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ABSTRACT 1 INTRODUCTION

Software performance is important for ensuring the quality of soft-
ware products. Performance bugs, defined as programming errors
that cause significant performance degradation, can lead to slow
systems and poor user experience. While there has been some
research on automated performance testing such as test case gen-
eration, the main idea is to select workload values to increase the
program execution times. These techniques often assume the initial
test cases have the right combination of input parameters and focus
on evolving values of certain input parameters. However, such an
assumption may not hold for highly configurable real-word appli-
cations, in which the combinations of input parameters can be very
large. In this paper, we manually analyze 300 bug reports from three
large open source projects - Apache HTTP Server, MySQL, and
Mozilla Firefox. We found that 1) exposing performance bugs often
requires combinations of multiple input parameters, and 2) certain
input parameters are frequently involved in exposing performance
bugs. Guided by these findings, we designed and evaluated an auto-
mated approach, PerfLearner, to extract execution commands and
input parameters from descriptions of performance bug reports and
use them to generate test frames for guiding actual performance
test case generation.
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Software performance is critical to the quality of a deployed system.
A performance bug can cause significant performance degrada-
tion [3], leading to problems such as poor user experience, long
response time, and low system throughput [6, 21, 28, 33, 48]. Com-
pared to functional bugs that typically cause system crashes or
incorrect results, performance bugs are substantially more difficult
to handle [3, 10] because they often manifest themselves by special
inputs and in specific execution environments [33, 36]. Over the
past decade, numerous research efforts have been made to analyze,
detect, and fix performance bugs (7, 22, 28, 29, 34, 36]. For example,
many profiling techniques [28] have been proposed to dynamically
determine what program entities (e.g., methods) are responsible for
the excessive execution time and resource consumption given an
input.

Profiling methods depend on the chosen set of input values,
which is a known weakness [46] for successfully detecting per-
formance bugs in the subject under test. To address this problem,
several test case generation techniques have been proposed to
generate large workload test inputs for increasing the chance of
exposing performance bugs [7, 41]. However, there are several lim-
itations in existing performance test generation techniques — many
techniques focus on evolving the values of certain input parameters
while keeping the other parameters as default. For example, Burnim
et al. [7] focus on increasing the workload values of data inputs
while keeping the values of configuration options as default. These
techniques may be ineffective at detecting performance bugs due
to combinatorial effects of different input parameters. For example,
in Apache bug#52914, the performance bug is exposed only when
the configuration options KeepAlive and RequestReadTimeout
are specified. Otherwise, by using the default configuration, this
performance bug cannot be triggered even if the workload (e.g., the
number of requests) is increased.

While a full performance testing with all combinations of input
parameters can address the above problem, it is infeasible due to
the enormous combination space. For example, the latest version
of Apache HTTP Server has 618 input parameters (610 configura-
tion options and 8 types of data inputs). It is impractical to try all
combinations of values for these input parameters. To reduce the
cost of performance testing, Shen et al. [46] use a genetic algorithm
(GA) as a search heuristic for obtaining combinations of input pa-
rameter values that maximize the execution time. However, this
technique evolves all input parameters, which can be inefficient
because many parameters may not provide contributions to the
application’s performance.
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The goal of our research is twofold. First, we want to understand
to what extent performance bugs are related to the combinations
of input parameters. A study on performance bug reports from
bug tracking systems, such as Bugzilla, can help us understand
the characteristics of input parameters and their contributions to
performance bugs. Second, we aim to develop a framework to auto-
matically generate combinations of input parameters, also called
test frames (discussed in Section 2), for guiding the generation of
actual performance test cases'. To the best of our knowledge, no
existing research achieves the same goal.

Our main idea is to mine information from the application’s
bug reports to identify commands (i.e., commands for executing
the program) and input parameters (i.e., configuration options and
data inputs) that have caused performance bugs and use them to
generate test frames for testing newer versions of the application.
PerfLearner is used during software maintenance and evolution,
where the projects’ issue tracking systems have been established.
Specifically, we extract and rank commands and input parameters
from each bug report. We then generate test frames (a combination
of the commands and input parameters) for each bug report and
prioritize the most frequently generated test frames among all bug
reports. Our hypothesis includes: 1) bug reports contain a specific
set of vocabulary related to commands and input parameters that
can make the automated text extraction possible; 2) commands and
input parameters appearing frequently in performance bug reports
may be more likely to trigger performance bugs than the infrequent
ones. PerfLearner is applicable software projects with established
issue tracking systems.

In this research, we manually identified and analyzed 300 perfor-
mance bug reports from three popular open source projects. We
discovered that it is possible to leverage information retrieval and
natural language processing techniques to extract commands and
input parameters from bug reports. We found that some input pa-
rameters are more likely to cause performance bugs and should
be used with higher priority in performance testing. Based on our
findings, we develop PerfLearner, an approach that combines natu-
ral language processing and information retrieval to automatically
extract relevant commands and input parameters from bug reports
and use them to generate performance test frames for guiding per-
formance testing.

In summary, our paper makes the following contributions:

e We develop a tool, PerfLearner, that can automatically ex-
tract performance-related commands and input parameters,
and generate performance test frames from the bug reports.
To the best of our knowledge, this is the first work that au-
tomatically generates test frames from bug reports written
in natural language.

e We implement PerfLearner and conduct an empirical study
to demonstrate its effectiveness and efficiency in generating
performance test frames and detecting real performance
bugs.

We envision the approach to be applied to at least two scenar-

ios. First, given a performance bug report, a developer who wants
to know the commands and input parameters that have caused

! An actual test case is built from a test frame by specifying a concrete value for each
input parameter [37].
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this bug, may analyze the bug report with PerfLearner. Second, a
testing engineer can use PerfLearner to generate and prioritize per-
formance test frames from the historical performance bug reports.
The test frames can be converted into actual test cases by giving
input parameters with concrete values. Note that PerfLearner is
orthogonal to existing performance testing tools. Existing tools
focus on increasing the values of certain workload-sensitive input
parameters while assuming the test frames (i.e., the combination
of input parameters) exist. Therefore, PerfLearner can be used to
enhance the effectiveness and efficiency of existing performance
testing tools.

