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SUMMARY

We propose a method for parallelization of Hamiltonian Monte Carlo estimators. Our approach
involves constructing a pair of Hamiltonian Monte Carlo chains that are coupled in such a way that
they meet exactly after some random number of iterations. These chains can then be combined
so that the resulting estimators are unbiased. This allows us to produce independent replicates in
parallel and average them to obtain estimators that are consistent in the limit of the number of
replicates, rather than in the usual limit of the number of Markov chain iterations. We investigate
the scalability of our coupling in high dimensions on a toy example. The choice of algorithmic
parameters and the efficiency of our proposed approach are then illustrated on a logistic regression
with 300 covariates and a log-Gaussian Cox point processes model with low- to fine-grained
discretizations.
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1. INTRODUCTION

1.1. Parallel computation with Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is a Markov chain Monte Carlo method for approximating integrals
with respect to a target probability distribution 7z on R¥. Originally proposed by Duane et al.
(1987) in the physics literature, it was later introduced into statistics by Neal (1993) and is now
widely adopted as a standard sampling tool (Lelievre et al., 2010; Brooks et al., 2011). Various
aspects of its theoretical properties have been studied; see Betancourt et al. (2017) and Betancourt
(2017) for geometric properties, Livingstone et al. (2016) and Durmus et al. (2017) for ergodicity
results, and Beskos et al. (2013), Mangoubi & Smith (2017) and Bou-Rabee et al. (2018) for
scaling results with respect to the dimension d. These results suggest that Hamiltonian Monte
Carlo compares favourably with other Markov chain Monte Carlo algorithms such as random
walk Metropolis—Hastings and Metropolis-adjusted Langevin algorithms in high dimensions. In
practice, Hamiltonian Monte Carlo is at the core of the no-U-turn sampler (Hoffman & Gelman,
2014) implemented in the software Stan (Carpenter et al., 2016).

If one could initialize from the target distribution, the usual estimators based on any Markov
chain Monte Carlo algorithm would be unbiased, and one could simply average over independent
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2 J. HENG AND P. E. JACOB

chains (Rosenthal, 2000). Except for certain applications in which this can be achieved with
perfect simulation methods (Casella et al., 2001; Huber, 2016), Markov chain Monte Carlo
estimators are ultimately consistent in the limit of the number of iterations. Algorithms that rely
on such asymptotics face the risk of becoming obsolete if computational power continues to
increase through the number of available processors and not through clock speed.

Several methods have been proposed to address this limitation with varying generality (Myk-
land et al., 1995; Neal, 2017; Glynn & Rhee, 2014). Our approach builds upon recent work of
Jacob et al. (2017), which introduces unbiased estimators based on Metropolis—Hastings algo-
rithms and Gibbs samplers. The present article describes how to design unbiased estimators for
Hamiltonian Monte Carlo and some of its variants (Girolami & Calderhead, 2011). The proposed
method is widely applicable and involves a simple coupling between a pair of Hamiltonian Monte
Carlo chains. Coupled chains are run for a random but almost surely finite number of iterations,
and are combined in such a way that the resulting estimators will be unbiased. One can produce
independent copies of these estimators in parallel and average them to obtain consistent approx-
imations in the limit of the number of replicates. This also yields confidence intervals that are
valid in the number of replicates by the central limit theorem; see also Glynn & Heidelberger
(1991) for central limit theorems parameterized by the number of processors or time budget.

1.2. Notation

Given a sequence (x,),>0 and integers k < m, we adopt the convention that Zﬁ:m x, = 0.
The set of natural numbers is denoted by N and the set of nonnegative real numbers by R.
The d-dimensional vector of zeros is denoted by 0; and the d x d identity matrix by /;. The
Euclidean norm of a vector x € R is written as x| = (Zflzl x?)l/ 2. Given a subset 4 C £2, the
indicator function I4 : £2 — {0, 1} is defined by I4(x) = 1 ifx € 4 and 0 if x € 2 \ 4. For
a smooth function f : RY — R, we denote its gradient by Vf : RY — R? and its Hessian by
V3f : R? — R9*4_ The gradients of a function (x,y) — f(x,y) with respect to the variables x
and y are written as V, f and V,, f, respectively. Given functions /' : R” — R" and g : R? — R”,
we define the composition f o g : R? — R” by (f o g)(x) = f{g(x)} for all x € R?. The Borel
o -algebra of R is denoted by B (]Rd); on the product space R x RY, B(R? )x B (]Rd) denotes the
product o -algebra. The Gaussian distribution on R? with mean vector x and covariance matrix ¥
is denoted by NV (i, ) and its density by x — N (x; i, ¥). The uniform distribution on [0, 1] is
denoted by Un[0, 1]. We use the shorthand X ~ # to refer to a random variable with distribution 7.
On a measurable space (£2, F), given a measurable function ¢ : 2 — R, a probability measure n
and a Markov transition kernel M, we define the integral n(¢) = f o ¢(x)n(dx) and the function
M(p)(x) = [ ()M (x,dy) forx € £2.

1.3. Unbiased estimation with couplings

Suppose that # : RY — R is a measurable function of interest and consider the task of
approximating the integral 7 (h) = [ h(x)7(dx) < oo. Following Glynn & Rhee (2014) and Jacob
et al. (2017), we will construct a pair of coupled Markov chains X = (X,),>0 and ¥ = (¥)n>0
with the same marginal law, associated with an initial distribution g and a 7 -invariant Markov
transition kernel K defined on {R?, B(R?)}. To do so, we introduce a Markov transition kernel
K on {RY x R?, B(R?) x B(R?)} that admits K as its marginals, i.e., K{(x,y),4 x R} =
K(x,4) and K{(x,y),R? x A} = K(y,4) for all x,y € RY and 4 € B(R?). After initializing
(Xo, Yo) ~ mo with a coupling that has my as its marginals, we simulate X ~ K(Xp,-) and
Xnt1, Yn) ~ K{(Xy, Yo—1), -} for all integers n > 1. We will write pr for the law of the coupled
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Unbiased Hamiltonian Monte Carlo with couplings 3

chain (X,, Y,),>0 and use E to denote expectation with respect to pr. We now make the following
assumptions.

