Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

Yu Wang Tingting Yu Jianhua Zhao
Linzhang Wang Department of Computer Science Xuandong LI
State Key Laboratory of Novel University of Kentucky State Key Laboratory of Novel
Software Technology Lexington, KY 40506 Software Technology
Nanjing University tyu@cs.uky.edu Nanjing University

Nanjing 210023
yuwang@seg.nju.edu.cn
lzwang@nju.edu.cn

ABSTRACT

Interrupt-driven programs are widely deployed in safety-critical
embedded systems to perform hardware and resource dependent
data operation tasks. The frequent use of interrupts in these sys-
tems can cause race conditions to occur due to interactions between
application tasks and interrupt handlers. Numerous program anal-
ysis and testing techniques have been proposed to detect races in
multithreaded programs. Little work, however, has addressed race
condition problems related to hardware interrupts. In this paper,
we present SDRacer, an automated framework that can detect and
validate race conditions in interrupt-driven embedded software.
It uses a combination of static analysis and symbolic execution
to generate input data for exercising the potential races. It then
employs virtual platforms to dynamically validate these races by
forcing the interrupts to occur at the potential racing points. We
evaluate SDRacer on nine real-world embedded programs written
in C language. The results show that SDRacer can precisely detect
race conditions.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging;

KEYWORDS

Embedded Software, Interrupts, Race Condition, Software Testing

ACM Reference format:

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LL
2017. Automatic Detection and Validation of Race Conditions in Interrupt-
Driven Embedded Software. In Proceedings of 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Santa Barbara, CA, USA,
July 10-14, 2017 (ISSTA’17), 12 pages.
https://doi.org/10.1145/3092703.3092724

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5076-1/17/07...$15.00
https://doi.org/10.1145/3092703.3092724

113

Nanjing 210023
zhaojh@nju.edu.cn
Ixd@nju.edu.cn

1 INTRODUCTION

Modern embedded systems are highly concurrent, memory, and sen-
sor intensive, and run in resource constrained environments. They
are often programmed using interrupts to provide concurrency and
allow communication with peripheral devices. Typically, a periph-
eral device initiates a communication by issuing an interrupt that
is then serviced by an interrupt service routine (ISR), which is a
procedure that is invoked when a particular type of interrupt is
issued. The frequent use of interrupts can cause concurrency faults
such as data races to occur due to interactions between application
tasks and ISRs. Such faults are often difficult to detect, isolate, and
correct because they are sensitive to execution interleavings.

As an example, occurrences of race conditions between interrupt
handlers and applications have been reported in a previous release
of uCLinux [29], a Linux OS designed for real-time embedded sys-
tems. In this particular case, the serial communication line can be
shared by an application through a device driver and an interrupt
handler. In common instances, the execution of both the driver and
the handler would be correct. However, in an exceptional operating
scenario, the driver would execute a rarely executed path. If an
interrupt occurs at that particular time, simultaneous transmissions
of data is possible (Section 2 provides further details).

Many techniques and algorithms have been proposed to address
concurrency faults, such as data races. These include static analy-
sis [20, 30, 40, 60, 63], dynamic monitoring [9, 17, 31, 38], schedule
exploration [10, 14, 39, 53, 54, 58], and test generation [41, 45].
These techniques, however, focus on thread-level races. Applying
these directly to interrupt-driven software is not straightforward.
First, interrupt-driven programs employ a different concurrency
model. The implicit dependencies between asynchronous concur-
rency events and their priorities complicate the happens-before
relations that are used for detecting races. Second, controlling in-
terrupts requires fine-grained execution control; that is, it must
be possible to control execution at the machine code level and not
at the program statement level, which is the granularity at which
many existing techniques operate. Third, occurrences of interrupts
are highly dependent on hardware states; that is, interrupts can oc-
cur only when hardware components are in certain states. Existing
techniques are often not cognizant of hardware states.

There are several techniques for testing embedded systems with
a particular focus on interrupt-level concurrency faults [22, 34, 48].
For example, Higashi et al. [22] improve random testing via a mech-
anism that causes interrupts to occur at all instruction points to
detect interrupt related data races. However, these techniques rely

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

on existing test inputs and could miss races that could otherwise
be detected by other inputs. In addition, these techniques do not
account for the implicit dependencies among tasks and interrupts
due to priorities.

This paper presents SDRacer (static and dynamic race detection),
an automated tool that combines static analysis, symbolic execu-
tion, and dynamic simulation to detect and validate race conditions
in interrupt-driven embedded systems. SDRacer first employs static
analysis to identify code locations for potential races. SDRacer then
uses symbolic execution to generate input data and interrupt inter-
leavings for exercising the potential racing points; a subset of false
positives can be eliminated at this step. Finally, SDRacer leverages
the virtual platform’s abilities to interrupt execution without affect-
ing the states of the virtualized system and to manipulate memory
and buses directly to force interrupts to occur.

To evaluate the effectiveness and efficiency of SDRacer, we apply
the approach to nine embedded system benchmarks with previ-
ously unknown race conditions. Our results show that SDRacer
precisely detected 190 race conditions. Furthermore, the time taken
by SDRacer to detect and validate races is typically a few minutes,
indicating that it is efficient enough for practical use.

In summary, this paper contributes the following:

o A fully automated framework that can detect and validate
race conditions for interrupt-driven embedded software sys-
tems.

e A practical tool for directly handling the C code of interrupt-
driven embedded software.

e Empirical evidence that the approach can effectively and
efficiently detect race conditions in real-world interrupt-
driven embedded systems.

The rest of this paper is organized as follows. In the next section
we present a motivating example and background. We then describe
SDRacer in Section 3. Our empirical study follows in Sections 4 —
5, followed by discussion in Section 6. We present related work in
Section 7, and end with conclusions in Section 8.

2 MOTIVATION AND BACKGROUND

In this section we provide background and use an example to il-
lustrate the challenges in addressing race conditions in interrupt-
driven embedded software.

2.1 Interrupt-driven Embedded Systems

In embedded systems, an interrupt alerts the processor to a high-
priority condition requiring the interruption of the current code the
processor is executing. The processor responds by suspending its
current activities, saving its state, and executing a function called an
interrupt handler (or an interrupt service routine, ISR) to deal with
the event. This interruption is temporary, and, after the interrupt
handler finishes, the processor resumes normal activities.

We denote an interrupt-driven program by P = Task || ISR, where
Task is the main program that consists of one or more tasks (or
threads) and ISR = ISRy ||ISRz|| ... ||ISRy indicates interrupt ser-
vice routines. The subscripts of ISRs indicate interrupt numbers,
with larger numbers denoting lower priorities. Typically, P receives
two types of incoming data: command inputs as entered by users
and sensor inputs such as data received through specific devices
(e.g., a UART port). An interrupt schedule specifies a sequence of

114

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

interrupts occurring at specified program locations. In this work,
we do not consider reentrant interrupts (interrupts that can pre-
empt themselves); these are uncommon and used only in special
situations [48].

2.2 Race Conditions in Interrupt-driven
Programs

A race condition occurs when two conditions are met: 1) the exe-
cution of a task or an interrupt handler T is preempted by another
interrupt handler H after a shared memory access m, and 2) H
manipulates the content of m. More formally,

e; = MEM(ati, my, ai, Ty, pi, si) A ej = MEM(ej, mj, a;, Tj, pj, s;)

Am; = m; A (aj = WRITE V a; = WRITE) As; = s;.enabled A p; > p;
MEM(a, m;, a;, Tj, pi, si) denotes a task or an ISR T; with priority
pi performs an access a € {WRITE, READ} to memory location
m while in an hardware state s;. The above condition states that
two events e; and e; are in race condition if they access the same
memory location and at least one access is a write. Here, e; is from
a task or an ISR and e; is from a different ISR, the interrupt of H; is
enabled when e; happens, and the priority p; is greater than p;.

