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Abstract. As a non-invasive brain stimulation technology, transcanial
direct current stimulation (tDCS) has been recently attracting more
and more attention in research and clinic applications due to its con-
venient implementation and modulation of the brain functionality. In
this paper, we propose a novel multi-electrode tDCS current configura-
tion model that minimizes the total error under the safety constraints.
After rewriting the model as a linearly constrained minimization prob-
lem, we develop an efficient numerical algorithm based on the alternating
direction method of multipliers (ADMM). Numerical experiments have
shown the great potential of the proposed method in terms of accuracy
and focality.
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1 Introduction

Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain
stimulation technology that applies a small amount of direct currents on the elec-
trodes placed on a human scalp surface to elicit modulation of neural activities
[14]. It serves as an important therapeutic tool in clinics to treat psychiatric con-
ditions and neurological diseases, including depression [3], Parkinson’s disease
[6], and epilepsy [1]. The tDCS modulates brain functions mainly through two
ways. Firstly, it affects the neuronal activities directly by inducing the cortical
changes. Secondly, it affects the neuronal network dynamics by either enhancing
or hindering the synaptic transmission ability.

Although tDCS has a lot of practical advantages such as the portability, flex-
ibility and tolerable stimulation duration, it faces several challenges such as the
limited stimulation intensity and focality of detecting the stimulating electric
field (e-field). To address these issues, many optimization based methods have
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been developed in the past. In particular, least squares methods are proposed
to design the configuration of electrodes to minimize a second-order error [5]. In
addition, several constraints are considered, including the maximum allowable
value for the intensity for each electrode and the current sum due to the safety
regulations, and the zero net current flow according to the reservation law. Sim-
ilar to the beamforming problem, the linearly constrained minimum variance
(LCMV) method is proposed in [5] to minimize the total power while utilizing
the remaining degrees of freedom. However, LCMV suffers several drawbacks.
Firstly, since minimization of the �2-norm leads to a result with uniformly dis-
tributed errors, there is no guarantee that the resulting electric field exhibits a
maximum at the target. Then an undesired cortex region may be stimulated in
the LCMV results. Lastly, it causes the high possibility to get an empty solution
set. One can also see that if the current intensity is smaller in the target regions,
then the reconstructed electrodes are more focalized. Recently, weighted least
squares methods are proposed to improve the accuracy, such as Minimize the
Error Relative to No Intervention (ERNI) [12]. To maximize the intensity along
a desired direction at the target region, a linear objective function that describes
the projected intensity is also used [9,13].

Besides, errors with unknown statistics occur inevitably due to the signal
transmission in tDCS. In the signal/image processing community, it is well
known that the �1-norm data fidelity is more robust to various noise/error types
than its �2-norm counterpart [4,10]. Different from �2-norm minimization result-
ing in uniform error distribution, minimization of the �1-norm of the error vector
leads to a sparse solution with nonuniform error distribution. In the pursuit of
high electrode focality, we propose a �1-norm fidelity based model with the three
commonly used constraints due to the safety regulation. By expressing the con-
straints using the indicator functions, we are able to convert the proposed non-
linear constrained minimization problem into a linear constrained one. Based on
the alternating direction method of multipliers (ADMM), we derive an efficient
numerical algorithm to solve the proposed model. In particular, each subproblem
in the algorithm has a closed-form solution which brings computational conve-
nience. Numerical experiments on multiple data sets have shown the proposed
effectiveness and flexibility in achieving the ideal current configuration.

The rest of the paper is organized as follows. Section 2 describes the proposed
mathematical model for the optimal configuration of tDCS electrode currents.
To solve this minimization problem with linear constraints, we derive an efficient
numerical algorithm base on ADMM. In Sect. 3, two sets of simulation experi-
ments are conducted to verify the effectiveness of the proposed method. Finally,
we draw conclusions and discuss future works in Sect. 4.

