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Abstract The theory on the traditional sample average approximation (SAA) scheme
for stochastic programming (SP) dictates that the number of samples should be poly-
nomial in the number of problem dimensions in order to ensure proper optimization
accuracy. In this paper, we study a modification to the SAA in the scenario where
the global minimizer is either sparse or can be approximated by a sparse solution.
By making use of a regularization penalty referred to as the folded concave penalty
(FCP), we show that, if an FCP-regularized SAA formulation is solved locally, then the
required number of samples can be significantly reduced in approximating the global
solution of a convex SP: the sample size is only required to be poly-logarithmic in the
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number of dimensions. The efficacy of the FCP regularizer for nonconvex SPs is also
discussed. As an immediate implication of our result, a flexible class of folded con-
cave penalized sparse M-estimators in high-dimensional statistical learning may yield
a sound performance even when the problem dimension cannot be upper-bounded by
any polynomial function of the sample size.

Keywords Sample average approximation · Folded concave penalty · Second order
necessary condition · Stochastic programming

Mathematics Subject Classification 90C15 · 65C05 · 90C26 · 62J07

1 Introduction

Weare interested in solving stochastic programming (SP)when the problemdimension
is high but the global solution is approximately sparse. Denote byW a random vector
with probability distribution P and support W ⊆ �q for some q > 0. Define by
f ( · , · ) : X × W → � a deterministic mapping, where X ⊆ �p

+ for some integer
p > 0 is a compact and convex feasible region. LetE[ f (x,W )] = ∫

W f (x, w)P(dw).
Assume that, for every x ∈ X , the function f (x, · ) is measurable and integrable on
W . Then, the SP formulation of consideration is given as:

min
x∈X

{F(x) := E[ f (x,W )]}, (1)

Throughout the paper, we assume that X is defined only by coordinate-wise con-
straints, that is, X := {x = (xi ) : xi ∈ Xi , i = 1, . . . , p} for some Xi ⊆ �+ for
all i = 1, . . . , p. Notice that the non-negativity constraints are not restrictive, in that
we may always represent a negative variable by the difference of two non-negative
variables.

In addition, we will restrict our discussions to the cases where the solution to the
original SP, denoted xmin ∈ argminx∈X F(x), can be well approximated by a sparse
solution. More precisely, we assume that there exists x̂min that satisfies

F(x̂min) − F(xmin) ≤ ε̂ (2)

for some ε̂ ≥ 0. We denote that S := {i : x̂min
i > 0} and Sc := {i : x̂min

i = 0}.
Here S can be understood as the index set for the most contributing dimensions with
|S| assumed small and satisfying |S| << p and |S| < n. In the special case when
ε̂ = 0, we know that x̂min is an exact solution to (1).

Under the above setting, one of the most commonly used techniques to solve the
SP, the sample average approximation (SAA), is undesirably restrictive on the sample
size in some scenarios. The SAA approximates the objective function of (1) by

Fn(x) := 1

n

n∑

j= 1

f (x,W j ) (3)
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where {W j : 1, . . . , n} is a sequence of independently and identically distributed
(i.i.d.) random samples ofW . Denote that xSAA ∈ argminx∈X Fn(x). Much literature
has discussed the efficacy of xSAA in approximating xmin (see [9,21]). It has been
shown in the celebrated work by Shapiro et al. [14,20,21] that to ensure the opti-
mization accuracy, the required number of samples should be larger than the number
of dimensions and should grow polynomially with the increase of dimensionality. In
specific, to ensure

P
[
F(xSAA) − F(xmin) ≤ ε

]
≥ 1 − α, (4)

for any ε ∈ (0, 1] and α ∈ (0, 1], the sample size n should satisfy

n � p

ε2
ln

1

ε
+ 1

ε2
ln

1

α
, (5)

where x � y for any x, y ∈ � means x ≥ c̃y, for some constant c̃ > 0 that
are independent of α, ε, p, and |S|, but may depend polynomially on some other
problem quantities. Consider (5) in a problem with perhaps hundreds of thousands of
dimensions, which is not rare in actual applications of SP. The SAA then likely requires
more thanmillions or even tens ofmillions of samples for the SAA to performproperly.
The overhead in generating these samples, before conducting any optimization-related
computation, may have already become prohibitive. Especially considering the case
where the most contributing dimensions are in tens or hundreds, such a sample size
requirement seems unreasonably demanding.1

Seeking to address the above issue, this paper studies amodification to (3) by adding
a regularization term to encourage sparsity. This term is in the form of a folded concave
penalty (FCP) as first introduced by [10,27] to some statistical learning problems. We
refer to this modification the regularized SAA (RSAA), which is formulated as

min
x∈X

{

Fn,λ(x) := Fn(x) +
p∑

i= 1

Pλ(xi )

}

(6)

where Pλ with parameters a > 0 and λ > 0 is a special form of FCP called the
minimax concave penalty (MCP) [27]:

Pλ(τ ) :=
∫ τ

0

(aλ − t)+
a

dt =
{

λτ − τ 2

2a if 0 ≤ τ ≤ aλ;
1
2aλ2 if τ > aλ.

(7)

We show in this paper that the RSAA allows the dimension to be (much) more than
the sample size. In specific, when ε̂ = 0, to achieve the same optimization quality in
(4), the sample size requirement for the global minimizer to RSAA is

1 This is because, if only we would know which dimensions are nonzero, we may equivalently reduce the
problem to one that has only tens or hundreds of dimensions. Then, according to (5), the required sample
size would likely be only in thousands.
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n � |S|
ε3

(
ln

p

ε

)1.5 + 1

ε2
ln

1

α
, (8)

under no assumption of convexity. Compared to (5), the required sample size of RSAA
only depends polynomially on |S| and ln p, instead of p. Although, as a tradeoff, the
dependency on ε becomes worse after regularization, we believe that such a tradeoff
can be well compensated by the efficiency in handling high dimensionality at least for
some applications.

Perhaps more importantly, we further consider stationary points that satisfy the
significant subspace second-order necessary condition (S3ONC) [16], which is weaker
than the second-order KKT condition. When ε̂ = 0, we show that, if an S3ONC
solution is achieved by a(n arbitrary) descent local algorithm starting at an all-zero
vector, then the sample size is required to be

n � |S|2.5
ε4

(
ln

p

ε

)2 + 1

ε2
ln

1

α
, (9)

if f ( · ,W ) is convex for almost every W ∈ W . Furthermore, assume in addition that
F is differentiable and strongly convex. Then a smaller sample size is allowed, that is,

n � |S|1.5
ε3

(
ln

p

ε

)1.5 + 1

ε2
ln

1

α
. (10)

Both bounds are worse than (8) in terms of |S| and/or ε, but present similar levels of
efficacy in addressing high dimensionality as in (8). Meanwhile, the computational
overhead in solving for an S3ONC solution is largely reduced compared to that in
solving for a global solution.

Furthermore, it is worthwhile to mention a special case to demonstrate RSAA’s
efficacy. Assume again that f ( · ,W ) is convex for almost every W ∈ W , function
F is differentiable and strongly convex, and ε̂ = 0. If all of the most contributing
dimensions have a reasonably large magnitude that differentiates them from zero, that
is, the value of mini∈S |xmin

i | is above a certain threshold dependent only on |S| and
the modulus of strong convexity, then the required sample size becomes as small as

n � |S|
ε2

ln
p

ε
+ 1

ε2
ln

1

α
, (11)

for an S3ONC solution. In contrast, under the same set of assumptions, the best known
bound on the performance of traditional SAA is still (5), this means that, at least for
some scenarios, the proposed RSAA may achieve a non-trivial improvement to SAA
in handling high dimensionality without any compromise in terms of dependencies
on |S|, ε, and α. A summary of comparisons between RSAA and SAA is provided in
Table 1 given ε̂ = 0.

When the exact global solution to the SP is not sparse but can be approximated by a
sparse solution, i.e., ε̂ > 0, it turns out that the sample size should grow polynomially
in ε̂ and that there can also be a residual suboptimality gap linear in ε̂. However,

123



Sample average approximation with sparsity-inducing…

Table 1 A summary of sample size requirement to guarantee optimization quality of (4) when ε̂ = 0 as
defined in (2)

n � Global
f ( · ,W )

convex

F strongly
convex and
differen
-tiable

mini∈S x̂min
i≥ threshold

SAA p
ε2

ln 1
ε + 1

ε2
ln 1

α � × × ×
RSAA |S|

ε3

(
ln p

ε

)1.5 + 1
ε2

ln 1
α � × × ×

|S|2.5
ε4

(
ln p

ε

)2 + 1
ε2

ln 1
α × � × ×

|S|1.5
ε3

(
ln p

ε

)1.5 + 1
ε2

ln 1
α × � � ×

|S|
ε2

ln p
ε + 1

ε2
ln 1

α × � � �

The “Global” column indicates whether the approximation formulation being solved globally (�) or locally
(×) is one of the conditions for the bounds on “n” of the same row; the “ f ( · ,W ) convex” and the
“mini∈S x̂min

i ≥ threshold” columns indicate whether (�) or not (×) Function f ( · ,W ) being convex for

a.e.W ∈ W and mini∈S x̂min
i being above a certain threshold are conditions for the corresponding bounds

on “n”, respectively

the poly-logarithmic dependency of sample size requirement on the dimensionality is
maintained.

Since second-order KKT condition implies S3ONC, all numerical algorithms that
ensure the second-order KKT condition (e.g., [4,7,19,25,26]) guarantee S3ONC.
Some of these algorithms such as the interior point methods in [4] are fully
polynomial-time approximation schemes (FPTAS). Meanwhile, as we will illustrate
later, computing the global minimizer may also be possible via a mixed integer pro-
gramming reformulation.

Regularizing the SP solution schemeswith a sparsity-inducing penalty for an impor-
tant class of SP formulations has been discussed by some literature, such as [1], which
focuses on the computational complexity when a stochastic optimization algorithm
incorporates an �1-norm penalty. To our knowledge, no theoretical analysis has been
established to qualify the performance of the sparsity-inducing penalties in terms of
approximating the true SP problem by the sample average approximation.

Our results may also have implications to the understanding of a flexible class of
high-dimensional sparse learning problems forM-estimation with the FCP. In fact, the
SAA (3) can be considered as a formulation of an M-estimator with f representing
a statistical loss function, and the SP problem (1) is the corresponding population
version of the learning problem with F measuring the generalization error. Such a
correspondence is also noted by [2]. Following this correspondence, the RSAA (6)
is then the formulation of the sparse learning problem that incorporates the FCP as a
regularizer.Ourfindings imply that high-dimensionalM-estimation is possible through
the regularization of the FCP, even if the problem dimension cannot be bounded by
any polynomial function of the sample size. While most existing literature on high-
dimensional learning such as [5,6,10,16–18,23,24,27–29] either focuses on linear
regression models or relies on additional conditions such as the (restricted) strong
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convexity, our analyses do not rely on those assumptions and may apply to a more
generalM-estimation problem.Wewould also like to comment thatmuch literature has
been devoted to studying an alternative regularizer, the �1-norm regularizer, or a.k.a.,
the Lasso. For many reported simulated experiments, numerical comparisons between
Lasso and FCP have been reported by [10,12,15,16,23,24] in supportive of relative
outperformance of the latter. Some theoretical explanations of such outperformance
are also provided by [10,12,16] in some special cases of high-dimensional learning.

The rest of this paper is organized as following: Sect. 2 presents our assumptions and
the necessary optimality conditions. Section 3 summarizes our major results. Proofs
for those results are presented in Sect. 4. Section 5 discusses different approaches
in solving for a desired local/global solution. Section 6 presents some preliminary
numerical results. Finally, Sect. 7 concludes the paper. Throughout the paper we will
denote by ‖ · ‖, | · |, and ‖ · ‖p (1 ≤ p ≤ ∞) for a vector the �2, �1, and �p norm, while
| · | for a finite set denotes the cardinality of the set. For any scalars x and y, we denote
by x

∨
y (and by x

∧
y) the larger (smaller, resp.) number between the two. We will

also use “a.s.” as an abbreviation for “almost surely”, and “a.e.” for “almost every”.

2 Settings and necessary conditions

2.1 Assumptions

Our analysis relies on the following assumptions.

Assumption A

A.1 For any x ∈ X , the following inequality holds

E[exp (t [ f (x, W ) − F(x)])] ≤ exp

(
σ 2t2

2

)

, ∀ t ∈ �,

for some σ > 0.
A.2 There exists a measurable and deterministic function L : W → � such that

E[exp (t [L(W ) − Lμ

])] ≤ exp

(
σ 2
L t

2

2

)

, ∀ t ∈ �,

for some σL > 0 and Lμ := E[L(W )] ≥ 1 and that

sup
x1, x2∈X

{| f (x1, W ) − f (x2, W )| − L(W )‖x1 − x2‖} ≤ 0, a.e. W ∈ W.