Assumption 1 (Convergence of marginal chain). Asn — oo, E{h(X,)} — 7 (h). Furthermore,
there exist k1 > 0 and C; < oo such that E{h(X,)>t*1} < C; for all integers n > 0.

Assumption 2 (Tail of meeting time). The meeting time 7 = inf{n > 1 : X,, = Y,,_} satisfies
a geometric tail condition of the form pr(z > n) < Cykj for some constants C; € Ry and
k2 € (0,1) and all integers n > 0.

Assumption 3 (Faithfulness). The coupled chains are faithful (Rosenthal, 1997), i.e., X;, =
Y,—1 for all integers n > 7.

Under these assumptions, the random variable defined as

T—1

Hi(X,Y) = h(Xy) + Z {h(Xn) — h(Yp—1)} (1)
n=k+1

for any integer £ > 0 is an unbiased estimator of 7 (/) with finite variance (Jacob et al., 2017,
Proposition 3.1). Computation of (1) can be performed with T — 1 applications of K and max(1, k+
1 — 1) applications of K; thus the computational cost has a finite expectation under Assumption 2.
The first term, 4(X} ), is in general biased since the chain (X,) >0 may not have reached stationarity
by iteration k. The second term acts as a bias correction and is equal to zero when k > © — 1.

As the estimators Hy (X, Y), for various values of k£, can be computed from a single realization
of the coupled chains, this prompts the definition of a time-averaged estimator Hy.,,(X,Y) =
(m—k+ 17! > Ho(X,Y) for integers & < m. The latter inherits the unbiasedness and
finite-variance properties, and can be rewritten as

—1

Hi(X,Y) = Min(X) + Y min(l,
n=k+1

n—=k
m——k-i—1> {h(Xy) — h(Yu-1}, (2)

where My, (X) = (m—k+ 1)1 an: « 1(X,,) can be viewed as the usual Markov chain estimator
with m iterations and a burn-in period of £ — 1. As before, the second term plays a bias correction
role and is equal to zero when & > t — 1. Hence, if the value of £ is sufficiently large, we
can expect the variance of Hy.,, (X, Y) to be close to that of My.,,(X). Moreover, the cost of
computing (2), which involves t — 1 applications of K and max(1, m+ 1 — 1) applications of K,
becomes comparable to m iterations under K for sufficiently large m. Therefore we can expect
the asymptotic inefficiency of Hy.,,(X, Y), given by the product of the expected computational
cost and the variance of Hy.,,,(X, ¥) (Glynn & Whitt, 1992), to approach the asymptotic variance
of the underlying Markov chain as m increases We refer to Jacob et al. (2017, § 3.1) for a more
detailed discussion on the effects of k& and m, and recall their proposed guideline of taking & to
be a large quantile of the meeting time t and m as a large multiple of &.

In practice, our proposed method involves simulating R pairs of coupled Markov chains
X", yny = (X,Y), Y,fr) )Jn>0 (r = 1,...,R) completely in parallel, with each pair taking a
random time to compute depending on their meeting time. As this produces R independent repli-
cates Hy.,, (X", Y (r = 1,..., R) of the unbiased estimator (2), one can compute the average
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4 J. HENG AND P. E. JACOB

R7! Zle Hi.p(X", Y1) to approximate 7 (%). By appealing to the usual central limit theo-
rem for independent and identically distributed random variables, confidence intervals that are
justified as R — oo can also be constructed.

Explicit constructions of coupled chains satisfying Assumptions 1-3 for Markov kernels K
defined by Metropolis—Hastings algorithms and Gibbs samplers are given in Jacob et al. (2017,
§4) and Jacob et al. (2019). The focus of the present article is to propose a coupling strategy
tailored to Hamiltonian Monte Carlo chains, so as to enable the use of the unbiased estimators
(1) and (2). We will show in § 5 that this approach applies to realistic settings and retains the
benefits of Hamiltonian Monte Carlo in terms of scaling with dimension.

2. HAMILTONIAN DYNAMICS
2.1. Hamiltonian flows

Suppose that the target distribution has the form 7 (dg) o« exp{—U (¢)} dg, where the potential
function U : R — R satisfies the following conditions.

Assumption 4 (Regularity and growth of potential). The potential U is twice continuously
differentiable and its gradient VU : RY — R is globally B-Lipschitz, i.e., there exists § > 0
such that |VU(¢) — VU(q)| < Blg — ¢'| forall ¢,4' € R?.

These conditions imply at most quadratic growth of the potential, or equivalently that the tails
of the target distribution are no lighter than Gaussian.

We now introduce Hamiltonian flows on the phase space RY x R?, which consists of position
variables ¢ € R? and momentum variables p € R?. We will be concerned with a Hamiltonian
function £ : R? x RY — R, of the form £(q,p) = U(q) + |p|?/2. We use the identity mass
matrix here and will rely on preconditioning in § 5.4 to incorporate curvature properties of 7.
The time evolution of a particle {g(¢), p(¢)};cr, under Hamiltonian dynamics is described by the
ordinary differential equations

d d
T q(t) = V&{q(t),p(t)} = p(2), EP(Z) =—V,E{q(),p()} = =VU{q(®)}. 3)

Under Assumption 4, (3) with an initial condition {g(0),p(0)} = (go,p0) € R? x R? admits a
unique solution globally on R (Leliévre etal., 2010, p. 14). Therefore the flow map ®,(qo, po) =
{q(t),p(t)} is well-defined for any ¢ € R, and we will write its projection onto the position and
momentum coordinates as @7 (qo,po) = q(t) and O} (g0, po) = p(t), respectively.

