
PerfLearner: Learning from Bug Reports to Understand and
Generate Performance Test Frames

Xue Han
Department of Computer Science

University of Kentucky
Lexington, KY, USA
xha225@g.uky.edu

Tingting Yu
Department of Computer Science

University of Kentucky
Lexington, KY, USA
tyu@cs.uky.edu

David Lo
School of Information Systems

Singapore Management University
Singapore

davidlo@smu.edu.sg

ABSTRACT

Software performance is important for ensuring the quality of soft-

ware products. Performance bugs, defined as programming errors

that cause significant performance degradation, can lead to slow

systems and poor user experience. While there has been some

research on automated performance testing such as test case gen-

eration, the main idea is to select workload values to increase the

program execution times. These techniques often assume the initial

test cases have the right combination of input parameters and focus

on evolving values of certain input parameters. However, such an

assumption may not hold for highly configurable real-word appli-

cations, in which the combinations of input parameters can be very

large. In this paper, we manually analyze 300 bug reports from three

large open source projects - Apache HTTP Server, MySQL, and

Mozilla Firefox. We found that 1) exposing performance bugs often

requires combinations of multiple input parameters, and 2) certain

input parameters are frequently involved in exposing performance

bugs. Guided by these findings, we designed and evaluated an auto-

mated approach, PerfLearner, to extract execution commands and

input parameters from descriptions of performance bug reports and

use them to generate test frames for guiding actual performance

test case generation.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Software Testing, Performance Bugs, Software Mining

ACM Reference Format:

Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from

Bug Reports to Understand and Generate Performance Test Frames. In

Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE ’18), September 3ś7, 2018, Montpellier, France.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3238147.3238204

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3ś7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238204

1 INTRODUCTION

Software performance is critical to the quality of a deployed system.

A performance bug can cause significant performance degrada-

tion [3], leading to problems such as poor user experience, long

response time, and low system throughput [6, 21, 28, 33, 48]. Com-

pared to functional bugs that typically cause system crashes or

incorrect results, performance bugs are substantially more difficult

to handle [3, 10] because they often manifest themselves by special

inputs and in specific execution environments [33, 36]. Over the

past decade, numerous research efforts have been made to analyze,

detect, and fix performance bugs [7, 22, 28, 29, 34, 36]. For example,

many profiling techniques [28] have been proposed to dynamically

determine what program entities (e.g., methods) are responsible for

the excessive execution time and resource consumption given an

input.

Profiling methods depend on the chosen set of input values,

which is a known weakness [46] for successfully detecting per-

formance bugs in the subject under test. To address this problem,

several test case generation techniques have been proposed to

generate large workload test inputs for increasing the chance of

exposing performance bugs [7, 41]. However, there are several lim-

itations in existing performance test generation techniques ś many

techniques focus on evolving the values of certain input parameters

while keeping the other parameters as default. For example, Burnim

et al. [7] focus on increasing the workload values of data inputs

while keeping the values of configuration options as default. These

techniques may be ineffective at detecting performance bugs due

to combinatorial effects of different input parameters. For example,

in Apache bug#52914, the performance bug is exposed only when

the configuration options KeepAlive and RequestReadTimeout

are specified. Otherwise, by using the default configuration, this

performance bug cannot be triggered even if the workload (e.g., the

number of requests) is increased.

While a full performance testing with all combinations of input

parameters can address the above problem, it is infeasible due to

the enormous combination space. For example, the latest version

of Apache HTTP Server has 618 input parameters (610 configura-

tion options and 8 types of data inputs). It is impractical to try all

combinations of values for these input parameters. To reduce the

cost of performance testing, Shen et al. [46] use a genetic algorithm

(GA) as a search heuristic for obtaining combinations of input pa-

rameter values that maximize the execution time. However, this

technique evolves all input parameters, which can be inefficient

because many parameters may not provide contributions to the

application’s performance.

17

ASE ’18, September 3–7, 2018, Montpellier, France Xue Han, Tingting Yu, and David Lo

The goal of our research is twofold. First, we want to understand

to what extent performance bugs are related to the combinations

of input parameters. A study on performance bug reports from

bug tracking systems, such as Bugzilla, can help us understand

the characteristics of input parameters and their contributions to

performance bugs. Second, we aim to develop a framework to auto-

matically generate combinations of input parameters, also called

test frames (discussed in Section 2), for guiding the generation of

actual performance test cases1. To the best of our knowledge, no

existing research achieves the same goal.