A.3 For almost every W ∈ W , function f (x, W ) is twice differentiable in x and
satisfies

∂2 f (x, W )

(∂xi )2
≤ LH, ∀ i ∈ {1, . . . , p}, x = (xi ) ∈ X
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for some LH > 0.
A.4 Assume that X is defined by coordinate-wise constraints with

X := {x = (xi ) : xi ∈ Xi , i = 1, . . . , p} for some Xi ⊆ �+ for all
i = 1, . . . , p, and that there exist two hypercubes H(0, R) := {x ∈ �p

+ :
x ≤ R}, for some R ≥ 1, and H(0, 1) := {x ∈ �p

+ : x ≤ 1} such that
H(0, 1) ⊆ X ⊆ H(0, R).

A.5 Function f ( · ,W ) is convex for almost every W ∈ W .

We will also make stipulations on the choices of the penalty parameters a and λ.
Condition B. Let the penalty parameters (a, λ) of the MCP as in (7) satisfy that
a < L−1

H , a ≤ 1 and λ > 0.
Assumption A.1 and A.2 are essentially subgaussian. The same set of assump-

tions are standard for sample complexity analyses of the conventional SAA as in [21].
Meanwhile, A.3 and A.5 are verifiable regularities of the objective function. More
specifically, Assumption A.3 essentially assumes that the largest eigenvalue of the
Hessian matrix of the SAA formulation is bounded from above almost surely and
Assumption A.5 requires that the SAA formulation is almost surely convex. Assump-
tion A.4 requires that the constraints are component-wise rectangle constraints. In
addition, it is also required that the feasible region contain an inner hypercube and is
compact. For some of our theoretical results (as in Theorem 1), Assumption A.5 is not
required.ConditionB is non-restrictive, since the parametersa andλ are user-specified.

Under Assumption A.2, there exists another measurable and deterministic function,
denoted by L |S| : W → �, and a constant, denoted by Lμ,s : 1 ≤ Lμ,s ≤ Lμ, such
that

E
[
exp

(
t
[
L |S|(W ) − Lμ,s

])] ≤ exp

(
σ 2
L t

2

2

)

, (12)

for all t ∈ �, and that supx1, x2∈X∩{x: xi=0, j∈Sc}{| f (x1, W ) − f (x2, W )| −
L |S|(W )‖x1 − x2‖} ≤ 0 for almost every W ∈ W . In some cases, such as when
Fn is quadratic, Lμ,s may be nontrivially smaller than Lμ especially if p is large.

2.2 Necessary conditions for local minimality

We focus on local solutions to (6) that satisfy some necessary conditions for local
minimality. Telling from (7), Pλ(t) is twice differentiable in t for all t ∈ [0, aλ). In
the meantime, Fn(x) is almost surely twice differentiable under Assumption A.3 for
any x ∈ X . We consider the following necessary conditions:

First-order necessary condition (FONC): The solution x∗ ∈ X satisfies that

〈∇Fn(x∗) + (P ′
λ(x

∗
i ) : 1 ≤ i ≤ p), x − x∗〉 ≥ 0, ∀ x ∈ X . (13)

Significant subspace second-order necessary condition (S3ONC): The solution
x∗ := (x∗

i : 1 ≤ i ≤ p) ∈ X satisfies FONC. Furthermore, for all i ∈ {i : x∗
i ∈

(0, min{1, aλ})}, it holds that ∂2[Fn(x)+∑p
i=1 Pλ(xi )]

(∂xi )2

∣
∣
∣
∣
x= x∗

≥ 0.
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The S3ONC is derived from the observation that a local minimal solution to the
original problemmust be a local minimizer in the subspace that considers only a single
nonzero variable (see also [8,16]). One may easily check that any second-order KKT
point satisfies the S3ONC.

3 Major results

Our major results concern two propositions and four theorems. Propositions 1 and 2
provide sample size estimates for all S3ONC solutions within the set {x : F(x) −
F(x̂min) ≤ 
} for some prescribed 
 ≥ 0. Those bounds vary with different regulari-
ties on f or F . Then Theorems 1, 2, and 3 discuss some special S3ONC solutions: the
global solutions or the local solutions generated with some naive initialization. Finally,
Theorem 4 presents the special case where the RSAA improves over the conventional
SAA nearly without any compromise.

3.1 Sample size estimates for all S3ONC solutions

We will use the following short-hand notation:

N∗(c1) := σ 2

ε2
ln

c1
α

+ σ 2|S|
ε2

ln
c1RLμ p

ε
+ σ 2

L · ln c1 p

α
, (14)

where c1 > 0.

Proposition 1 Suppose that Assumptions A.1–A.3, and Condition B hold. Let |S| ≥
1, 4p2 ≥ n, λ = σ 2δ

nδ |S|ρ for arbitrary δ : 0 < δ < 1/2 and ρ : 0 ≤ ρ ≤ 1/2. Consider

an S3ONC solution x∗ to (6) that satisfies Fn,λ(x∗) ≤ Fn,λ(x̂min) + 
 almost surely
for some 
 ≥ 0. For any α : 0 < α ≤ 1, ε : 0 < ε ≤ 1 and ε̂ ≥ 0:

1. if it holds that, for some problem-independent constant c2 > 0,

n ≥ N1

∨
c2 · N∗(c2) (15)

where N1 := σ 2
( 1

ε

) 1
2δ |S| 1−2ρ

2δ
∨

σ 2|S| 2ρ
1−2δ

(
c2

1+
+ε̂
a2ε2

ln c2RLμ p
min{ε, σ 2δ}

) 1
1−2δ

, then

F(x∗) − F(xmin) ≤ 2ε + ε̂ + 
 with probability lower bounded by 1 − α;
2. if Assumption A.5 is satisfied and it holds that, for some problem-independent

constant c2 > 0,

n ≥ N2

∨
c2 · N∗(c2), (16)

where N2 := σ 2 · |S| 1−ρ
δ

( R
ε

) 1
δ
∨

σ 2|S| 2ρ
1−2δ ·

(
c2

1+
+ε̂
a2ε2

ln c2RLμ p
min{ε, σ 2δ}

) 1
1−2δ

, then

F(x∗) − F(xmin) ≤ 2ε + ε̂ with probability lower bounded by 1 − α.

Proof The proof is postponed till Sect. 4.2.3. ��
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We assume in the following proposition that F is differentiable and strongly convex
with constant UH such that, for any x1, x2 ∈ X ,

F(x1) − F(x2) ≥ 〈∇F(x2), x1 − x2〉 + UH
2

‖x1 − x2‖2, (17)

for some UH > 0, where ∇F(x2) is a gradient of F at x2. Due to the increased
regularity, we may have a different sample size requirement.

Proposition 2 Consider an S3ONC solution x∗ to (6) that satisfies Fn,λ(x∗) ≤
Fn,λ(x̂min)+
 almost surely for some 
 ≥ 0. Suppose that Assumption A and Condi-

tion B hold. Let 4p2 ≥ n, |S| ≥ 1 and λ = σ 2δ

nδ |S|ρ for arbitrary δ : 0 < δ < 1/2 and
ρ : 0 ≤ ρ ≤ 1/2. Assume, in addition, that F is differentiable and strongly convex to
satisfy (17). For any α : 0 < α ≤ 1, ε : 0 < ε ≤ 1, and ε̂ ≥ 0, if it holds that, for
some problem-independent constant c3 > 0,

n ≥ c3 · N∗(c3)
∨

N3 (18)

where N3 := σ 2|S| 1−2ρ
2δ

U
1
2δ
H

[
( c3

ε

) 1
2δ +

(
c3ε̂
ε2

) 1
2δ
]
∨

σ 2

|S|
2ρ

2δ−1

(
c3

1+
+ε̂
a2ε2

ln c3RLμ p
min{ε, σ 2δ}

) 1
1−2δ

,

then F(x∗) − F(xmin) ≤ 3(ε + ε̂) with probability lower bounded by 1 − α.

Proof The proof is postponed till Sect. 4.2.4. ��
Remark 1 The assumption of 4p2 ≥ n can be easily relaxed but is imposed for
notational simplification in our derivations. Meanwhile, it is possible that (17) is
satisfied but Fn( · ) = 1

n

∑ j
i=1 f ( · ,W j ) is not strongly convex. For an example, we

may consider the case of linear regression, which is often solved with the SAA in the
form of the least squares problem. When n < p, the least squares problem may not be
strongly convex, but the population version of the linear regression problem (which is
the corresponding SP problem) usually have a strongly convex objective.

Remark 2 Consider the global minimizer, denoted xSAA, to the conventional SAA for-
mulation in (3) within the feasible regionX . In [21], it is shown (after some immediate
conversion of notations from Theorem 5.18 therein) that to achieve an optimization
accuracy of F(xSAA) − F(xmin) ≤ ε with lower-bounded probability 1 − α, the
stipulated sample size follows

n ≥ caσ 2

ε2

[

p ln
caLμR

ε
+ ln

ca
α

]∨
σ 2
L · ln ca

α
=: NSAA. (19)

for some constants ca > 0. In contrast, Propositions 1 and 2 indicate that, in non-
convex, convex, and strongly convex cases, RSAA requires the sample sizes to be
at least N1

∨
c2N∗(c2) in (15), N2

∨
c2N∗(c2) in (16), or N3

∨
c3N∗(c3) in (18),

respectively. For all the three cases, it is easily verifiable that N∗ is always dominantly
better than NSAA in terms of dependency, while as a tradeoff, N1, N2, and N3 may
become more sensitive to the reduction in ε than the conventional SAA. A detailed
comparison will be made in the next subsection.
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3.2 Sample size estimates for some special S3ONC solutions

We consider, in Theorem 1, the performance of a global minimal solution x∗, in the
sense that Fn,λ(x∗) = infx∈X Fn,λ(x) almost surely. Then in Theorems 2, 3, and 4,
we study the S3ONC solutions with a better objective value than an all-zero vector,
denoted by 0. In particular, Theorem 4 identifies the best performing case for RSAA.

Recalling the definition of N∗ in (14), we have the following results on the global
solution.

Theorem 1 Suppose that Assumptions A.1–A.3, and Condition B hold. Let 4p2 ≥ n,

|S| ≥ 1, and λ = σ 1/3

n1/6|S|1/4 . Consider a global solution x∗ to (6). For any α : 0 <

α ≤ 1, ε : 0 < ε ≤ 1, and ε̂ ≥ 0, if

n ≥ c4σ 2|S|
ε3

[

1 + (1 + ε̂)
3
2

a3

(

ln
c4RLμ p

min{ε, σ 1/3}
) 3

2
]
∨

c4 · N∗(c4), (20)

is satisfied for some problem-independent constant c4 > 0, then F(x∗) − F(xmin) ≤
2ε + ε̂ with probability lower bounded by 1 − α.

Proof Since the global solution is also a local minimal solution, x∗ also satisfies the
S3ONC almost surely. In addition, since F(x∗) ≤ F(xmin) ≤ F(x̂min), wemay invoke
Part 1 of Proposition 1 with 
 = 0, δ = 1

6 , and ρ = 1
3 to obtain the desired results.

��
Remark 3 Theorem 1 stipulates the minimal assumptions on Fn , but, as a tradeoff, it
requires the global optimization of (6). Computing (6) globally is challenging, because
the MCP is nonconvex. [13] showed that (6) in some special cases is strongly NP-
hard. This motivates us to further consider a class of solutions that only satisfy certain
necessary conditions for local minimality.

Theorem 2 Suppose that Assumption A and Condition B hold. Let 4p2 ≥ n, |S| ≥ 1,
and λ = σ 1/2

n1/4|S|3/8 . Consider an S3ONC solution x∗ to (6) that satisfies Fn,λ(x∗) ≤
Fn,λ(0) almost surely. For any α : 0 < α ≤ 1

2 , ε : 0 < ε ≤ 1 and ε̂ ≥ 0, if

n ≥ c5σ 2|S| 52
ε4

[

R4 + (1 + Lμ,s R + ε̂)2

a4

(

ln
c5RLμ p

min{ε, σ 1/2}
)2
]
∨

c5N
∗(c5) (21)

is satisfied for some problem-independent constants c5 > 0, then F(x∗) − F(xmin) ≤
2ε + ε̂ with probability lower bounded by 1 − 2α.