It is worth recalling that Hamiltonian flows have the following properties.

Property 1 (Reversibility). Foranyt € Ry, the inverse flow map satisfies CIDt_1 =Mod;0M,
where M (q,p) = (¢, —p) denotes momentum reversal.

Property 2 (Energy conservation). The Hamiltonian function satisfies £ o ®; = & for any
t e R+.

Property 3 (Volume preservation). For any € Ry and 4 € B(R??), Lebyy{®;(4)} =
Lebyy(4), where Leb,y denotes the Lebesgue measure on R,

These properties imply that the extended target distribution on phase space, 7 (dg,dp)
exp{—&(q,p)} dq dp, is invariant under the Markov semigroup induced by the flow; that is, for
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Unbiased Hamiltonian Monte Carlo with couplings 5

any t € R, the pushforward measure ®,ti77, defined by ®,87(4) = fr{d:'t_l (A)} for4 € B(R*),
is equal to 77.

2.2. Coupled Hamiltonian dynamics

We now consider the coupling of two particles THONAGIEY . (i=1,2) evolving under (3)
with initial conditions {g'(0),p'(0)} = (gg,pp) (i = 1,2). We first draw some insights from a
Gaussian example.

Example 1. Let 7 be a Gaussian distribution on R with mean 1 € R and variance o> > 0. In
this case we have U(g) = (¢ — n)?/(20%) and VU (¢) = (¢ — i) /0%, and the solution of (3) is

t . t
u+(go — 1) COS(;> + opo sm(;)
Po COS<—) — —(qo — 1) Sln(—>
o o o
Hence the difference between the particle positions is

@) -0 =@ -9 Cos(é) +0(py —pd) sin(é) ,

If we setp(l) =p%, then |¢' (1) — ¢*(t)| = | cos(t/o)| |q(1) - q%l; so for any nonnegative integer #,
the particles meet exactly whenever ¢t = (2n + 1) o /2, and contraction occurs for any ¢ & wno.

This example motivates a coupling that simply assigns particles the same initial momentum.
Moreover, it also reveals that certain trajectory lengths will result in greater contraction than
others. We now examine the utility of this approach more generally. Define A(f) = ¢' (¢) — ¢ ()
to be the difference between particle locations and observe that

1d
SIA@P = A0 () = PP 0)).

2dt
Therefore, by imposing that p1 0) = p2 (0), the function ¢ +— |A(#)| admits a stationary point
at time ¢t = 0. This is geometrically intuitive, as the trajectories at time zero are parallel to one
another for an infinitesimally small amount of time. To characterize this stationary point, we

compute
2
E@IAQ)P = —AO[VUIg ()} = VU] + o' () — P02

and make the following assumption.

Assumption 5 (Local convexity of potential). There exists a compact set S € B(R?), with
positive Lebesgue measure, such that the restriction of U to S is a-strongly convex, i.e., there
exists @ > 0 such that (¢ — ¢){VU(q) — VU(¢)} > a|g — ¢'|* forall ¢,4' € S.

Under Assumption 5, we have

1 d2
5@|A(0)|2 < —alAO)] + p'(0) — p*(0)
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6 J. HENG AND P. E. JaCOB

if qé,q% € § with q(l) + q(z). Therefore, by taking p'(0) = p?(0), it follows from the second
derivative test that # = 0 is a strict local maximum point. Continuity of  — |A(#)|> implies that
there exists a trajectory length 7 > 0 such that for any ¢ € (0, 7] there exists p € [0, 1) satisfying

|02 (gh, po) — B2 (g3 p0)| < P lgb — g3l. (4)

We note the dependence of 7' on the initial positions q(l) and q(z) and the momentum py. We now
strengthen the above claim.

LeEMMA 1. Suppose that the potential U satisfies Assumptions 4 and 5. For any compact set
A C S xS xRY there exists a trajectory length T > 0 such that for any t € (0, T] there exists

o € [0, 1) satisfying (4) for all (q(l),q%,po) € A.

Although the qualitative result in Lemma 1 is sufficient for our purposes, we note that more
quantitative results of this type have been established recently by Mangoubi & Smith (2017,
Theorem 6) and Bou-Rabee et al. (2018, Theorem 2.1) to study the mixing time of the Hamiltonian
Monte Carlo method. The preceding results show that the trajectory length 7 yielding contraction
of the coupled system and the corresponding contraction rate p do not depend on d but only on
the constants « and S in Assumptions 4 and 5. This suggests that such a coupling strategy can be
effective in high dimensions as long as the Hessian of U is sufficiently well-conditioned.

