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Abstract

In state space models, smoothing refers to the:task of estimating a latent
stochastic process given noisy measurements related to the process. We
propose an unbiased estimator of smoothing expectations. The lack-of-bias
property has methodological benefits: independent estimators can be generated
in parallel, and confidence intervals can'be constructed from the central limit
theorem to quantify the approximation error. To design unbiased estimators, we
combine a generic debiasing technique for Markov chains, with a Markov chain
Monte Carlo algorithm forismoothing. The resulting procedure is widely
applicable and we show in numerical experiments that the removal of the bias
comes at a manageable increase in variance. We establish the validity of the
proposed estimators’‘under.mild assumptions. Numerical experiments are
provided on toy'models, including a setting of highly-informative observations,
and for a realistic Lotka-Volterra model with an intractable transition density.

Keywords: couplings, particle filtering, particle smoothing, debiasing

techniques, parallel computation.

1 Introduction

1.1 Goal and content

In state space models, the observations are treated as noisy measurements

related to an underlying latent stochastic process. The problem of smoothing



refers to the estimation of trajectories of the underlying process given the
observations (Cappé et al., 2005). For finite state spaces and linear Gaussian
models, smoothing can be performed exactly. In general models, numerical
approximations are required, and many state-of-the-art methods are based on
particle methods (Douc et al., 2014; Kantas et al., 2015). Following this line of
work, we propose a new method for smoothing in general state space models.
Unlike existing methods, the proposed estimators are unbiased, which has
direct benefits for parallelization and for the construction of confidence

intervals.

The proposed method combines recently proposed conditional particle filters
(Andrieu et al., 2010) with debiasing techniques for Markov chains (Glyan-and
Rhee, 2014). Specifically, we show in Section 2 how to remove'the bias of
estimators constructed with conditional particle filters, in exchange for an
increase of variance; this variance can then be controlled with tuning
parameters, and arbitrarily reduced by averaging overindependent replicates.
The validity of the proposed approach relies onthe finiteness of the
computational cost and of the variance of the proposed estimators, which we
establish under mild conditions in Section, 3Methodological improvements
are presented in Section 4, and comparisons with other smoothers in Section

5. Numerical experiments are provided in Section 6, and Section 7 concludes.

1.2 Smoothing in state space models

The latent stochastic process (%)r=0 takes values in X < Rd”, and the

observations =1 gre in Y <R for some %% €N

m,(dx, | 6)

. A model specifies an

initial distribution and a transition kernel fldx1x,.,,0) for the latent
process. We will assume that we have access to deterministic functions M/

MU

and F, and random variables U;for IZO, such that 00 follows

my(dx, | 6) FGLULO) soliows T @ 1%:0) - e refer to these as random

and
function representations of the process (see Diaconis and Freedman, 1999).

Conditionally upon the latent process, the observations are independent and

their distribution is given by a measurement kernel 8(dy, le"g). The model is



parameterized by 0 €© C R , for dy EN. Filtering consists in approximating
the distribution pldx,| y,,.0) for all times 21, whereas smoothing refers to

the approximation of P(doq | Vi 6) for a fixed time horizon 7, where for

s:t €N \we write 53 for the set (8-~} and Ys for the vector Ve eV) The

parameter @is hereafter fixed and removed from the notation, as is usually
done in the smoothing literature (see Section 4 in Kantas et al., 2015); we
discuss unknown parameters in Section 7. Denote by A a test function from

X™ to R, of which we want to compute the expectation with respect to the
smoothing distribution (o) = Py | yliT); we write 7" for

J.XT” h(xo7 y7(dxg, ) hixy, = x

: where ! €0:7, 7(h) js'the

. For instance, with
smoothing expectation 1% | Yir]

Postponing a discussion on existing smoothing methods {o'Section 5, we first
describe the conditional particle filter (CPF, Andrieu et‘al., 2010), which is a

variant of the particle filter (Doucet et al., 2001). Given a,‘reference” trajectory

X= Yor g CPF generates a new trajectory. X' Xon as described in

Algorithm 1, which defines a Markov kernel on the space of trajectories; we

~ CPE(xyr5) This Markov kernel leaves rrinvariant and ergodic

will write X
averages of the resulting chains consistently estimate integrals with respect to
7, under mild conditions (Andrieu et al., 2010; Chopin and

Singh, 2015; Lindsten etaal, 2015; Andrieu et al., 2018; Kuhlenschmidt and
Singh, 2018; Lee etal};,2018). We denote by (X0 a chain starting from a

@) (n-1)
path X(O), and iterating‘through X~ CPRX™ ) gor n21,

Algorithm.1 Gonditional particle filter (CPF), given a trajectory *7 and é.