Proof The proof is postponed till Sect. 4.2.5. ��
Theorem 3 Suppose that Assumption A and Condition B hold. Let 4p2 ≥ n, |S| ≥ 1,
and λ = σ 1/3

n1/6|S|1/4 . Also assume that F is differentiable and strongly convex as in (17).
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Consider an S3ONC solution x∗ to (6) that satisfies Fn,λ(x∗) ≤ Fn,λ(0) almost surely.
For any α : 0 < α ≤ 1

2 , ε : 0 < ε ≤ 1, and ε̂ ≥ 0, if

n ≥ c6σ 2|S| 32
ε3

[
1

U3
H

+ ε̂3

U3
Hε3

+ (1 + Lμ,s R + ε̂)
3
2

a3

(

ln
c6RLμ p

min{ε, σ 1/3}
) 3

2
]

∨
c6N

∗(c6), (22)

is satisfied for some problem-independent constant c6 > 0, then F(x∗) − F(xmin) ≤
3(ε + ε̂) with probability lower bounded by 1 − 2α.

Proof The proof is postponed till Sect. 4.2.6. ��
Theorem 4 Consider an S3ONC solution x∗ to (6). Suppose that the same set of
assumptions hold as in Theorem 3. Let λ = 1

|S|1/4 . Assume additionally ε̂ = 0 and

mini∈S |x̂min
i | >

|S|1/4+
√

|S|1/2+2UH
UH , where x̂min

i is the i-th dimension of x̂min. For

any α : 0 < α ≤ 1
2 and ε : 0 < ε ≤ 1, if

n ≥ c7σ 2|S|
ε2

(
1 + Lμ,s R

a2
ln

c6RLμ p

ε

)∨
c7N

∗(c7), (23)

for some problem-independent constant c7 > 0, then F(x∗) − F(xmin) ≤ ε with
probability lower bounded by 1 − 2α.

Proof The proof is postponed till Sect. 4.2.7. ��
Remark 4 We notice that the choices of λ are different among the above theorems. At
the minimum, the above theorems ensure the existence of proper λ’s that ensure the
sound performance of the RSAA in all the scenarios discussed above. In practice, λ

can also be determined by a simple cross-validation procedure, which is a commonly
adopted scheme in penalized statistical learning to tune the parameter of the sparsity-
inducing penalties.

Remark 5 We would like to compare the sample size requirement of the RSAA as
presented in the results above with that of the conventional SAA.

– We see that NSAA as in (19) depends polynomially in the problem dimension p.
In contrast, Theorems 1, 2, 3, and 4 reveal that the global solutions and some
computable local solutions to RSAA require the sample size to be polynomial in
ln p and |S|. We regard it as a demonstration of the RSAA’s capability in handling
high dimensionality, as now exponentially increased p can be compensated by
polynomially increasing n.

– As a tradeoff to the potential advantage mentioned above, the RSAA’s perfor-
mance has a worse dependency on ε than the conventional SAA in general. More
specifically, NSAA increases at a rate of O( 1

ε2
ln 1

ε
). In contrast, RSAA follows

a rate of O( 1
ε3

· (ln 1
ε
)3/2) if minimized globally (under Assumptions A.1–A.3),
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or O( 1
ε4

· (ln 1
ε
)2) if solved locally with a naive initialization (additionally under

Assumption A.5). Furthermore, under some assumption of differentiability and
strong convexity, if ε̂ ≤ O(1)·ε for someproblem-independent constantO(1), then
a local solutionwith a naive initialization retains the rate of O( 1

ε3
·(ln 1

ε
)3/2), which

is the same as the global minimizer. We think that compromising the dependency
on ε to achieve a non-trivial reduction in the dependency on p can be worthwhile
in many high dimensional SP applications, where p can be redundantly very large
but the suboptimality gap ε is not required to be very small.

– Theorem 4 identifies a case where RSAA non-trivially reduces the dependency on
p while the growth of the required sample size maintains at the same rate as the
conventional SAA in terms of ε.

– The RSAA’s dependencies on σ and σL are almost the same as those of the SAA.
Meanwhile, RSAA becomes dependent on some other quantities that originally
do not influence the SAA’s performance: a, |S|, and UH. Moreover, in some cases,
the RSAA may be more sensitive to the increase in the Lipschitz-like constant
Lμ,s as defined in (12) and the radius of the feasible region, R. Nonetheless, those
dependencies all maintain to be polynomial.

Remark 6 By allowing ε̂ ≥ 0, our results apply to the cases where the exact solution
to the SP is dense, but can be approximated by a sparse solution. We can see that,
when ε̂ > 0, RSAAwill require more samples and may incur a residual suboptimality
gap no greater than O(1) · ε̂.

Remark 7 Our results may also have potentially important implications to high-
dimensional M-estimation. One may consider the following correspondence between
our setting and the setting for a high-dimensional learning problem: (i) Eq. (3) can be
thought of as an in-sample statistical loss function; (ii) the (global/local) solution to
RSAA formulation (6) can be considered as a folded concave penalized sparse esti-
mator; (iii) the SP formulation (1) can be considered as the population version of the
(unpenalized) learning problem (a.k.a., expected risk or generalization error); and (iv)
The suboptimality gap F(x∗)−F(xmin) is then a performancemeasure2 of the estima-
tor x∗. The above conversion is also noted by [2]. Under this conversion, we can easily
tell from Theorems 1, 2, and 3 that a global solution or an S3ONC solution initialized
at an all-zero vector can achieve a reasonable upper bound on the F(x∗) − F(xmin)

even in the undesirable scenarios where the dimension p cannot be upper bounded by
any polynomial of n. The same setting has been discussed by [11] for the linear regres-
sion model, by [12] for several M-estimation models, and by [17,24] under restricted
strong convexity (RSC, which is some variation of strong convexity in certain subset
of the feasible region). In contrast, our results may be applicable to a wider class of
M-estimators without the RSC assumption. In particular, if we consider the estimator
that globally minimizes the RSAA, nonconvexity in the statistical loss function is also
allowed.

Remark 8 We would also like to remark that the sparsity of an S3ONC solution is
dependent on λ and 
. The correlations between those quantities and the sparsity level

2 F(x∗) − F(xmin) is also referred to as the “excess risk” in a learning problem. See for example [3].
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are in fact characterized by Lemma 4 in the subsequent section. Although the formula
seem nontrivial, we think that the general trend is clear; that is, larger λ, and smaller

 may result in fewer nonzeros in the S3ONC solution. Our numerical experiments
in Sect. 6 also show that the number of nonzero dimensions can be well constrained
at an S3ONC solution.

4 Technical proofs

Wewill first present a set of preliminary results in Sect. 4.1 and then provide the proofs
for the claimed results in Sect. 4.2. A sketch of proof is provided in Sect. 4.2.1.

4.1 Some preliminary results

In this subsection, we present a couple of observations that are useful to our proofs.
Firstly, we observe that MCP as in (7) has the following properties:

(i) Pλ(t) is non-decreasing and concave in t ∈ �+ with Pλ(0) = 0 and Pλ(t) > 0 if
t > 0;

(ii) Pλ(t) is differentiable for all t ∈ �+ and twice differentiable for any t ∈ [0, aλ)∪
(aλ, ∞);

(iii) The first derivative P ′
λ(t) = 0 for any t ≥ aλ;

(iv) 0 ≤ P ′
λ(t) ≤ λ and 0 ≤ Pλ(t) ≤ Pλ(aλ) = aλ2

2 for any t ≥ 0;
(v) The second derivative P ′′

λ (t) = − 1
a for any t ∈ [0, aλ) and P ′′

λ (t) = 0 for any
t > aλ.

Secondly, consider an S3ONC solution x∗ ∈ X under Assumption A.5. Recall that
S3ONC implies FONC.Then, from the definition of FONC inEq. (13) andAssumption
A.5, we know that, if x∗ satisfies the FONC, then it holds that

Fn(x∗) +
p∑

i=1

P ′
λ(x

∗
i )x∗

i ≤ Fn(x) +
p∑

i=1

P ′
λ(x

∗
i )xi , ∀ x = (xi ) ∈ X , a.s., (24)

which immediately yields that

Fn(x∗) +
p∑

i=1

P ′
λ(x

∗
i )x∗

i ≤ Fn(x̂min) +
p∑

i=1

P ′
λ(x

∗
i )x̂min

i , a.s.

Together with (a) x̂min
i = 0 for all i ∈ Sc, (b) x∗ ≥ 0, and (c) Property (iv) of Pλ, it is

then straightforward to obtain:

Fn(x∗) − Fn(x̂min) ≤
p∑

i= 1

P ′
λ(x

∗
i )(x̂min

i − x∗
i )

≤
∑

i∈S
P ′

λ(x
∗
i )|x̂min

i − x∗
i | +

∑

i∈Sc

P ′
λ(x

∗
i )(x̂min

i − x∗
i )
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(a)=
∑

i∈S
P ′

λ(x
∗
i )|x̂min

i − x∗
i | +

∑

i∈Sc

P ′
λ(x

∗
i ) · (−x∗

i )

(b),(c)≤ λ
∑

i∈S
|x̂min

i − x∗
i |, a.s. (25)

Similarly, with (a) x̂min
i = 0 for all i ∈ Sc, (b) x∗ ≥ 0, and (c) Property (iv) of Pλ,

again,

Fn(x∗) − Fn(x̂min) ≤
p∑

i= 1

P ′
λ(x

∗
i )(x̂min

i − x∗
i )

≤
∑

i∈S
P ′

λ(x
∗
i )(x̂min

i − x∗
i ) +

∑

i∈Sc

P ′
λ(x

∗
i )(x̂min

i − x∗
i )

(a)=
∑

i∈S
P ′

λ(x
∗
i )(x̂min

i − x∗
i ) +

∑

i∈Sc

P ′
λ(x

∗
i ) · (−x∗

i )

(b)≤
∑

i∈S
P ′

λ(x
∗
i )(x̂min

i )
(c)≤ λ

∑

i∈S
|x̂min

i |, a.s. (26)

Thirdly, consider an S3ONC solution x∗ ∈ X again. One has that

x∗
i /∈ (0, min{aλ, 1}) for any i = {1, . . . , p}, almost surely. (27)

To see this, suppose that for an arbitrary dimension i ∈ {1, . . . , p}, it holds that

x∗
i ∈ (0, min{aλ, 1}). Since ∂2Fn(x)

(∂xi )2
≤ LH for all x ∈ X almost surely as an

immediate result of Assumption A.3, combined with a < L−1
H under Condition B and

Property (v) of Pλ, we have that ∂2Fn,λ(x)
(∂xi )2

∣
∣
∣
x= x∗ =

[
∂2Fn(x)
(∂xi )2

− 1
a

]

x= x∗ < 0, almost

surely. The satisfaction of this inequality contradicts with the S3ONC, that is, for all
i = 1, . . . , p,

P

[{
∂2Fn(x∗)
(∂xi )2

≤ LH
}

∩ {x∗ satisifies S3ONC} ∩ {x∗
i ∈ (0, min{aλ, 1})}

]

= 0.

Notice that

P

[({
∂2Fn(x∗)
(∂xi )2

≤ LH
}

∩ {x∗ satisfies S3ONC}
)

∪ {x∗
i ∈ (0, min{aλ, 1})}

]

= P
[{x∗

i ∈ (0, min{aλ, 1})}]+ P

[{
∂2Fn(x∗)
(∂xi )2

≤ LH
}

∩ {x∗ satisfies S3ONC}
]

− P

[{
∂2Fn(x∗)
(∂xi )2

≤ LH
}

∩ {x∗ satisfies S3ONC} ∩ {x∗
i ∈ (0, min{aλ, 1})}

]
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which means that

1 = P
[{x∗

i ∈ (0, min{aλ, 1})}]+ 1 − 0, ∀ i = 1, . . . , p

�⇒ P
[{x∗

i ∈ (0, min{aλ, 1})}] = 0, ∀ i = 1, . . . , p

�⇒ P
[{x∗

i /∈ (0, min{aλ, 1}), ∀ i = 1, . . . , p}] = 1

Combined with Properties (i) and (iii) of Pλ, it further implies that

Pλ(aλ)‖x∗‖0 ≥
p∑

i= 1

Pλ(x
∗
i ) ≥ Pλ(min{aλ, 1})‖x∗‖0

=
(

λmin{aλ, 1} − min{a2λ2, 1}
2a

)

‖x∗‖0, a.s. (28)

Fourthly, the following two useful lemmas are some quick results fromAssumption
A.2 and are taken from [21] after some slight changes.

Lemma 1 (a) Under Assumption A.2, for any t > 0,

sup
x1, x2∈X

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n −
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣
− (Lμ + t)‖x1 − x2‖

⎫
⎬

⎭
≤ 0,

with probability at least 1 − 2 exp

(

− nt2

2σ 2
L

)

.

(b) Under Assumption A.2, for any t > 0,

sup
x1, x2∈X∩

{x: xi=0, i∈Sc}

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n −
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣
− (Lμ,s + t)‖x1 − x2‖

⎫
⎬

⎭
≤ 0,

with probability at least 1 − 2 exp

(

− nt2

2σ 2
L

)

.