3. CoupPLED HAMILTONIAN MONTE CARLO
3.1. Leap-frog integrator
As the flow defined by (3) is typically intractable, time discretizations are required. The leap-
frog symplectic integrator is a standard choice as it preserves Properties 1 and 3. Given a step

size ¢ > 0 and a number of leap-frog steps L € N, this scheme initializes at (gg, po) € R? x R?
and iterates

Di+1/2 =Ppo — %VU(W), Ge+1 = qe + EPe+1/2,  Pe+l = Pr+1/2 — %VU(‘IZH)
for £ = 0,...,L — 1. We write the leap-frog iteration as (i)g(L]g,pg) = (qo+1,pe+1) and the
corresponding approximation of the flow as &)8,5 (90,p0) = (q¢,pe) for £ =0,..., L. As before,
we denote by &Dz,e (90,p0) = q¢ and CiD:’E(qo, po) = pe the projections onto the position and
momentum coordinates, respectively.
It can be established that the leap-frog scheme is of order two (Hairer etal., 2005, Theorem 3.4);
that is, for sufficiently small ¢,

C3(q0,p0, L)€, )
Ca(q0,po, L)€* (6)

|®.2(q0,P0) — PeL (g0, P0)|
|E{De.L(q0,20)} — £(qo,p0)]

NN

for some positive constants C3 and C4 that depend continuously on the initial condition (qg, po)
for any number L of leap-frog iterations. To simplify our exposition we will assume throughout
that (5) and (6) hold. We refer to the book on geometric numerical integration by Hairer et al.
(2005) and to the survey by Bou-Rabee & Sanz-Serna (2018) for additional assumptions under
which these error bounds hold.

We now discuss how the above constants behave with respect to dimension and integration
length. Firstly, in the simplified setting of a target distribution with independent and identical
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marginals and appropriate growth conditions on the potential, the results of Beskos et al. (2013,
Propositions 5.3 and 5.4) indicate that these constants would scale as d'/2. Hence, if we scale the
step size & as d~ /4, advocated by Beskos et al. (2013) in this setting, we can expect these errors
to be stable in high dimensions. Secondly, while the constant associated with the pathwise error
bound (5) will typically grow exponentially with L (Leimkuhler & Matthews, 2015, § 2.2.3), the
constant of the Hamiltonian error bound (6) can be stable over exponentially long time intervals &L
(Hairer et al., 2005, Theorem 8.1). Although the Hamiltonian is not conserved exactly under time
discretization, one can employ a Metropolis—Hastings correction as described in the following
section.

3.2. Coupled Hamiltonian Monte Carlo kernel
Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 1993) is a Metropolis—Hastings algorithm
that targets 7 using time-discretized Hamiltonian dynamics as proposals. In view of §2.2, we
consider coupling two Hamiltonian Monte Carlo chains (Q}, 02),>¢ by initializing (Q(l), Qg) ~
7o and evolving the chains jointly according to the following procedure.

Algorithm 1. Coupled Hamiltonian Monte Carlo step given (Q;_l, Qg_l).

Sample momentum P} ~ N (04,1;) and U, ~ Un[0, 1] independently.
Fori=1,2:
Set (qO,p()) = (Qn 1, o
Perform leap-frog 1ntegrat10n to obtain (q 15D L) <I>5, £(q0,Pp)-
If U, < a{(g5,Pp) (qL,pL)} set O = ¢
Otherwise, set Q! =

Output (Qn, Qn .

Since the leap-frog integrator preserves Properties 1 and 3, the Metropolis—Hastings acceptance
probability is

n 1

a{(g,p), (¢’,p")} = min[1, exp{E(q,p) — £(¢',p)}] (7

for (¢,p), (¢',p)) € R x R4, Iterating the above yields two marginal chains (Q,ll) n>0 and (Qﬁ) n>0
that are -invariant. Algorithm 1 amounts to running two Hamiltonian Monte Carlo chains with
common random numbers; this has been considered in Neal (2017) to remove the burn-in bias,
and in Mangoubi & Smith (2017) and Bou-Rabee et al. (2018) to analyse mixing properties.

We denote the associated coupled Markov transition kernel on the position coordinates
by Kg L{(q g?), A" x 4%} for ¢',¢* € R and 4',4> € B(RY). Marginally we have
Kg L@ g4 x BRY = K. 1(q".4") and Ko 1(q' gD BY x 42} = K, 1(q%,4%), where

K¢, 1 denotes the Markov transition kernel of the marginal Hamiltonian Monte Carlo chain. If

we supplement Assumption 4 with the existence of a local minimum of U, then aperiodicity,
Lebesgue irreducibility and Harris recurrence of K ; follow from Durmus et al. (2017, Theo-
rem 2); see also Cances et al. (2007) and Livingstone et al. (2016) for previous related work.
Hence ergodicity follows from Meyn & Tweedie (2009, Theorem 13.0.1), and Assumption 1 is
met for test functions satisfying 7 (h>7*1) < oo for some x> 0.

We will write the law of the coupled Hamiltonian Monte Carlo chain as pr, ; and use E; ; to
denote expectation with respect to pre ;. The following result establishes that the relaxed meeting
time ts = inf{n > 0 : |Q,1, — Q,%| < 8}, for any § > 0, has geometric tails.
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8 J. HENG AND P. E. JaCOB

THEOREM 1. Suppose that the potential U satisfies Assumptions 4 and 5. Assume also that
there exists € > 0 such that for any ¢ € (0,&) and L € N, there exist a measurable function
VR = [1,00), A € (0,1) and b < oo such that

Ko (V)(g) < AV(g) +b ®)

for all q € RY, 7o(V) < 00 and {qg € RY . Vig) <1} € {qg € S : U(g) < {4y}, for some
Ly € {infyes U(g), sup,es U(g)} and 01 > 1 satisfying A +2b(1 — 1)~ (1 +£1)~! < 1. Then for
any § > 0 there exist gy € (0,8) and Lo € N such that for any ¢ € (0,&0) and L € N satisfying
el < ¢gglLo,

pre, 1 (ts > n) < Cokg 9)
Jor some Cy € Ry and ko € (0, 1) and for all integer n > 0.