Our main idea is to mine information from the application’s

bug reports to identify commands (i.e., commands for executing

the program) and input parameters (i.e., configuration options and

data inputs) that have caused performance bugs and use them to

generate test frames for testing newer versions of the application.

PerfLearner is used during software maintenance and evolution,

where the projects’ issue tracking systems have been established.

Specifically, we extract and rank commands and input parameters

from each bug report. We then generate test frames (a combination

of the commands and input parameters) for each bug report and

prioritize the most frequently generated test frames among all bug

reports. Our hypothesis includes: 1) bug reports contain a specific

set of vocabulary related to commands and input parameters that

can make the automated text extraction possible; 2) commands and

input parameters appearing frequently in performance bug reports

may be more likely to trigger performance bugs than the infrequent

ones. PerfLearner is applicable software projects with established

issue tracking systems.

In this research, we manually identified and analyzed 300 perfor-

mance bug reports from three popular open source projects. We

discovered that it is possible to leverage information retrieval and

natural language processing techniques to extract commands and

input parameters from bug reports. We found that some input pa-

rameters are more likely to cause performance bugs and should

be used with higher priority in performance testing. Based on our

findings, we develop PerfLearner, an approach that combines natu-

ral language processing and information retrieval to automatically

extract relevant commands and input parameters from bug reports

and use them to generate performance test frames for guiding per-

formance testing.

In summary, our paper makes the following contributions:

• We develop a tool, PerfLearner, that can automatically ex-

tract performance-related commands and input parameters,

and generate performance test frames from the bug reports.

To the best of our knowledge, this is the first work that au-

tomatically generates test frames from bug reports written

in natural language.

• We implement PerfLearner and conduct an empirical study

to demonstrate its effectiveness and efficiency in generating

performance test frames and detecting real performance

bugs.

We envision the approach to be applied to at least two scenar-

ios. First, given a performance bug report, a developer who wants

to know the commands and input parameters that have caused

1An actual test case is built from a test frame by specifying a concrete value for each
input parameter [37].

this bug, may analyze the bug report with PerfLearner. Second, a

testing engineer can use PerfLearner to generate and prioritize per-

formance test frames from the historical performance bug reports.

The test frames can be converted into actual test cases by giving

input parameters with concrete values. Note that PerfLearner is

orthogonal to existing performance testing tools. Existing tools

focus on increasing the values of certain workload-sensitive input

parameters while assuming the test frames (i.e., the combination

of input parameters) exist. Therefore, PerfLearner can be used to

enhance the effectiveness and efficiency of existing performance

testing tools.

To evaluate the approach, we apply PerfLearner to 300 bug re-

ports collected from Apache HTTP Server, MySQL, and Firefox

bug tracking systems. Our results show that PerfLearner is able

to extract commands and input parameters from performance bug

reports with a high accuracy. When using PerfLearner to generate

test frames, compared to a state-of-the-art combinatorial testing

(CT) technique, it generates significantly less (59.5%) test frames

on average to get the ground truth test frame. When combining

PerfLearner with an existing performance test input generation

tool [46] to detect 10 randomly selected performance bugs, Per-

fLearner detects 7 out of 10 bugs within a reasonable time whereas

when using the test input generation tool alone failed to detect all

10 bugs.

2 BACKGROUND

The concept of test frame was first introduced in the category-

partition method with test specification language (TSL) [37]. TSL

was created to define combinations of program input parameters

and environment factors. Each combination is a test frame that

can be converted into actual test cases. A performance test frame

consists of three input categories: command, configuration, and

data input. A test frame can have one command in the command

category, zero or more configuration options in the configuration

category, and zero or more data inputs in the data input category.

Each command, configuration option, and data input in a test frame

is generally referred to as a test frame element or frame element.

We define a command as an action to execute a functional unit [37]

of the program. For example, the MySQL server has several data

manipulation commands, including SELECT, UPDATE, and INSERT.

These commands correspond to three different functional units:

retrieve, modify, and add data records. We define input parameters

as explicit input points along with the command. An input param-

eter can be a configuration option or a data input. Configuration

options refer to a set of predefined options, e.g., command-line

options or directives in a configuration file. Data inputs refer to the

user-supplied data that is processed by the command. For example,

the data input associated with the command UPDATE is the name of

a table COLUMN.