Atstept=0.
J J _ J . N _
1.1Draw Yo and compute % =MWi-0) tor a) J=1--sN=1 gng %0 =%

1.2 Set Wg:Nfl,for J=L...N

At Step tzl,...,T-



al:Nfl - r(dalszl |W1:N) ClN — N
2.1 Draw ancestors “+1 =17 and set "1 }

2.2Draw Y

N_
xt _xt_

7 J— al, J .
" and compute % = FLULO) gor qi J=1- N =1 gng

i i o
2.3Compute " ~ 8 1x5.0) gorall /=L-->N and normalize the
weights.

After the final step.

1N

3.1 Draw b7 from a discrete distribution on 1: ¥ with probabilities "7
— br+1
32For 1=T =10 gor b=

" b by
Return “or = (X500 Xy )

r(daliNfl

LN
In step 2.1. of Algorithm 1, the resampling distribution W) refers to

N-1
a distribution on {L,.... N}

from which “ancestors” are drawn according to
particle weights. The resampling distributiontis an algorithmic choice; specific
schemes for the conditional particle-filter are described in Chopin and

Singh (2015). Here we will usesmultinemial resampling throughout. In step
2.3., “normalize the weights” means dividing them by their sum. Instead of
bootstrap particle filters (Gordon et al., 1993), where particles are propagated
from the model transition, more sophisticated filters can readily be used in the
CPF procedure! Forinstance, performance gains can be obtained with
auxiliary particledilters (Pitt and Shephard, 1999; Johansen and

Doucet, 2008), as illustrated in Section 6.1. In presenting algorithms we focus
on bootstrap particle filters for simplicity. When the transition density is
tractable, extensions of the CPF include backward sampling

(Whiteley, 2010; Lindsten and Schon, 2013) and ancestor sampling (Lindsten
et al., 2014), which is beneficial in the proposed approach as illustrated in
Section 6.1. The complexity of a standard CPF update is of order N7, and the

memory requirements are of order T+NlogN (Jacob et al., 2015).



The proposed method relies on CPF kernels but is different from Markov
chain Monte Carlo (MCMC) estimators: it involves independent copies of
unbiased estimators of 7(")  Thus it will be amenable to parallel computation
and confidence intervals will be constructed in a different way than with
standard MCMC output (e.g. Chapter 7 in Gelman et al., 2010); see Section 5

for a comparison with existing smoothers.

1.3 Debiasing Markov chains

We briefly recall the debiasing technique of Glynn and Rhee (2014), see also

McLeish (2011); Rhee and Glynn (2012); Vihola (2017) and references

(X(n)) 5('("))

therein. Denote by »0 and ( =0 two Markov chains with invariant

w
distribution 77, initialized from a distribution m. Assume that, for all, ™ 20X

s lim Efa(X )] = 7(h
and X have the same marginal distribution, and that =~ = 7t ).

Writing limit as a telescopic sum, and swapping infinite.sum.and expectation,

which will be justified later on, we obtain

() = BL(X )]+ 3 B{ACX ™) = h(£ ")) = BR(ED) + 3 (h(X )~ h(X )]

n=1 n=1

Hy=h(X")+ 2 (h(X")~h(X"™"))
Then, if it exists, the random variable n=1 , IS

an unbiased estimator of 2", Furthermore, if the chains are coupled in such
a way that there exists a time 7, termed the meeting time, such that

n o (n—1
X" =X"" almostéurelyfor all 7 =7 then Hb can be computed as

7—1
Hy=h(X )3 X"y =X ). (D)

n=1
We referito Hp as a Rhee-Glynn estimator. Given that the cost of producing
Hb increases with 7, it will be worth keeping in mind that we would prefer rto
take small values with large probability. The main contribution of the present
article is to couple CPF chains and to use them in a Rhee-Glynn estimation

procedure. Section 3 provides guarantees on the cost and the variance of Hy



under mild conditions, and Section 4 contains alternative estimators with

reduced variance and practical considerations.

2 Unbiased smoothing

2.1 Coupled conditional particle filters

Our goal is to couple CPF chains (X0 and (X™),0 such that the meeting
time has finite expectation, in order to enable a Rhee-Glynn estimator for
smoothing. A coupled conditional particle filter (CCPF) is a Markov kernel on
the space of pairs of trajectories, such that (X', X") ~ CCPF((X, X).) implies
that X' ~CPF(X,) g X' ~CPF(X.)

Algorithm 2 describes CCPF in pseudo-code, conditional upon X=X and

X = )EO:T. Two particle systems are initialized and propagated using common

random numbers. The resampling steps and the selection of trajectories at the
final step are performed jointly using couplings of discrete distributions. To
complete the description of the CCPF procedure, we thus need to specify
these couplings (for steps 2.1. and 3.1. in Algorithm 2). With the Rhee-Glynn
estimation procedure in mind, we aim at'achieving large meeting probabilities

PX"=X"| X.X) 56 as to incur shortmeeting times on average.