To evaluate the approach, we apply PerfLearner to 300 bug re-
ports collected from Apache HTTP Server, MySQL, and Firefox
bug tracking systems. Our results show that PerfLearner is able
to extract commands and input parameters from performance bug
reports with a high accuracy. When using PerfLearner to generate
test frames, compared to a state-of-the-art combinatorial testing
(CT) technique, it generates significantly less (59.5%) test frames
on average to get the ground truth test frame. When combining
PerfLearner with an existing performance test input generation
tool [46] to detect 10 randomly selected performance bugs, Per-
fLearner detects 7 out of 10 bugs within a reasonable time whereas
when using the test input generation tool alone failed to detect all
10 bugs.

2 BACKGROUND

The concept of test frame was first introduced in the category-
partition method with test specification language (TSL) [37]. TSL
was created to define combinations of program input parameters
and environment factors. Each combination is a test frame that
can be converted into actual test cases. A performance test frame
consists of three input categories: command, configuration, and
data input. A test frame can have one command in the command
category, zero or more configuration options in the configuration
category, and zero or more data inputs in the data input category.
Each command, configuration option, and data input in a test frame
is generally referred to as a test frame element or frame element.

We define a command as an action to execute a functional unit [37]
of the program. For example, the MySQL server has several data
manipulation commands, including SELECT, UPDATE, and INSERT.
These commands correspond to three different functional units:
retrieve, modify, and add data records. We define input parameters
as explicit input points along with the command. An input param-
eter can be a configuration option or a data input. Configuration
options refer to a set of predefined options, e.g., command-line
options or directives in a configuration file. Data inputs refer to the
user-supplied data that is processed by the command. For example,
the data input associated with the command UPDATE is the name of
a table COLUMN.

Figure 1 shows a performance bug report snippet with the as-
sociated test frame and a test case. The test frame for manifesting
this performance bug involves three frame elements: a command
UPDATE, a configuration option innodb_fill_factor, and a data
input COLUMN. A frame element can be workload-sensitive. In this ex-
ample, the UPDATE command is workload-sensitive because a large
number of UPDATE queries is required to trigger the performance
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Bug Description
Updates to indexed column much slower in 5.7.5. Repeating the test

done for Heap engine on InnoDB shows a big regression for updates
to an indexed column. InnoDB is more than 2X slower than 5.6.21
and 4X slower than 5.0.85. ...innodb_fill_factor whose default value
is 100 ...

Test Frame

<update>[workload] <innodb_fill_factor> <column>

Test Case

update foo i =i + 2 where i = 100 innodb_fill factor=100
mysqlslap -number-of-queries=100

Figure 1: MySQL bug #74325

bug. In MySQL, a workload can be simulated by benchmark tools?
such as mysqglslap. Since many performance test generation tech-
niques have been focusing on identifying the workload-sensitive
inputs [18, 50], pinpointing the workload from a bug report may
speed up this process for performance test case generation tech-
niques. The actual test case is created by assigning concrete values
to frame elements.

3 PERFORMANCE BUG STUDY

Before designing our approach, we wish to understand to what
extent performance bugs are related to certain commands and input
parameters.

3.1 Data Collection

We chose three large open source software projects: Apache HTTP
Server, MySQL Database Server, and Mozilla Firefox Browser. With
publicly accessible source code and well-maintained bug tracking
systems, these projects have been widely used as subject programs
by existing bug characteristic studies [28, 54, 55].

We collected performance bugs from bug tracking systems of
Apache, MySQL, and Firefox. We searched these systems using a
set of commonly used general keywords and phrases to describe
the symptoms of performance bugs, such as “slow”, “latency”, and
“low throughput” [23]. We also searched terms that attribute to a
specific aspect of the performance problems such as “CPU spikes”,
“cache hit”, and “memory leak” to identify performance bugs. Next,
we selected reports with the bug status field marked as either
“RESOLVED", “VERIFIED", or “CLOSED" and the resolution field
marked as “FIXED".

The whole process yielded a total of 1383 bugs. With a large
amount of the returned bug reports, we calculate the needed sample
size is 300, given a confidence level of 95% and a confidence interval
of 5. This sampling strategy has been commonly used by existing
work [2, 20].

We manually examined 300 bugs in a random order, and during
the manual inspection, we follow those reports that have sufficient
bug description details and discussions posted by commentators.
For each bug report, we try to identify commands, configuration
options, data inputs, and workload that cause the performance bug.

To ensure the correctness of our results, the manual inspection
was performed independently by two inspectors — graduate stu-
dents who have 2-4 years of industrial web development experience

2 A benchmark tool is used to measure the performance of the program under test with
synthesized workload.
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Table 1: Subjects and Their Characteristics

Application|Searched Bugs|Sampled Bugs|# of CMD|# of CO|# of DI
Apache 428 100 10 610 8
MySQL 455 100 11 1240 5
Firefox 500 100 24 563 17

Total 1383 300 45 2413 30

with Apache, MySQL, and Firefox. We hold two training sessions
of 30 minutes each to explain to inspectors the test frame elements
to be extracted from the bug report. Each inspector is given the
same set of bugs each week to write down what they consider to
be the command, configuration options, data inputs, and workload
that trigger the bug in the report. Inspectors met twice a week to
compare and consolidate their findings. A bug report is selected
only when both inspectors agree on the outcome of the manual
inspection. We refer to the consensus outcome as ground truth
frame elements for the bug reports. This process terminates for
each subject after 100 bug reports have been included in the sample
dataset.

The number of bugs sampled is similar to recent works on per-
formance bug study [10, 23, 28, 56]. While a larger number of bug
reports may yield a better evaluation, the cost of the manual pro-
cess is high — our data collection process took a total of 320 to
400 hours spanning across more than 10 weeks. Columns 1-3 of
Table 1 list the subject programs, the number of bugs returned by
the keyword search, and the number of performance bugs sampled
after manual inspection. Columns 4-7 list the number of commands,
configuration options, and data inputs available in all three subjects.
The full lists of the three categories are saved in separate frame
element databases, including command database, configuration data-
base, and data input database. We collected such information by
studying all artifacts that are publicly available to users, including
documents (e.g., user manuals and online help pages), configuration
files, and source code. Each database can be updated separately to
accommodate changes in different application versions.