A race condition is broadly referred to data races, atomicity
violations, and order violations. In this work, we consider order
violations. Data races are not applicable between a task and an
ISR or between ISRs, because a memory cannot be simultaneously
accessed by the tasks or the ISRs. That said, a memory is always
accessed by a task (or a low-priority ISR) and then preempted by
an ISR. Interrupts have an asymmetric preemption relation with
the processor’s non-interrupt context: interrupts can preempt non-
interrupt activity (i.e., tasks) but the reverse is not true [48].

2.3 A Motivating Example

In prior releases of uCLinux version 2.4, there is a particular race
condition that occurs between the UART driver program uart start
and the UART ISR serial8250 interrupt [29]. We provide the code
snippets (slightly modified for ease of presentation) that illustrate
the error in Figure 1. The variables marked with bold indicate shared
resources accessed by both tasks and ISRs.

Under normal operating conditions, the interrupt service rou-
tines (ISRs) are always responsible for transmitting data. There are
two ISRs: irq1_handler has a higher priority than irq2_handler.
However, several sources have shown that problems such as races
with other processors on the system or intermittent port problems
can cause the response from the ISRs to get lost or cause a fail-
ure to correctly install the ISRs, respectively. When that happens,
the port is registered as “buggy” (line 5) and workaround code
based on polling instead of using interrupts is used (line 12-16).
Unfortunately, the enabled irql_handler is not disabled in the
workaround code region so by the time the workaround code is
executed, it is possible that irq1_handler preempts and modifies
the shared variable xmit->tail (line 14); this causes the serial port
to receive the wrong data (line 15).

The first challenge is that embedded systems use special op-
erations to control interrupts, some of which may not even be
recognized by existing static and dynamic analysis techniques. For
example, serial_out disables irq2_handler by directly flagging
an interrupt bit at the hardware level using the variable flags (line
9). Failing to identify such operations would report false positives.
For example, conservative analysis techniques would falsely report

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

int transmit(struct uart_port *port){

1

2 B

3 if (iir & UART_IIR_NO_INT) {

4 if (!(port->bugs & UART_BUG_TXEN)) {

5 port->bugs |= UART_BUG_TXEN;

6 S

7 ¥

8

9 serial_out(port, UART_IER, flags); /xdisable irqg2x/

if (port->bugs & UART_BUG_TXEN) { /xworkaround=x/

p = xmit->tail + 1;
serial_outp(port, UART_TX,
incorrect outputx*/

p.x_char); /x*

16 }
17 3

static irqreturn_t irql_handler(...){
if (thr == o0x1101) {
xmit->tail = a + 1;
23 3}
b = xmit->tail;
26 3
static irqreturn_t irq2_handler(...){

if (thr !'= @x1101) {
xmit->tail = ¢ + 1;

» 54.

Figure 1: Race condition in a UART device driver

that there is a race condition between line 14 and line 31 on the vari-
able xmit->tail even if the irq2_handler is disabled in the task.
Therefore, hardware states and operations must be known when
testing for race conditions in interrupt-driven embedded systems.

Second, task and interrupt priorities affect the order relations
between concurrency events. For example, the read of xmit->tail
at line 24 cannot be modified by the write of xmit->tail at line 31
due to the reason that the irq1_handler has a higher priority than
the irg2_handler. Therefore, existing techniques that neglect the
effect of priorities would lead to false positives.

Finally, exposing this race condition requires specific input data
from the hardware. For example, only when the IIR register is
cleared (i.e., iir & UART_IIR_NO_INT is true) and the port is set to
“buggy” will the true branch (line 4) be taken in the transmit func-
tion. Existing techniques on testing interrupt-driven programs that
rely on existing inputs are inadequate. While automated test case
generation techniques, such as symbolic execution can be leveraged,
adapting them to interrupt-driven software is not straightforward.
For example, IIR is a read-only register and thus cannot be directly
manipulated; the value of IIR is controlled by the interrupt enable
register (IER). Therefore, hardware properties must be considered
when generating input data.

2.4 Leveraging Virtual Platforms in Testing

Virtual platforms such as Simics provide observability and fine-
grained controllability features sufficient to allow test engineers to
detect faults that occur across the boundary between software and
hardware. SDRacer takes advantage of many features readily avail-
able in many virtual platforms to tackle the challenges of testing for
race conditions in interrupt-driven embedded software. Particularly,
we can achieve the level of observability and controllability needed

115

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

to test such systems by utilizing the virtual platform’s abilities to
interrupt execution without affecting the states of the virtualized
system, to monitor function calls, variable values and system states,
and to manipulate memory and buses directly to force events such
as interrupts and traps. As such, SDRacer is able to stop execution
at a point of interest and force a traditionally non-deterministic
event to occur. Our system then monitors the effects of the event
on the system and determines whether there are any anomalies.

2.5 Comparing to Thread-level Race Detection
Techniques

Although interrupts are superficially similar to threads (e.g., nonde-
terministic execution), the two abstractions have subtle semantic
differences [49]. As such, thread-level race detection techniques
[9, 17, 31, 38, 41, 45] cannot be adapted to address interrupt-level
race conditions.

First, threads can be suspended by the operating system (OS)
and thus the insertion of delays (e.g., sleep or yield instructions)
can be used to control the execution of threads. The status of each
thread is also visible at the application level. However, interrupts
cannot block — they run to completion unless preempted by other
higher-priority interrupts. The inability to block makes it impossi-
ble to use advanced OS services for controlling the occurrences of
interrupts in race detection. In addition, the internal states of in-
terrupts are invisible to tasks and other interrupt handlers because
of the non-blocking characteristics. As such, it is impossible to use
code instrumentation for checking the status of interrupts.

Second, threads typically employ symmetrical preemption rela-
tions — they can preempt each other. In contrast, tasks and interrupt
handlers (i.e., task vs. ISR and ISR vs. ISR) have asymmetrical pre-
emption relations. Specifically, interrupts cannot be preempted by
normal program routines; instead, they can be preempted only
by other interrupts with higher priority, and this can occur only
when the current interrupt handler is set to be preemptible. The
asymmetric relationship between interrupt handlers and tasks in-
validates the happens-before relations served as the standard test
for detecting thread-level races.

Third, the concurrency control mechanisms employed by inter-
rupts are different. A thread synchronization operation uses block-
ing to prevent a thread from passing a given program point until the
synchronization resource becomes available. However, concurrency
control in interrupts involves disabling an interrupt from executing
in the first place. This is done by either disabling all interrupts
or disabling specific interrupts that may interfere with another
interrupt or task. As such, thread-level techniques that rely on
binary/bytecode instrumentation [54, 64] to control memory access
ordering between threads cannot be used to control the occurrences
of hardware interrupts. In contrast, interrupt-level race detection
techniques must be able to control hardware states (e.g., registers)
to invoke interrupts at specific execution points [66]. In addition,
occurrences of interrupts are highly dependent on hardware states;
that is, interrupts can occur only when hardware components are
in certain states. Existing thread-level race detection techniques
are not cognizant of hardware states.

3 SDRACER APPROACH

We introduce SDRacer whose architecture is shown in Figure 2.
The rectangular boxes contain the major components. SDRacer

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

| SDRacer |
l I
Warni P ial R
Source Code | Static Analysis anrl\‘r;gs Guided Symbolic ot(e':(gzwr\?)ces Dynamic | Real Races
| Execution Validation | (RePR)
| KLEE Simics |
! I

Figure 2: Overview of SDRacer framework.

first employs lightweight static analysis (SA) to identify potential
sources of race conditions. The output of this step is a list of static
race warnings, {<e; = (T, Li, Ai), ej= (T}, Lj, Aj)>}. However,
the event pair < e;, e; > does not imply that the two events are
truly ordered. In the dynamic validation phase, SDRace attempts to
force ej to occur after e;. Here, T is a task or an ISR, L is the code
location, and A is the access type. In the example of Figure 1, the
output of this step is: WN; = <(transmit, 14, R), (irq1_handler,
22, W)>, WNp =<transmit, 14, R), (irg2_handler, 31, W)>, WN3
= <irg2_handler, 31, W), (irg1_handler, 22, R)>, and WNy =
<irg2_handler, 31, W), (irq1_handler, 24, R)>.