Algorithm 2 Coupled conditional-particle filter (CCPF), given trajectories Yor

and )NCO:T.
Atstept=0.
J J _ J vl B J .
1.1Braw s Jcompute % =M WUs.0) gpnq % =M U5, 0) 45, j=1,....N-1

N ~N ~
1.2Set Y0 =% gnd %o %o,
1356t " =N gng M =N" o j=L...N

At Step tzl,...,T-



LN ~I:N
2.1 Draw ancestors % and % from a coupling of

LN-1 | ~LN N ~N
rda™ 1w and set %1 =N ang @1 =N

LN-1 LN
r(da W) and

j J_ aly rri i el pri
2.2Draw Y7, and compute =F(ELULO) gpg & =FGEELULO) gor )

. N _ ~N _ ~
J=Lo oN-1 gt % =X gpng & =%

j_ i ~7 _ <j .
2.3Compute " =8 1%.0) gng W =8 1X5L.0) gor ) J=L--N ang
normalize the weights.

After the final step.

3.1 Draw (by-0r) from a coupling of two distributions on 1: V| with
~1N

LN
probabilities "7 and "7 respectively.

_ b L — “’l;,ﬂ
32For 1=T-L...0 gotb=a" gpq b=0a""

[~ br ¥ o — (™ by
Return XOZT _(XO ’”"XT ) and xO:T _('XO 7'~"xT )-

2.2 Coupled resampling

The temporal index fis momentarily removed from the notation: the task is
that of sampling pairs (¢@ suchithatL (@ =/)= W and P@=70D=%" gor qi
J El:N; this is a sufficient«condition for CPF kernels to leave mrinvariant
(Andrieu et al., 2010).

2
A joint distribution on .- N is characterized by a matrix P with non-

t.j €{l,.-.N} ‘that sum to one. The value P

negative entries /A, for
representsithe probability of the event (@.a)=(.J) We consider the set

T (W, W) of matrices Psuch that P1=w and P'1=7_where 1 denotes a
column vector of Nones, W=w" and W=W""_ Matrices €7 "W) are such

that P(a:j):wj and P(&:J’):ﬂ/ for jEl:N.

Any choice of probability matrix P eJ(w,w) , and of a way of sampling

(a,a) ~ P, leads to a coupled resampling scheme. In order to keep the



complexity of sampling N pairs from Plinear in N, we focus on a particular
choice. Other choices of coupled resampling schemes are given in
Deligiannidis et al. (2018); Jacob et al. (2016); Sen et al. (2018), following
earlier works such as Pitt (2002); Lee (2008).

We consider the /ndex-coupled resampling scheme, used by Chopin and
Singh (2015) in their theoretical analysis of the CPF, and by Jasra

et al. (2017) in a multilevel Monte Carlo context, see also Section 2.4 in Jacob
et al. (2016). The scheme amounts to a maximal coupling of discrete
distributions on L+ N} with probabilities w™ and VT’IZN, respectively. This
coupling maximizes the probability of the event {a=a} ynder the marginal
constraints. How to sample from a maximal coupling of discrete distributions

is described e.g. in Lindvall (2002). The scheme is intuitive at the initial step of
the CCPF, when X =% for all /=1L---N =1 one would want pairs of

ancestors (%>%) to be such that % =% so that pairs of resampled particles
remain identical. At later steps, the number of identical pairs across both
particle systems might be small, or even null. In any.case, at step 2.2. of

J J ~J
U iswused to compute % and *

Algorithm 2, the same random number
from their ancestors. If al, = &tjfl, we selectancestor particles that were,
themselves, computed with common random numbers at the previous step,
and we give them common, random numbers again. Thus this scheme
maximizes the number of‘consecutive steps at which common random

numbers are used tospropagate each pair of particles.

We now discuss why propagating pairs of particles with common random
numbers might be desirable. Under assumptions on the random function
representation of the latent process, using common random numbers to
propagate pairs of particles results in the particles contracting. For instance, in
an auto-regressive model where F(X’U’Q)ZQX“LU,Where 0<(-LD and Uis
the innovation term, we have | F.U. O —FRU. O HOllx =X thys a pair of

particles propagated with common variables U contracts at a geometric rate.

We can formulate assumptions directly on the function *" By [F(xU.0)]

such as Lipschitz conditions with respect to x, after having integrated U out,



for fixed 6. Discussions on these assumptions can be found in Diaconis and
Freedman (1999), and an alternative method that would not require them is

mentioned in Section 7.

2.3 Rhee—Glynn smoothing estimator

We now put together the Rhee-Glynn estimator of Section 1.3 with the CCPF
algorithm of Section 2.1. In passing we generalize the Rhee-Glynn estimator
slightly by starting the telescopic sum at index k20 instead of zero, and
denote it by Hi;, kbecomes a tuning parameter, discussed in Section 4. The
procedure is fully described in Algorithm 3; CPF and CCPF refer to Algorithms

1 and 2 respectively.