Figure 1 shows a performance bug report snippet with the as-

sociated test frame and a test case. The test frame for manifesting

this performance bug involves three frame elements: a command

UPDATE, a configuration option innodb_fill_factor, and a data

input COLUMN. A frame element can be workload-sensitive. In this ex-

ample, the UPDATE command is workload-sensitive because a large

number of UPDATE queries is required to trigger the performance

18

PerfLearner ASE ’18, September 3–7, 2018, Montpellier, France

Bug Description

Updates to indexed column much slower in 5.7.5. Repeating the test

done for Heap engine on InnoDB shows a big regression for updates

to an indexed column. InnoDB is more than 2X slower than 5.6.21

and 4X slower than 5.0.85. . . . innodb_fill_factor whose default value

is 100 . . .

Test Frame

<update>[workload] <innodb_fill_factor> <column>

Test Case

update foo i = i + 2 where i = 100 innodb_fill_factor=100

mysqlslap śnumber-of-queries=100

Figure 1: MySQL bug #74325

bug. In MySQL, a workload can be simulated by benchmark tools2

such as mysqlslap. Since many performance test generation tech-

niques have been focusing on identifying the workload-sensitive

inputs [18, 50], pinpointing the workload from a bug report may

speed up this process for performance test case generation tech-

niques. The actual test case is created by assigning concrete values

to frame elements.

3 PERFORMANCE BUG STUDY

Before designing our approach, we wish to understand to what

extent performance bugs are related to certain commands and input

parameters.

3.1 Data Collection

We chose three large open source software projects: Apache HTTP

Server, MySQL Database Server, and Mozilla Firefox Browser. With

publicly accessible source code and well-maintained bug tracking

systems, these projects have been widely used as subject programs

by existing bug characteristic studies [28, 54, 55].

We collected performance bugs from bug tracking systems of

Apache, MySQL, and Firefox. We searched these systems using a

set of commonly used general keywords and phrases to describe

the symptoms of performance bugs, such as łslowž, łlatencyž, and

łlow throughputž [23]. We also searched terms that attribute to a

specific aspect of the performance problems such as łCPU spikesž,

łcache hitž, and łmemory leakž to identify performance bugs. Next,

we selected reports with the bug status field marked as either

łRESOLVED", łVERIFIED", or łCLOSED" and the resolution field

marked as łFIXED".

The whole process yielded a total of 1383 bugs. With a large

amount of the returned bug reports, we calculate the needed sample

size is 300, given a confidence level of 95% and a confidence interval

of 5. This sampling strategy has been commonly used by existing

work [2, 20].

We manually examined 300 bugs in a random order, and during

the manual inspection, we follow those reports that have sufficient

bug description details and discussions posted by commentators.

For each bug report, we try to identify commands, configuration

options, data inputs, and workload that cause the performance bug.

To ensure the correctness of our results, the manual inspection

was performed independently by two inspectors ś graduate stu-

dents who have 2-4 years of industrial web development experience

2A benchmark tool is used to measure the performance of the program under test with
synthesized workload.

Table 1: Subjects and Their Characteristics

Application Searched Bugs Sampled Bugs # of CMD # of CO # of DI

Apache 428 100 10 610 8

MySQL 455 100 11 1240 5

Firefox 500 100 24 563 17

Total 1383 300 45 2413 30

with Apache, MySQL, and Firefox. We hold two training sessions

of 30 minutes each to explain to inspectors the test frame elements

to be extracted from the bug report. Each inspector is given the

same set of bugs each week to write down what they consider to

be the command, configuration options, data inputs, and workload

that trigger the bug in the report. Inspectors met twice a week to

compare and consolidate their findings. A bug report is selected

only when both inspectors agree on the outcome of the manual

inspection. We refer to the consensus outcome as ground truth

frame elements for the bug reports. This process terminates for

each subject after 100 bug reports have been included in the sample

dataset.

The number of bugs sampled is similar to recent works on per-

formance bug study [10, 23, 28, 56]. While a larger number of bug

reports may yield a better evaluation, the cost of the manual pro-

cess is high Ð our data collection process took a total of 320 to

400 hours spanning across more than 10 weeks. Columns 1-3 of

Table 1 list the subject programs, the number of bugs returned by

the keyword search, and the number of performance bugs sampled

after manual inspection. Columns 4-7 list the number of commands,

configuration options, and data inputs available in all three subjects.

The full lists of the three categories are saved in separate frame

element databases, including command database, configuration data-

base, and data input database. We collected such information by

studying all artifacts that are publicly available to users, including

documents (e.g., user manuals and online help pages), configuration

files, and source code. Each database can be updated separately to

accommodate changes in different application versions.