Proof To show (a): Firstly, by Assumption A.2, one has supx1, x2∈X {| f (x1,W j ) −
f (x2,W j )| − L(W j )‖x1 − x2‖} ≤ 0 for all j = 1, . . . , n almost surely. Combining
the inequalities for all j = 1, . . . , n, we obtain

sup
x1, x2∈X

⎧
⎨

⎩

n∑

j= 1

| f (x1,W j ) − f (x2,W j )| −
n∑

j= 1

L(W j )‖x1 − x2‖
⎫
⎬

⎭
≤ 0, a.s.

By triangular inequality and dividing both sides by n, we have
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sup
x1, x2∈X

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n −
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣

−
n∑

j= 1

n−1L(W j )‖x1 − x2‖
⎫
⎬

⎭
≤ 0 a.s.

By the second part of Assumption A.2, we can invoke the well-known large deviation
theorem on subgaussian i.i.d. random variables and obtain

P

⎡

⎣

∣
∣
∣
∣
∣
∣
n−1

n∑

j= 1

L(W j ) − Lμ

∣
∣
∣
∣
∣
∣
≥ t

⎤

⎦ ≤ 2 exp

(

− nt2

2σ 2
L

)

(29)

for any t > 0. Combining the above,

sup
x1, x2∈X

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n −
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣
− (Lμ + t)‖x1 − x2‖

⎫
⎬

⎭
≤ 0,

with probability at least 1 − 2 exp

(

− nt2

2σ 2
L

)

, as claimed.

To show (b): Under Assumption A.2, it obtains that (12) holds. Then, the same
argument to prove Part (a) immediately leads to the desired result in Part (b). ��
Lemma 2 (a) Under Assumption A.2, for any fixed x1, x2 ∈ X , it holds that
|F(x1) − F(x2)| ≤ Lμ‖x1 − x2‖.

(b) Under Assumption A.2, for any fixed x1, x2 ∈ X ∩ {x : xi = 0, i ∈ Sc}, it
holds that |F(x1) − F(x2)| ≤ Lμ,s‖x1 − x2‖.
Proof To show (a): By Assumption A.2, we have,

Lμ‖x1 − x2‖ = E[L(W ) · ‖x1 − x2‖] ≥ E[| f (x1, W ) − f (x2, W )|]
≥ |E[ f (x1, W )] − E[ f (x2, W )]| = |F(x1) − F(x2)|,

which is immediately the claimed result.
To show (b): Under Assumption A.2, Inequality (12) holds. Then, with the same

argument to prove Part (a), we immediately obtain the desired result in Part (b). ��

4.2 Proof of major results

This section presents the proofs for our claimed theoretical results. We first present a
sketch of the proof in Sect. 4.2.1. Then, two useful lemmas that serve as the pillar of our
analysis are presented in Sect. 4.2.2. The proofs for the aforementioned propositions
and theorems as our major results are provided subsequently in Subsections from 4.2.3
to 4.2.7.
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4.2.1 Sketch of proof

Our proof is organized as following:

Step 1 In Lemma 3, we show how well the objective function of the SP problem F
can be approximated by the objective function of the SAA problem Fn at a feasible
solution that satisfies the sparsity assumption in addition to the standard assumptions
for the SAA (Assumptions A.1 and A.2). More specifically, we derive a bound on
the probability for the point-wise difference between F(x) and Fn(x) to be contained
within a prescribed level ε > 0 when ‖x‖0 ≤ p̃ for any p̃ : 1 ≤ p̃ ≤ p. It turns out
that, if sparsity holds (i.e., if p̃ is small), the approximation quality is less sensitive to
the problem dimension p compared to the conventional SAA by [20–22].

Step 2Toexploit the results fromStep1,Lemma4 then shows that, onceAssumption
A.3 holds (i.e., the diagonals of the Hessian matrix of the SAA formulation is bounded
from the above), we can guarantee that any S3ONC solution is sparse. Furthermore,
the number of nonzeros can be controlled by tuning the penalty parameters a and λ.
As a result, through properly choosing the values for a and λ, we ensure that p̃ can
indeed be a small number at the S3ONC solution. Lemma 4 also explicates the number
of nonzeros at an S3ONC solution as a function in parameterization of a, λ, and the
global suboptimality of that S3ONC solution.

Step 3 Combining results from Steps 1 and 2, we may obtain the claimed results for
Propositions 1 and 2 in Sect. 4.2.3 by choosing the proper pair of parameters (a, λ).
The bounds derived in both propositions are in parameterization of the suboptimality
gap
 in solving theRSAA.Note that Proposition2makes use of additional inequalities
from strong convexity and thus provides a sharper bound than Proposition 1.

Step 4 Employing bounds on the approximation quality from Propositions 1 and 2,
which are in parameterization of 
, we then consider the S3ONC solutions where 


can be explicated. In particular, we focus on two cases. (i) We first consider the global
solutions where 
 = 0. By employing the propositions shown in Step 3, we can
immediately derive Theorem 1 by properly choosing a and λ. (ii) Under Assumption
A.5 (i.e., the unpenalized SAA formulation is convex) we then look at those solutions
that have a better objective value than an all-zero solution. This immediately leads to
all our results in Theorems 2–4.

4.2.2 Two pillar lemmas

This section provide two pillar lemmas that lay the foundation of our analyses and
constitutes Step 1 of our proof sketch in Sect. 4.2.1.

Lemma 3 Suppose that AssumptionsA.1 andA.2 hold. For any scalar t > 0 and any
integer p̃ : p ≥ p̃ > 0, the following inequality holds:
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P

⎡

⎣ sup
x∈X : ‖x‖0≤ p̃

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣
≤ t

⎤

⎦

≥ 1 − 2

⎡

⎢
⎢
⎢

(
12
√
p̃RLμ

t

) p̃ (
p
p̃

)
⎤

⎥
⎥
⎥

· exp
(

− nt2

8σ 2

)

− 2 exp

(

−nL2
μ

2σ 2
L

)

.

Proof We can divide the feasible region X by a net of finitely many grids V (t) :=
{xk, k = 1, 2, . . .} ⊆ X , such that for any x ∈ X ∩ {x : ‖x‖0 ≤ p̃}, there
always exists an xk ∈ V (t) that satisfies ‖xk − x‖ ≤ t

6Lμ
. Since X ⊆ H(0, R),

it is easily verifiable that one can always find such a net of grids if |V (t)| =⌈

(
12

√
p̃RLμ

t ) p̃
(
p
p̃

)⌉

. Corresponding to every grid xk , there is a subset of the fea-

sible region Xk :=
{
x ∈ X : ‖x − xk‖ ≤ t

6Lμ

}
. As per our construction, we know

that X ∩ {x : ‖x‖0 ≤ p̃} = (∪xk∈V (t)Xk
) ∩ {x : ‖x‖0 ≤ p̃}. Therefore, it holds

surely that

sup
x∈X∩{x: ‖x‖0≤ p̃}

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣

≤ max
k=1,...,|V (t)| sup

x∈Xk

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣

(30)

Now, consider the following events:

E1(t) :=
⎧
⎨

⎩
max
y∈V (t)

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (y, W j ) − F(y)

∣
∣
∣
∣
∣
∣
≤ t/2

⎫
⎬

⎭

E2 :=
⎧
⎨

⎩
sup

x1, x2∈X

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n −
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣
− 2Lμ‖x1 − x2‖ ≤ 0

⎫
⎬

⎭

E3(k) :=
⎧
⎨

⎩
sup

x1, x2∈Xk

∣
∣
∣
∣
∣
∣

n∑

j= 1

f (x1,W j )/n

−
n∑

j= 1

f (x2,W j )/n

∣
∣
∣
∣
∣
∣
− 2Lμ‖x1 − x2‖ ≤ 0

⎫
⎬

⎭
, k = 1, . . . , |V (t)|.

It is easily verifiable that E2 ⊆ E3(k) for any k = 1, . . . , |V (t)|. Conditioning on E2,
we have that for any k = 1, . . . , |V (t)|:
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sup
x∈Xk

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣

≤ sup
x∈Xk

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − 1

n

n∑

j= 1

f (xk, W j )

∣
∣
∣
∣
∣
∣
+
∣
∣
∣F(x) − F(xk)

∣
∣
∣

+
∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (xk, W j ) − F(xk)

∣
∣
∣
∣
∣
∣

E2⊆E3(k)≤ sup
x∈Xk

2Lμ

∥
∥
∥x − xk

∥
∥
∥+

∣
∣
∣F(x) − F(xk)

∣
∣
∣+
∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (xk, W j ) − F(xk)

∣
∣
∣
∣
∣
∣

Lemma 2≤ sup
x∈Xk

2Lμ

∥
∥
∥x − xk

∥
∥
∥+ Lμ

∥
∥
∥x − xk

∥
∥
∥+

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (xk, W j ) − F(xk)

∣
∣
∣
∣
∣
∣

= t

2
+
∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (xk, W j ) − F(xk)

∣
∣
∣
∣
∣
∣
, a.s.

Therefore, conditioning on the simultaneous occurrence of both E1(t) and E2, we have

sup
x∈X∩{x: ‖x‖0≤ p̃}

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣

≤ max
k=1,...,|V (t)| supx∈Xk

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (x, W j ) − F(x)

∣
∣
∣
∣
∣
∣

≤ t

2
+ max

k=1,...,|V (t)|

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (xk, W j ) − F(xk)

∣
∣
∣
∣
∣
∣
≤ t

2
+ t

2
= t, a.s.

Now it suffices to bound the probability for E1(t) and E2.
(i). To consider E1(t), we know by union bound that

P

⎡

⎣ max
y∈V (t)

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (y, W j ) − F(y)

∣
∣
∣
∣
∣
∣
>

t

2

⎤

⎦

≤
∑

y∈V (t)

P

⎡

⎣

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (y, W j ) − F(y)

∣
∣
∣
∣
∣
∣
>

t

2

⎤

⎦

Due to Assumption A.1, we may invoke the large deviation theorem on sub-
gaussian i.i.d. random variables to obtain that, for any t > 0, it holds that
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P
[∣
∣
∣ 1n
∑n

j= 1 f (y, W j ) − F(y)
∣
∣
∣ ≥ t

]
≤ 2 exp

(
− nt2

2σ 2

)
for any y ∈ V (t). Therefore,

we may continue as

P[E1(t)] = P

⎡

⎣ max
y∈V (t)

∣
∣
∣
∣
∣
∣

1

n

n∑

j= 1

f (y, W j ) − F(y)

∣
∣
∣
∣
∣
∣
≤ t/2

⎤

⎦

≥ 1 − 2|V (t)| · exp
(

− nt2

8σ 2

)

≥ 1 − 2

⎡

⎢
⎢
⎢

(
12
√
p̃RLμ

t

) p̃ (
p
p̃

)
⎤

⎥
⎥
⎥
exp

(

− nt2

8σ 2

)

(31)

(ii). To consider E2, we invoke Lemma 1 (in which we let t := Lμ only within that
lemma), we know that

P [E2] ≥ 1 − 2 exp

(

−nL2
μ

2σ 2
L

)

(32)

Now, invoking both the De Morgan’s Law and the union bound to combine all the
above, we obtain the desired result. ��

Lemma 4 Suppose that Assumptions A.1–A.3 and Condition B hold. Let ε̂ ≥ 0 and
x∗ ∈ X be an S3ONC solution. For any integer p̃ : p̃ ≥ |S| and any scalars t > 0,

ε̂ ≥ 0, and 
 ≥ 0, if Fn,λ(x∗) ≤ Fn,λ(x̂min) + 
 almost surely, nt2

8σ 2 ≥ ln
(
12pRLμ

t

)
,

aλ ≤ 1 and

Pλ(aλ) >

 + 2t

√
p̃ + 1 + ε̂

p̃ − |S| + 1
, (33)

then ‖x∗‖0 ≤ p̃ with probability at least

P∗(t, p̃) := 1 − 2 exp

(

− ( p̃ + 1)nt2

8σ 2

)

· 1

1 − exp
(
− nt2

8σ 2

)

−2p exp

(

−nL2
μ

2σ 2
L

)

− 2 exp

(

−( p̃ + 1)

[
nt2

8σ 2 − ln

(
12pRLμ

t

)])

· 1

1 − exp
(
−
[
nt2

8σ 2 − ln
(
12pRLμ

t

)]) (34)

Proof If p̃ > p, then ‖x∗‖0 ≤ p < p̃ with probability 1, while P∗(t, p̃) ≤ 1 for any
t > 0 and p̃ ≥ |S|. Thus the desired result holds if p̃ > p. The rest of the proof then
considers only the case where p̃ ≤ p.
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For arbitrary integers p̃ : p ≥ p̃ ≥ |S| and k : 1 ≤ k ≤ p − p̃, consider the
events

Ea( p̃ + k) := {‖x∗‖0 = p̃ + k}; Eb := {Fn(x̂min) − Fn(x∗) ≤ 2t
√
p̃ + k + ε̂}

and

Ec :=
{

sup
x∈X : ‖x‖0≤ p̃+k

|Fn(x) − F(x)| ≤ t
√
p̃ + k

}

.