Next, SDRacer invokes symbolic execution to generate input data
that can reach the code locations of the static race warnings. In Fig-
ure 1, the input data ¢; = {IIR = 0x0111, THR = 0x0111, port->bugs
= 0} is generated to exercise WNy, and tp = {IIR = 0x0111, THR =
0x0110, port->bugs = 0} is generated to exercise WNz and W Njy.
This step can also eliminate infeasible racing pairs. For example,
W N3 cannot be covered due to the conflict path conditions between
irgl_handler and irq2_handler. Therefore, WN3 is a false posi-
tive. The output of symbolic execution is a list of potential races
PR and their corresponding input data.

Last, SDRacer utilizes the virtual platforms to exercise the inputs
on the potential races generated from the symbolic execution and
force the interrupts to occur at the potential racing points. The out-
put of this step is a set of real races. In the example of Figure 2, WN;
and W Ny are real races because we can force the irq1_handler to
occur right after line 14 and the irq2_handler to occur right after
24. Therefore, W N1 and W Ny are real races, whereas W N5 is a false
positive; irq2_handler cannot be issued after line 14 because its
interrupt line is disabled.

3.1 Static Analysis

In the static analysis phase, SDRacer first identifies shared re-
sources and interrupt enable and disable operations. It then per-
forms context-sensitive analysis to compute a list of potential racing
pairs, i.e., static race warnings. The racing pairs are used for guiding
test input generation and dynamic race validation.

3.1.1 Identifying Shared Resources. Race conditions are gen-
erally caused by inappropriate synchronized access to shared re-
sources. So precisely detecting shared resources is key to race de-
tection. In addition to shared memory that is considered by thread-
level race detection techniques, SDRacer also accounts for hardware
components that are accessible by applications and device drivers,
including device ports and registers.

We use the Thread Safety Analysis tool [5] from the LLVM Clang
static analyzer [1] to identify resources accessed by at least: 1) two

116

ISRs, and 2) one task and one ISR. SDRacer automatically decom-
poses tasks based on the specific patterns of device drivers. For
example, the first parameter of kthread_create refers to the func-
tion name of a task. Another type of task is the function callback,
which is triggered by a specific device operation (e.g., device read).
Each detected shared resource SV is denoted by a 6-tuple: RSL(SV)
={<T,L,V,AV,R, A >}, where T denotes the name of the task or
ISR in which SV is accessed, L denotes the code location of the ac-
cess, V denotes the name of the SV, AL denotes whether the name
V is an alias (false) or a real name (¢true) (real name is the declared
name), R means the real name of this resource, and A denotes the
access type — read (denoted by R) or write (denoted by W).

In the example of Figure 1, the RSL for the xmit—tail is:
<transmit, 14, xmit—tail, true, xmit—tail, R>, <transmit,
22, xmit—tail, true, xmit—tail, W>, <irg_handler, 24,
xmit—tail, true, xmit—tail, R>, and <transmit, 31,
xmit—tail, true, xmit—tail, W>,

3.1.2 Identifying Interrupt Operations. To track interrupt status
(i.e., disabled or enabled) of a shared resource, SDRacer identifies
interrupt-related synchronization operations, which typically in-
volve interrupt disable and enable operations. In many embedded
systems, coding interrupt operations can be rather flexible. An in-
terrupt operation can be done by directly manipulating hardware
bits (e.g., line 9 of Figure 1). In addition, these operations vary across
different architectures and OS kernels.

SDRacer considers both explicit and implicit interrupt opera-
tions. For the explicit operations, SDRacer considers standard Linux
interrupt APIs, including disable_irq_all(), disable_irq(int
irq),disable_irg_nosync(int irq) andenable_irq(int irq),
where the irq parameter indicates the interrupt vector number (i.e.,
the unique ID of an interrupt). For the implicit operations, SDRacer
tracks operations that manipulate interrupt-related hardware com-
ponents, such as the interrupt enable registers (IERs). Since these
operations are often not recognized by static analysis, SDRacer
conservatively assumes they are equivalent to interrupt enabling
(e.g., enable_irq_all()); false positives can be eliminated in the
dynamic validation phase. In Figure 1, the hardware write operation
at line 9 is considered to be an interrupt enable operation.

To handle interrupts in different kernels or architectures. SDRacer
provides a configuration file that allows developers to specify the
names of interrupt APIs. The output of this step is a 4-tuple list:
ITRL = {<M, L, I, T>}, where M denotes the function name, L de-
notes the code location where the interrupt operation is called, I
denotes the interrupt vector number and T denotes the type of
interrupt operation (i.e., enable or disable). In the example of Fig-
ure 1, the ITRL is: <transmit, 9, all, enable>, where all denotes
all interrupts are enabled.

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

Algorithm 1 Static race detection

Input: IICFGs of P
Output: potential racing pairs (PR)
1: for each < G;, Gj > in IICFGs do
2: for each sv; € G; do
3: for each sv; € G; do
4 if sv;.V == sv;.V and (sv;.A == W or sv;.A == W) and
Gji.pri < Gj.priand INTB.get(sv;).contains(G;) then
PR = PRU (sv;, svj)
end if
end for
end for
end for

0w 0

3.1.3 Identifying Static Race Warnings. In this step, we identify
shared resource pairs that may race with each other from all identi-
fied shared resources. These pairs are used as targets for guiding
symbolic execution to generate test input data.

To statically identify potential racing pairs, we first build a re-
duced inter-procedural control flow graph (IICFG) for the task and
each of the ISR that contains that contains at least one shared re-
source. IICFG prunes branches that do not contain shared resources
in the original inter-procedural control flow graph (ICFG) in order
to reduce the cost of analysis.

Algorithm 1 describes the computation of potential racing pairs
based on the IICFGs of the program. SDRacer traverses each IICFG
by a depth-first search to examine the interrupt status (i.e., enable
or disable) of every instruction. We use a bit vector INTB to record
the interrupt status. For example, INTB = <1, 0, 0> indicates that
the first interrupt is disabled and the second and the third interrupts
are enabled. INTB is updated when an instruction is visited. Note
that when visiting an instruction inside the ISR, the bit associated
with the ISR is always set to 1 because an ISR is non-reentrant.

For each shared resource sv; at the location L of an IICFG G;, if
there exists the same shared resource sv; in an IICFG Gy, at least one
shared resource is a write, the priority of G; is higher than that of
Gi, and the interrupt for G; is enabled at L, the pair (sv;, svj) forms
a potential race condition. For example, in Figure 1, the bit vector at
line 14 is <0, 0>, indicating that both irq1 and irq2 are enabled. Also,
both irql and irq2 have higher priorities than transmit. The bit
vector at line 13 is <1, 0>, because irql_handler is non-reentrant.
Therefore, WN1, WN,, WN3, and W Ny are reported as static race
warnings.

Note that our lightweight static analysis does not consider loops
or context-sensitivity, which may lead to inaccuracies. For example,
ignoring loops may cause false negatives because a new racing
pair may be discovered in subsequent iterations. However, such
cases were not found in the experiment. The context-insensitive
analysis may lead to false positives because it does not distinguish
between different calling contexts of a function. On the other hand,
precise static analysis is more expensive [62]. As future work, we
will evaluate cost-effectiveness by adopting precise static analysis
techniques.

3.2 Guided Symbolic Execution

We propose a new symbolic execution procedure to generate input
data for exercising static race warnings reported in static analysis
and eliminating a portion of false races. Unlike traditional guided

117

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

symbolic execution [19, 37], symbolic execution on interrupt-driven
programs needs to consider the asymmetrical preemption relations
among tasks and ISRs. The symbolic execution of SDRacer consists
of two steps: 1) identifying entry points that take symbolic inputs; 2)
generate inputs that exercise racing pairs reported by static analysis.
Internally, we leverage the KLEE symbolic virtual machine [11] to
implement the goal-directed exploration of the program to traverse
the program locations involving potential races.