3.2 Results Analysis

After manually analyzing 300 bug reports, we summarize the fol-

lowing findings:

• A majority (89% to 92%) of studied performance bugs in-

volves more than one input parameters (i.e., configuration

options and data inputs): 91% in Apache, 92% in MySQL,

and 89% in Firefox. These results imply that combinatorial

effects among input parameters should be considered in per-

formance testing.

• A significant number (41%) of performance bugs are related

to configurations: 58% in Apache, 41% in MySQL, and 25%

in Firefox. These results are consistent with a recent perfor-

mance bug study [23].

• Only 23% of bugs require specific workload values to mani-

fest: 21% in Apache, 29% inMySQL, and 19% in Firefox. These

results imply that workload is only part of the requirement

for exposing performance bugs; other factors, such as config-

uration options, should also be considered for performance

testing.

19

PerfLearner ASE ’18, September 3–7, 2018, Montpellier, France

Table 2: Number of Patterns to Detect Frame Elements

Application
of Matched Patterns

Commands (8) Data Inputs (4) Workload (6)

Apache 104 77 168

MySQL 228 159 453

Firefox 203 146 270

Definitions: [CMD]∈{drop, create, ...}, [SYMP]∈{slow, long, ...}

Pattern:[CMD]+[SYMP]

Description: Command verbs appear in the same sentence that

symptoms exist.

Example: [DROP]CMD TABLE on very large tables can be very

[slow]SYMP .

Figure 3: A common pattern to identify command

Definitions: <ADP>∈{to, on, ...}, <NOUN>∈{[DATA INPUT]},

[CMD]∈{update, insert, ...}

Pattern: [CMD]+<ADP>+<NOUN>

Description: Data input is identified as the subject of the command.

Example: [update]CMD [to]ADP indexed [column]NOUN much

slower in 5.7.5

Figure 4: A common pattern to identify data inputs

Definitions: [INPUT]∈{file, html, ...}, <VERB>∈{contain, has, ...},

<ADJ>∈{long, large, ...}

Pattern: [INPUT]+<VERB>+<ADJ>+<NOUN>

Description: Workload details the content of data inputs.

Example: a text [file]I N PUT [containing]V ERB a very [long]ADJ

[line]NOUN

Figure 5: A common pattern to determine a workload

mismatch problem between the frame elements (query) and bug

reports (documents). Second, we summarize 18 linguistic patterns

that are commonly used to describe commands (eight patterns),

input parameters (four patterns), and workload in bug reports (six

patterns). While the frame elements are application-specific, the

linguistic patterns are generic and hence can be reused for different

applications.

To avoid overfitting, the first author summarized the linguistic

patterns from the 1083 bug reports (excluding the 300 sampled bug

reports in the dataset). In the experiment, these patterns are applied

to the 300 bug reports. We can automatically detect the presence

of these patterns to locate sentences describing a particular input

category and identify the frame element under that category more

accurately. Table 2 shows the number of patterns we identified in

all sentences from the 300 bug reports. While there has been some

research on using linguistic patterns in other software activities,

such as analyzing developer intention [11, 30] and detectingmissing

information [9], little work is known on using linguistic patterns

to identify commands and input parameters.

4.1.1 Commands. We observe that a command often appears with

the bug symptom in one sentence. For example, the sentence de-

scribing the symptom of Apache bug #52914 is łI could reproduce

the 100% CPU with POST requestsž, where the symptom is ł100%

CPU" and the command is request. If we identify sentences con-

taining bug symptoms, it narrows down the search and improves

the accuracy of finding the performance bug-triggering commands.

We have defined six linguistic patterns using the part-of-speech

tag for detecting (one or more) sentences containing symptoms. If

such sentences are detected, PerfLearner matches the command

against these sentences and counts their occurrences. The identified

k commands are ranked at the top k position in a descending order

with respect to their occurrences.

Our patterns can precisely identify commands in 91% perfor-

mance bug reports (i.e., ranked at the top-1), compared to the 78%

precision rate by the łgrep"-like method. The most frequently used

pattern, as seen in Figure 3, illustrates a pattern that uses a verb

and a phrase, where the verb refers to the command element and

the phrase refers to the predefined list of phrases indicating per-

formance bug symptoms. If any of the symptoms appear in the

sentence, the verb is identified as a candidate of the bug-triggering

command. If no symptom sentences are detected, PerfLearner prior-

itizes sentences that appeared in the bug report title as well as the

first post, and uses the ‘grep"-like method to count the occurrences

of commands. If no command sentences are detected, the same

approach is applied to the entire bug corpus.