By convention the sum from k+ 1 to 7—1 in the definition of Hiis set'to zero
&)
whenever kK+1>7-1_Thus the estimator Hxis equal to /(X J=of the event

®
tk+1>7-1} Recall that X" is in general a biasedestimator of 7"

since there is no guarantee that a CPF chain reaches stationarity within &

Z (h(X ™) = (X))

iterations. Thus the term #=k+ acts as a bias correction.

Algorithm 3 Rhee-Glynn smoothing:estimator, with initial 7o and tuning

parameter k.

0 ~
X()~7Z.O’X()

0" o _ ©
Mosand draw X~ CPEXT.)

1. Draw

2. Setn =1, While #<max(k.7) \yhere 7=inf{n=1: X" = X0y
2-1 DraW (X(rl+1),X~(n)) ~ CCPF((x(n)’XN(nfl) )") -

22Set n<n+l,

7—1
Ho=h(X“)+ 3, (hX™)~h(X"™"))
3. Return n=k+1 .




At step 1. of Algorithm 3, the paths X and X can be sampled
independently or not from . In the experiments we will initialize chains
independently and m will refer to the distribution of a path randomly chosen

among the trajectories of a particle filter.
3 Theoretical properties

We give three sufficient conditions for the validity of Rhee-Glynn smoothing

estimators.

Assumption 1. 7he measurement density of the model is bounded from

above: there exists & < such that forall ¥ €Y ang ¥ €X 801 g

Assumption 2. 7he resampling probability matrix P, with rows summing fo w
and columns summing fo W , Is such that, for all i e{l,.... Ny Pl .
Furthermore, if W = , then P is a diagonal matrix witfhrentries given by

1N
w

(n)
Assumption 3. Lef (X0 pe a Markov chain generated by the conditional

particle filter and started from m, and h a‘test function of interest. Then

E (n) 3
[h(X )] > 7T . Furthermore) there exists 6>0,n, <o ang € <™

such that for ai ™ =" ELHCXEENSC

The first assumption is.satisfied for wide classes of models where the
measurements are assumed to be some transformation of the latent process
with added noise. However, it would not be satisfied for instance in stochastic
volatility modelswhere it is often assumed that ¥ | X =X~ N(0,exp(x)*) o
variants thereof (e.g. Fulop and Li, 2013). There, the measurement density
would diverge when yis exactly zero and *— —°_ A similar assumption is
discussed in Section 3 of Whiteley (2013). One can readily check that the
second assumption always holds for the index-coupled resampling scheme.
The third assumption relates to the validity of MCMC estimators generated by
the CPF algorithm, addressed under general assumptions in Chopin and
Singh (2015); Lindsten et al. (2015); Andrieu et al. (2018).



Our main result states that the proposed estimator is unbiased, has a finite
variance, and that the meeting time rhas tail probabilities bounded by those
of a geometric variable, which implies in particular that the estimator has a

finite expected cost.

Theorem 3.1. Under Assumptions 1 and 2, for any initial distribution 1o, any
number of particles N 22 and time horizon T =1 , there exists €~ 0 , which
might depend on N and T, such that for all " = 2,

P(r>n)<(l—g)"",

and therefore TLT1<°  Under the additional Assumption 3, the Rhée-Glynn

smoothing estimator Hx of Algorithm 3 is such that, for any k=0, BiH, J= (k)

and VIH <o .

The proof is in the supplementary materials. Some aspects of the proof, not
specific to the smoothing setting, are similar to the‘proofs of Theorem 1 in
Rhee (2013), Theorem 2.1 in McLeish (2011), Theorem 7 in Vihola (2017),
and results in Glynn and Rhee (2014).4t.is provided in univariate notation but
the Rhee-Glynn smoother can estimate multivariate smoothing functionals, in

which case the theorem applies component-wise.

4 Improvements and tuning

H

Since "¢ is unbiased.forall.f 20, we can compute H, for various values of (

between two integers k<m and average these estimators to obtain Hy.,

defined as
m 7—1
Hy, =25 (hX)+ Y (hX')~h(R )
. m_k+1n:k (=n+l (2)
1 w L min(m—k+1Ln—k) = (e
= WX ™)+ > (X ™) — h(X @ DY),
m—k+1nZ:,; (X™) Z (X ) —h(XT)
(m—k+1)"> h(X")
The term n=k is a standard ergodic average of a CPF chain,

after miterations and discarding the first A— 1 steps as burn-in. It is a biased



estimator of 7 in general since m is different from 7. The other term acts
as a bias correction. On the event 7—1<k+1 the correction term is equal to

Zero.