3.2 Results Analysis

After manually analyzing 300 bug reports, we summarize the fol-
lowing findings:

e A majority (89% to 92%) of studied performance bugs in-
volves more than one input parameters (i.e., configuration
options and data inputs): 91% in Apache, 92% in MySQL,
and 89% in Firefox. These results imply that combinatorial
effects among input parameters should be considered in per-
formance testing.

o A significant number (41%) of performance bugs are related
to configurations: 58% in Apache, 41% in MySQL, and 25%
in Firefox. These results are consistent with a recent perfor-
mance bug study [23].

e Only 23% of bugs require specific workload values to mani-
fest: 21% in Apache, 29% in MySQL, and 19% in Firefox. These
results imply that workload is only part of the requirement
for exposing performance bugs; other factors, such as config-
uration options, should also be considered for performance
testing.
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Figure 2: Overview of the PerfLearner framework

e Among all 45 commands and 30 inputs for the three soft-
ware projects, 55% of them appear more than three times
in the studied bug reports. Among all 2413 configuration
options for the three software projects, only 5% of them are
related to the studied performance bug reports and 57% of
them appear more than one time. These results suggest that
a small subset of configuration options tend to affect appli-
cation’s performance, so performance testing might focus
mainly on such options to improve the efficiency of testing.
In addition, test frame elements that appear multiple times in
performance bug reports might be more likely to cause per-
formance bugs than the others and should be given higher
priority in performance testing.

4 PERFLEARNER APPROACH

Guided by the findings in Section 3, we design and develop Per-
fLearner, an automated approach for extracting performance test
frames from bug reports. Figure 2 shows an overview of the Per-
fLearner framework. PerfLearner consists of three steps: frame
element extraction, test frame generation, and performance test
case generation. The shaded boxes indicate the information sup-
plied by users.

Frame Element Extraction. Given a performance bug report, Per-
fLearner automatically extracts frame elements and their associated
workload from the report. PerfLearner assumes that a bug report
has already been labeled as “performance bug", although existing
techniques on classifying bug reports [17, 47, 49] can be adopted to
automatically classify performance bugs. The list of frame elements
are application and domain-specific, e.g., each application is associ-
ated with a list of different configuration options. The bug corpora
for each application is built from sources described in Section 3.1.
The output of this step is a list of ranked frame elements and their
associated workload (if any) under each input category for each
bug report.

Performance Test Frame Generation. PerfLearner utilizes ranked
frame elements, a strength file, and a constraint file to generate
performance test frames. The strength file, which is used to restrict
the number of test frames, specifies the strength® of interaction
among elements within each input category. The constraint file

3Combinatorial testing of strength # (t > 2) requires that each t-wise tuple of values
of the different system input parameters is covered by at least one test case [8].
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specifies the constraints among frame elements to ensure their
combinations are valid. Both files are defined once by developers
for each application, and generic to all bug reports in the same
application. Next, PerfLearner generates a set of test frames for
each performance bug report by combining the selected commands
and input parameters with respect to the strength and constraint
files. These test frames are closely related to the performance bug
described in the report. Finally, PerfLearner counts the frequency
of test frames generated from all bug reports and ranks them in
a descending order. The top-ranked test frames are used first to
generate performance test cases.

Performance Test Case Generation. PerfLearner iteratively selects a
test frame from the ranked test frames and converts it into actual
performance test cases by assigning frame elements with concrete
values. PerfLearner can be combined with existing performance
testing tools, such as profiling and test generation tools. The cur-
rent version of PerfLearner is combined with a performance test
input generation tool [46] that uses a search-based algorithm to
automatically generate input values to expose performance bugs.

4.1 Test Frame Element Extraction

For each bug report that is labeled as a performance bug report,
PerfLearner extracts commands, configuration options, data inputs,
and the associated workload. A straightforward approach is to
match frame element databases against each bug report using a
“grep"-like method. The matched elements can then be ranked by
counting their occurrences - the element with the highest count
is more likely to be the ground truth frame element for the perfor-
mance bug. However, in a bug report written in natural language,
many words can be ambiguous in their meaning - the same word
can refer to a command or a configuration option depending on the
context. For example, in the Apache bug #52914, the word token
timeout can be matched as either a command or a configuration
option. In addition, simply counting the occurrence of a token may
result in false positives. In the Apache bug #52914, both start and
request appear in the bug report, so both tokens would be matched
as commands of this bug report. Incidentally, the count of start
is actually higher than the count of request, although the ground
truth command is request.

PerfLearner employs two strategies to address the above prob-
lems. First, PerfLearner uses natural language processing and in-
formation retrieval, together with user manuals to address the
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Table 2: Number of Patterns to Detect Frame Elements

Application # of Matched Patterns
Commands (8) | Data Inputs (4) | Workload (6)
Apache 104 77 168
MySQL 228 159 453
Firefox 203 146 270

Definitions: [CMD]e{drop, create, ...}, [SYMP] {slow, long, ...}
Pattern:[CMD]+[SYMP]

Description: Command verbs appear in the same sentence that
symptoms exist.

Example: [DROP]carp TABLE on very large tables can be very
[slow]synp.

Figure 3: A common pattern to identify command

Definitions: <ADP>€{to, on, ..}, <NOUN>€e{[DATA INPUT]},
[CMD] €{update, insert, ...}

Pattern: [CMD]+<ADP>+<NOUN>

Description: Data input is identified as the subject of the command.
Example: [update]carp [to]app indexed [column] yoy N much
slower in 5.7.5

Figure 4: A common pattern to identify data inputs

Definitions: [INPUT]€f{file, html, ...}, <VERB>€{contain, has, ...},
<ADJ>€{long, large, ...}

Pattern: [INPUT]+<VERB>+<ADJ>+<NOUN>

Description: Workload details the content of data inputs.
Example: a text [file];npu T [containing]verp a very [longlapy
[line]nouN

Figure 5: A common pattern to determine a workload

mismatch problem between the frame elements (query) and bug
reports (documents). Second, we summarize 18 linguistic patterns
that are commonly used to describe commands (eight patterns),
input parameters (four patterns), and workload in bug reports (six
patterns). While the frame elements are application-specific, the
linguistic patterns are generic and hence can be reused for different
applications.