3.2.1 Identifying Input Points. Execution paths in embedded
systems usually depend on various entry points that accept inputs
from external components, such as registers and data buffers [65].
One challenge for our approach involves dealing with multiple in-
put points in order to achieve high coverage of the targets. SDRacer
considers two kinds of input points: 1) hardware-related memo-
ries (e.g., registers, DMA), and 2) global data structures used to
pass across components (e.g., buffers for network packages, global
kernel variables that are accessible by other modules). SDRacer
can automatically identify these input points based on the specific
patterns of device drivers — this is a per-system manual process.

In the example of Figure 1, The input points include the UART
registers and the UART port. Specifically, the values in the registers
IIR (line 3) and THR (line 21 and line 30) determine the data and
control flow of the program execution. As such, we make these
register variables symbolic. We also make the data fields of the
UART port symbolic (e.g., port->bug at line 4) because they accept
inputs from users and external components.

3.2.2 Guided Symbolic Execution. For each static race warning
WN = <e;, ej>, SDRacer calls the guided symbolic execution to
generate a test input to exercise the WN or report that the WN
is a false positive. Since each call to the symbolic execution tar-
gets a pair of events in two different tasks or ISRs, we build a
inter-context control flow graph (ICCFG) by connecting the inter-
procedural control flow graphs (ICFGs) of the tasks and ISRs. For
each instruction that is equal to the first racing event e; ina WN,
we add an edge that connects e; to the entry function of the ICFG
in which e; exists. In the example of Figure 1, to generate inputs
for WN; = <(transmit, 14, R), (irql1_handler, 22, W)>, the entry
of irql_handler is connected to the instruction right after the
xmit->tail read access.

SDRacer guides the symbolic execution toward the two ordered
events of each WN by exploring the ICCFG. Let e € WN denote
the current event to be explored, and stateset denote the set of pro-
gram states that could reach e. stateset can be analyzed based on the
backward reachability analysis of IICFG. At each step of the sym-
bolic execution procedure, we select a promising state s; € stateset,
which is likely to reach e. Internally, SDRacer estimates the distance
between each program state s; and e before selecting the next state.
The distance is defined as the number of instructions to be executed
from s; to e and is computed by statically traversing the ICCFG. If
multiple states have the same distance to e, SDRacer randomly se-
lects one. In this sense, the search strategy of SDRacer differs from
prior symbolic execution techniques such as state prioritization
(e.g., assertion-guided symbolic execution [21] and coverage-guided
symbolic execution [11, 33]), because they do not target the explo-
ration of potential racing points.

If no state in stateset can reach e, we check if e is in a loop. If e
is in a loop, we increase the number of loop iterations by a fixed

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

number of times given a timeout threshold and try again. This will
increase our chance of reaching the goal. The iteration number is
increased until reaching the loop bound Ly,qx (Lmax = 1000 in our
experiments).

Otherwise, we backtrack and search for another path to the
current event. If backtracking is repeated many times, eventually,
it may move back to the first event, indicating that the current
racing pair cannot be exercised. In such case, we move to the next
racing pair. After reaching the second event (i.e., ej), we traverse
the current program path to compute the path condition (PC). Then,
we compute the data input by solving the path condition using an
SMT solver.

The main problem in guided symbolic execution is to make the
procedure practical efficient by exploring the more “interesting”
program paths. Toward this end, we propose several optimization
techniques. Recall that we statically analyze the source code of
the program to prune away paths that do not lead to the shared
resources — they correspond to the irrelevant potential races. We
also skip computationally expensive constraint solver calls unless
the program path traverses some unexplored potential races. In
addition to these optimizations, we prioritize the path exploration
based on the number of potential races contained in each path to
increase the likelihood of reaching all static races sooner. Further-
more, we leverage concrete inputs (randomly generated) to avoid
generating a large number of invalid inputs.

In the example of Figure 1, the symbolic execution success-
fully generates input data for exercising WN; and WN3, and W Njy.
For WN3, the symbolic execution explores the two events at line
31 and line 21 in the ICCFG that connects irql_handler and
irg2_handler. The path constraint thr == 0x1101 A thr # 0x1101
is unsolvable, so W N3 is a false positive.

For each static warning, there are three types of output generated
by the symbolic execution. The first type of output is a potential
race together with its input data, which means that this race is
possible to be exercised at runtime. The second type of output
is an unreachable message (unsolvable path constraints), which
indicates that the static warning is a false positive. The third type
of output is a message related to timeout or crash. The reason could
be the execution time-out, the limitation of constraint solver or
the unknown external functions. In the next phase of dynamic
validation, we validate weather races reported in the second and
third types are real races or not.

3.3 Dynamic Validation of Race Conditions

We propose a hardware-aware dynamic analysis method to validate
the remaining race conditions from the symbolic execution. In this
phase, SDRacer first employs an execution observer to monitor
shared resource accesses and interrupt operations, and then uses
an execution controller to force each race condition to occur.

3.3.1 Executing Observer. The Observer records operations that
access shared memory and hardware components. The observer
also monitors interrupt bits (IER and IIR registers) to track inter-
rupt disabling and enabling operations. These bit-level operations
are then mapped into the instruction-level statement, because the
control of interrupts happens at the instruction level.

For each shared resource access, SDRacer can retrieve the current
interrupt status of all IRQ lines to check whether it is possible to
force a specific interrupt to occur.

118

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

Algorithm 2 Algorithm SDRacer: Execution controller

Input: PRaceSet, P, S

Output: RaceSet
1: for each o = (e;, ¢j) € PRaceSet do
2: if e; in T then

3 E = Execute(P, ts)
4 end if
5: if e; in H then
6: E =Execute(P, e;.H, ts)
7 end if
8 if E covers e; then
9 if ISR_enabled (e;.H) is true then
10: raise interrupt e;. H
11: else
12: find another possible location
13: end if
14: if ej.H accesses e; then
15: RaceSet = RaceSet U o /*race occurs®/
16: end if
17: if Output(P, S) # O then
18: print “Error: fault found”
19: end if
20: endif
21: end for

3.3.2 Execution Controller. Simics allows us to issue an interrupt
on a specific IRQ line from the simulator itself. As such, when the
Observer reaches an SV, an interrupt is invoked at a feasible location
after the access to this SV.

We now describe the algorithm of execution controller (Algo-
rithm 2). Given a potential racing pair o = (e;, ej), The goal of this
algorithm is to force an ISR that contains e; to occur right after the
access to e;. The algorithm first executes the program under test P
(line 6). If the the first shared resource access e; occurs in a task,
the algorithm executes the input data (generated from the symbolic
execution) on P (line 3). If e; occurs in an ISR, it executes P together
with the interrupt issued at the arbitrary location of P (line 6). If
the execution covers e;, the algorithm forces the interrupt in which
ej exists to occur immediately after e; (line 9). If a race occurs, it is
added to RaceSet (line 15).

Note that our algorithm can also force the interrupt to trigger
immediately before e;. In fact, the effect of triggering an interrupt
immediately after the first event covers that of triggering an inter-
rupt before the first event because a failure is usually caused by
reading the incorrect value modified by the interrupt handler. It is
not critical to choose either case.

Because it may not be possible to raise an interrupt immediately
(e.g., if the interrupt is currently disabled), the algorithm checks
the current state of the interrupt associated with e; (line 9) before
raising an interrupt. The algorithm also checks outputs on termi-
nation of the events (lines 17-18) to determine whether a fault has
been identified. If the interrupt (S) cannot be raised immediately
after the shared resource access e; in P (lines 9-10), the algorithm
postpones e;.H (the ISR in which e; exists) until it can feasibly be
raised, or until the entry instruction of the operation in another
potential race pair is reached.