(m—k+D" D h(X")
As kincreases the bias of the term n=k decreases. The

variance inflation of the Rhee-Glynn estimator decreases too, since the
correction term is equal to zero with increasing probability. On the other hand,
it can be wasteful to set kto an overly large value, in the same way that it is
wasteful to discard too many iterations as burmn-in when computing MCMC
estimators. In practice we propose to choose k according to the distribution of
1, which can be sampled from exactly by running Algorithm 3, as illustrated.in
the numerical experiments of Section 6. Conditional upon a chaice of 'k, by
analogy with MCMC estimators we can set mto a multiple of Asxsuch as 2k or
5k. Indeed the proportion of discarded iterations is approximately A/ m, and it
appears desirable to keep this proportion low. We stress that the proposed
estimators are unbiased and with a finite variance forany choice of Ak and

tuning A and monly impacts variance and cost.

For a given choice of kand m, the estimator Hi,, can be sampled Rtimes

)
independently in parallel. We denote the independent copies by Hion tor

r el: R The smoothing expectation of interest 7(h) can then be
R
A 2R HY)
approximated by r=l , with a variance that decreases linearly

with R. From the central limit theorem the confidence interval
[P_Ilfm + Z05/2(,\71? /‘\/E’ P_Ilfm + Z1705/2(,\71? /\/E]

HIHE : :
¥ em’r=l and Zzz is the a-th quantile of a standard Normal

, where " is the empirical standard

deviation.o
distribution, has 1—& asymptotic coverage as K= The central limit

theorem is applicable as a consequence of Theorem 3.1.

The variance of the proposed estimator can be further reduced by Rao-

o)
Blackwellization. In Eq. (2), the random variable h(X™) is obtained by

applying the test function 4 of interest to a trajectory drawn among N



LN

k
trajectories, denoted by say o7 for K =L--> N ith probabilities "7 : see
N
Zwih(x(])(:T)
step 3 in Algorithms 1 and 2. Thus the random variable = is the

e . h(X™Y . . wiN .
conditional expectation of given the trajectories and "7 , which has

(X' h(X™) o HX7) i He

n)
the same expectation as ). Thus any term

can be replaced by similar conditional expectations. This enables the use of
all the paths generated by the CPF and CCPF kernels, and not only the

selected ones.

As in other particle methods the choice of the number of particles NVis

R
Hi. is consistent as R for any M2 2, but

)
h H kmd@ YW e'ean

important. Here, the estimator

N plays a role both on the cost and of the variance of eac
generate unbiased estimators for different values of N and gompare their
costs and variances in preliminary runs. The scaling of MNwithsthe time horizon
T'is explored numerically in Section 6.1. If possible,one can also employ
other algorithms than the bootstrap particle filter;-as illustrated in Section 6.1

with the auxiliary particle filter.
5 Comparison with existing smoothers

The proposed method combines.elements from both particle smoothers and
MCMC methods, but does‘not'belong to either category. We summarize
advantages and drawbacksibelow, after having discussed the cost of the

proposed estimators:

Each estimator ., requires two draws from m, here taken as the
distribution of.a.trajectory selected from a particle filter with A particles. Then,
the estimator as described in Algorithm 3 requires a draw from the CPF
kernel, 7=1 draws from the CCPF kernel, and finally 72— 7 draws of the CPF
kernel on the events "> 7} The cost of a particle filter and of an iteration of
CPF is usually dominated by the propagation of N particles and the evaluation

of their weights. The cost of an iteration of CCPF is approximately twice

larger. Overall the cost of Hi, is thus of order



Clz,m, N)=NxQ+2(r-D+max(0,m—7)) orfixed 7. The finiteness of the

expected cost BC(7.m, Nl jg g consequence of Theorem 3.1. The average

r7 R
Hi, satisfies a central limit theorem parametrized by the number of

estimators R, as discussed in Section 4; however, since the cost of H,y, is
random, it might be more relevant to consider central limit theorems
parametrized by computational cost, as in Glynn and Whitt (1992). The

asymptotic inefficiency of the proposed estimators can be defined as

E[C(z.m, N)] V[Hkrm], which can be approximated with independent copies

H

of ““&m and r, obtained by running Algorithm 3.

State-of-the-art particle smoothers include fixed-lag approximations (Kitagawa
and Sato, 2001; Cappé et al., 2005; Olsson et al., 2008), forward-filtering
backward smoothers (Godsill et al., 2004; Del Moral et al., 2010;Douc