Firstly, we want to show that P[Ea( p̃+ k) ∩ Eb] = 0. To this end, consider another
two events

A := {∀ i : x∗
i /∈ (0, aλ)

}

B :=
{
Fn,λ(x∗) ≤ Fn,λ(x̂min) + 


}
.

If we recall Property (iv) of Pλ and the assumption that aλ ≤ 1, it holds that

∀ i : x∗
i /∈ (0, aλ) �⇒∑p

i= 1 Pλ(x∗
i ) = ‖x∗‖0Pλ(aλ)

Fn,λ(x∗) ≤ Fn,λ(x̂min) + 


}

(35)

�⇒ Fn(x∗) + ‖x∗‖0Pλ(aλ) ≤ Fn(x̂min) + |S|Pλ(aλ) + 
 (36)

Meanwhile,

(36)
‖x∗‖0 = p̃ + k
Fn(x̂min) − Fn(x∗) ≤ 2t

√
p̃ + k + ε̂

⎫
⎬

⎭
(37)

�⇒( p̃ + k − |S|)Pλ(aλ) ≤ 2t
√
p̃ + k + ε̂ + 
 (38)

However, (38) contradicts with the assumed inequality (33), that is, the event {(38)}
is a sub-event of the complement of the event {(33)}. Further noticing that {(33)}
holds surely as per our assumption, therefore, {(38)}= ∅. Combining this with the
observations that (35)⇒(36), and (37)⇒(38) as well as the definitions ofA,B, Ea( p̃+
k) and Eb, we know thatA∩B∩Ea( p̃+k)∩Eb = ∅. SinceP(A∩B) = 1 by assumption
and by (28) with aλ ≤ 1, it therefore obtains that

1 = P[(A ∩ B) ∪ (Ea( p̃ + k) ∩ Eb)]
= P[A ∩ B] + P[Ea( p̃ + k) ∩ Eb] − P[A ∩ B ∩ Ea( p̃ + k) ∩ Eb]
= 1 + P[Ea( p̃ + k) ∩ Eb] + 0

�⇒ P[Ea( p̃ + k) ∩ Eb] = 0. (39)

Secondly, we want to show that P[Ēc] ≥ P[Ec( p̃+k)], where Ēc is the complement
of Ec. To this end, consider one more event C := {F(xmin) ≤ F(x∗)}, which satisfies
that P[C] = 1 by the definition of xmin. We observe that, since ‖x̂min‖0 = |S|,
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supx∈X : ‖x‖0≤ p̃+k |Fn(x) − F(x)| ≤ t
√
p̃ + k

F(xmin) ≤ F(x∗)
‖x∗‖0 = p̃ + k

⎫
⎬

⎭

�⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Fn(x∗) ≤ −F(x∗) + t
√
p̃ + k

Fn(x̂min) ≤ F(x̂min) + t
√
p̃ + k ≤ F(xmin) + t

√
p̃ + k + ε̂

‖x∗‖0 = p̃ + k

F(xmin) ≤ F(x∗)

which immediately leads to the simultaneous satisfaction of both Fn(x̂min)−Fn(x∗) ≤
2t
√
p̃ + k + ε̂ and ‖x∗‖0 = p̃ + k. Therefore, C∩ Ec ∩ Ea( p̃ + k) ⊆ Eb ∩ Ea( p̃ + k)

and thus P[C ∩ Ec ∩ Ea( p̃ + k)] ≤ P[Eb ∩ Ea( p̃ + k)]. Since we have shown above
that P[Eb ∩ Ea( p̃ + k)] = 0, we know that P[C∩ Ec ∩ Ea( p̃ + k)] = 0. Further recall
that we have also known that P(C) = 1. Therefore, by both the De Morgan’s Law and
the union bound, under the assumption of (33),

0 ≥ 1 − P[Ēa( p̃ + k)] − P[Ēc] − (1 − P(C)) �⇒ P[Ēc] ≥ P[Ea( p̃ + k)], (40)

where Ēa( p̃ + k) and Ēc are complements of Ea( p̃ + k) and Ec.
Lastly, using the upper bound on P[Ēc] provided by Lemma 3, we obtain

P[Ea( p̃ + k)]

≤ 2

⎡

⎢
⎢
⎢

(
12RLμ

√
p̃ + k

t
√
p̃ + k

) p̃+k (
p

p̃ + k

)
⎤

⎥
⎥
⎥

· exp
(

−n( p̃ + k)t2

8σ 2

)

+ 2 exp

(

−nL2
μ

2σ 2
L

)

≤ 2 exp

(

−n( p̃ + k)t2

8σ 2 + ( p̃ + k) ln

(
12RLμ

t

)

+ ( p̃ + k) · ln p

)

+ 2 exp

(

−n( p̃ + k)t2

8σ 2

)

+ 2 exp

(

−nL2
μ

2σ 2
L

)

(41)

= 2 exp

(

−n( p̃ + k)t2

8σ 2 + ( p̃ + k) ln

(
12pRLμ

t

))

+ 2 exp

(

−n( p̃ + k)t2

8σ 2

)

+ 2 exp

(

−nL2
μ

2σ 2
L

)

. (42)

To get (41) we make use of the facts that

(
p

p̃ + k

)

≤ p p̃+k and that �x� ≤ x + 1 for

any x ≥ 0.
Notice that if ‖x∗‖0 > p̃, it must hold that ‖x∗‖0 ∈ { p̃ + 1, . . . , p} and that by

the union bound:

P
[{‖x∗‖0 ∈ { p̃ + 1, . . . , p}}] ≤

p− p̃∑

k= 1

P
[{‖x∗‖0 = p̃ + k

}]
. (43)
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We therefore can find an upper bound to P[{‖x∗‖0 ∈ { p̃ + 1, . . . , p}}] by invoking
(42). That upper bound writes as

P
[{‖x∗‖0 ∈ { p̃ + 1, . . . , p}}] ≤

p− p̃∑

k= 1

[Ea( p̃ + k)]

≤
p− p̃∑

k= 1

2 exp

(

− ( p̃ + k)nt2

8σ 2 + ( p̃ + k) ln

(
12pRLμ

t

))

+ 2
p− p̃∑

k= 1

exp

(

−n( p̃ + k)t2

8σ 2

)

+ 2(p − p̃) exp

(

−nL2
μ

2σ 2
L

)

= 2 exp

(

−( p̃ + 1)

[
nt2

8σ 2 − ln

(
12pRLμ

t

)])

·
1 − exp

(
−(p − p̃)

[
nt2

8σ 2 − ln
(
12pRLμ

t

)])

1 − exp
(
−
[
nt2

8σ 2 − ln
(
12pRLμ

t

)]) + 2(p − p̃) exp

(

−nL2
μ

2σ 2
L

)

+ 2 exp

(

− ( p̃ + 1)nt2

8σ 2

)

·
1 − exp

(
− (p− p̃)nt2

8σ 2

)

1 − exp
(
− nt2

8σ 2

) (44)

≤ 1 − P∗(t, p̃), (45)

where to achieve (44) we invoke the sum of a geometric series and to obtain (45) we

make use of the assumptions that nt2

8σ 2 ≥ ln
(
12pRLμ

t

)
and p̃ ≤ p. The desired result

then follows immediately. ��

4.2.3 Proof of Proposition 1

For an arbitrary ε : 0 < ε ≤ 1, denote that

EA :=
{∣
∣F(x∗) − Fn(x∗)

∣
∣ ≤ ε

2

}
; EB :=

{∣
∣
∣F(x̂min) − Fn(x̂min)

∣
∣
∣ ≤ ε

2

}
. (46)

We examine the two parts of the proposition:

(i). For Part 1, according to (15), 0 < ε ≤ 1, and |S| ≥ 1, as well as a ≤ 1, we obtain

n ≥ N1 ≥ σ 2 = ( σ 2δ

1 )
1
δ ≥ ( aσ 2δ

1 )
1
δ . Combined with 0 ≤ ρ ≤ 1

2 , we know that

aλ = aσ 2δ

nδ |S|ρ ≤ 1. Conditioning on the event EA ∩ EB , under the assumption that

Fn,λ(x∗) ≤ Fn,λ(x̂min) + 
 almost surely, it holds almost surely that

F(x∗) − F(xmin) − ε − ε̂ ≤ F(x∗) − F(x̂min) − ε ≤ Fn(x∗) − Fn(x̂min)

≤ |S| · Pλ(aλ) + 
 = |S| · aλ2

2
+ 
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= aσ 4δ

2n2δ
|S|1−2ρ + 
. (47)

Since a ≤ 1, if n ≥ N1 ≥ σ 2
( 1

ε

) 1
2δ |S| 1−2ρ

2δ ≥ σ 2
( a

ε

) 1
2δ |S| 1−2ρ

2δ , then (47)
implies that F(x∗)−F(xmin) ≤ 2ε+ ε̂+
. Therefore, to show the first part of the
proposition, it suffices to prove that there exists a problem-independent constant
c2 > 0 such that, if n ≥ N1

∨
c2N∗(c2) as in (15), then the event EA ∩EB occurs

with probability at least 1 − α, which will be shown soon afterwards.
(ii). For Part 2, according to (16), 0 < ε ≤ 1, and R ≥ 1, combined with |S| ≥ 1

and 0 ≤ ρ ≤ 1
2 , we know that n ≥ N2 ≥ σ 2 ≥

(
aσ 2δ

1

) 1
δ �⇒ aλ = aσ 2δ

nδ |S|ρ ≤ 1.

Conditioning on the event EA ∩ EB , under Assumption A.5, we obtain from (26)
that

F(x∗) − F(xmin) − ε − ε̂ ≤ F(x∗) − F(x̂min) − ε ≤ Fn(x∗) − Fn(x̂min)

≤ λ|x̂min| = σ 2δ

nδ
|S|1−ρR (48)

Hence, if n ≥ N2 ≥
( |S|1−ρ Rσ 2δ

ε

) 1
δ
, then (48) implies that F(x∗) − F(xmin) ≤

2ε + ε̂. Therefore, to show the second part of the proposition, it also suffices
to show that there exists a problem-independent constant c2 > 0 such that, if
n ≥ N2

∨
c2N∗(c2) as in (16), then the event EA ∩ EB occurs with probability at

least 1 − α.

The following provides probability lower bound for the occurrence of EA ∩ EB .
Such a bound applies to both (i) and (ii) above.

We have shown above that aλ ≤ 1 for both (i) and (ii), and we also have let
Assumptions A.1–A.3 and Condition B hold. Under the assumption that Fn,λ(x∗) ≤
Fn,λ(x̂min) + 
 almost surely, we may invoke Lemma 4, where we assume for now
that

nt2

8σ 2 ≥ ln

(
12pRLμ

t

)

(49)

whichwill be shown soon afterwards. It then follows that, for any integer p̃ ≥ |S| such
that p̃ > |S|+ 2t

√
p̃+1+
+ε̂

Pλ(aλ)
−1 ⇐⇒ √

p̃ + 1 > t
Pλ(aλ)

+
√

t2

[Pλ(aλ)]2 + |S| + 
+ε̂
Pλ(aλ)

,

it holds that ‖x∗‖0 ≤ p̃ with probability at least P∗(t, p̃) as defined in (34). Fur-
ther notice that, since ‖x̂min‖0 = |S|, for any p̃ ≥ |S| it holds that EA ∩ EB ⊇{
supx∈X : ‖x‖0≤ p̃

∧
p

∣
∣
∣ 1n
∑n

j= 1 f (x, W j ) − F(x)
∣
∣
∣ ≤ ε/2

}
∩ {‖x∗‖0 ≤ p̃}. Hence we

may combine Lemma 3 (in which we let t = ε
2 and rescale p̃ only within that lemma

into p
∧

p̃), and Lemma 4 (in which we let p̃ =
⌊

4t2

[Pλ(aλ)]2 + 4|S| + 4(
+ε̂)
Pλ(aλ)

⌋
here

and we will also let t = σ 2δ

nδ |S|ρ soon afterwards) through both the De Morgan’s Law
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and the union bound to obtain that EA ∩ EB occurs with probability at least

P∗ :=
⎡

⎣P∗ (t, p̃) − 2

⎡

⎢
⎢
⎢

(
24
√
p̃RLμ

ε

)(p
∧

p̃) (
p

p
∧

p̃

)
⎤

⎥
⎥
⎥

× exp

(

− nε2

32σ 2

)

− 2 exp

(

−nL2
μ

2σ 2
L

)]

p̃=
⌊

16t2

a2λ4
+ 8(
+ε̂)

aλ2
+4|S|

⌋

≥ 1 − 2 exp

(

− nε2

32σ 2

)

− 2(p + 1) exp

(

−nL2
μ

2σ 2
L

)

− 2 exp

(

− nε2

32σ 2 +
[

p
∧⌊

16t2

a2λ4
+ 8(
 + ε̂)

aλ2
+ 4|S|

⌋]

ln

(
24RLμ p3/2

ε

))

−
2 exp

(
−
[⌊

16t2

a2λ4
+ 8(
+ε̂)

aλ2
+ 4|S|

⌋
+ 1
] [

nt2

8σ 2 − ln
(
12pRLμ

t

)])

1 − exp
(
−
[
nt2

8σ 2 − ln
(
12pRLμ

t

)])

− 2 exp

⎛

⎝−
(⌊

16t2

a2λ4
+ 8(
+ε̂)

aλ2
+ 4|S|

⌋
+ 1
)
nt2

8σ 2

⎞

⎠ · 1

1 − exp
(
− nt2

8σ 2

) , (50)

where we may plug in t = σ 2δ

nδ |S|ρ in the next.