4.1.2 Data Inputs. PerfLearner ranks data inputs in a similar way

as commands because simply matching a bug report against the ele-

ments in data input is imprecise. PerfLearner defines four linguistic

patterns to detect sentences that contain data inputs and rank data

inputs within these sentences. Figure 4 shows one of the commonly

used patterns. This pattern indicates that data inputs coexist with

commands in the same sentence. Specifically, the sentence starts

with a command (i.e. update), followed by a preposition (i.e. to, on)

and the data input (i.e. column).

4.1.3 Configuration Options. Unlike commands and data inputs,

we observe that many configuration options cannot be directly

searched from bug reports. One solution is to leverage information

retrieval (IR) algorithms such as TF-IDF [40] and cosine similar-

ity [16] based on the vector space model (VSM) to rank config-

uration options in terms of their relevance to the bug report. A

straightforward method is to split the configuration name into to-

kens to calculate its cosine similarity to the bug report. However,

we observe that many configuration options share with the same

tokens. Since a configuration option name is often short, this ap-

proach may result in many equally ranked configuration options.

For example, in Figure 1, innodb_buffer_pool_instances and

innodb_buffer_pool_size would be ranked equally if łinnodb",

łbuffer", and łpool" are the three word tokens appearing in the

report.

To improve the accuracy of ranking, we leverage manuals that

describe configuration options to bridge the lexical gap between

configuration option names and bug reports. In the example of

Figure 1, themanual description of innodb_fill_factor (Figure 7)

contains words such as łb-treež, łindex", and łspace", which also

appear in the bug report, can be used to link the configuration

option to the bug report effectively.

To compute the similarity between a configuration option o and

a bug report br , we first concatenate o with its textual description,

where o = o ∪o.desc . PerfLearner then processes o by standard NLP

pre-processing steps: word tokenization and stop word removal. The

tokenization converts bug reports into a łbag of wordsž using white

spaces. We then remove punctuation, numbers, and standard stop

21

PerfLearner ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 1 PerfLearner Test Frame Generation

Require: StrenF , ConsF , BuдRepor ts , LPtn
Ensure: T Fpr io
1: for br ∈ BuдRepor ts do
2: RLcmd ← RankCmd (br , DBcmd , LPtn .cmd)
3: RLco ← RankConfig (br , DBco)
4: RLdi ← RankData (br , DBdi , DBdi , LPtn .di)
5: Lwl ← GetWorkload (br , DBdi , LPtn .wl)
6: RL← SelectElements (RLcmd , RLco , RLdi , StrenF)
7: T Fbr ← GenerateFrames (RL, Lwl , ConsF)
8: T F ← T Fbr ∪T F
9: end for
10: T Fpr io ← RankFreq (T F)

Algorithm 2 Combining PerfLearner with Testing Tools

Require: T Fpr io
Ensure: T estResults
1: for t f ∈ T Fpr io do

2: for e ∈ t f do
3: cateдory ← Get InputCateдory (e)
4: if HasW orkload (e) then
5: e ← InteдrateW orkload (cateдory, e)
6: end if
7: tc.xml← UpdateT estCase (e)
8: end for
9: TestResults← RunPer f T estTool (tc .xml)
10: end for

Algorithm 1 describes the process of generating performance

test frames. The algorithm takes as input a list of bug reports from

an application, a strength file, and a constraint file. For each bug

report, the algorithm obtains a ranked list for each input category

(Lines 2-4) and a list of workload (Line 5). It then selects frame

elements from the ranked lists with respect to the strengths. Next,

a list of candidate test frames is generated given the selected frame

elements and the constraints (Line 7). Finally, the algorithm ranks

test frames collected from all bug reports (Line 10) in terms of the

frequency of their appearance. Test frames ranked higher indicate

theymay bemore likely to cause performance bugs. The last column

of Figure 6 shows an example of the five test frames generated.