To avoid overfitting, the first author summarized the linguistic
patterns from the 1083 bug reports (excluding the 300 sampled bug
reports in the dataset). In the experiment, these patterns are applied
to the 300 bug reports. We can automatically detect the presence
of these patterns to locate sentences describing a particular input
category and identify the frame element under that category more
accurately. Table 2 shows the number of patterns we identified in
all sentences from the 300 bug reports. While there has been some
research on using linguistic patterns in other software activities,
such as analyzing developer intention [11, 30] and detecting missing
information [9], little work is known on using linguistic patterns
to identify commands and input parameters.

4.1.1 Commands. We observe that a command often appears with
the bug symptom in one sentence. For example, the sentence de-
scribing the symptom of Apache bug #52914 is “I could reproduce
the 100% CPU with POST requests”, where the symptom is “100%
CPU" and the command is request. If we identify sentences con-
taining bug symptoms, it narrows down the search and improves
the accuracy of finding the performance bug-triggering commands.
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We have defined six linguistic patterns using the part-of-speech
tag for detecting (one or more) sentences containing symptoms. If
such sentences are detected, PerfLearner matches the command
against these sentences and counts their occurrences. The identified
k commands are ranked at the top k position in a descending order
with respect to their occurrences.

Our patterns can precisely identify commands in 91% perfor-
mance bug reports (i.e., ranked at the top-1), compared to the 78%
precision rate by the “grep"-like method. The most frequently used
pattern, as seen in Figure 3, illustrates a pattern that uses a verb
and a phrase, where the verb refers to the command element and
the phrase refers to the predefined list of phrases indicating per-
formance bug symptoms. If any of the symptoms appear in the
sentence, the verb is identified as a candidate of the bug-triggering
command. If no symptom sentences are detected, PerfLearner prior-
itizes sentences that appeared in the bug report title as well as the
first post, and uses the ‘grep"-like method to count the occurrences
of commands. If no command sentences are detected, the same
approach is applied to the entire bug corpus.

4.1.2 Data Inputs. PerfLearner ranks data inputs in a similar way
as commands because simply matching a bug report against the ele-
ments in data input is imprecise. PerfLearner defines four linguistic
patterns to detect sentences that contain data inputs and rank data
inputs within these sentences. Figure 4 shows one of the commonly
used patterns. This pattern indicates that data inputs coexist with
commands in the same sentence. Specifically, the sentence starts
with a command (i.e. update), followed by a preposition (i.e. to, on)
and the data input (i.e. column).

4.1.3 Configuration Options. Unlike commands and data inputs,
we observe that many configuration options cannot be directly
searched from bug reports. One solution is to leverage information
retrieval (IR) algorithms such as TF-IDF [40] and cosine similar-
ity [16] based on the vector space model (VSM) to rank config-
uration options in terms of their relevance to the bug report. A
straightforward method is to split the configuration name into to-
kens to calculate its cosine similarity to the bug report. However,
we observe that many configuration options share with the same
tokens. Since a configuration option name is often short, this ap-
proach may result in many equally ranked configuration options.
For example, in Figure 1, innodb_buffer_pool_instances and
innodb_buffer_pool_size would be ranked equally if “innodb",
“buffer”, and “pool" are the three word tokens appearing in the
report.

To improve the accuracy of ranking, we leverage manuals that
describe configuration options to bridge the lexical gap between
configuration option names and bug reports. In the example of
Figure 1, the manual description of innodb_fill_factor (Figure 7)
contains words such as “b-tree”, “index", and “space”, which also
appear in the bug report, can be used to link the configuration
option to the bug report effectively.

To compute the similarity between a configuration option o and
a bug report br, we first concatenate o with its textual description,
where 0 = 0U o.desc. PerfLearner then processes o by standard NLP
pre-processing steps: word tokenization and stop word removal. The
tokenization converts bug reports into a “bag of words” using white
spaces. We then remove punctuation, numbers, and standard stop
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words. Compound words, such as the configuration option name
Browser.chrome.image_icons.max_size can be split by camel
case, dots, or underlines into tokens.

Next, all words are reduced to their base form using lemmatiza-
tion. Unlike stemming that simply chops off the ending of a word,
lemmatization involves a complex word analysis and generally pro-
vides better results. Finally, we also remove repeated text sections,
as quotations of the previous commentator in the bug report hap-
pen very frequently and the repeated text would affect the accuracy
of text token distribution. Each bug tracking system may have their
own mechanism to mark quotations. For example, Bugzilla based
bug tracking systems, quotation starts with the greater sign (“>”)
symbol on each new line and the quotation block has a CSS class
of “quote”. Developers can design their own match patterns for
removing quotations and plug it into PerfLearner.

After processing o (the combined configuration option and its
description), let V be the vocabulary of all text tokens from both the
bug report br and o. Let r = [w; p,|t € V] and 0 = [wy o[t € V] be
the VSM representations of the bug report br and the configuration
option o. The term weights w; ;, and w;, , are computed using the
classical TF-IDF method described in existing literature [16]. After
the vector space representations are computed, the textual similarity
score between o and br can be calculated using the standard cosine
similarity between their corresponding vectors:

sim(br, 0) = cos(br, 0) = %

The score is computed by the inner product of the two vectors,
divided by their Euclidean distance. For MySQL bug #74325 (Fig-
ure 1), by utilizing the configuration API description (Figure 7),

PerfLearner ranks innodb_fill_factor at the top.

4.1.4 Identifying Workload. In performance testing, we need to
know which frame elements are workload-sensitive, so testing
can focus on generating workload values for these elements. We
have defined six linguistic patterns to identify such frame elements.
The most frequently used pattern is to locate sentences containing
benchmark tool names. Benchmark tools are often used to simu-
late workload in performance bug reports. For instance, MySQL
bug report #74325 uses benchmark tool mysqlslap to generate
a large number of database updates. Therefore, by searching for
the benchmark name mysqlslap, we can detect that update is
workload-sensitive. This pattern applies to 44.2% of performance
bug reports involving specific workload.