Now we want to show the satisfaction of (49). Observe that, with t = λ = σ 2δ

nδ |S|ρ ,
δ < 1

2 , ρ ≤ 1
2 , 4p

2 ≥ n and p ≥ |S| ≥ 1, we know that

nt2

8σ 2 − ln

(
12pRLμ

t

)

= n1−2δ

8σ 2−4δ|S|2ρ − ln

(
12nδ|S|ρ pRLμ

σ 2δ

)

≥ n1−2δ

8σ 2−4δ|S|2ρ − ln

(
24p5/2RLμ

σ 2δ

)

= n1−2δ

16σ 2−4δ|S|2ρ + n1−2δ

16σ 2−4δ|S|2ρ − ln

(
24p5/2RLμ

σ 2δ

)

(51)

Observe that, if n ≥
[
12σ 2−4δ|S|2ρ ∨ 16σ 2−4δ|S|2ρ ln

(
24p5/2RLμ

σ 2δ

)]1/(1−2δ)
, then

n1−2δ

16σ 2−4δ |S|2ρ ≥ ln
(
24p5/2RLμ

σ 2δ

)∨ 12
16 . Therefore, we know that (51) ≥ n1−2δ

16σ 2−4δ |S|2ρ ≥
12
16 ≥ ln 2. This inequality implies (49).

The above provides a lower bound on the probability for the event of interest. The
rest of the proof seeks to simplify this bound. We have shown above that (51) ≥
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n1−2δ

16σ 2−4δ |S|2ρ ≥ ln 2. This inequality implies both exp(− nt2

8σ 2 ) ≤ 1/2 and

exp

(

−
[
nt2

8σ 2 − ln

(
12pRLμ

t

)])

≤ 1

2
.

Further observing t2

λ4
= n2δ |S|2ρ

σ 4δ , we may combine the above with (50) to obtain

P∗ ≥ 1 − 2 exp

(

− 16t2

a2λ4
·
[

nt2

16σ 2 + nt2

16σ 2 − ln

(
12pRLμ

t

)])

× 1

1 − exp
(
−
[

nt2

16σ 2 + nt2

16σ 2 − ln
(
12pRLμ

t

)])

− 2 exp

⎛

⎝−
(⌊

16t2

a2λ4
+ 8(
+ε̂)

aλ2
+ 4|S|

⌋
+ 1
)
nt2

8σ 2

⎞

⎠ · 1

1 − exp
(
− nt2

8σ 2

)

− 2 exp

(

− nε2

32σ 2 +
⌊
16t2

a2λ4
+ 8(
 + ε̂)

aλ2
+ 4|S|

⌋

ln

(
24RLμ p3/2

ε

))

− 2 exp

(

− nε2

32σ 2

)

− 2(p + 1) exp

(

−nL2
μ

2σ 2
L

)

≥ 1 − 2 exp

(

− 16t2

a2λ4
· nt2

16σ 2

)

· 1

1 − 1
2

− 2 exp

(

− 16t2

a2λ4
· nt2

8σ 2

)

· 1

1 − 1
2

− 2 exp

(

− nε2

32σ 2 +
⌊
16t2

a2λ4
+ 8(
 + ε̂)

aλ2
+ 4|S|

⌋

ln

(
24RLμ p3/2

ε

))

− 2 exp

(

− nε2

32σ 2

)

− 2(p + 1) exp

(

−nL2
μ

2σ 2
L

)

≥ 1 − 8 exp
(
− n

a2σ 2

)
− 2(p + 1) exp

(

−nL2
μ

2σ 2
L

)

− 2 exp

(

− nε2

32σ 2

)

− 2 exp

(

− nε2

32σ 2 +
⌊
16n2δ|S|2ρ

a2σ 4δ + 8(
 + ε̂)|S|2ρn2δ
aσ 4δ + 4|S|

⌋

× ln

(
24RLμ p3/2

ε

))

Combined with the above, it is easily verifiable that, if n is large enough to satisfy

both n ≥ σ 2
[
12|S|2ρ ∨ 16|S|2ρ ln

(
24p5/2RLμ

σ 2δ

)]1/(1−2δ)
and

n ≥ a2σ 2 ln
32

α
+ 2σ 2

L

L2
μ

ln

(
8(p + 1)

α

)

+ σ 2

ε2

(

64 · ln 8

α
+ 256 · |S| ln

(
24RLμ p3/2

ε

))
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∨
σ 2

[
64

ε2

(
16|S|2ρ

a2
+ 8(
 + ε̂)|S|2ρ

a

)

ln
24RLμ p5/2

ε

] 1
1−2δ

,

then P∗ ≥ 1 − α. Therefore, recalling that a ≤ 1, Lμ ≥ 1, p ≥ |S| ≥ 1 and ε ≤ 1,
there exists a problem-independent constant c2 > 0 such that the above stipulation of
n is satisfied if

n ≥ c
1

1−2δ
2 σ 2|S| 2ρ

1−2δ ·
(
1 + 
 + ε̂

a2ε2
ln

24RLμ p

min{ε, σ 2δ}
) 1

1−2δ ∨
c2 · N∗(c2). (52)

Combining the above with (i) Eq. (47) and (ii) Eq. (48) yields the desired results for
part 1 and part 2 of the proposition, respectively.

4.2.4 Proof of Proposition 2

For an arbitrary ε : 0 < ε ≤ 1, let us consider the events that

EA :=
{∣
∣F(x∗) − Fn(x∗)

∣
∣ ≤ ε

2

}
; EB :=

{∣∣
∣F(x̂min) − Fn(x̂min)

∣
∣
∣ ≤ ε

2

}
(53)

Conditioning on the event EA ∩ EB , under Assumption A.5, we obtain from (25) that,
almost surely,

F(x∗) − F(xmin) − ε − ε̂ ≤F(x∗) − F(x̂min) − ε

≤Fn(x∗) − Fn(x̂min) ≤ λ
∑

i∈S
|x̂min

i − x∗
i |

= λ
√|S|

√∑

i∈S
‖x̂min

i − x∗
i ‖2 (54)

Further invoking (17), which immediately leads to F(x)− F(xmin) ≥ UH
2 ‖x−xmin‖2

for all x ∈ X , we may continue the above as, almost surely (conditioning on EA ∩EB),

F(x∗) − F(xmin) − ε − ε̂

≤ λ
√|S|

√∑

i∈S
‖x̂min

i − x∗
i ‖2 ≤ λ

√|S| · ‖x∗ − x̂min‖

≤ λ
√|S| · ‖x∗ − xmin‖ + λ

√|S| · ‖x̂min − xmin‖

≤ λ
√|S| ·

√
2

UH
(F(x∗) − F(xmin)) + λ

√|S| ·
√

2

UH
(F(x̂min) − F(xmin))

≤ λ
√|S| ·

√
2

UH
(F(x∗) − F(xmin)) + λ

√|S| ·
√

2ε̂

UH
.
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Solving the inequality for
√
F(x∗) − F(xmin), we have, almost surely (conditioning

on EA ∩ EB),

√
F(x∗) − F(xmin) ≤

λ

√
2|S|
UH +

√
2λ2|S|
UH + 4(ε̂ + ε) + 4λ

√|S| ·
√

2ε̂
UH

2
(55)

Therefore, combined with λ = σ 2δ

nδ |S|ρ , we know that

F(x∗) − F(xmin)

≤
⎛

⎜
⎝

√
σ 4δ|S|1−2ρ

2UHn2δ
+
√√
√
√σ 4δ|S|1−2ρ

2UHn2δ
+
√
2σ 4δε̂|S|1−2ρ

n2δUH
+ (ε̂ + ε)

⎞

⎟
⎠

2

almost surely (conditioning on EA ∩ EB).
Notice that if n ≥ σ 2

(
8|S|1−2ρ

UHε

) 1
2δ ∨

σ 2
(
8ε̂|S|1−2ρ

UHε2

) 1
2δ ∨

σ 2, then the follow-

ing three inequalities hold: (a) aλ = a σ 2δ

nδ |S|ρ ≤ 1; (b) σ 4δ |S|1−2ρ

2UHn2δ
≤ ε

16 ; and (c)
√

2σ 4δ ε̂|S|1−2ρ

n2δUH
≤ ε

2 . Thus,

⎛

⎜
⎝

√
σ 4δ|S|1−2ρ

2UHn2δ
+
√√
√
√σ 4δ|S|1−2ρ

2UHn2δ
+
√
2σ 4δε̂|S|1−2ρ

n2δUH
+ (ε̂ + ε)

⎞

⎟
⎠

2

≤
(√

ε

4
+
√
25ε

16
+ ε̂

)2

= 26ε

16
+ ε̂ +

√
25ε2

64
+ εε̂

4

≤ 26ε

16
+ ε̂ +

√
25ε2

64
+ εε̂

4
+ ε̂2

25

=
(
26

16
+ 5

8

)

ε +
(

1 + 1

5

)

ε̂ = 9

4
ε + 6

5
ε̂ (56)

Hence, if n ≥ σ 2|S| 1−2ρ
2δ

[(
8

UHε

) 1
2δ +

(
8ε̂

UHε2

) 1
2δ
]
∨

σ 2, then (55) implies that

F(x∗) − F(xmin) ≤ 3ε + 3ε̂ almost surely (conditioning on EA ∩ EB). Therefore, to
achieve the desired result of the proposition, it suffices to show that, if n additionally
satisfies

n ≥ c
1

1−2δ
3 · σ 2|S| 2ρ

1−2δ ·
(
1 + 
 + ε̂

a2ε2
ln

24RLμ p

min{ε, σ 2δ}
) 1

1−2δ ∨
c3 · N∗(c3)
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for some universal constant c3 > 0, then the event EA ∩ EB occurs with probability at
least 1−α, which can be shown by the same argument as in the proof for Proposition 1
as in Sect. 4.2.3 in showing (52). Further noticing that we can let c3 ≥ 2 to further
satisfy that c3N∗(c3) ≥ 2σ 2

ε2
ln 2

α
≥ σ 2 (since α ≤ 1 and ε ≤ 1), we then have the

desired result. ��

4.2.5 Proof of Theorem 2

Wefirstwant to show that, ifλ = σ 2δ

nδ |S|ρ , then Fn,λ(0)−Fn,λ(x̂min) ≤ 2LμR
√|S|with

a lower bounded probability. To this end, we observe that ‖0 − x̂min‖ = ‖x̂min‖ ≤
R
√|S|. This combined with Lemma 1 (where we let t = Lμ,s in that lemma) in

Sect. 4.1, we know that

|Fn(0) − Fn(x̂min)| ≤ 2Lμ,s R
√|S|, (57)

with probability at least 1 − 2 exp(− n(Lμ,s)
2

2σ 2
L

). Furthermore, since Fn(0) = Fn,λ(0)

and Fn,λ(x̂min) = Fn(x̂min) +∑p
i= 1 Pλ(x̂min

i ), we have that

Fn,λ(0) − Fn,λ(x̂min) = Fn(0) − Fn(x̂min) −
p∑

i=1

Pλ(x̂
min
i )

≤ Fn(0) − Fn(x̂min) ≤ 2Lμ,s R
√|S| (58)

with a lower bounded probability 1 − 2 exp(− nL2
μ,s

2σ 2
L

).