2 Methods

2.1 Simulation of a Realistic Head Model

The computational realistic head model utilized in our study is the anatomical
template from Fieldtrip [11], which is derived from the Statistical Parametric
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Mapping (SPM) Canonical Brain. The model contains essential parts in our
study, including scalp, skull, cerebrospinal fluid (CSF), and the cortex. The
boundaries of all the tissue layers of the model were first saved in stereolithog-
raphy (STL) format, and then converted to the solid models using SolidWorks
https://www.solidworks.com/. In addition, we also constructed 342-electrode
system for the head model, the location of which is based on the international
electroencephalography (EEG) system. The electrodes consist of the metal layer
and the gel layer, where the gel layer lays between the metal and scalp as the
real clinical application. Both of the layers have the same diameter of 6 mm
and thickness of 1 mm. Figure 1 shows the head model and the distribution of
electrodes.

Fig. 1. Illustration of the head model and the electrode distribution.

Under the quasi-static condition, the injected current at each electrode has
a linear relationship with the e-field value in each voxel, which is exactly the
single element of the lead field matrix. Using FEM and solving Laplace equation
in the realistic head model, we obtain one column by assigning a unit current
(1mA) to that corresponding electrode and then complete the lead field matrix
by repeating 342 times. All the simulation work is done by COMSOL Multi-
physics 5.2 https://www.comsol.com/.

2.2 Proposed Mathematical Model

Let m be the number of voxels, n the number of electrodes, s ∈ R
n the electrode

current, ed the desired e-field distribution of the cortex, e0 the desired electric
field distribution of the target region, and K ∈ R

m×n be the lead field matrix.
In general, the desired electric field ed and the electrode current s are linearly
related through Ks = ed + ε where ε ∈ R

m is an error term. Denote Imax the
maximal direct current and Itotal the total currents injected into the head. Due
to the safety regulations, the magnitude of each electrode current can not exceed
Imax, and the sum of all currents in magnitude should be no more than 2Itotal.
In addition, the conservation law of currents requires that the sum of all currents
is zero. By taking all factors into consideration, we define the following feasible
set

https://www.solidworks.com/
https://www.comsol.com/
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S = {s ∈ R
n : |si| ≤ Imax,

∑n

i=1
|si| ≤ 2Itotal,

∑n

i=1
si = 0}. (1)

Next we introduce the �∞-norm and the �1-norm of a vector, i.e., ‖x‖∞ =
max1≤i≤n |xi| and ‖x‖1 =

∑n
i=1 |xi| for any x ∈ R

n. Using the vector norms, we
can get an equivalent form of (1)

S = {s ∈ R
n : ‖s‖∞ ≤ Imax, ‖s‖1 ≤ 2Itotal, sT1 = 0}, (2)

where 1 = (1, . . . , 1)T ∈ R
n. From the practical perspective, we wish that the

generated electric field can reach the desired value at the target region while
small errors are allowed at the other regions, which causes the error vector ε to
be sparse. To enhance the sparsity of ε and allow a nonuniform distribution of
errors, we propose the following model that minimizes the total error

min
s∈S

‖Ks − ed‖1. (3)

Notice that the objective function in this problem is convex and non-
differentiable but not strongly convex as the widely used total error power or
its weighted variants [5], i.e., ‖W (Ks− ed)‖22 with the matrix of weights W . To
handle this non-differentiability, we first convert (3) into a linearly constrained
problem, and then resort to ADMM which can split multiple operators in the
objective function and involve the fast proximal operator of the �1-norm.

2.3 Proposed Numerical Algorithm

In this section, we propose an efficient algorithm to solve (3). Recently, ADMM
has become one of the most popular optimization methods with guaranteed con-
vergence in a variety of application problems [2,7,8]. Given a convex linear con-
strained minimization problem whose objective function consists of multiple sep-
arable terms, ADMM aims to split the entire problem into several subproblems
and alternate updating variables iteratively. At each iteration, each subproblem
can either have a closed-form solution or be solved efficiently. However, ADMM
introduces multiple auxiliary variables corresponding to the linear constraints.
To reduce the number of auxiliary variables, we first express the solution variable
using the linear constraint in S. It is worth noting that maintaining this linear
constraint will induce one additional auxiliary variable and one more penalty
in the augmented Lagrangian function which causes slightly slower convergence.
Since sT1 = 0, i.e., 1T s = 0, we can deduce that s is in the nullspace of 1T ,
denoted by N (1T ). Let B ∈ R

n×(n−1) be a null-space basis matrix of 1T , i.e.,
the range of B satisfies R(B) = N (1T ). Then the rank-nullity theorem yields
that there exists x ∈ R

n−1 such that s = Bx. For example, we can choose

B =

⎡

⎢⎢⎣

1 1 · · · 1
−1 0 · · · 0

· · · · · ·
0 0 · · · −1

⎤

⎥⎥⎦

n×(n−1)