To illustrate the algorithm’s operation, using Figure 1 as an
example. Considering WNj, given the input ¢1, the transmit cov-
ers the read of xmit—tail at line 14. Thus, the algorithm forces

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

Algorithm 3 Algorithm to determine whether it is possible to issue
an interrupt: ISR_enabled(int p)

Input: P
Output: enabled /*p is the pin number for a certain interrupt*/
1: if eflags[9] != 0 and ioapic.redirection[p] == 0 and
ioapic.pin_raised[p] == LOW then
2: return true
3: end if
4: return false

irg1_handler to be raised right after the read of xmit—tail at
line 14, In this scenario, xmit—tail is modified by the irq1_handler,
causing transmit to read the wrong value. As a result, WNj is real
and harmful.

It is not always realistic to invoke an interrupt whenever we
want. For example, the interrupt enables register and possibly other
control registers have to be set to enable interrupts. In the example
of Figure 1, before invoking an interrupt, the interrupt enable reg-
ister IER of the UART must be set while the interrupt identification
register IIR must be cleared. Interrupts can be temporarily disabled
even if they are enabled. Algorithm 3 is the routine in the Controller
used to determine whether it is possible to issue an interrupt.

There are two general steps that our system takes prior to invok-
ing a controlled interrupt. First, the controller module checks the
status of the local and global interrupt bits to see if interrupts are
enabled. In an X86 architecture, the global interrupt bit is the ninth
bit of the eflags register (line 1 in Algorithm 3). When this bit is
set to 1 the global interrupt is disabled, otherwise it is enabled. For
local interrupts, Simics uses the Advanced Programmable Interrupt
Controller (APIC) as its interrupt controller. As such, our system
checks whether the bit controlling the UART device is masked or
not.

3.4 Implementation

The static analysis component of SDRacer was implemented using
the Clang Tool 3.4 [6]. Our alias analysis leveraged the algorithm
in [57] to handle the alias of shared resources. Our guided sym-
bolic execution was implemented based on KLEE 1.2 [2] with STP
solver [4] and KLEE-uClibc [3]. Since most kernel functions are
not supported by KLEE and KLEE-uClibc, we have extended KLEE-
uClibc to support kernel functions such as request_irg(). In order to
guide the symbolic execution toward specific targets (i.e., potential
racing points), we modified KLEE to only gather constraints related
to the paths that are generated by static analysis. We used Simics
virtual platforms to implement the dynamic validation phase. Sim-
ics provides APIs that can be accessed via Python scripts to monitor
concurrency events and to manipulate memory and buses directly
to force interrupts to occur.

4 EMPIRICAL STUDY
To evaluate SDRacer we consider two research questions:

RQ1: How effective is SDRACER at detecting interrupt-level race
conditions across the three phases?

RQ2: How efficiency is SDRACER at detecting interrupt-level race
conditions?

RQ1 allows us to evaluate the effectiveness of our approach in
terms of the number of races detected at different phases, and their

119

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Table 1: Objects of Analysis

Program name LOC | #INT | #Func | #SR | #BB
keyboard_ driver 84 1 4 5 45
mpu401_ uart 630 1 16 2 316
i2c-pca-isa 225 1 11 9 111
mv643xx _eth.c 3256 1 29 7 | 1076
short 704 5 18 20 | 315
shortprint 531 1 11 22 266
short (EI) 707 5 18 20 317
shortprint (EI) 530 1 11] 22| 266
modulel 168 1 3 1 55
module2 154 2 37 4 62
module3 99 2 8 1 40

abilities to reduce false positives. RQ2 lets us consider the efficiency
of our approach in terms of analysis/testing time and platform
overhead.

4.1 Objects of Analysis

As objects of analysis, we chose both open source projects and
industrial products. First, we selected 118 device driver programs
that can be compiled into LLVM bitcode from four versions of Linux
Kernel. We next eliminated from consideration those drivers that
could not execute in Simics environment; this process left us with
four drivers: keyboard, mpu401_uart, i2c-pca-isa, and mv643_eth.
The 114 drivers were not executable because their corresponding
device models were not available in Simics - they need to be pro-
vided by developers. As part of the future work, we will develop
new device models for Simics in order to study more device driver
programs.

We also selected two driver programs from LDD [15]: short
and shortprint. To create more subjects, we manually seeded a
concurrency fault to each of the two LDD programs. Specifically,
We injected a shared variable increment operation and a decrement
operation in their interrupt handlers. The fault injection did not
change the semantics of the original programs but induced new
races to these programs. The two programs are denoted as short
(EI) and shortprint (EI).

The other three subjects are real embedded software from China
Academy of Space Technology. Modulel is an UART device driver.
Module2 is a driver for the lower computer. Module3 is used to
control the power of engine. Table 1 lists all eleven programs, the
number of lines of non-comment code they contain, the number
of interrupts (with different priorities), the number of functions,
the number of shared resources, and the number of basic blocks.
The number of basic blocks indicates the complexity of symbolic
execution. The size of the benchmarks is consistent with a prior
study of concurrency bugs in device driver programs [59], which
ranges from less than a hundred line of code to thousands of lines
of code.

All our experiments were performed on a PC with 4-core Intel
Core CPU i5-2400 (3.10GHz) and 8GB RAM on Ubuntu Linux 12.04.
For the simulation, the Host OS was Ubuntu 12.04 and the guest OS
was 10.04. Simulation was based on real-time mode and conducted
without VMP (In order to run Intel Architecture (IA) targets quickly
on IA-based hosts.). The timeout for symbolic execution was set to
10 minutes.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

4.2 Dependent Variables

We consider several measures (i.e., dependent variables) to answer
our research questions. Our first dependent variable measures tech-
nique effectiveness in terms of the number of races detected. We
measure the number of races detected in each of the three phases.
We also inspected all of the reported real races (from the dynamic
validation phase) that did not result in detectable failures to deter-
mine whether they were harmful or benign.

To assess the efficiency of techniques we rely on four dependent
variables, each of which measures one facet of efficiency. The first
dependent variable measures the analysis and testing time required
by SDRacer across the three phases. Although measuring time is
undesirable in cases in which there are nondeterministic shared
resource accesses among processes, this is not a problem in our
case because we use a VM that behaves in a deterministic manner.

Our second variable regarding efficiency measures the extra plat-
form overhead associated with SDRacer. This is important because
using virtual platforms such as Simics for testing can increase costs,
since virtualization times can be longer than execution times on real
systems. We calculate platform overhead by dividing the average
runtime per test run on Simics by the runtime per test on the real
machine. Note that judging whether races are harmful is not taken
into account when computing the overhead of SDRacer because it
is independent of techniques for locating harmful races.

4.3 Threats to Validity

The primary threat to external validity for this study involves the
representativeness of our programs and faults. Other programs
may exhibit different behaviors and cost-benefit tradeoffs, as may
other forms of test suites. However, the programs we investigate are
widely used and the races we consider are real (except the seeded
races on the two LDD programs).

The primary threat to internal validity for this study is possi-
ble faults in the implementation of our approach and in the tools
that we use to perform evaluation. We controlled for this threat
by extensively testing our tools and verifying their results against
smaller programs for which we can manually determine the correct
results. We also chose to use popular and established tools (e.g., Sim-
ics and KLEE) to implement the various modules in our approach.
As an additional threat to internal validity, race manifestation can
be influenced by the underlying hardware [43, 56]. For example,
microprocessors that provide virtualization support may be able to
prevent certain races from occurring due to fewer system calls. Our
work uses Simics, a full platform simulator to provide us with the
necessary controllability and observability to cause races. Simics
has been widely used to expose difficult-to-reproduce faults includ-
ing races [18]. The version of Simics that we used does not simulate
the later Intel processors with hardware virtualization support—a
feature that can affect our ability to produce races. Nonetheless, our
system was able to detect previously documented races existing in
our experimental subjects. Therefore, the execution patterns seen
using Simics should be comparable to those that would be observed
in the real systems.

Where construct validity is concerned, numbers of races detected
are just two variables of interest where effectiveness is concerned.
Other metrics such as the cost of manual analysis could be valuable.

120

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

5 RESULTS AND ANALYSIS

Table 2 reports the effectiveness and efficiency results observed in
our study; we use this table to address our research questions.