The proof of Theorem 1 proceeds by first showing that the relaxed meeting can take place, in
finitely many iterations, whenever both chains enter a region of the state space where the target
distribution is strongly log-concave. As suggested in Neal (2017), one can expect good coupling
behaviour if the chains spend enough time in this region of the state space; the second part of the
proof makes this intuition precise by controlling excursions with the geometric drift condition
(8). The latter can be established under additional assumptions on the potential U (Durmus et al.,
2017, Theorem 9).

As Theorem 1 implies that the coupled chains can get arbitrarily close with sufficient frequency,
one could potentially employ the unbiased estimation framework of Glynn & Rhee (2014), which
introduces a truncation variable. To verify Assumption 2, which requires exact meetings, in the
next section we combine the coupled Hamiltonian Monte Carlo kernel with another coupled
kernel that is designed to trigger exact meetings when the two chains are close.

4. UNBIASED HAMILTONIAN MONTE CARLO
4.1. Coupled random walk Metropolis—Hastings kernel

Let K, denote the m-invariant Gaussian random walk Metropolis—Hastings kernel with pro-
posal covariance o1, In the following we describe a coupling of K, (x, -) and K, (v, -) that results
in exact meetings with high probability when x,y € R are close (Johnson, 1998; Jacob et al.,
2017) and o is appropriately chosen.

We begin by sampling the proposals X* ~ A (x,o2I;) and Y* ~ N (y, 521;) from the maximal
coupling of these two Gaussian distributions (Jacob et al., 2017, §4.1). Under the maximal
coupling, the probability of {X* + Y*} is equal to the total variation distance between the
distributions N (x, 021;) and N (v, o%1;). Analytical tractability in the Gaussian case allows us
to write that distance as pr(20|Z| < §), where Z ~ N'(0,1) and § = |x — y|. By approximating
the folded Gaussian cumulative distribution function (Pollard, 2005), we obtain

* * —1/2 $ 82
pr X" =Y")=prQo|Z| >8)=1—- (2n) —+0| = (10)
o o
as §/o — 0. Hence, to achieve pr(X™* = Y*) = 6 for some desired probability 6, o should be
chosen approximately as 8/{(27)'/2(1 — 6)}.

The proposed values X* and Y* are then accepted according to Metropolis—Hastings accep-
tance probabilities, i.e., if U* < min{l, 7(X*)/7(x)} and U* < min{l, 7(Y*)/7 ()},
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Unbiased Hamiltonian Monte Carlo with couplings 9

respectively, where a common uniform random variable U* ~ Un[0, 1] is used for both chains.
We denote the resulting coupled Markov transition kernel on {Rd x R4 BRY) x B (IR{“')} by K.
If o is small relative to the spread of the target distribution, the probability of accepting both
proposals would be high. On the other hand, (10) shows that o needs to be large compared to § for
the event {X™* = Y™} to occur with high probability. This leads to a trade-off; in practice, one can
monitor acceptance probabilities of random walk Metropolis—Hastings chains from preliminary
runs to get an idea of how small ¢ should be. Although most of the simulations in § 5 will use
o = 1073 as the default value, the sensitivity to the choice of o of our proposed method will be
investigated in § 5.3 and § 5.4.

4.2. Combining coupled kernels

We now combine the coupled Hamiltonian Monte Cgrlo kernel I_{g, 1 introduced in § 3.2 with
the coupled random walk Metropolis—Hastings kernel K, from § 4.1, using the mixture

Ke 10{(x,0),4 x BY = (1 = y)Ke, 1{(x,9),4 x B} + yKs{(x,7),4 x B) (11)

for x,y € R? and 4, B € B(R?), where y € (0,1),e > 0,L € Nand o > 0 are appropriately
chosen. The rationale for this choice is to enable exact meetings using the coupled random
walk Metropolis—Hastings kernel when the chains are brought close together by the coupled
Hamiltonian Monte Carlo kernel.

To address the choice of y, in light of the efficiency considerations in § 1.3 we should under-
stand how y affects both the average meeting time, which we will investigate in § 5.3 and § 5.4,
and the asymptotic inefficiency of the marginal kernel K, ; » = (1 — )KL + yK,. We now
compare the asymptotic inefficiency of K, 1, with that of K ;. Assuming that evaluation of the
potential and of its gradient have the same cost, the latter is given by the product of its cost, L + 2,
and its asymptotic variance, v(h, K¢ 1) = lim,_, o Valrg,L{n_l/2 Yo h(X;)}, where Xy ~ 7 and
Xn ~ K¢ 1 (Xy—1,-) for all integer n > 1. The expected cost of K¢ 15 18 (1 — y)(L +2) 4y, and
we now consider its asymptotic variance v(h, K¢ 1 o). By Peskun’s ordering (Peskun, 1973), we
have v(h, K¢ 15) < v(h,Pg 1) where P. 1 = (1 — y)K, 1 + yI with the identity kernel defined
as I(x,4) = I4(x) forx € R? and 4 € B(R?). We then apply Latuszynski & Roberts (2013,
Corollary 1) to obtain v(h, K¢ 15) < y(1 — y) varg (h(X)} + (1 — y)_lv(h,Kg,L). Hence, in
summary, the relative asymptotic inefficiency can be bounded above by

T+yQ -y '@+ 1+ vyl +VYh K )}, (12)

where W(h,Ke 1) = 1+2 Z;il Corrg, 1 {h(X0), h(X,)} denotes the integrated autocorrelation
time of a stationary Hamiltonian Monte Carlo chain. In view of (12), we recommend choosing
only small values of y to reduce the loss of efficiency of the marginal chain; most of the simulations
in § 5 will use y = 1/20 as the default value.