.
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One can see that the columns of B form a basis of N (1T ). By introducing the
null-space basis matrix B of 1T , the proposed model (3) turns into

min
s∈C1,z∈C2

x,y∈Rn

‖y‖1, s.t. s = Bx, y = Ks − ed, z = s. (4)

Here C1 and C2 are convex sets which are defined to be C1 = {s ∈ R
n : ‖s‖∞ ≤

Imax} and C2 = {z ∈ R
n : ‖z‖1 ≤ 2Itotal}, respectively. Next we define an

augmented Lagrangian function

L(s,x,y, z, x̂, ŷ, ẑ) = ‖y‖1 +
ρ1
2

‖s − Bx + x̂‖22 +
ρ2
2

‖y − Ks + ed + ŷ‖22
+

ρ3
2

‖z − s + ẑ‖22 + ιC1(s) + ιC2(z).

Here ιΩ is the indicator function defined by ιΩ(x) = 0 if x ∈ Ω and ∞ otherwise.
Note that x ∈ R

n−1, x̂, s, z, ẑ ∈ R
n, y, ŷ, ed ∈ R

m, B ∈ R
n×(n−1) and K ∈

R
m×n.

We first group the two sets of variables (x,y, z) and s and then apply ADMM.
Since L is separable with respect to the respective variables x,y, z, we can further
obtain the following form with four subproblems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ← argmin
s

ρ1
2

‖s − Bx +x̂‖2
2 + ρ2

2
‖y − Ks + ed +ŷ‖2

2 + ρ3
2

‖z − s + ẑ‖2
2 +ιC1(s)

x ← argmin
x

ρ1
2

‖s − Bx + x̂‖2
2

y ← argmin
y

‖y‖1 + ρ2
2

‖y − Ks + ed + ŷ‖2
2

z ← argmin
z

ρ3
2

‖z − s + ẑ‖2
2 + ιC2(z)

x̂ ← x̂ + s − Bx

ŷ ← ŷ + y − Ks + ed

ẑ ← ẑ + z − s

The parameters ρ1, ρ2, ρ3 are all positive real numbers. Note that the parameters
ρ1 and ρ3 can be skipped in the respective x-subproblem and z-subproblem since
scaling of the objective function in an optimization problem makes no impact
on the solution. Firstly, the s-subproblem has a least-squares solution restricted
to the set C1

s ← projC1
(ρ1In+ρ2K

T K+ρ3In)−1
(
ρ1(Bx−x̂)+ρ2K

T (y+ed+ŷ)+ρ3(z+ẑ)
)
.

(5)
Here the projection operator projC1

(·) is essentially the projection onto the �∞-
ball defined componentwise by

(
proj‖·‖∞≤c(x)

)
i
= min(c,max(−c, xi)). In fact,

the number of parameters in the s-subproblem can be reduced to two after
scaling. Similarly, the x-subproblem has a least-squares solution

x ← (BT B)−1BT (s + x̂). (6)

Next, the y-subproblem has a closed-form solution

y ← shrink(Ks − ed − ŷ, 1/ρ2). (7)
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Here the shrinkage operator (a.k.a. the proximal operator of �1-norm) shrink(·, ·)
is defined componentwise by

(
shrink(x, σ)

)
i
= sign(xi)max(|xi| − σ, 0). Lastly,

similar to the s-subproblem, the z-subproblem has a least-squares solution
restricted to the set C2 and thus

z ← projC2
(s − ẑ). (8)

Similar to projC1
(·), the operator projC2

(·) is the projection onto the �1-ball
defined by

proj‖·‖1≤c(x) =

{
x, if ‖x‖1 ≤ c,

cx
‖x‖1

, if ‖x‖1 > c.

Similar to [2], it can be shown that the proposed algorithm converges to the
solution of (3) with convergence rate O(1/k) where k is the iteration number.