5.1 RQ1: Effectiveness of SDRacer

Columns 2-5 in Table 2 show the number of races reported by static
analysis, the number of races remained after symbolic execution,
the number of real races reported by the dynamic validation across
all 11 subjects, and the number of true races validated manually by
us. We reported the races detected in the three industrial programs
to developers and the races were confirmed. We also reported the
races detected in the four device driver programs and are waiting
for the confirmation.

As the results show, the symbolic execution reduced the number
of false positives contained in the sets of static race warnings by
55.6% overall, with reductions ranging from 27% to 100% across all
11 subjects. The dynamic validation reduced the number of races
reported by symbolic execution by 59.1% overall, with reductions
ranging from 0% to 100%. The manual examination revealed that
among all races reported by the dynamic validation, all races are
real and harmful. In total, SDRacer detected 190 races. Only on
shortprint did SDRacer not detect any races; no races were found
on this program by the manual inspection.

On two out the 11 subjects, symbolic execution reported equal
number races to the dynamic validation (keyboard_driver and
module1). In other words, symbolic execution did not report false
positives on the two programs. On the other nine programs, sym-
bolic execution did report false positives. By further examining the
programs, we found two reasons that led to the false positives. The
first reason is due to the unknown access type (read and write) in
external functions. For example, on mpu4@1_uart, the ISR calls an
external library (snd_mpu4@1_input_avail) taking an SV as the
argument. The symbolic execution treats this access as a write since
static analysis incorrectly identifies it as a write. The second reason
is due to the conflict path constraints between the main task and
ISRs, which resulted in time-out. In this case, the race reported by
the static analysis is directly sent to the dynamic validation phase.
The third reason is due to its incapable of recognizing the implicit
interrupt operations; This case happened to the program short .

5.2 RQ2: Efficiency of SDRacer

Columns 6-8 in Table 2 report the analysis time of static analysis,
symbolic execution, and dynamic validation. On two programs
(mpu4@1_uart and mv643xx_eth), the symbolic execution reached
the time limit (i.e., 10 minutes) on the two static warnings of each
program due to the unsolvable path constraints. Therefore, their
times of symbolic execution were much higher than the other pro-
grams. Overall, the total testing time spent by SDRacer ranged from
2 seconds to 23 minutes across all 11 subjects. Specifically, the time
for static analysis never exceeded 0.2 second, which accounted for
less than 0.01% of total testing time overall. The time spent on sym-
bolic execution was 235 seconds in arithmetic mean, accounting
for 88.1% of total testing time. The remaining (31 seconds) time
was spent on dynamic validation, which accounted for 11.8% of
total testing time. The time for symbolic execution and dynamic
validation varied with the number of detected static warnings.
SDRacer incurred platform overhead due to the use of VMs.
Column 9 of Table 2 lists the average platform overhead associated

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Table 2: Experimental Results

Programs Race Detected Execution Time (second) Simulation | Controlled
Static Symbolic | Dynamic Manual Static Symbolic | Dynamic | Overhead | Interrupts

Analysis | Execution | Validation | Checking | Analysis | Execution | Validation Only
keyboard_driver 4 4 4 4 0.073 1.03 1.65 892x 4
mpu401_ uart 146 129 47 47 0.088 1251.83 75.2 245.3x 12
i2c-pca-isa 4 4 1 1 0.078 1.00 42.1 530.1x 1
mv643xx _eth 16 14 10 10 0.183 1207.97 102.2 64.4x 2
short 127 35 18 18 0.109 41.53 26.8 297x 14
shortprint 4 2 0 0 0.088 1.25 21.61 445.6x 0
short (EI) 149 41 24 24 0.106 48.28 24.13 285.6x 18
shortprint (EI) 14 8 6 6 0.091 4.44 49.3 425.8x 6
modulel 4 4 4 0.076 0.91 1.54 669.2x 4
module2 93 65 64 64 0.075 21.48 1.25 590.1x 64
module3 15 15 12 12 0.073 3.39 1.06 426x 12

with SDRacer across all test runs. As the table shows, the average
platform overhead ranged from 64x to 669x. As we can see from the
result, the less complex a subject is, the more platform overhead it
incurred. This is because our execution observer was implemented
using the callback functions provided by the Simics VM; it took
time for the MV to trigger callback functions. However, considering
the benefits of virtual platforms and the difficulty of detecting
interrupt-level race conditions, such overhead is trivial.

6 DISCUSSION

In this section, we first summarize our experimental results and
then explore additional observations and limitations relevant to
our study.

6.1 Summary of Results

SDRacer’s static analysis component can detect potential race con-
ditions with a false positive rate 72.0%. Our static analysis is able to
handle nested interrupts with different priorities, as opposed to deal
with race conditions only between tasks and ISRs [13]. SDRacer’s
symbolic execution reduced the false positive rate to 49.8%. The
VM-based dynamic validation eliminated all false positives. Mean-
while, SDRacer detected all races with an average testing time of
4.5 minutes on each program.

If these results generalize to other real objects, then if engineers
wish to target race detection in interrupt-driven embedded system,
SDRacer is a cost-effective technique to utilize. In the case of non-
existing VMs, developers can still use static analysis and symbolic
execution to detect races.

6.2 Further Discussion

Influence of test input generation. As discussed in Section 7,
there have been techniques for detecting concurrency faults that
occur due to interactions between application and interrupt han-
dlers [23, 34, 48, 66]. However, these techniques neither handle
nested interrupts nor considers priority constraints among tasks
and ISRs. Also, they do not have the static analysis and symbolic
execution components, which could miss races that can only be
revealed by certain inputs. In addition, these techniques are not
applicable in the case of non-existing VMs or runtime environment.
To further investigate whether the use of static analysis and sym-
bolic execution can improve the race detection effectiveness, we

121

disabled the two components and did see missing races. Columns 10
in Table 2 reports the numbers of races detected when using only
the dynamic validation component. As the data shows, in total, it
detected only 137 races — 28.2% less effective than SDRacer.

Atomicity violations. SDRacer considers one type of definition
of race conditions — order violations. In practice, testers can adopt
different definitions because there is not a single general definition
for the class of race conditions that occur between an ISR and a
task/an ISR. SDRacer may miss faults due to atomicity violations.
For example, if a read-write shared variable pair in the main pro-
gram is supposed to be atomic, the ISR can read this shared variable
before it is updated in the main program. Since SDRacer does not
capture the read-read access pattern, this fault may be missed.

Inline functions. In the dynamic validation phase, we use mem-
ory breakpoints to detect when concurrency events are executed.
However, some simple functions are optimized as inline functions
by compilers. In this case, breakpoints for these functions cannot
be triggered. To handle this case, we need to disable optimization
for these functions.

Dynamic priority assignment. Many false positives in the static
analysis phase are caused by nested interrupts, because SDRacer
does not recognize priorities that are dynamic assigned. These false
positives can result in more validation time in symbolic execution
and dynamic simulation. As part of future work, we will consider
operations involving dynamic priority adjustment.

Scalability to the entire system. In our study, the analysis in-
volves a test program, the interrupt handler that interacts with the
device driver, and the device driver code. The key point here is that
the tester focuses on a specific component ! and how it interacts
with the rest of the components. If the focus changes to a differ-
ent component, the same analysis can be applied to test the new
component. As such, the proposed approach is more suitable for
component testing instead of testing the entire system at once.

7 RELATED WORK

There has been a great deal of work on analyzing, detecting, and
testing for thread-level data races [7, 12, 16, 25, 35, 36, 42, 44, 46, 52,
54, 67]. However, as discussed in Section 2.5, existing techniques

A component is a device driver program. The list of components can be identified by
popular Linux commands such as “modprobe”

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

on testing for thread-level concurrency faults have rarely been
adapted to work in scenarios in which concurrency faults occur
due to asynchronous interrupts.