et al., 2011; Taghavi et al., 2013), and smoothers based on thetwo-filter
formula (Briers et al., 2010; Kantas et al., 2015). These particle methods
provide consistent approximations as N = | with associated mean squared
error decreasing as 1/ N (Section 4.4 of Kantas et al., 2015); except for fixed-
lag approximations for which some bias remains. The cost is typically of order
Nwith efficient implementations described'in Fearnhead et al. (2010); Kantas
et al. (2015); Olsson and Westerborn (2017), and is linear in 7 for fixed N.
Parallelization over the N particles is mostly feasible, the main limitation
coming from the resampling step (Murray et al., 2016a; Lee and
Whiteley, 2015a; Whiteley.et al., 2016; Paige et al., 2014; Murray
et al., 2016b). Thesmemory cost of particle filters is of order N, or NlogN it
trajectories are kept'(Jacob et al., 2015), see also Koskela et al. (2018).
Assessing the,accuracy of particle approximations from a single run of these
methodsremains a major challenge; see Lee and Whiteley (2015b); Olsson
and Douc (2017) for recent breakthroughs. Furthermore, we will see in
Section 6.2 that the bias of particle smoothers cannot always be safely
ignored. On the other hand, we will see in Section 6.3 that the variance of
particle smoothers can be smaller than that of the proposed estimators, for a
given computational cost. Thus, in terms of mean squared error per unit of

computational cost, the proposed method is not expected to provide benefits.



The main advantage of the proposed method over particle smoothers lies in
the construction of confidence intervals, and the possibility of parallelizing
over independent runs as opposed to interacting particles. Additionally, a user
of particle smoothers who would want more precise results would increase the

number of particles N, if enough memory is available, discarding previous

H

R
runs. On the other hand, the proposed estimator ““«» can be refined to

arbitrary precision by drawing more independent copies of Hk:'", for a constant

memory requirement.

Other popular smoothers belong to the family of MCMC methods. Early
examples include Gibbs samplers, updating components of the latent process
conditionally on other components and on the observations (e.g. Carterand
Kohn, 1994). The CPF kernel described in Section 1.2 can be used’in the
standard MCMC way, averaging over as many iterations as possible (Andrieu
et al., 2010). The bias of MCMC estimators after a finite,number of iterations
is hard to assess, which makes the choice of burn<in period difficult.
Asymptotically valid confidence intervals can be produced in various ways, for
instance using the CODA package (Plummer et.al., 2006); see also Vats

et al. (2018). On the other hand, parallelization over the iterations is
intrinsically challenging with MCMC methods (Rosenthal, 2000).

Therefore the proposed estimators have some advantages over existing
methods, the main drawback being a potential increase in mean squared error
for a given (serial) gomputational budget, as illustrated in the numerical

experiments.
6 Numerical experiments

We illustrate the tuning of the proposed estimators, their advantages and their
drawbacks through numerical experiments. All estimators of this section
employ the Rao-Blackwellization technique described in Section 4, and

multinomial resampling is used within all filters.

6.1 Hidden auto-regressive model



Our first example illustrates the proposed method, the impact of the number of

particles N and that of the time horizon 7, and the benefits of auxiliary particle

~ N(0,1)

and

./\/(xl,l)

filters. We consider a linear Gaussian model, with o

x, =%, +N(0,1) forall =1, with 7=99 We assume that > ~
all 121,

for

We first generate 7= 100 observations from the model, and consider the task

of estimating all smoothing means, which corresponds to the test function

h Xor 1 Yo7 \With CPF kernels using bootstrap particle filters, with N = 256
particles and ancestor sampling (Lindsten et al., 2014), we draw meeting
times rindependently, and represent a histogram of them in Figure 1(a).
Based on these meeting times, we can choose k as a large quantile of the
meeting times, for instance A= 10, and m as a multiple of &, ferinstance
m=2k=20_For this choice, we find the average compute,cost of each
estimator to approximately equal that of a particle filter with 28 x 256 particles,
with a memory usage equivalent to 2 x 256 particles. How many of these
estimators can be produced in a given wall-clock'time depends on available
hardware. With R = 100 independent estimators; we obtain 95% confidence
intervals indicated by black error bars in Figure 7. The true smoothing means,

obtained by Kalman smoothing, are indicated by a line.

The method is valid for all M,which prompts the question of the optimal choice
of N. Intuitively, larger values of Nlead to smaller meeting times. However,
the meeting time cannotibeiless than 2 by definition, which leads to a trade-
off. We verify this intuition by numerical simulations with 1, 000 independent
runs. For N= 16, N= 128, N= 256, N=512 and N=1, 024, we find average
meeting times of 97, 15, 7, 4 and 3 respectively. After adjusting for the
different numbers of particles, the expected cost of obtaining a meeting is
approximately equivalent with V=16 and N = 512, but more expensive for N
=1, 024. In practice, for specific integrals of interest, one can approximate the
cost and the variance of the proposed estimators for various values of N, &
and musing independent runs, and use the most favorable configuration in

subsequent, larger experiments.