3 Experimental Results

3.1 Experimental Design

The computational experiments are designed to compare the performance of
several methods, including the conventional two pad electrodes, the constrained
least squares (CLS) method, LCMV, maximum intensity (MI) method and the
proposed one. In the experiments, we choose two different anatomical target
types: single target and multiple targets. The single target contains only one
active voxel in the motor cortex, shown in Fig. 2(a). The desired intensity is set to
be 0.3 V/m [12]. This single target experiment aims to simulate the performance
when algorithms are applied to the common clinical use. The test multiple targets
are acquired from the results of the EEG source localization, shown in Fig. 3(a).
The desired maximum intensity eo restricted on those three target regions are
0.3727 V/m, 0.3522 V/m and 0.2841 V/m, respectively. The multiple-target
experiment can help exam the performance of EEG-guided brain stimulation. In
both experiments, we fix Imax = 2 mA and Itotal = 4 mA.

3.2 Comparison Metrics

To make comparison fair and comprehensive, we use three quantitative evalua-
tion criteria, i.e., the stimulation precision, accuracy and intensity. Similar to the
existing studies, we measure the stimulation precision (focality) by calculating
the “half-max radius” [5] with a unit of millimeter (mm). By default, all length
units are the millimeter. The difference is that we define r0.5 = r

∣∣
E(r)=0.5

to be
the radius that contains half of the total energy. Here the portion of the energy
contained within a circle of increasing radius around the mass center, denoted
by E(r), is defined by

E(r) =

∑
i∈Γ (r)‖e(ri)‖22∑

i‖e(ri)‖22
,
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where the Γ (r) is the set containing all the voxels that lie within a distance of
r from the center of the target region. Higher value of r0.5 indicates the more
spread-out e-field distribution, while lower r0.5 suggests a better focality case
that most of the energy are concentrated in a small region and it has better
focusing capability. Target Error (TE) is the second criterion which is designed
to evaluate the stimulation accuracy. The first and second metrics are the mass
center of the target region and the activation region. Next, we define the third
metric to assess the TE, which is the Euclidean distance between these two mass
centers, i.e.,

TE = ‖MC0 − MC‖2, MCj0 =
∑

i e0(ri)j · rij∑
i rij

, MCj =
∑

i e(ri)j · rij∑
i rij

,

for j ∈ {x, y, z}. The last criterion is the intensity of the target region in V/m.
If the target region contains more than one voxel, we will compare both the
average intensity and the maximum intensity of the target region. According
to the literature and clinical records, tDCS will be efficient enough when the
produced intensity is about 0.2 V/m∼ 0.3 V/m at the target region [12]. In
addition, clinical application favors the result that is close to the desired e-field
distribution in the target region. Note that we evaluate the performance of each
target region separately if we stimulate the multiple targets at the same time.

3.3 Results

In the single target study, we first simulated the e-field distribution produced
by the conventional electrode configuration (CEC). From the Fig. 2, one can
see that this conventional montage will cause an effect on not only the motor
cortex region, but also the other regions nearby, like the auditory cortex. Here
we skip LCMV for comparison due to its failure to produce feasible results
under the total current constraints. MI sacrifices even more focality to produce
higher e-field intensity at the target area. On the contrary, CLS reduces the
intensity to achieve better stimulation accuracy and precision. However, it is
about two orders of magnitude less than the conventional system, which is not
sufficient for the clinical treatment. The proposed result with ρ1 = 1, ρ2 = 5,
and ρ3 = 4 maintains a good balance among intensity, accuracy and precision,
shown in Fig. 2. By enlarging the value of ρ3, we can get a much more focal
and accurate stimulation while maintaining the sufficient intensity with fewer
iterations. Quantitative evaluation results are shown in the Table 1.

For the multiple targets study, conventional electrode is no longer applica-
ble. Moreover, for this complicated stimulation pattern, LCMV has no feasible
solution due to its strict constraints as we discussed in Sect. 1. Therefore, we can
only compare the results of the constrained least squares, maximum intensity
and proposed method with ρ1 = 10, ρ2 = 10−2, and ρ3 = 10−1. The e-field distri-
bution patterns are shown in the Fig. 3, and detailed quantitative evaluations are
shown in the Table 2. The maximum intensity method, as expected, produces the
highest intensity among the all methods being compared. However, it influences
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(a) Single target (b) CEC

(c) MI (d) CLS (e) Proposed

Fig. 2. E-field distribution patterns for the single-target case.