We will write O, (x,4) = fA N (;x,0%1;) dy, withx € R? and 4 € B(R?), for the Markov
transition kernel of the Gaussian random walk; we will write the law of the resulting coupled chain
(X, Yn)n>0 as pre, 1o and use E; 1 , to denote expectation with respect to pre 7 . Algorithm 2
details the simulation of (X,, ¥,),>0 to compute the unbiased estimators described in § 1.3.

The mixture kernel K, ; , inherits ergodicity properties from any of its components, so Assump-
tion 1 can be satisfied following the discussion in § 3.2. Noting that the faithfulness property in
Assumption 3 holds by construction, we now turn our attention to Assumption 2.
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10 J. HENG AND P. E. JACOB

Algorithm 2. Computation of unbiased estimator Hy.,, (X, Y) of w(h).

Initialize (Xp, Yo) ~ 7o from a coupling with 7y as marginals.
With probability y, sample X1 ~ K, (Xo, -); otherwise, sample X7 ~ K, 1 (X, -).
Set n = 1. While n < max(m, 7):
With probability y, sample (X1, ¥5) ~ Ko {(Xp, Yu_1), -}
Otherwise, sample (X,11, Yz) ~ K¢, .{(X, Yo—1), ).
X411 = Yy, sett =n+ 1.
Incrementn < n+ 1.
Compute Hj.,, (X, Y) using (2).

THEOREM 2. Suppose that the potential U satisfies Assumptions 4 and 5. Assume also that
there exist ¢ > 0 and 6 > 0 such that for any ¢ € (0,¢€), L € Nand o € (0,06), there exist a
measurable function V R — [1,00), A € (0,1), b < 00 and w > 0 such that

Ke,t(Nx) SAV(x) +b, Qo (V)(x) < pu{V(x) + 1}

for all x € R mo(V) < o0, Ao = (1 — A+ y(d4+up) < land {x € RY . V(x) <
) C {xeS:Uk) <), for some £y € {infyes U(x), sup,cg U(x)} and £1 > 1 satisfying
o+ 2{(1 — )b+ yul(l — ro) "1 + €))7 < 1. Then there exist ¢y € (0,8),Ly € N and
oo > 0 such that for any ¢ € (0,&0), L € N satisfying eL < gglLo and o € (0, 00), we have

Pre. 1o (T > n) < Cokg (13)
for some Cy € Ry and kg € (0,1) and for all integers n > 0.

The proof of the above result proceeds in two parts, like the proof of Theorem 1, but requires
slightly stronger assumptions to ensure that the mixture kernel still satisfies a geometric drift
condition. The assumptions of Theorems 1 and 2 can be verified for target distributions given
by multivariate Gaussian distributions and posterior distributions arising from Bayesian logistic
regression; see the Supplementary Material. Although the above discussion guarantees the validity
of the unbiased estimator computed by Algorithm 2 for a range of tuning parameters, its efficiency
will depend on the distribution of the meeting time 7 induced by the coupling and mixing
properties of the marginal kernel K¢ ;..

5. NUMERICAL ILLUSTRATIONS
5.1. Preliminaries

In practice, we will run Algorithm 2 R times independently in parallel to obtain the unbiased
estimators H.,, (X", Y")) (» = 1,..., R). Following the framework of Glynn & Whitt (1992),
we define the asymptotic inefficiency by i(4, T_[Oaks,L,a) =FE; 152t = 1)+ max(l, m+ 1 —
1)} vare, o {Hp.m(X, Y)}, assuming that using I_<g, Lo costs twice asmuch as K, 1 . This measure
of efficiency accounts for the fact that, with a given computational budget, one can average
over more estimators if each is cheaper to compute. We will approximate this inefficiency by
empirical averages over the R realizations. For comparison, the asymptotic variance v(h, K 1) of
the standard Hamiltonian Monte Carlo estimator will be approximated with the spectrumo0 . ar
function in the R (R Development Core Team, 2019) package coda (Plummer et al., 20006),
using 10000 iterations after a burn-in of 1000 for all examples. We will consider estimation
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Fig. 1. Gaussian example of § 5.2: scaling of the average meeting time with dimension for 1000 coupled chains based

on (a) random walk Metropolis—Hastings, (b) the Metropolis-adjusted Langevin algorithm, and (¢) Hamiltonian Monte

Carlo. In each panel the lines and symbols correspond to C = 1 (solid line with circles), C = 1.5 (dotted line with
triangles) and C = 2 (dashed line with squares).

of first and second moments; that is, we set 4;(x) = x; and hz4;(x) = xl.2 fori =1,...,d,
and compare (79, K. 1.5) = Zizil i(hi, 0, Ke,1.5) With v(Ke. 1) = Z?il v(h;, K¢, 1) at possibly
different parameter configurations. An important point to be illustrated in the following is that the
parameters ¢ and L minimizing the asymptotic inefficiency (L 4+ 2)v(K, ;) may not necessarily
be suitable for our proposed estimator. Lastly, we will apply the guideline of taking & as the 90%
sample quantile of meeting times, obtained from a small number of preliminary runs, and setting
m = 10k.

5.2. Toy examples

We first investigate the scalability of the proposed approach in high dimensions on a standard
Gaussian target distribution on R¢, by examining the average meeting time of stationary coupled
chains generated by (11). For simplicity, 0 = 1072 and y = 1/20 are taken as the parameters’
default values. To ensure stable acceptance probabilities as d — oo (Beskos et al., 2013), we
scale the step size as ¢ = Cd~!/* and select different constants C > 0 to induce a range of
acceptance probabilities. The number of leap-frog steps is taken to be L = 1+ [¢~! |, which fixes
the integration time €L at approximately 1. For comparison, we consider (11) with L = 1, as this
corresponds to the Metropolis-adjusted Langevin algorithm, and adopt the scaling ¢* = C2d~1/3
(Roberts & Rosenthal, 1998); see the Supplementary Material for an alternative coupling. Lastly,
we also consider coupled chains generated solely by the coupled random walk Metropolis—
Hastings kernel described in § 4.1, with proposal variance scaling as 0> = C2d~! (Roberts et al.,
1997). The results displayed in Fig. 1 demonstrate the effectiveness of our coupling strategy in high
dimensions, and illustrate the appeal of Hamiltonian Monte Carlo kernels in high-dimensional
settings.