Next we investigate the effect of the time horizon 7. We expect the
performance of the CPF kernel to decay as 7 increases for a fixed V. We
compensate by increasing Nlinearly with 7. Table 1 reports the average
meeting times obtained from R = 500 independent runs. We see that the
average meeting times are approximately constant or slightly decreasing over
7, implying that the linear scaling of MNwith 7is appropriate or even
conservative, in agreement with the literature (e.g. Huggins and Roy, 2018).
The table contains the average meeting times obtained with and without
ancestor sampling (Lindsten et al., 2014); we observe significant reductions of
average meeting times with ancestor sampling, but it requires tractable
transition densities. Finally, for the present model we can employ an auxiliary
particle filter, in which particles are propagated conditionally on the'next
observation. Table 1 shows a significant reduction in expected meeting time.
The combination of auxiliary particle filter and ancestor sampling naturally

leads to the smallest expected meeting times.

6.2 A hidden auto-regressive model with an unlikely observation

We now illustrate the benefits of the proposed estimators in an example taken
from Ruiz and Kappen (2017) where particle filters exhibit a significant bias.

x5~ N(0,0.lz) and X, =X, +N(O’O'12); we

take 7=9-9 and consider .7 =/10'time steps. The process is observed only at
Y~ N(xT,O.lz)

The latent process is defined as

time 7= 10, where yr=1 and we assume . The observation
yris unlikely under the ' model. Therefore the filtering distributions and the
smoothing distributions‘have little overlap, particularly for times Zclose to 7.
This toy model is a'stylized example of settings with highly-informative

observations (Ruiz and Kappen, 2017; Del Moral and Murray, 2015).

E[x9|y10]. We run

particle filters for different values of A, 10, 000 times independently, and plot

We consider the task of estimating the smoothing mean

kernel density estimators of the distributions of the estimators of BLx | ] in

Figure 2(a). The dashed vertical line represents the estimand Elx, | ylo],

obtained analytically. We see that the bias diminishes when Nincreases, but



that it is still significant with N= 16, 384 particles. For any fixed N, if we were
to ignore the bias and produce confidence intervals using the central limit
theorem based on independent particle filter estimators, the associated
coverage would go to zero as the number of independent runs would

increase.

In contrast, confidence intervals obtained with the proposed unbiased
estimators are shown in Figure 7. For each value of N, the average meeting
time was estimated from 100 independent runs (without ancestor sampling),
and then A was set to that estimate, and m equal to A Then, R= 10, 000
independent estimators were produced, and confidence intervals were
computed as described in Section 4. This leads to precise intervals foreach
choice of N. The average costs associated with N= 128, N= 256, N=512
and V= 1024 were respectively matching the costs of particle filters with
3814, 4952, 9152 and 13, 762 particles. To conclude, if we'match
computational costs and compare mean squared errors, the proposed method
is not necessarily advantageous. However, if the interest lies in confidence
intervals with adequate coverage, the proposed approach comes with
guarantees thanks to the lack of bias and,the central limit theorem for i.i.d.

variables.

6.3 Prey-predator model

Our last example involves aimodel of plankton—-zooplankton dynamics taken
from Jones et al. (2010), in. which the transition density is intractable (Breto
et al., 2009; Jacob, 2015). The bootstrap particle filter is still implementable,
and one can eitherkeep the entire trajectories of the particle filter, or perform
fixed-lag approximations to perform smoothing. On the other hand, backward

and ancestor sampling are not implementable.

The hidden state ™~ (p>2,) represents the population size of phytoplankton
and zooplankton, and the transition from time #to 7+ 1 is given by a Lotka-

Volterra equation,



ap, =ap, —cp,z, and ﬁzecpz —-mz —mz
dt 1 1512 dt 1%t 151 g%t 2

N(/l’lzx’o-i)

where the stochastic daily growth rate ais drawn from at every

integer time £ The propagation of each particle involves solving the above
equation numerically using a Runge-Kutta method in the odeint library

(Ahnert and Mulansky, 2011). The initial distribution is given by

log p, ~ N(log2,1) log z,

and - N(IOgZ’D. The parameters ¢ and e represent

the clearance rate of the prey and the growth efficiency of the predator. Both

myand mg parameterize the mortality rate of the predator. The observationsey;

2
are noisy measurements of the phytoplankton p;, log y, ~ N(log p,.0.2) ; Zt 1S

not observed. We generate 7 = 365 observations using #, =0.7.0, =O'5,

0.25, =03, " = 0-Lm =01

C:

. We consider the problem of estimating the

mean population of zooplankton at each time ! €0:T  denoted by Bz, | yer],

given the data-generating parameter.

The distribution of meeting times obtained withf V.=4,096 particles over R =
1, 000 experiments is shown in Figure 3(a). Based on this graph, we choose k&
=7, m=2k=14 and produce R = 1, 000%independent estimators of the

Elz, 1 yir] . We compute the smoothing means with a long

smoothing means
CPF chain, taken as ground truth."We then compute the relative variance of
our estimators, defined as their variance divided by the square of the

smoothing means. We find the average cost of the proposed estimator to be

equivalent to that of a/particle filter with 78, 377 particles. To approximately

16
match the cost, we thus run particle filters with 27 =65,536

particles, with and
without.fixed-lag smoothing with a lag of 10. The resulting relative variances
are shown in Figure 3(b). We see that the proposed estimators yield a larger
variance than particle filters, but that the difference is manageable. Fixed-lag
smoothing provides significant variance reduction, particularly for earlier time
indices. We can also verify that the bias of fixed-lag smoothing is negligible in
the present example; this would however be hard to assess with fixed-lag

smoothers alone.