The second commonly used linguistic pattern detects sentences
describing workload information of data inputs (Figure 5). In this
pattern, the data input (i.e. a text file) is followed by a verb (i.e.
containing) that details the content of input data (i.e. a very long
line). Once this pattern is detected, the corresponding data input is
considered to be workload-sensitive.

4.2 Performance Test Frame Generation

PerfLearner generates performance test frames from the ranked
frame elements, the workload specification, a strength file, and a
constraint file. The strength file specifies top-N frame elements
under each input category to be used for test frame generation. The
constraint file is used to enforce constraints of interaction among
frame elements, which can limit the number of (invalid) frames
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Figure 6: An example of performance test frame generation

InnoDB performs a bulk load when creating or rebuilding indexes.
This method of index creation is known as a “sorted index build".
innodb_fill factor defines the percentage of space on each B-tree
page that is filled during a sorted index build, with the remaining
space reserved for future index growth.

Figure 7: API description for innodb_fill_factor

to be generated. The constraints are manually derived from user
manuals. Both files are provided by users and generic to all bug
reports within the same application.

Figure 6 shows a partial constraint file of MySQL. The data def-
inition command DROP in the SQL works with DATABASE and
TABLE but not with COLUMN. We use if to enforce conditions
on which frame elements can be combined. To enforce the rule
that UPDATE works with TABLE but not DATABASE, condition [if
CMDUpdate] is added for data inputs COLUMN and TABLE. Condi-
tion [if CMDDrop] is added for data inputs DATABASE. Therefore,
when UPDATE is chosen, it can only be combined with COLUMN
and TABLE. Our experiment indicates that adding constraints can
reduce 70% of test frames.

In the example of Figure 6, the strength file indicates that top-
2 commands (n.), top-5% configuration options (p,), and top-2
data inputs (ng;) are selected to generate test frames. Because the
number of options is often large, we use a percentage of the total
number of configuration options to indicate the selected number
of configuration options. The three symbols t., t,, and t; indicate
the interaction strengths for commands, configuration options, and
data inputs respectively. In Figure 6, a pair-wise combination (£,=2)
is applied to the configuration options and no combinations are
used for the command (¢.=1) and data inputs (t;=1). Figure 6 also
shows the default strength file used by PerfLearner. These strength
values are chosen based on our empirical evaluation as they are the
minimum requirements for generating test frames achieving up to
90% accuracy. We also evaluated the sensitivity of these values in
Section 7.
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Algorithm 1 PerfLearner Test Frame Generation

Require: StrenF, ConsF, BugReports, LPtn
Ensure: TFprio

1: for br € BugReports do

2: RL¢ g < RankCmd (br, DB¢p,a, LPtn.cmd)
RL;, < RankConfig (br, DB.,)
RLy4; « RankData (br, DBy;, DBy;, LPtn.di)
L,,; <« GetWorkload (br, DBy;, LPtn.wl)
RL « SelectElements (RL¢ma, RLco, RLgj, StrenF)
TFy, « GenerateFrames (RL, L,,;, ConsF)

8: TF < TFp, UTF

9: end for
10: TFprio < RankFreq (TF)

Algorithm 2 Combining PerfLearner with Testing Tools

Require: TFprio

Ensure: TestResults
L: for tf € TFprio do
2 for e € tf do
3: category « GetInputCategory(e)

4 if HasWorkload(e) then

5 e «— IntegrateWorkload(category, e)

6: end if

7: texml « UpdateTestCase(e)

8 end for

9 TestResults «— RunPerfTestTool(tc.xml)

0: end for

1

Algorithm 1 describes the process of generating performance
test frames. The algorithm takes as input a list of bug reports from
an application, a strength file, and a constraint file. For each bug
report, the algorithm obtains a ranked list for each input category
(Lines 2-4) and a list of workload (Line 5). It then selects frame
elements from the ranked lists with respect to the strengths. Next,
a list of candidate test frames is generated given the selected frame
elements and the constraints (Line 7). Finally, the algorithm ranks
test frames collected from all bug reports (Line 10) in terms of the
frequency of their appearance. Test frames ranked higher indicate
they may be more likely to cause performance bugs. The last column
of Figure 6 shows an example of the five test frames generated.

4.3 Performance Test Case Generation

Algorithm 2 outlines the process of generating performance test
cases from test frames. First, PerfLearner iteratively selects a test
frame from the prioritized list output by Algorithm 1. For each
frame element, the algorithm checks for its input category. If the
frame element is workload-sensitive, depending on the input cate-
gory, the algorithm applies workload in two ways (Line 5). For the
command category, the benchmark option that controls workload
is included in the test case generation. For other input categories,
the input size is included in the test case generation. The algorithm
updates the test case as it gets more information from frame ele-
ments (Line 7). Specifically, the test frame is converted into an XML
file (tc.xml) of which structure is known to the test case generation
tools. Finally, the test input (tc.xml) is supplied to the performance
testing tool. It is up to the performance testing tool to determine
how to assign input values and execute the subject under test to
detect performance bugs.

5 IMPLEMENTATION

We implemented a web crawler using the Python Beautiful Soup
library [5] to collect raw bug reports and API documentations.
We then leveraged Python Natural Language Toolkit (NLTK) [35]
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to parse the description of the bug reports and match linguistic
patterns against the new bug reports with regular expressions on
part-of-speech tags. For the information retrieval component, we
utilized the Python machine learning library scikit-learn [45] to
get the TF-IDF matrix and cosine similarity scores. Lastly, we im-
plemented Python programs to handle the performance test frame
generation.

6 EVALUATION OF PERFLEARNER

We evaluated PerfLearner on three open source projects with char-
acteristics described in Section 3.1. We aim to answer the following
research questions:

RQ1: How accurate is PerfLearner at detecting performance bug-
triggering frame elements and workload?

RQ2: How effective and efficient is PerfLearner at generating per-
formance test frames?

RQ3: Can PerfLearner enhance existing performance testing tools
for detecting performance bugs?