Table 1. Quantitative evaluation comparison of various single-target results with the
desired e-field distribution at the target ‖eo‖2 = 0.3.

Intensity Focality TE

CEC 0.1571 61.6189 13.8624

MI 1.4572 69.5048 27.1784

CLS 0.0039 17.5171 2.0436

Proposed 0.0325 18.5877 5.9834

the entire left side cortex and has the largest target errors in all three target
regions. The constrained least squares method mimics the desired electric field
distribution pattern, but the intensity is almost an order of magnitude less than
the desired intensity, which is not sufficient for real applications. We also include
the results obtained by applying the proposed method with two different sets
of parameters ρ1, ρ2, ρ3. The first result with ρ1 = 10, ρ2 = 10−2, ρ3 = 10−1

(see Fig. 3(d)) is similar to the constrained least squares one that can suc-
cessfully produce the desired pattern and has small target errors in all three
target regions, but the intensity is not strong enough. The second result with
ρ1 = 10, ρ2 = ρ3 = 106 (see Fig. 3(e)), which is less focal compared to the first
pattern, achieves the higher intensity that is more appropriate for clinical appli-
cations than the other results. In the meanwhile, it still has small target errors
and the focality is much better than the maximum intensity method. Overall,
the proposed method can achieve a well-balanced result with high intensity,
accuracy, and focality.
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(a) Multiple targets (b) MI

(c) CLS (d) Proposed 1 (e) Proposed 2

Fig. 3. E-field distribution patterns for the multiple-target case.

Table 2. Quantitative evaluation comparison of various multiple-target results. The
desired e-field distribution at the three targets are 0.3727 V/m, 0.3522 V/m, and
0.2841V/m, respectively.

Intensity Focality TE

MI 0.6032 0.3880 0.8406 57.0119 91.6543 46.8141 25.4935 27.2086 14.9702

CLS 0.0303 0.0297 0.0449 15.7622 14.8578 20.1903 10.7691 4.1970 4.7183

Proposed 1 0.0111 0.0125 0.0281 31.8789 13.1003 27.5492 11.6089 5.8121 3.3800

Proposed 2 0.0648 0.0876 0.1493 31.1384 23.7444 24.5476 12.7423 9.6420 6.2396

From the two experiments above, one can see several advantages of the pro-
posed method over the state-of-the-art methods. First, the proposed method
provides flexibility to achieve different desirable results by adjusting the val-
ues of ρ1, ρ2, ρ3 within a limited number of iterations. The penalty parameters
ρ1, ρ2, ρ3 play an important role in balancing the trade-off between the intensity
and the stimulation accuracy/precision at each iteration. As a matter of fact,
another related method-weighted least squares (WLS)-has been proposed in [5].
However, WLS is complicated for implementation, since it requires the intervene
of a clinician to specify the weight of the error term at each voxel. Moreover,
the WLS results can not be directly predicted by the weighting parameters,
which also makes it time consuming. By contrast, the proposed method can pro-
duce various favorable e-field distribution patterns easily. Second, the proposed
method can produce effective stimulation pattern with reasonable stimulation
accuracy and precision. Last but not least, the proposed method has empirically
been shown to provide minimum error solutions with high accuracy and focality
for clinical applications.
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4 Conclusions

In this work, we propose a practically useful multi-electrode tDCS configura-
tion model with the �1-norm fidelity and multiple constraints due to the safety
consideration. To handle the non-differentiability of the objective function in
the model, we rewrite the problem by the change of variables and then apply
ADMM to derive an efficient numerical algorithm. Simulation experiments have
demonstrated the flexibility of this method, i.e., yielding different desirable stim-
ulation patterns by varying the parameters. By qualitatively and quantitatively
comparing with other state-of-the-art methods, the proposed method has shown
the great potential in providing optimal results with high accuracy and focality.

Acknowledgments. The research of Jing Qin is supported by the NSF grant DMS-
1818374.
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