined below.

log{λ(U,x)} = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4. (3.3)

Model (3.3) implies that αj(·) = 0 for j > 4 and M∗ = {1, 2, 3, 4}. In this

example, we consider two sets of coefficient functions:

α1: Let α1(u) = α2(u) = α3(u) = {2 + 2 sin2(2πu)}/4, and α4(u) =

−0.75ρ ∗ α1(u).

α2: α1(u) = −{3 + 2 cos2(π
2
u)}/6, α2(u) = −(3 + 3u)/6, α3(u) = {(2 −

u)2 + 2}/6, α4(u) = {3 + 2 sin2(π
2
u)}/6.

That is, we re-scale the α(·)s in Example 3.1 so that their ranges lie between

−1 and 1 since the mean function λ(U,x) is in the exponential scale of α(·)s.

In this example, we consider p = 1000 and 2000, and the sample size

n = 300, and 500. All the simulation results are based on 1000 replications,

and are summarized in Tables 6 and 7.
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Table 6 shows the values of Pjs and Pa for the count responses. In

most cases, the values of Pjs and Pa are very close to one, regardless of

whether there exists the marginal independence. In general, the proposed

procedure performs better as the sample size increases and the dimension-

ality decreases. Similar to those in Examples 3.1 and 3.2, the proposed

procedure has a better performance with smaller ρ’s.

Computing time and the number of iterations of the proposed algorithm

are summarized in Table 7. Compared with those in Example 3.2 for binary

response, the computing time for count response is relatively shorter. In

general, the computing times also become larger as n and p increases. The

algorithm converges in fewer steps than the binary case.

Example 3.4. This example is designed to examine the performance of

HBIC tuning parameter selector. We set n = 500, p = 1000, 2000, Σ = Σ2

with ρ = 0.5 and α = α2 is the coefficient functions. We set Cn = log(log n)

in HBIC, and compare the performance of HBIC with those of the AIC and

BIC tuning parameter selectors. The following three criteria are used to

evaluate the performances:

1. P: the probability that the true model is selected;

2. C: the number of correctly selected predictors from four active pre-
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dictors;

3. I: the number of predictors incorrectly selected as active ones from all

inactive predictors.

The simulation results based on 200 replications are summarized in Table

8.

Table 8 shows that the AIC, BIC and HBIC tuning parameter selectors

can reduce model complexity significantly, while retain all active predictors.

As seen from Table 8, the HBIC performs much better than the AIC and

theBIC in terms of controlling the false positives in linear varying coefficient

model. For the HBIC, the probability of obtaining the true model is close

to one and the number of false positives is close to zero. For logistic model

and Poisson model, the HBIC performs much better than the AIC and the

BIC in terms of selecting the true model. The BIC also works well for

logistic model and Poisson model, since the probabilities of obtaining the

true model are very close to those of the HBIC.

3.2 An application

We illustrate the proposed methodology by an empirical analysis of a

subset of data collected the Framingham Heart Study (FHS, for short).

See Dawber, et al. (1951) and Jaquish (2007) for details about FHS. The
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data subset consists of data for 977 subjects. Of interest is to investigate

the impact of dynamic genetic effects on obesity. In our analysis, we focus

on nonrare SNPs. Here, nonrate SNPs are referred to those SNP whose

the minor allele frequency of a SNP is great than 0.05. In our analysis,

we include 4395 nonrare SNPs with missing rates being less than 0.02.

According to Wikipedia, a BMI equal to or greater than 25 is considered

overweight and above 30 is considered obese. Thus, we define the response

variable to be 1 if this subject’s BMI is greater than 25 and 0 otherwise.

The response variable indeed stands for the status of overweight or obese.

The goal is to identify the SNPs strongly associated with the response.

To examine the dynamic (age-dependent) effect of SNPs and gender on the

response. We consider a logistic varying coefficient models with u being age,

and 8791 covariates since for each SNP, both dominant effect and additive

effect are considered, in addition to include gender as a covariate in our

analysis. This leads to high-dimensional logistic varying coefficient model

with the sample size n = 977.

We first apply the proposed screening procedure to the logistic varying

coefficient model with the number of knots being dn = 6 ≈ 1.5n1/5. Note

that the gender variable is not subject to screening. Thus, there are total

29 variables after screening.
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We further apply group lasso to the model obtained from the screening

procedure. HBIC is used to select the tuning parameter. The lasso-HBIC

selects a model with 20 SNPs. Figure 1 depicts the plots of the estimated

coefficient functions along with their pointwise confidence intervals for the

model selected by lasso-HBIC. From Figure 1, it can be seen that the inter-

cept function changes over age, and coefficient functions of some SNP are

also changing over age too, although they hover around zero.

4. Discussions

In this work, we proposed a SJS feature screening procedure for GVCM

with ultrahigh dimensional covariates. The proposed SJS is distinguished

from the existing SIS in that the SJS is based on the joint likelihood of

potential candidate features. We proposed an effective algorithm to carry

out the feature screening procedure, and show that the proposed algorithm

possesses an ascent property. We study the sample property of SJS, and

establish the sure screening property for SJS. We also conduct numerical

study to access the empirical performance of the proposed procedure. The

numerical results implies that the proposed algorithm converges quickly and

computing time is reasonable.

Supplementary Materials

Supplementary materials include Proofs of Theorem 1-3 in Section 2, Table
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1-8 in Sections 3 and Figure 1 in Section 3.
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