6.1 Techniques and Metrics

RQ1: Accuracy of Bug Reports Analysis. To answer RQ1, we evalu-
ate the accuracy of PerfLearner in extracting frame elements and
workload. The techniques for extracting commands, configuration
options, data inputs, and workload are denoted as CD, CO, DI, WL,
respectively. Each technique is compared to a baseline method to
evaluate the effects of using advanced techniques such as linguistic
patterns and information retrieval (TF-IDF, Cosine Similarity etc.).
Specifically, we compare CD, CO, DI to three baseline techniques —
CDs, COys, and DI;. These baseline techniques use a keyword match
and count the occurrence of each frame element appearing in a
bug report. To evaluate the usefulness of configuration manuals
in extracting configuration options, we also compare CO to COy.
COg uses only tokens in the configuration option name without
configuration manuals to make the similarity comparison. Since the
workload describes whether a frame element is workload-sensitive,
the keyword counting is not applicable in this case. Nevertheless,
to evaluate the usefulness of linguistic patterns in identifying the
workload, the baseline technique WL, randomly selects a frame
element and treats the element as workload-sensitive.

We use two metrics to evaluate the effectiveness of ranking. The
first metric is the top-N success rate, which is computed by ranks of
ground truths within top N items over all bug reports. For example,
if 20 out of 100 performance bug reports rank the ground truth of
configuration options in the top 5% of all 600 configuration options,
the top-N (N=5%) success rate is 20%. When there are multiple
elements specified as the ground truth, we only consider the first
one that PerfLearner can find. Since workload is directly identified
without ranking, we examine the percentage of bug reports in
which ground truth workload is found.

For the second metric, we use MAP (Mean Average Precision).
MAP is a single-figure measure of ranked retrieval results indepen-
dent of the size of the top list [44]. It is designed for general ranked
retrieval problems, where a query can have multiple relevant docu-
ments. To compute MAP, it first calculates the average precision
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(AP) for each individual query Q;, and then calculates the mean of
APs on the set of queries Q:

MAP = &+ > AP(Q)
Qi€Q

To illustrate the MAP calculation, suppose there are two configu-
ration options o1 and 02 associated with a bug report. If Technique-I
ranks the two options at the 1st and 2nd positions among all 500
options and Technique-II ranks the two options at the 1st and 3rd
positions, then the MAP of Technique-Iis (1/1 + 2/2)/2 = 1 and the
MAP of Technique-IT'is (1/1 + 2/3)/2 = 0.8.

RQ2: Effectiveness and Efficiency of Generating Performance Test
Frames. To answer RQ2, ideally, the comparison should be done
with existing approaches that generate performance test frames.
However, we cannot find an existing approach with this specific
goal. In the absence of such approaches, we instead compare Per-
fLearner to a combinatorial testing (CT) strategy [19] that employs
the category-partition method [37], t-wise testing [39], and the
random testing approach. Specifically, CT generates test frames
by combining elements under each input category with respect to
the constraints. The first difference between PerfLearner and CT
is that CT does not analyze bug reports or rank frame elements in
terms of their relevance to the report; instead, CT ranks the frame
elements in a random order. The second difference is that in CT,
the workload is randomly assigned to a frame element. To make a
fair comparison, the interaction strength of configuration options
and that of data inputs are the same as those used in PerfLearner.

To evaluate the cost-effectiveness of PerfLearner and CT in gen-
erating performance test frames, we wish to know whether frame
elements frequently appeared in historical bug reports can be used
to generate test frame for testing future versions of the programs.
For each bug report used for evaluation, we manually inspect and
derive the test frame that triggers the performance bug described
in the report (Section 3.1). We refer to this test frame as the ground
truth test frame. Since test frames cannot be executed directly, we
consider an approach detects the bug if the ground truth test frame
is included in the generated test frames. To do this, we first list the
100 bug reports from each program in ascending order by the bug
creation date. We then select the first 90 bug reports (training set)
and apply techniques (PerfLearner and CT) described in Section 4.2
to generate test frames. We compare the test frames generated by
each technique against the remaining 10 bug reports (test set) from
each subject. Specifically, we examine at which iteration the ground
truth test frame of the test set bug report is generated by the tech-
nique. To evaluate the efficiency of the two techniques, we evaluate
the time they take to generate the ground truth test frames.

RQ3: Detecting Performance Bugs. Besides evaluating PerfLearner on
generating performance test frames, we would like to know whether
the generated frames are useful for detecting actual performance
bugs. PerfLearner is orthogonal to existing performance testing
tools. It aims to improve the efficiency of testing by focusing on
selecting commands and input parameters that are more likely to
expose performance bugs. To answer RQ3, we combine PerfLearner
with GA-Prof, a performance test input generation tool to detect
performance bugs [46]. We choose GA-Prof because it is the only
tool that can evolve both configuration option and data input values.
GA-Prof employs a genetic algorithm to explore the space of input
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Table 3: RQ1: Test Frame Extraction Accuracy
. | Command| Data Input| Config. Option . | Workload
App- | Metric) oy ep | DI | DI, | CO | CO |PLg || M7 | WL | WL,
Top-N|91% | 78% | 83% | 67% |71%| 71% | 67%
AP- | MAP [0.80] 0.70 [0.70] 0.60 [0.37] 0.22 | 0.33 || A |78%| 60%
Top-N|83% | 75% | 91% | 81% |83%| 75% | 53%
My- | 'MaP [0.60] 0.50 [0.80] 0.70 [0.24] 0.23 [0.21 || A |67%| 43%
— [Top-N|82% | 80% |90%| 90% |85% ] 83% | 60%
Fi 1 \AP [0.80] 0.60 [0.70] 0.60 [0.28] 0.2 [0.20 || A |80%| 42%

combinations among all input parameters. We re-implemented the
genetic algorithm part of GA-Prof to handle C/C++ applications.
We compare two settings of GA-Prof: 1) a default setting (denoted
by GA) in which the combinations are evolved for all commands
and input parameters, and 2) an enhanced technique, denoted by
GPp where it utilizes test frames generated from PerfLearner to
iteratively select and evolve input values to generate performance
test cases.