Next we consider a banana-shaped target distribution on R?, whose potential is given by the
Rosenbrock function U (x1,x2) = (1 —x1)? + 10(x3 — x%)2 for (x1,x2) € R2. The aim here is
to examine the utility of our proposed coupling for a highly nonconvex potential and to explore
the use of a new coupling for Hamiltonian Monte Carlo introduced in Bou-Rabee et al. (2018,
§2.3.2). In contrast to Algorithm 1, which assigns the same initial momentum to both chains,
the latter samples an initial momentum P,i ~ N(04,1;) for the first chain and sets the initial
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momentum for the second chain to

N(AT Pl 4 k|A,_1]; 0,1)
1 . —1*n n B B
P2 _ P} + KAy min { 1, ',l/\/'(AT PLOD)
n _ _ n—1" n> )
Pl —2(AT_\PHA,_i otherwise,

b

1
n—1

iterationn—1,and A,,_| = A, /|A,—1] is the normalized difference. Leap-frog integration and
Metropolis—Hastings acceptance of the output are then performed in the same way as in Algo-
rithm 1; the resulting coupled Hamiltonian Monte Carlo kernel is then employed in the mixture
(11). We simulate 1000 coupled chains initialized independently from the uniform distribution on
[—5,5]?, using this new coupling with x = 1 and the previous one which corresponds to x = 0.
Employing the same parameters (g, L,0,y) = (1/500, 500, 1073,1 /20) for both couplings, we
observe that the new coupling reduces the average meeting time from 158 to 52. This example
demonstrates that the proposed method can be used beyond convex potentials and that alternative
couplings can result in significantly shorter meeting times.

where k > 0 is a tuning parameter, A,_] = — Qﬁ_l is the difference between the chains at

5.3. Logistic regression

We now consider a Bayesian logistic regression on the classic German credit dataset, as in
Hoffman & Gelman (2014). After including all pairwise interactions and performing standard-
ization, the design matrix has 1000 rows and 300 columns. Given covariates x; € R300, intercept
a € R and coefficients b € R3%, each observation y; € {0,1} is modelled as an independent
Bernoulli random variable with probability of success {1 +exp(—a — b"x;)} . The prior is spec-
ifiedasa | s2 ~ N(0,5%), b | s2 ~ N (0300, s21300) independently, where the variance parameter
s* follows an exponential distribution with rate 0.01. The target 7 is the posterior distribution of
parameters (a, b, log s2) on R? with d = 302.

Initializing coupled chains independently from 77y = N'(04, 1), for each parameter configu-
ration (g,L) € {0.01,0.0125,...,0.04} x {10,20,30} we run five pairs of coupled Hamiltonian
Monte Carlo chains for 1000 iterations. This computation can be done independently in parallel
for each configuration and repetition; the output is displayed in Fig. 2(a). Although multiple
configurations lead to contractive chains, this is not the case for (¢,L) = (0.03,10), which
are optimal parameter values for Hamiltonian Monte Carlo. For configurations that yield dis-
tances less than 10710, we simulate 100 meeting times in parallel using the mixture kernel
(11) with ¢ = 1073 and y = 1/20. We then select the parameter configuration (¢,L) =
(0.0125, 10) that has the smallest average computational cost, taken as L + 2 times the average
meeting time.

To illustrate the effects of o and y, we fix (g, L) = (0.0125, 10) and examine the distribution
of meeting times as o or y varies. Decreasing o leads to larger meeting times: conservatively
small values of o require more iterations before the chains get close enough for the maximal
coupling to propose the same value with high probability. On the other hand, if o is too large, large
meeting times are observed as random walk proposals would be rejected with high probability.
Figure 2(b) suggests that the effectiveness of our coupling is not highly sensitive to the choice of
o, provided that it is small enough. Similarly, Fig. 2(c) shows stable meeting times for the range
of values of y considered.

Finally, we produce R = 1000 coupled chains in parallel with (¢,L,0,y) = (0.0125,
10,1073,1/20) and compare the inefficiency of our estimator with the asymptotic variance of
the optimal Hamiltonian Monte Carlo estimator for various choices of £ and m. The results,
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Fig.2. Logistic regression example of § 5.3: (a) average distance between coupled chains at iteration 1000 plotted
against integration time e, for L = 10 (solid line with circles), L = 20 (dotted line with triangles) and L = 30 (dashed
line with squares); boxplots of meeting times as the parameters (b) ¢ and (c) y vary.

Table 1. Relative inefficiency of the proposed estimator in the logistic regression example; the cost,
variance and relative inefficiency were computed using R = 1000 independent runs, while the
median and 90% quantile of the meeting time were computed with 100 preliminary runs

k m Cost Variance Rel. ineff.