There are several techniques for testing embedded systems with a
particular focus on interrupt-level concurrency faults [23, 34, 48, 66].
For example, Regehr et al. [48] use random testing to test Tiny OS
applications. They propose a technique called restricted interrupt
discipline (RID) to improve naive random testing (i.e., firing inter-
rupts at random times) by eliminating aberrant interrupts. However,
this technique is not cognizant of hardware states and may lead
to erroneous interrupts. SimTester [66] leverages VM to address
this problem by firing interrupts conditionally instead of randomly.
Their evaluation shows that conditionally fired interrupts increase
the chances of reducing cost. However, all the foregoing techniques
do not consider interrupt-specific event constraints (e.g., priorities)
and may lead to imprecise results. In addition, they are incapable
of automatically generating test inputs race conditions. In contrast,
our approach can cover all feasible shared variables in the applica-
tion instead of using arbitrary inputs; this can help the program
execute code regions that are more race-prone.

There has been some work on using static analysis to verify
the correctness of interrupt-driven programs [13, 28, 32, 49]. For
example, Regehr et al. [49] propose a method to statically verify
interrupt-driven programs. Their work first outlines the signifi-
cant ways in which interrupts are different from threads from the
point of view of verifying the absence of race conditions. It then
develops a source-to-source transformation method to transform
an interrupt-driven program into a semantically equivalent thread-
based program so that a thread-level static race detection tool can
be used to find race conditions, which is the main benefit of their
approach. Comparing to [49], SDRacer has two advantages. First,
proof of the correctness of code transformation is often non-trivial;
[49] does not provide proofs showing the transformation is correct
or scalable. In contrast, SDRacer is transparent and does not re-
quire any source code transformation or instrumentation and can
be directly applied to the original source code. Second, SDRacer
uses dynamic analysis to validate warnings reported by static race
detectors. Our evaluation showed that SDRacer can eliminate a
large portion of false positives produced by static analysis, whereas
Regehr’s work [49] on seven Tiny OS applications does not evaluate
the precision of their technique.

Jonathan et al. [32] first statically translate interrupt-driven pro-
grams into sequential programs by bounding the number of inter-
rupts, and then use testing to measure execution time. While static
analysis is powerful, it can report false positives due to imprecise
local information and infeasible paths. In addition, as embedded
systems are highly dependent on hardware, it is difficult for static
analysis to annotate all operations on manipulated hardware bits;
moreover, hardware events such as interrupts usually rely on sev-
eral operations among different hardware bits. SDRacer leverages
the advantages of static analysis to guide precise race detection.
Techniques combined with static and dynamic method [61] could
also detect and verify races. However, due to the lack of test case
generation method, Manually efforts are required to inspect codes
and generate test cases to reach race points.

There has been some research on testing for concurrency faults
in event-driven programs, such as mobile applications [8, 26, 27, 35]

122

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

and web applications [24, 47]. Although the event execution mod-
els of event-driven and interrupt-driven have similarities, they are
different in several ways. First, unlike event-driven programs that
maintain an event queue as first-in, first-out (FIFO) basis, inter-
rupt handlers are often assigned to different priorities and can be
preempted. Second, interrupts and their priorities can be created
and changed dynamically and such dynamic behaviors can only be
observed at the hardware level. Third, the events in event-driven
programs are employed at a higher-level (e.g., code), whereas hard-
ware interrupts happen at a lower-level (e.g., CPU); interrupts can
occur only when hardware components are in certain states. The
unique characteristics of interrupts render inapplicable the existing
race detection techniques for event-driven programs.

There has been some research on combining static analysis and
symbolic execution to test and verify concurrent programs [19,
21, 50, 51, 55]. For example, Samak et. al. [51] combine static and
dynamic analysis to synthesize concurrent executions to expose
concurrency bugs. Their approach first employs static analysis to
identify the intermediate goals towards failing an assertion and
then uses symbolic constraints extracted from the execution trace to
generate new executions that satisfy pending goals. Guo et al. [21]
use static analysis to identify program paths that do not lead to any
failure and prune them away during symbolic execution. However,
these techniques focus on multi-threaded programs while ignoring
concurrency faults that occur at the interrupt level. As discussed
in Section 2.5, interrupts are different from threads in many ways.
On the other hand, we can guide SDRacer to systematically explore
interrupt interleavings or to target failing assertions.

8 CONCLUSION AND FURTHER WORK

This paper presents SDRacer, an automated tool to detect, validate
race conditions in interrupt-driven embedded software. SDRacer
first employs static analysis to compute static race warnings. It then
uses a guided symbolic execution to generate test inputs for exercis-
ing these warnings and eliminating a portion of false races. Finally,
SDRacer leverages the ability of virtual platforms and employs a
dynamic simulation approach to validate the remaining potential
races. We have evaluated SDRacer on nice real-world embedded
programs and showed that it precisely and efficiently detected both
known and unknown races. Therefore, it is a useful addition to
the developers’ toolbox for testing for race conditions in interrupt-
driven programs. In the future, we will further improve the accuracy
of static analysis. We also intend to extend our approach to handle
other types of concurrency faults.

ACKNOWLEDGMENTS

The paper was partially supported by the National Key Research
and Development Plan (No.2016YFB1000802), the National Natural
Science Foundation of China (N0.61632015, 61472179, 61561146394,
61572249), and United States NSF grant CCF-1464032.

Automatic Detection and Validation of Race Conditions in
Interrupt-Driven Embedded Software

REFERENCES

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[27]

[28]
[29]

[30

Clang Static Analyzer. https://clang-analyzer.llvm.org, 2016.

KLEE LLVM Execution Engine. https://klee.github.io/, 2016.

KLEE-uClibc. https://github.com/klee/klee-uclibc, 2016.

STP constraint solver. http://stp.github.io/, 2016.

Thread safety analysis, 2016.

http://clang llvm.org/docs/ThreadSafetyAnalysis.html.

Using Clang Tools - LLVM. http://clang.llvm.org/docs/ClangTools.html, 2016.
D. Aspinall and J. Sevéik. Formalising javaAAZs data race free guarantee. In
Theorem Proving in Higher Order Logics, pages 22-37. Springer, 2007.

P. Bielik, V. Raychev, and M. Vechev. Scalable race detection for android
applications. In ACM SIGPLAN Notices, volume 50, pages 332-348. ACM, 2015.
M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: proportional detection of
data races. In ACM SIGPLAN Symposium on Programming Language Design and
Implementation (PLDI), pages 255-268, 2010.

S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized
scheduler with probabilistic guarantees of finding bugs. In Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 167-178,
2010.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs. In USENIX Symposium
on Operating Systems Design and Implementations (OSDI), pages 209-224, 2008.
D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a
parallel programming tool. In ACM SIGPLAN Notices, volume 25, pages 21-30,
1990.

R. Chen, X. Guo, Y. Duan, B. Gu, and M. Yang. Static data race detection for
interrupt-driven embedded software. In Secure Software Integration & Reliability
Improvement Companion (SSIRI-C), 2011 5th International Conference on, pages
47-52, 2011.

K. E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT: effective unit testing
for concurrency libraries. In Principles and Practice of Parallel Programming
(PPoPP), pages 15-24, 2010.

J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers. " O’Reilly
Media, Inc.", 2005.

E. Duesterwald and M. L. Soffa. Concurrency analysis in the presence of
procedures using a data-flow framework. In symposium on Testing, analysis, and
verification, pages 36-48, 1991.

L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm. Ifrit:
Interference-free regions for dynamic data-race detection. In Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 467-484, 2012.

J. Engblom. Systematically exposing os kernel races - an interview with ben
blum, 2012. http://blogs.windriver.com/tools/2012/09/systematically-exposing-
os-kernel-races-an-interview-with-ben-blum.html.

A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic testing. In ACM
SIGSOFT International Symposium on Foundations of software engineering (FSE),
pages 37-47, 2013.

C. Flanagan and S. Qadeer. A type and effect system for atomicity. In ACM
SIGPLAN Symposium on Programming Language Design and Implementation
(PLDI), pages 338-349, 2003.

S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion guided symbolic
execution of multithreaded programs. In ACM SIGSOFT International Symposium
on Foundations of software engineering (FSE), pages 854-865, 2015.

M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue. An effective method
to control interrupt handler for data race detection. In Workshop on Automation
of Software Test, pages 79-86, 2010.