To evaluate whether the two techniques are able to detect per-
formance bugs within a reasonable time limit, we select real per-
formance bugs that we can reproduce. We iteratively select a bug
report from the 1083 performance bug reports (excluding the 300
sampled bug reports in the dataset) and try to reproduce the bug. Be-
cause reproducing performance bugs is challenging and expensive,
we stop this process after we have 10 bugs successfully reproduced
— this process took approximately 400 work hours.

Next, we apply the two techniques to the program versions
corresponding to the 10 performance bugs. We evaluate whether
the performance bug described in the bug report can be detected and
record the time it takes. Specifically, we conduct test experiments on
High-Performance Computer (HPC) clusters. The basic HPC node
is equipped with a 6 core 2.66 GHz Intel Xeon X5650 Westmere, 36
GB memory, and 256 GB hard drive. This environment enables us
to run multiple experiments simultaneously without interruption.
Each experiment is repeated 10 times and we report the mean to
reduce the bias due to randomness. We default the time limit to
24 hours before terminating the experiment and set the maximum
number of GA iterations in each run to be 10.

6.2 Results and Analysis

RQ1: Accuracy of Bug Reports Analysis. Table 3 shows the effec-
tiveness of different techniques at ranking frame elements and
extracting workload. The success rates are based on the default
values specified in the strength file. The results indicate that com-
mands appear in the top-2 positions for 82-91% of bug reports; the
correct data input appears in the top-2 positions for 83-90% of the
bug reports; the correct configuration option appears in the top-5%
returned results for 71-85% of the reports. Additionally, the work-
load is identified with 56-80% accuracy. Compared to the baseline
approaches, the success rate is higher in each category over all
programs.

Where the MAP scores are concerned, PerfLearner is more ef-
fective than the baseline techniques over all three types of frame
elements across all subject programs. The improvements range from
14% to 40%. These results suggest that heuristics used by PerfLearner
is effective in boosting accuracy.
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Table 4: RQ2: Performance Test Frame Generation

S PerfLearner CcT
Application | # of Const. Space | Count Avg. | Space | Count Avg.
Apache 45 445K 2662 64M 10K
MySQL 12 1.4M 1831 2.9B 10K
Firefox 25 443K 7659 3.9B 10K

# of Const.=the number of constraints. Space=the number of total configurations w.r.t.
constraints and the default weight. Count Avg.=the average number of test frames
generated by the test method before reaching the ground truth.

Table 5: RQ3: Performance Testing with GA

Lo Effectiveness Efficienc
Application | Bug ID szz GApL | GA | Count i GP PJ; Countpr,
54852 NO YES 24H 8297 5.2H 1714
52914 NO YES 24H 9429 10.1H 3052
Apache 37680 NO NO 24H 8790 24H 9764
43081 NO YES 24H 8822 20.2H 6085
46749 NO NO 24H 9037 8.7H 3125
21727 NO YES 24H 8614 14.8H 4097
44723 NO YES 24H 9259 11.7H 3015
MySQL 74325 NO YES 24H 8458 11.3H 4055
15653 NO YES 24H 7446 7.3H 2910
26938 NO NO 24H 9793 24H 9425

RQ2: Effectiveness and Efficiency of Performance Test Frame Genera-
tion. Table 4 shows the results of PerfLearner and CT in generating
performance test frames. Since CT does not rank test frames, we
allow CT to generate test frames among randomly sampled input
space for each input category. We limit the number of test frames
to 10,000. The threshold number is based on practical considera-
tions as 10,000 tests may take considerable executing time. With
the default CT method, all three subjects failed to generate the
ground truth test frame before the frame limit threshold. These
results suggest that PerfLearner is more cost-effective at generating
performance test frames than the traditional combinatorial testing
approach. Figure 8 shows the distribution of test frames generated
in each subject for both PerfLearner (PL) and CT. Firefox has the
worst performance of all, this is largely due to Firefox bugs require
multiple steps to trigger. Firefox also has the largest number of
commands and lowest command extraction accuracy. As a result,
the ranking of test frames does not work as effectively as the other
two subjects.

Apache MySql Firefox
10000~ _—
7500- ==
172
[0)
E 5000- \ EIPL
g 2 BCT
2500-
0- ! 1 i | 1 |
PL CT PL CT PL CT
Methods

Figure 8: Test frame generation

RQ3: Enhancing Performance Bug Detection. Table 5 shows the re-
sults of GA and GPpy, (GA enhanced with PerfLearner). GA failed
to detect all 10 performance bugs. Like other test case generation
techniques, the genetic algorithm for generating input values is ap-
plied only after a test frame is selected. However, without knowing
which frame element is more likely to cause a performance bug,
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a random method is used to allow frame elements in each input
category to have an equal chance to be selected. As a result, many
low-quality test frames are generated. The ground truth test frame
often fails to be generated within the time limit (24 hours).

Our results show that the GPpy approach can detect 7 out of
10 performance bugs within an average of 10.9 hours. These re-
sults suggest that PerfLearner can potentially enhance existing per-
formance testing tools. For the three bugs GPpy failed to detect: 1)
Apache bug#37680 requires two entries of the “Listen” option. When
selecting configuration options, we do not allow duplications of
configuration option since multiple appearances of the same option
normally overwrites one another. 2) Apache bug#46749 executes a
test frame (server graceful stop) that causes a long response time.
This test frame is considered to trigger a performance bug, however,
the ground truth test frame of this bug is related to cache utilization.
This is the only false positive case appeared in our experiment. 3)
For MySQL bug#26938, the “profile” command is required to trigger
this bug. However, none of the bug reports used to generate test
frames includes the command “profile”. We conjecture false nega-
tive cases can be reduced as more bug reports are used for mining
test frames.