1 k 436 4.0 x 102 1989.07

1 S5k 436 3.4 x 10? 1671.93

1 10k 436 2.8 x 102 1403.28
median(t) k 458 7.4 % 10° 38.22
median(t) 5k 1258 1.1 x 107! 1.58
median(t) 10k 2298 45 x 1072 1.18
90% quantile(t) k 553 6.0 x 10° 38.11
90% quantile(t) Sk 1868 5.8 x 1072 1.23
90% quantile(t) 10k 3518 2.6 x 1072 1.05

Cost, the expected computational cost; Variance, the sum of variances when §stimating first and second moments;
Rel. ineff., relative inefficiency, the ratio of the asymptotic inefficiency i(7o, K, 1,) With parameters (¢,L,0,y) =
(0.0125,10, 1073, 1/20) to the asymptotic variance V(K. ) with optimal parameters (e, L) = (0.03,10).

summarized in Table 1, show that bias removal comes at a cost of increased variance, and that
this can be reduced with appropriate choices of k£ and m. Our guideline for choosing & and m
results in a relative inefficiency of 1.05 at an average computational cost of 3518 applications
of K¢ 1.5, or approximately 5 minutes of computing time with our implementation. Therefore,
thanks to unbiasedness, we can safely average over independent copies of an estimator whose
expected cost is of the order of a few thousand Hamiltonian Monte Carlo iterations.

5.4. Log-Gaussian Cox point processes

We end with a challenging high-dimensional application of Bayesian inference for log-
Gaussian Cox point processes on a dataset containing the locations of 126 Scots pine saplings in a
natural forest in Finland (Meller et al., 1998). After discretizing the plot into an » x » regular grid,
the number of points y; € N in each grid cell is assumed to be conditionally independent given
a latent intensity process A;, i € {1,..., n}?, and is modelled as Poisson distributed with mean
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Fig.3. Cox process example of § 5.4: boxplots of meeting times (a) for the Hamiltonian Monte Carlo, HMC, and
Riemann manifold Hamiltonian Monte Carlo, RHMC, algorithms and for all three discretizations, and as the parameters
(b) o and (c) y vary.

al;, where a = n~? is the area of each grid cell. The prior is specified by A; = exp(X;), where
Xi, i €{l,...,n}%, is a Gaussian process with mean 1 € R and exponential covariance function
Y= s> exp{—|i — j|/(nb)} fori,j € {1,...,n}>. We will use the parameter values s> = 1.91,
b = 1/33 and pu = log(126) — s?/2 estimated by Moller et al. (1998) and infer the posterior
distribution of the latent process X;, i € {1,...,n}?, given the count data and these hyperparam-
eter values. We consider three discretizations, with n € {16, 32, 64}, which correspond to target
distributions 7 on R? with d € {256, 1024, 4096}.

Owing to the high dimensionality of this model, the mixing of random walk Metropolis—
Hastings is known to be prohibitively slow (Christensen & Waagepetersen, 2002), while the
Metropolis-adjusted Langevin algorithm requires a computationally costly reparameterization to
be effective (Christensen et al., 2005). We will consider the use of Hamiltonian Monte Carlo
and Riemann manifold Hamiltonian Monte Carlo with metric tensor ¥~ + a exp(u + s2 /2)14
(Girolami & Calderhead, 2011). We proceed as in §5.3 and seek parameter configurations
(e,L) € {0.05,0.07,...,0.45} x {10,20,30} that yield contractive coupled chains with small
computational cost, when initialized independently from the prior distribution. Although both
algorithms have multiple configurations that result in contractive chains, the parameters ¢ and
L that were optimal for these methods only led to contractive coupled Riemann manifold
Hamiltonian Monte Carlo chains for all three discretizations. By simulating 100 meeting times
with o = 1073 and y = 1/20 for configurations yielding distances of less than 10710, for
d € {256,1024,4096} we select (¢,L) € {(0.11,10),(0.15,10), (0.17,10)} respectively for the
Hamiltonian Monte Carlo method and (g, L) € {(0.11,10), (0.11, 10), (0.13, 10)} for the Riemann
manifold Hamiltonian Monte Carlo method, which gave the smallest average computational cost
for each algorithm. The corresponding meeting times plotted in Fig. 3(a) show the effectiveness
of our coupling strategy even in high dimensions. Panels (b) and (c) of Fig. 3, which display
the meeting times of coupled Riemann manifold Hamiltonian Monte Carlo chains for the finest
discretization, also illustrate the robustness of our coupling with respect to the choices of o
and y.

With the above parameters and our guideline for choosing £ and m, we computed R = 1000
coupled chains in parallel for each algorithm and discretization. For d = 256, 1024 and 4096, the
relative inefficiency was found to be 11.00, 5.43 and 2.73 respectively for the Hamiltonian Monte
Carlo method, and 11.68,7.85 and 3.72 for the Riemann manifold Hamiltonian Monte Carlo
method. For the finest discretization, the average computational times were approximately 90
and 20 minutes with our implementation. Despite some loss of efficiency, the benefit of exploiting
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parallel computation for this problem is apparent since one can only run respectively 4439 and
714 iterations of these algorithms for the same time.

6. DISCUSSION

Construction of couplings could be explored for other variants of the Hamiltonian Monte Carlo
method, such as those involving partial momentum refreshment (Horowitz, 1991), adaptation of
tuning parameters (Hoffman & Gelman, 2014), different choices of kinetic energy (Livingstone
et al., 2019), and combinations with new sampling paradigms (Pollock et al., 2017; Fearnhead
et al., 2018; Vanetti et al., 2018). Other ways of leveraging parallel hardware for Hamiltonian
Monte Carlo include the work of Calderhead (2014), which builds on the 2004 Norwegian
University of Science and Technology technical report by H. Tjelmeland and focuses on parallel
computation at each iteration of the algorithm.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes an alternative coupling
for the Metropolis-adjusted Langevin algorithm, additional simulation results on trun-
cated Gaussian distributions, and the proofs of Lemma 1 and Theorems 1 and 2. An
R package implementing the numerical results is available at https://github.com/
pierrejacob/debiasedhme.
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