Then, we may invoke both the De Morgan’s Law and the union bound to combine
the above with Part 2 of Proposition 1, where we let δ = 1

4 and 
 = 2Lμ,s R
√|S|. As

a result, there exists a problem-independent constant c̃5 > 0 such that, if

n ≥ σ 2 · |S|4−4ρ
(
R

ε

)4∨
c̃5 · N∗(c5)

∨
c̃5 · σ 2|S|4ρ ·

(
1 + 2Lμ,s R

√|S| + ε̂

a2ε2
ln

c̃5RLμ p

min{ε, σ 1/2}
)2

(59)

then F(x∗) − F(xmin) ≤ 2ε + ε̂ with probability lower bounded by 1 − α −
2 exp(− n(Lμ,s )

2

2σ 2
L

). Recall again that a ≤ 1. Then, inequality (59) holds with

2 exp(− n(Lμ,s )
2

2σ 2
L

) ≤ α, if ρ = 3/8 and if n is large enough to satisfy both of the

following inequalities

n ≥ 2σ 2
L · ln 2

α
≥ 2σ 2

L

L2
μ,s

ln
2

α
(60)
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where the last inequality is due to Lμ,s ≥ 1.

n ≥ σ 2 · |S|5/2
(
R

ε

)4∨
c̃5 · σ 2|S|5/2 ·

(
1 + 2Lμ,s R + ε̂

a2ε2
ln

c̃5RLμ p

min{ε, σ 1/2}
)2

∨
c̃5 · N∗(c5). (61)

The above immediately leads to the desired result by observing that c̃5N∗(c̃5) ≥
2σ 2

L · ln 2
α
if c̃5 ≥ 2. ��

4.2.6 Proof of Theorem 3

Following the same argument as in the proof for Theorem 2, we have Fn,λ(0) ≤
Fn,λ(x̂min) + 2Lμ,s R

√|S| with lower-bounded probability 1 − 2 exp(− nL2
μ,s

2σ 2
L

). We

may invoke both the De Morgan’s Law and the union bound to combine the above
with Proposition 2, where we let δ = 1

6 , ρ = 1/4 and 
 = 2Lμ,s R
√|S|. As a result,

F(x∗)−F(xmin) ≤ 3(ε+ε̂)with probability lower bounded by 1−α−2 exp(− nL2
μ,s

2σ 2
L

),

for n satisfying

n ≥ c̃6|S|3/2σ 2

[(
1

UHε

)3

+
(

ε̂

UHε2

)3
]
∨

c̃6N
∗(c6)

∨
c̃6σ

2|S|3/4 ·
(
1 + 2Lμ,s R

√|S| + ε̂

a2ε2
ln

c̃6RLμ p

min{ε, σ 1/3}
) 3

2

(62)

Therefore, since a ≤ 1 and Lμ,s ≥ 1, if one stipulates both

n ≥ 2σ 2
L · ln 2

α
≥ 2σ 2

L

L2
μ,s

ln
2

α
�⇒ 2 exp

(

−nL2
μ,s

2σ 2
L

)

≤ α

and, for some problem-independent c̃6 > 0,

n ≥ c̃6σ
2|S|3/2

[(
1

UHε

)3

+
(

ε̂

UHε2

)3
]

∨
c̃6σ

2|S|3/2 ·
(
1 + 2Lμ,s R + ε̂

a2ε2
ln

c̃6RLμ p

min{ε, σ 1/3}
) 3

2 ∨
c̃6N

∗(c̃6),

we know that F(x∗)− F(xmin) ≤ 3(ε + ε̂)with probability lower bounded by 1−2α.
This immediately leads to the desired result by further noticing that c̃6N∗(c̃6) ≥
2σ 2

L · ln 2
α
if c̃6 ≥ 2. ��
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4.2.7 Proof of Theorem 4

Consider again

EA :=
{∣
∣F(x∗) − Fn(x∗)

∣
∣ ≤ ε

2

}
; and EB :=

{∣∣
∣F(x̂min) − Fn(x̂min)

∣
∣
∣ ≤ ε

2

}
.

Following the same steps as in the proof for Proposition 2, it obtains that (55) holds
almost surely conditioning on EA ∩ EB . When ε̂ = 0 and λ = σ 2δ

nδ |S|ρ with ρ = 1
4 and

δ = 0, (55) immediately yields:

F(x∗) − F(xmin) = F(x∗) − F(x̂min) ≤
⎛

⎝

√
|S|1/2
2UH

+
√

|S|1/2
2UH

+ ε

⎞

⎠

2

almost surely conditioning on EA ∩ EB . Since it is assumed that F is differentiable
and strongly convex as in (17) with constant UH, we know that F(x) − F(xmin) ≥
UH
2 ‖x − xmin‖2 for all x ∈ X and that x̂min = xmin (because we have let ε̂ = 0).

Therefore,

UH
2

‖x∗ − x̂min‖2 ≤
⎛

⎝

√
|S|1/2
2UH

+
√

|S|1/2
2UH

+ ε

⎞

⎠

2

0<ε≤1≤
⎛

⎝

√
|S|1/2
2UH

+
√

|S|1/2
2UH

+ 1

⎞

⎠

2

�⇒ min
i∈S

x̂min
i − min

i∈S
x∗
i ≤ ‖x∗ − x̂min‖ ≤

√
2

UH
·
⎛

⎝

√
|S|1/2
2UH

+
√

|S|1/2
2UH

+ 1

⎞

⎠

almost surely conditioning on EA ∩ EB , where we have made use of the assumption
that x∗, x̂min ∈ X ⊆ �p

+. Therefore, if

min
i∈S

x̂min
i >

|S|1/4 +√|S|1/2 + 2UH
UH

,

it holds that mini∈S x∗
i > 0 almost surely conditioning on EA ∩ EB . Further invoking

(27) with aλ = a
|S|1/4 ≤ 1, we know that mini∈S x∗

i ≥ aλ, and thus P ′
λ(x

∗
i ) = 0 for

all i ∈ S and P ′
λ(x

∗
i ) ≥ 0 for all i = 1, . . . , p due to Properties (iii) and (iv) of MCP

in Sect. 4.1. If we recall (25) and the fact that x̂min
i = 0 for all i /∈ S, conditioning on

EA ∩ EB ,

Fn(x∗) − Fn(x̂min) ≤
p∑

i= 1

P ′
λ

(
x∗
i

) (
x̂min
i − x∗

i

)
≤

p∑

i= 1

P ′
λ

(
x∗
i

)
x̂min
i
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=
∑

i∈S
P ′

λ(x
∗
i )x̂min

i +
∑

i /∈S
P ′

λ(x
∗
i )x̂min

i = 0, a.s.

The above inequality yields that F(x∗) − F(x̂min) ≤ ε almost surely conditioning on
EA ∩ EB .

Now, to achieve the desired result of the theorem, it suffices to show that, if n
satisfies

n ≥ c7 · σ 2|S| ·
(
1 + Lμ,s R

a2ε2
ln

24RLμ p

ε

)∨
c7 · N∗(c7) (63)

for some universal constant c7 > 0, then the event EA ∩ EB occurs with probability at
least 1 − 2α. To this end, notice that ε̂ = 0. We may use the same argument as in the
proof for Proposition 1 inSect. 4.2.3 in showing (52) andobtain thatP[EA∩EB] ≥ 1−α

if

n ≥ ĉ7 · σ 2|S|1/2 ·
(
1 + 


a2ε2
ln

24RLμ p

ε

)∨
ĉ7 · N∗(ĉ7) (64)

for some universal constant ĉ7 > 0.
Recall the assumption that Fn,λ(x∗) ≤ Fn,λ(0) almost surely. Since Fn,λ(0) ≤

Fn,λ(x̂min) + 2Lμ,s R
√|S| with lower-bounded probability 1 − 2 exp(− nL2

μ,s

2σ 2
L

) (to

see this, we can repeat the steps in showing (57) in Sect. 4.2.5), we may let 
 =
2Lμ,s R

√|S|. It is then easily verifiable from (64) that there exists such a problem-

independent constant c7 > 0 such that, if (63) holds, then 2 exp(− nL2
μ,s

2σ 2
L

) ≤ α and the

desired result holds. ��

5 Some discussions on solution schemes for RSAA

This section discusses two classes of solution techniques to ensure the desired S3ONC
solutions: local schemes (in Sect. 5.1) and a global technique (in Sect. 5.2).

5.1 Local optimization for RSAA

The S3ONC is weaker than the second-order KKT condition. Therefore, any algorithm
that guarantees the second-order KKT condition can satisfy the stipulations made
by Part 2 of Proposition 1 and those by Proposition 2. Furthermore, among those
algorithms, any descent algorithm that guarantees the second-order KKT condition
can ensure the conditions as in Theorems 2–4, if initialized with an all-zero solution.

Algorithms that ensure the second-order KKT condition have been discussed by
much literature. For instance, [4,7,19,25,26] provide algorithms with different con-
vergence and complexity results. In particular, one of these algorithms, the interior
point algorithm (IPA) presented by [4], is a descent, and fully polynomial-time approx-
imation scheme (FPTAS) for a local solution that satisfies the desired second-order
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necessary condition, when X consists of a set of box constraints. In the special case
where (6) is a quadratic program, [26] proposes a potential reduction (PR) algorithm
and shows its convergence to a second-order KKT solution.

To facilitate the solution schemes we may reformulate the objective function into
a twice continuously differentiable function. Specifically, according to [15], we have
the following equivalence

Pλ(x) = min
η∈[0,aλ]

1

2a
η2 − 1

a
ηx + λx,

for which the optimizer admits a closed form:

ηmin(x) :=
{
x if 0 ≤ x ≤ aλ;
aλ if x > aλ.

(65)

Therefore, we have the equivalence between the original regularized problem
minx∈X Fn(x) +∑p

i=1 Pλ(xi ) and an optimization problem with additional dummy
variables:

min
x∈X ,η=(ηi )∈[0,aλ]p

Gn(x) := Fn(x) +
p∑

i=1

(
1

2a
η2i − 1

a
ηi xi + λxi

)

(66)

where η is the vector of dummy variables. Notice that Problem (66) is convex in η.
One can show that the second-order KKT condition to the reformulated program

(66) implies the S3ONC of (6). To see this, observe that, at a second-order KKT point
(x∗, η∗) the first-order KKT condition also holds. Due to the convexity of (66) in η, it
holds that η∗ = ηmin(x∗). Also by the definition of the second-order KKT condition,
we know that

d�
⎡

⎣
∇2Fn(x∗) − 1

a I

− 1
a I

1
a I

⎤

⎦ d ≥ 0, for all d in the critical set. (67)

To check if S3ONC is satisfied, we only need to consider the case where
xi ∈ (0, min{1, aλ}). According to (65), it holds that η∗

i ∈ (0, min{1, aλ}). As
an immediate result, (67) implies that the submatrix

[
∂2Fn(x∗)

∂x2i
−1/a

−1/a 1/a

]

is positive

semi-definite. Invoking Schur complement condition, it obtains that 0 ≤ ∂2Fn(x∗)
∂x2i

−
1
a = ∂2[Fn(x)+∑p

i=1 Pλ(xi )]
(∂xi )2

∣
∣
∣
∣
x= x∗

, where the last identity is immediate from the defini-

tion of Pλ for xi ∈ (0,min{1, aλ}). By its definition, the S3ONC holds.
The reformulated problem (66) then satisfies all the assumptions for some existing

FPTASs that guarantee a second-order KKT point, such as the interior point method
by [4].
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5.2 Global optimization for RSAA

The global minimizer is a local minimizer, and, thus, also satisfies the S3ONC. To
compute this solution, the RSAA formulation can be equivalently formulated as a
mixed integer program. Let Assumption A.3 hold and aλ ≤ 1. This inequality is not
restrictive as a and λ are user-specified parameters for Pλ. Then, as per (27), one can
immediately rewrite the RSAA formulation into the following

min Fn(x) + Pλ(aλ) ·
(
1�z1 + 1�z2

)

s.t. x ≥ aλ · z2 − Mz1; x ≤ M · z2
− x ≥ aλ · z1 − Mz2; x ≥ −M · z1
x ∈ X ; z1, z2 ∈ {0, 1}p.

whereM is a big-M and can be any scaler greater than R + aλ in our case and where
Pλ(aλ) = aλ2

2 . In particular, if Assumption A.5 holds, Fn is convex almost surely and
the above formulation falls into the category of mixed integer convex programming,
which admits numerical solvers to ensure global optimality. Liu et al. [15] presents
MILP reformulations when Fn is a quadratic but not necessarily convex function.