Apache MySql Firefox
10000~ e
12}
e = E3 default
o B wi
L 5000- . B w2

L
wo wi w2 w0 wi w2 w0 wi w2
Weights

Figure 9: Weight sensitivity analysis
7 DISCUSSION

Sensitivity of Strength. By default, PerfLearner uses strengths { n.
=2,n0 =5%,ng =2, N4y = 2, t = 2 }. The selected values are based on
the empirical study that achieves best test frame element extracting
results. To understand the influence of selecting different sets of
strengths, we evaluate PerfLearner on two other sets of strengths:
wl={n,=1,no=2%ng=1,n, =1,and t =1} and w2={n, =3,
no = 10%, ng = 3, ny =3, and t = 3 }. Figure 9 reports the results
of test frame generation using the three sets of strengths on the
test set (10 bug reports) for each of the three subjects. The vertical
axis indicates the number of frames generated before reaching the
ground truth. The results indicate that, in general, default strengths
outperform the other two sets. In Apache, w1 outperforms the
default strengths in terms of the average frames generated, but w1
exhibits a larger standard deviation. The weight sensitivity analysis
implies that the strengths should not be set too low or too high.
Low strength values may cause PerfLearner to miss certain relevant
frames, whereas high strength values may result in generating too
many performance test frames and thus reduce the efficiency of
PerfLearner.

Threats to Validity. The primary threat to the external validity of
this study involves the representativeness of our subjects and bug
reports. We do reduce this threat to some extent by using several
varieties of well studied open source projects and bug tracking
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systems for our study. Combining keyword search and manual
inspection is an effective technique to identify bugs of a specific type
from a large pool of generic bugs and has been used successfully
in prior studies [28, 33, 54]. We cannot claim that our results can
be generalized to all systems of all domains though. The primary
threat to the internal validity involves the manual inspection to
identify the ground truth test frame from a bug report. To minimize
the risk of incorrect results given by manual inspection, the analysis
process was done independently by two trained inspectors.

Limitations. The textual quality of a bug report has substantial
impact on the effectiveness of the proposed approach. For example,
a bug report may not use the standard names of the frame elements.
This can be addressed by integrating advanced NLP techniques,
such as Word2Vec [51]. The incompleteness of bug reports is also
a major obstacle for PerfLearner to work well, like for many bug
report analysis techniques. One strategy is to filter out bug reports
containing missing information using an automated approach [9]
and apply PerfLearner only to complete bug reports to improve
accuracy. Other classification techniques can be integrated with
PerfLearner as well, such as detecting reproducible [15] and dupli-
cate [26] bug reports.

PerfLearner takes only labeled performance bug reports. One
extension point is to build a prediction model that can automatically
predict whether a new bug report is related to performance or not.
There has been some research on using text mining to classify bug
reports [17, 47, 49], which can be easily tuned to handle perfor-
mance bug reports. In addition, when a performance bug requires
a specific system state (e.g., networking events) to be triggered, the
current approach cannot extract such information. For example,
a state may be associated with the topology of the target system
(e.g., the firewall setup may negatively affect the performance of a
system). Nevertheless, we believe PerfLearner can be extended to
handle system-level triggering events by defining additional frame
databases and linguistic patterns.

8 RELATED WORK

There has been a great deal of research on analyzing, detecting,
and fixing performance bugs [7, 28, 29, 34, 36]. Burnim et al. [7]
designed a technique to generate worse-case inputs (larger input
sizes) to find performance bugs. As discussed in Section 1, these
techniques often rely on initial test cases and do not address the
challenges of finding the right combination of input parameters
to create effective initial test cases. As our empirical study shows,
workload only helps to trigger some but not all performance bugs.
Although PerfLearner also takes workload into consideration, it
focuses more on the combination of elements to be used in the test
frame. Our method is orthogonal to the test case generation tools, as
our experiment shows, PerfLearner can be integrated into existing
performance testing techniques to improve the effectiveness and
efficiency of bug detection.

A great body of work has been conducted on applying combina-
torial testing (CT) to address the problem of large input space in
complex and configurable systems [13, 32, 52, 57]. CT systematically
samples the input space and tests only the selected input parame-
ters combinations. Zhang et al. [57] proposed a method to optimize
combinatorial testing to generate test cases to find a balanced point
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of coverage without pressuring on achieving the maximum cov-
erage. Dumlu et al. [13] proposed a feedback-driven approach to
detect and avoid masking effect resulted from CT. These techniques
focus on sampling combinations from the entire input space. There-
fore, it is often inevitable to result in a large sampling space. In
the contrast, PerfLearner detects and uses only the error-prone
commands and input parameters from the historical bug reports.
Empirical results show that our approach can significantly reduce
the sampling space when generating test frames for performance
bugs.

There has been considerable work on using natural language and
information retrieval techniques to improve code documentation
and understanding [9, 14, 24, 25] and to create code traceability
links [1, 12, 38]. While our work applies some of these same basic
techniques, such as tokenization, lemmatization, vector space model
with term frequency-inverse document frequency weighting [4],
the prior work has not applied these techniques to performance
bug reports and has not considered or extracted input parameters
to generate test frames.

There has been a large body of work that demonstrates the need
for configuration-aware testing techniques and proposes methods
to sample and prioritize the configuration space [27, 31, 42, 43, 53]
to reduce the cost of testing. For example, Jamshidi et al. [27] con-
duct an empirical study to evaluate the feasibility of applying the
transfer learning technique to reduce the dimensionality of the
configuration space when constructing performance models. Nair
et al. [31] use inexpensive and inaccurate models to find optimal
configurations with less cost compared to the state-of-the-art sam-
pling techniques. Unlike the above technique, our approach focuses
on creating test frames to aim performance testing for finding per-
formance bugs instead of performance modeling.

9 CONCLUSIONS

Performance bugs are difficult to expose because they often man-
ifest under special input conditions and system configurations.
In this paper, we studied 300 real-world performance bugs from
three popular open source projects. Our findings indicate that
combinations of input parameters, especially configurations, can
play an important role in exposing performance bugs. Guided by
these findings, we designed PerfLearner, an automated approach
to extract test frame elements, and to generate test frames for
performance testing. We evaluated PerfLearner on 300 bug re-
ports and the results show that PerfLearner extracts test frame
elements with high accuracy. PerfLearner is also effective in gen-
erating performance-bug-triggering test frames. Our evaluation
on combining PerfLearner with GA-Prof to detect real-world per-
formance bugs indicates that PerfLearner can enhance existing
performance testing tools for generating test cases and detecting
performance bugs. For reproducibility and further research, Per-
fLearner and all the data from the experiments are publicly available
at https://github.com/xha225/PerfLearner.
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