7 Discussion

The performance of the proposed estimator is tied to the meeting time. As in
Chopin and Singh (2015), the coupling inequality (Lindvall, 2002) can be used
to relate the meeting time with the mixing of the underlying conditional particle
filter kernel. The proposed approach can be seen as a framework to
parallelize CPF chains and to obtain reliable confidence intervals over
independent replicates. Any improvement in the CPF directly translates into
more efficient Rhee-Glynn estimators, as we have illustrated in Section 6.1
with auxiliary particle filters and ancestor sampling. The methods proposed
e.g. in Singh et al. (2017); Del Moral and Murray (2015); Guarniero

et al. (2017); Gerber and Chopin (2015); Heng et al. (2017) could also,be
used in Rhee-Glynn estimators, with the hope of obtaining shorter meeting

times and smaller variance.

We have considered the estimation of latent processes given known
parameters. In the case of unknown parameters, joint inference of parameters
and latent processes can be done with MCMC ‘'metheds, and particle MCMC
methods in particular (Andrieu et al., 2010). Couplings of generic particle
MCMC methods could be achieved,by combining couplings proposed in the
present article with those described in'dacob et al. (2017) for Metropolis—
Hastings chains. Furthermore; for fixed parameters, coupling the particle
independent Metropolis—Hastings algorithm of Andrieu et al. (2010) would
lead to unbiased estimators of smoothing expectations that would not require

coupled resampling scheémes (see Section 2.2).

The appeal of the proposed smoother, namely parallelization over
independent.replicates and confidence intervals, would be shared by perfect
samplers. These algorithms aim at the more ambitious task of sampling
exactly from the smoothing distribution (Lee et al., 2014). It remains unknown
whether the proposed approach could play a role in the design of perfect
samplers. We have established the validity of the Rhee-Glynn estimator
under mild conditions, but its theoretical study as a function of the time

horizon and the number of particles deserves further analysis (see Lee



et al., 2018, for a path forward). Finally, together with Fisher’s identity (Douc
et al., 2014), the proposed smoother provides unbiased estimators of the
score for models where the transition density is tractable. This could help

maximizing the likelihood via stochastic gradient ascent.
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Fig. 1 Experiments with the auto-regressive model of Section 6.1, with 7=

100 observations. Here the CPF kernel employs N = 256 particles and

ancestor sampling. The distribution of the meeting times of coupled chains is

shown on the left, and error bars for the estimation of smoothing means,

obtained with A= 10 and m = 20 over R = 100 estimators, are shown onthe

right.
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Fig. 2 Experiments with the model of Section 6.2. On the left, kernel density

estimates based on 10, 000 runs show the distributions of estimates of

ELx, | ylo], using particle filters with various N. The exact smoothing‘'mean'is

represented by a vertical dashed line. On the right, 95% confidence. intervals

constructed from 10, 000 unbiased estimators are shown for various N.
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of zooplankton at each time.

Fig. 3 Experiments with phytoplankton-zooplankton model of Section 6.3. On
the left, histogram of 1, 000 independent meeting times, obtained with CCPF
chains using N =4, 096 particles. On the right, relative variance of estimators
of Bz %] for all £ The proposed unbiased estimators (“unbiased’) usew\V/=
4, 096, k=7, m= 14; the particle filters (“particle filter”) and fixed=lag
smoothers (“fixed-lag”’) use N= 65, 536, which makes all costs comparable in

terms of numbers of particle propagations and weight evaluations.



Table 1 Average meeting time, as a function of the number of particles NV
and the time horizon 7 , with bootstrap particle filters and auxiliary particle
filters, with and without ancestor sampling (AS), computed over R =500
experiments. Standard deviations are between brackets. Results obtained in

the hidden auto-regressive model of Section 6.1.

Bootstrap PF Auxiliary PF
without AS  with AS  without AS with AS
N=128 T=50 17.84 (17.13)7.73 (5.11) 3.96 (2.3) 3.37 (1.42)
N=256 T=10013.16 (11.09) 7.59 (5.05) 3.78 (1.99) 3.16 (1.09)
N =512 T=20012.52 (10.64) 6.77 (3.85) 3.52 (1.75) 2.97 (0.94)
N =1024 T =400 12.74 (10.96) 6.77 (3.47) 3.69 (1.94) 2.91 (0.87)
N =2048 T = 800 13.58 (9.56) 6.34 (2.95) 3.54 (1.9) 2.95(0.87)