6 Preliminary numerical results

This section presents a preliminary set of numerical experiments following similar
setups with [12,16]. Specifically, we consider the following SP problem

min{E[(�x − β)2] : x ∈ [0, 5]p}, (68)

where the relationship between � and β is governed by β = �xmin + ω with xmin =
[3; 1.5; 0; 0; 2; 0p−5]. Let theω be a standard normally distributed random variable;
that is ω ∼ N (0, 1). Also assume that � ∼ Np(0, �), which is a p-variate normally
distributed random variable with covariance matrix defined by � = (ςi j ) ∈ �p×p

and ςi j = 0.5|i− j |. It is easily verifiable that the optimal solution to the SP problem
in (68) is xmin.

We compare the following approaches to solving (68) in problems with different
choices of sample sizes and dimensions:

SAA: A global minimal solution to SAA in (3) computed using Mosek.
RSAA-local: An S3ONC solution to RSAA in (6) generated by the PR algorithm

as discussed in Sect. 5.1. The PR is initialized with an (approximate)
all-zero solution. Our theories in Sect. 3 have predicted that such a
local solution can approximate (68) globally.

RSAA-global: A global solution to RSAA in (6) solved with Mosek through the
reformulation given in Sect. 5.2.

All experiments are conducted in Matlab on a computer with 2.2 GHz Intel Core
i7 processor and 16 GB memory. Mosek is invoked via Matlab to generate solutions
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for SAA and RSAA-global. For both RSAA-local and RSAA-global, the parameters
for FCP are fixed as λ = 0.5 and a = 0.9. We would also like to remark that, since
the PR algorithm requires the starting point to be an interior point, we approximate
the all-zero solution by 10−4 · 1 for the PR’s initialization.

For every (n, p) combination, we replicate each solution scheme five times with
independently generated samples for each repetition. We report the average, maximal,
and minimal suboptimality gaps as measured by F( · ) − F(xmin) in Tables 2 and 5.
In Table 2, we fix the number of samples n = 100 and gradually increase p from
10 to 1500. From this table, we can observe a clear trend that the solution quality of
SAA deteriorates dramatically. In contrast, the suboptimality gaps are well contained
by the proposed RSAA, even if the RSAA is only solved locally (as shown in the
“RSAA-local” column). When p = 1400, RSAA-global is noticeably better than
RSAA-local, as the former has a smaller maximal suboptimality gap than the latter.
Nonetheless, the two different types of solutions yield almost the same quality in
approximating (68). Note that our theories in fact provide a sharper performance
bound for RSAA-global than RSAA-local. Therefore, the closely similar numerical
performance between RSAA-global and RSAA-local is an indication that our bounds
for RSAA-local may not be tight enough for at least the special case in the numerical
experiments.

Figure 1 shows the dependence between the suboptimality gap and p. Particularly,
in Fig. 1a, the suboptimality gaps of SAA increase faster than linearly in p. In contrast,
the suboptimality gaps for both RSAA-local and RSAA-global increase very slowly
when p grows, as shown in both Fig. 1a, b.

Table 3 shows the sparsity of the solutions generated by the three different schemes.
We can see from this table that SAA generates dense solutions in all the test instances,
while bothRSAA-local andRSAA-global canmaintain sparsity in the output solutions.

Table 4 reports the computational time of the three different approaches. We notice
that SAA is the most efficient among the three. RSAA-local incurs a noticeable
increase in the computational efforts than SAA. Nonetheless, considering the sub-
stantial improvement generated by the RSAA-local in solution quality, we argue that
the additional amount of computational cost is reasonable. RSAA-global is signifi-
cantly slower than RSAA-local, even though the two have almost the same solution
quality in our experiments.

We further compare the three approaches in problems that have different sample
sizes n and a fixed number of dimensions p = 100. The comparison is presented in
Table 5 and Fig. 2. By comparison, we see that the solution quality of both RSAA-local
and RSAA-global increase rapidly with the growth of n. Their rates are significantly
faster than SAA.

In summary, our numerical results verify our theoretical predictions that the RSAA
is particularly effective when n is much smaller than than p. In such a case, RSAA
may significantly improve solution quality over SAA.
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Table 2 Comparison in solution quality measured by the suboptimality gaps for problems with different
numbers of dimensions p and a fixed sample size n = 100

p SAA RSAA-local RSAA-global

Mean Max Min Mean Max Min Mean Max Min

10 0.13 0.22 4.79 0.04 0.11 0.00 0.04 0.11 0.00

30 0.466 0.617 0.31 0.04 0.06 0.02 0.04 0.06 0.02

50 1.05 1.25 0.76 0.05 0.09 0.00 0.05 0.09 0.00

70 2.42 4.09 1.55 0.03 0.05 0.01 0.03 0.05 0.01

90 11.8 17.4 8.91 0.04 0.06 0.02 0.04 0.06 0.02

200 366.56 488.31 279.27 0.02 0.06 0.01 0.02 0.06 0.01

300 1.25e3 1.57e3 1.04e3 0.02 0.04 0.00 0.02 0.04 0.00

400 2.48e3 2.74e3 2.18e3 0.03 0.07 0.01 0.03 0.07 0.01

500 3.40e3 3.75e3 3.00e3 0.03 0.06 0.00 0.03 0.06 0.00

600 4.89e3 5.18e3 4.35e3 0.02 0.04 0.01 0.02 0.04 0.01

700 6.21e3 6.41e3 5.75e3 0.02 0.04 0.00 0.02 0.04 0.00

800 7.96e3 8.54e3 7.34e3 0.02 0.03 0.01 0.02 0.03 0.01

900 9.92e3 1.06e4 9.44e3 0.04 0.10 0.01 0.04 0.10 0.01

1000 1.17e4 1.31e4 1.04e4 0.03 0.08 0.01 0.03 0.08 0.01

1100 1.32e4 1.43e4 1.19e4 0.03 0.08 0.01 0.03 0.08 0.01

1200 1.51e4 1.58e4 1.35e4 0.04 0.09 0.01 0.04 0.09 0.01

1300 1.73e4 1.85e4 1.59e4 0.01 0.03 0.00 0.01 0.03 0.00

1400 1.88e4 1.97e4 1.81e4 0.07 0.15 0.03 0.07 0.14 0.03

1500 2.18e4 2.34e4 2.10e4 0.03 0.08 0.01 0.03 0.08 0.01
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Fig. 1 Comparison of suboptimality gaps of solutions generated by SAA, local optimization of RSAA,
and global optimization of RSAA when n = 100 and p increases from 10 to 1500. “SAA-mean”, “SAA-
max”, and “SAA-min” are the average, maximal, and minimal suboptimality gaps of SAA out of the five
replications, “RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the average, maximal,
andminimal suboptimality gaps of RSAA-local, “RSAA-global-mean”, “RSAA-global-max”, and “RSAA-
global-min” are the average, maximal, and minimal suboptimality gaps of RSAA-global
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Table 3 The numbers of nonzeros in the solutions generated by SAA, RSAA-local, and RSAA-global,
when n = 100

p SAA RSAA-local RSAA-global

Mean Max Min Mean Max Min Mean Max Min

10 10 10 10 3 3 3 3 3 3

30 30 30 30 3 3 3 3 3 3

50 50 50 50 3 3 3 3 3 3

70 70 70 70 3 3 3 3 3 3

90 90 90 90 3 3 3 3 3 3

200 200 200 200 3 3 3 3 3 3

300 300 300 300 3 3 3 3 3 3

400 400 400 400 3 3 3 3 3 3

500 500 500 500 3 3 3 3 3 3

600 600 600 600 3 3 3 3 3 3

700 700 700 700 3 3 3 3 3 3

800 800 800 800 3 3 3 3 3 3

900 900 900 900 3 3 3 3 3 3

1000 1000 1000 1000 3 3 3 3 3 3

1100 1100 1100 1100 3 3 3 3 3 3

1200 1200 1200 1200 3 3 3 3 3 3

1300 1300 1300 1300 3 3 3 3 3 3

1400 1400 1400 1400 3.8 6 3 3 3 3

1500 1500 1500 1500 3 3 3 3 3 3

Table 4 Comparison of the average computational time out of the five replications for problems with
different dimensionality p and fixed sample size n = 100

p SAA RSAA-local RSAA-global p SAA RSAA-local RSAA-global
(s) (s) (s) (s) (s) (s)

10 3.19 1.71 9.77 700 3.42 20.92 241.68

30 3.21 4.08 13.22 800 3.38 34.13 1220.89

50 3.20 3.86 17.31 900 3.42 40.34 1425.75

70 3.17 4.46 30.28 1000 3.42 34.59 2693.44

90 3.13 8.55 27.31 1100 3.38 33.50 4014.09

200 3.06 19.03 7.21 1200 3.66 37.62 3686.88

300 3.13 15.82 45.60 1300 3.89 39.30 11658.30

400 3.35 14.02 157.64 1400 3.38 54.65 16927.54

500 3.33 19.34 134.08 1500 3.37 63.68 13463.53

600 3.40 20.92 240.10
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Table 5 Comparison in solution quality measured by the suboptimality gaps for problems with different
sample sizes n and a fixed number of dimensions p = 100

n SAA RSAA-local RSAA-global

Mean Max Min Mean Max Min Mean Max Min

15 608.79 746.59 470.60 3.80 14.39 0.03 0.38 1.17 0.03

20 536.58 660.87 423.64 0.69 2.25 0.03 0.22 0.70 0.03

25 540.28 746.75 403.39 0.57 1.04 0.23 0.37 0.85 0.09

30 422.14 523.62 331.26 0.31 0.55 0.13 0.26 0.35 0.13

35 387.38 472.50 265.12 0.12 0.21 0.06 0.12 0.21 0.06

40 261.00 323.83 176.91 0.09 0.15 0.01 0.09 0.15 0.01

45 268.50 343.60 141.38 0.10 0.31 0.01 0.05 0.08 0.01

50 149.85 188.51 112.81 0.08 0.20 0.02 0.08 0.20 0.02

55 122.59 172.12 96.07 0.06 0.15 0.01 0.06 0.15 0.01

60 142.53 159.97 110.20 0.03 0.05 0.02 0.03 0.05 0.02

65 122.31 130.33 110.29 0.04 0.07 0.01 0.04 0.07 0.01

70 69.64 92.05 32.02 0.05 0.13 0.01 0.05 0.13 0.01

75 80.03 127.81 45.62 0.07 0.11 0.02 0.07 0.11 0.02

80 42.01 53.67 29.14 0.04 0.07 0.02 0.04 0.07 0.02

85 46.52 84.56 31.37 0.07 0.16 0.02 0.07 0.16 0.02

90 24.21 36.26 14.04 0.03 0.09 0.01 0.03 0.09 0.01

95 32.96 48.93 8.22 0.03 0.07 0.00 0.03 0.07 0.00

100 116.52 201.05 42.98 0.02 0.03 0.01 0.02 0.03 0.01

105 17.20 19.94 13.04 0.03 0.06 0.01 0.03 0.06 0.01

110 10.48 13.88 6.41 0.02 0.06 0.01 0.02 0.06 0.01
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Fig. 2 Comparison of suboptimality gaps of solutions generated by SAA, local optimization of RSAA, and
global optimization ofRSAAwhen p = 100 andn increases from15 to 110. “SAA-mean”, “SAA-max”, and
“SAA-min” are the average, maximal, and minimal suboptimality gaps of SAA out of the five replications,
“RSAA-local-mean”, “RSAA-local-max”, and “RSAA-local-min” are the average, maximal, and minimal
suboptimality gaps of RSAA-local, “RSAA-global-mean”, “RSAA-global-max”, and “RSAA-global-min”
are the average, maximal, and minimal suboptimality gaps of RSAA-global
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7 Conclusion

This paper proposes the RSAA, a modification to the SAA by incorporating a regu-
larization scheme called the FCP. This modification targets the high-dimensional SP
problems with sparsity. We show that when the solution is sparse or can be approx-
imated by a sparse solution, the regularization can significantly reduce the required
number of samples in some high-dimensional SP applications: Compared to the con-
ventional SAA approach that requires the sample size to grow polynomially in the
number of dimensions, the RSAA stipulates number of samples that is only poly-
logarithmic in the dimensionality.

Although the incorporation of FCP renders the RSAA formulation nonconvex,
we argue that any S3ONC solution achieved by a decent algorithm starting at the
all-zero vector is good enough to ensure the optimization performance of the local
solution. The S3ONC is a necessary condition (for local minimality) weaker than
the second-order KKT condition. Numerical algorithms to ensure the second-order
KKT condition are known from the literature. Furthermore, under some conditions on
the feasible region, the S3ONC solutions admit an FPTAS. We also discuss a mixed
integer convex reformulation to the RSAA formulation that allows for exact, though
exponential-time in theworst case, computation of the global solution.Our preliminary
numerical experiments have verified our theoretical predictions.

A limitation of the current development is the assumption of coordinate-wise con-
straints. We would like to relax such an assumption in our future research.
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