M. Higashi, T. Yamamoto, Y. Hayase, T. Ishio, and K. Inoue. An effective method
to control interrupt handler for data race detection. In Workshop on Automation
of Software Test (AST), pages 79-86, 2010.

S. Hong, Y. Park, and M. Kim. Detecting concurrency errors in client-side java
script web applications. In Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on, pages 61-70, 2014.

S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. Are concurrency coverage
metrics effective for testing: a comprehensive empirical investigation. Journal of
Software Testing, Verification and Reliability, 25(4), 2015.

C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M.
Chen, and J. Flinn. Race detection for event-driven mobile applications. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI "14, pages 326-336, 2014.

Y. Hu, I. Neamtiu, and A. Alavi. Automatically verifying and reproducing
event-based races in android apps. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 377-388, 2016.
W. Huo, H. Yu, X. Feng, and Z. Zhang. Static race detection of interrupt-driven
programs. Journal of Computer Research and Development, 12:016, 2011.

I. Jackson. IRQ handling race and spurious IIR read in 8250.c. Web page.
https://lkml.org/lkml/2009/3/12/379.

S.Joshi, S. K. Lahiri, and A. Lal. Underspecified harnesses and interleaved bugs.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 19-30, 2012.

123

(31]

(32]

(33]

(34]

[35]
[36]

(37]

(39]

[40

(41

[43]

[44]

[45]

[46]

[47]

(48]

[49

[50

[51]

[56

[57

[58

[59

[60]

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race detection for
concurrent programs with asynchronous calls. In ACM SIGSOFT International
Symposium on Foundations of software engineering (FSE), pages 13-22, 2009.

J. Kotker, D. Sadigh, and S. A. Seshia. Timing analysis of interrupt-driven
programs under context bounds. In Formal Method in Computer-Aided Design
(FMCAD), pages 81-90, 2011.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in
symbolic execution. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 193-204, 2012.

Z. Lai, S.-C. Cheung, and W. K. Chan. Inter-context control-flow and data-flow
test adequacy criteria for nesc applications. In ACM SIGSOFT International
Symposium on Foundations of software engineering (FSE), pages 94-104, 2008.

P. Maiya, A. Kanade, and R. Majumdar. Race detection for android applications.
In Conference on Programming Language Design and Implementation (PLDI), 2014.
J. Manson, W. Pugh, and S. V. Adve. The Java memory model, volume 40. ACM,
2005.

P. D. Marinescu and C. Cadar. Make test-zesti: A symbolic execution solution for
improving regression testing. In International Conference on Software
Engineering (ICSE), pages 716726, 2012.

D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling for
lightweight data-race detection. In ACM SIGPLAN Symposium on Programming
Language Design and Implementation (PLDI), pages 134-143, 2009.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding
and reproducing Heisenbugs in concurrent programs. In USENIX Symposium on
Operating Systems Design and Implementations (OSDI), pages 267-280, 2008.

M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection. In
International Conference on Software Engineering (ICSE), pages 386—396, 2009.
A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov. Ballerina: Automatic
generation and clustering of efficient random unit tests for multithreaded code.
In International Conference on Software Engineering (ICSE), pages 727-737, 2012.
R. O’callahan and J.-D. Choi. Hybrid dynamic data race detection. ACM
SIGPLAN Notices, 38(10):167-178, 2003.

L. Osterman. Larry Gets Taken to Task on Concurrency, 2005.
https://blogs.msdn.microsoft.com/larryosterman/2005/02/11/larry-gets-taken-
to-task-on-concurrency/.

E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in
multithreaded C++ programs, volume 38. ACM, 2003.

M. Pradel and T. R. Gross. Fully automatic and precise detection of thread safety
violations. In ACM SIGPLAN Symposium on Programming Language Design and
Implementation (PLDI), pages 521-530, 2012.

R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scalable and precise
dynamic datarace detection for structured parallelism. In Conference on
Programming Language Design and Implementation (PLDI), 2012.

V. Raychev, M. Vechev, and M. Sridharan. Effective race detection for
event-driven programs. In ACM SIGPLAN Notices, volume 48, pages 151-166.
ACM, 2013.

J. Regehr. Random testing of interrupt-driven software. In ACM international
conference on Embedded software (EMSOFT), pages 290298, 2005.

J. Regehr and N. Cooprider. Interrupt verification via thread verification.
Electronic Notes in Theoretical Computer Science, 174(9):139-150, 2007.

M. Samak, M. K. Ramanathan, and S. Jagannathan. Synthesizing racy tests. In
ACM SIGPLAN Notices, volume 50, pages 175-185. ACM, 2015.

M. Samak, O. Tripp, and M. K. Ramanathan. Directed synthesis of failing
concurrent executions. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 430-446. ACM, 2016.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391-411, 1997.

K. Sen. Effective random testing of concurrent programs. In International
Conference on Automated Software Engineering, pages 323-332, 2007.

K. Sen. Race directed random testing of concurrent programs. In ACM SIGPLAN
Symposium on Programming Language Design and Implementation (PLDI), pages
11-21, 2008.

K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In International Conference on Computer Aided
Verification, pages 419-423, 2006.

SSE Instructions: Which CPUs Can Do Atomic 16B Memory Operations?, 2014.
http://stackoverflow.com/questions/7646018/sse-instructions-which-cpus-can-
do-atomic-16b-memory-operations.

B. Steensgaard. Points-to analysis in almost linear time. In ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL),
pages 32-41, 1996.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking
programs. Autom. Software. Eng., 10(2):203-232, 2003.

V. Vojdani, K. Apinis, V. Rotov, H. Seidl, V. Vene, and R. Vogler. Static race
detection for device drivers: The goblint approach. In IEEE/ACM International
Conference on Automated Software Engineering, pages 391-402, 2016.

C. von Praun and T. R. Gross. Static conflict analysis for multi-threaded
object-oriented programs. In ACM SIGPLAN Symposium on Programming
Language Design and Implementation (PLDI), pages 115-128, 2003.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

[61]

Y. Wang, J. Shi, L. Wang, J. Zhao, and X. Li. Detecting data races in
interrupt-driven programs based on static analysis and dynamic simulation. In
Asia-Pacific Symposium on Internetware, pages 199-202, 2015.

[62] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis

[63]

using binary decision diagrams. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 131-144, 2004.

A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for java
libraries. In European Conference on Object-Oriented Programming (ECOOP),
pages 602-629, 2005.

[64] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: a coverage-driven

testing tool for multithreaded programs. In International Conference on

124

[65]

[66]

[67]

Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong LI

Object-Oriented Programming Systems, Languages and Applications (OOPSLA),
2012.

T. Yu, X. Qu, and M. B. Cohen. Vdtest: an automated framework to support
testing for virtual devices. In International Conference on Software Engineering
(ICSE), pages 583-594, 2016.

T. Yu, W. Srisa-an, and G. Rothermel. Simtester: a controllable and observable
testing framework for embedded systems. In ACM SIGPLAN Notices, volume 47,
pages 51-62, 2012.

Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of data race
conditions via adaptive tracking. In ACM SIGOPS Operating Systems Review,
volume 39, pages 221-234, 2005.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Interrupt-driven Embedded Systems
	2.2 Race Conditions in Interrupt-driven Programs
	2.3 A Motivating Example
	2.4 Leveraging Virtual Platforms in Testing
	2.5 Comparing to Thread-level Race Detection Techniques

	3 SDRacer Approach
	3.1 Static Analysis
	3.2 Guided Symbolic Execution
	3.3 Dynamic Validation of Race Conditions
	3.4 Implementation

	4 Empirical Study
	4.1 Objects of Analysis
	4.2 Dependent Variables
	4.3 Threats to Validity

	5 Results and Analysis
	5.1 RQ1: Effectiveness of SDRacer
	5.2 RQ2: Efficiency of SDRacer

	6 Discussion
	6.1 Summary of Results
	6.2 Further Discussion

	7 Related work
	8 Conclusion and further work
	Acknowledgments
	References