4.3 Performance Test Case Generation

Algorithm 2 outlines the process of generating performance test

cases from test frames. First, PerfLearner iteratively selects a test

frame from the prioritized list output by Algorithm 1. For each

frame element, the algorithm checks for its input category. If the

frame element is workload-sensitive, depending on the input cate-

gory, the algorithm applies workload in two ways (Line 5). For the

command category, the benchmark option that controls workload

is included in the test case generation. For other input categories,

the input size is included in the test case generation. The algorithm

updates the test case as it gets more information from frame ele-

ments (Line 7). Specifically, the test frame is converted into an XML

file (tc.xml) of which structure is known to the test case generation

tools. Finally, the test input (tc.xml) is supplied to the performance

testing tool. It is up to the performance testing tool to determine

how to assign input values and execute the subject under test to

detect performance bugs.

5 IMPLEMENTATION

We implemented a web crawler using the Python Beautiful Soup

library [5] to collect raw bug reports and API documentations.

We then leveraged Python Natural Language Toolkit (NLTK) [35]

to parse the description of the bug reports and match linguistic

patterns against the new bug reports with regular expressions on

part-of-speech tags. For the information retrieval component, we

utilized the Python machine learning library scikit-learn [45] to

get the TF-IDF matrix and cosine similarity scores. Lastly, we im-

plemented Python programs to handle the performance test frame

generation.

6 EVALUATION OF PERFLEARNER

We evaluated PerfLearner on three open source projects with char-

acteristics described in Section 3.1. We aim to answer the following

research questions:

RQ1: How accurate is PerfLearner at detecting performance bug-

triggering frame elements and workload?

RQ2: How effective and efficient is PerfLearner at generating per-

formance test frames?

RQ3: Can PerfLearner enhance existing performance testing tools

for detecting performance bugs?

6.1 Techniques and Metrics

RQ1: Accuracy of Bug Reports Analysis. To answer RQ1, we evalu-

ate the accuracy of PerfLearner in extracting frame elements and

workload. The techniques for extracting commands, configuration

options, data inputs, and workload are denoted as CD, CO, DI, WL,

respectively. Each technique is compared to a baseline method to

evaluate the effects of using advanced techniques such as linguistic

patterns and information retrieval (TF-IDF, Cosine Similarity etc.).

Specifically, we compare CD, CO, DI to three baseline techniques ś

CDs , COs , and DIs . These baseline techniques use a keyword match

and count the occurrence of each frame element appearing in a

bug report. To evaluate the usefulness of configuration manuals

in extracting configuration options, we also compare CO to COa .

COa uses only tokens in the configuration option name without

configuration manuals to make the similarity comparison. Since the

workload describes whether a frame element is workload-sensitive,

the keyword counting is not applicable in this case. Nevertheless,

to evaluate the usefulness of linguistic patterns in identifying the

workload, the baseline technique WLr randomly selects a frame

element and treats the element as workload-sensitive.

We use two metrics to evaluate the effectiveness of ranking. The

first metric is the top-N success rate, which is computed by ranks of

ground truths within top N items over all bug reports. For example,

if 20 out of 100 performance bug reports rank the ground truth of

configuration options in the top 5% of all 600 configuration options,

the top-N (N=5%) success rate is 20%. When there are multiple

elements specified as the ground truth, we only consider the first

one that PerfLearner can find. Since workload is directly identified

without ranking, we examine the percentage of bug reports in

which ground truth workload is found.

For the second metric, we use MAP (Mean Average Precision).

MAP is a single-figure measure of ranked retrieval results indepen-

dent of the size of the top list [44]. It is designed for general ranked

retrieval problems, where a query can have multiple relevant docu-

ments. To compute MAP, it first calculates the average precision

23

ASE ’18, September 3–7, 2018, Montpellier, France Xue Han, Tingting Yu, and David Lo

(AP) for each individual query Qi , and then calculates the mean of

APs on the set of queries Q:

MAP = 1
|Q | ·

∑

Qi ∈Q

AP (Qi)

To illustrate the MAP calculation, suppose there are two configu-

ration options o1 and o2 associated with a bug report. If Technique-I

ranks the two options at the 1st and 2nd positions among all 500

options and Technique-II ranks the two options at the 1st and 3rd

positions, then the MAP of Technique-I is (1/1 + 2/2)/2 = 1 and the

MAP of Technique-II is (1/1 + 2/3)/2 = 0.8.

RQ2: Effectiveness and Efficiency of Generating Performance Test

Frames. To answer RQ2, ideally, the comparison should be done

with existing approaches that generate performance test frames.

However, we cannot find an existing approach with this specific

goal. In the absence of such approaches, we instead compare Per-

fLearner to a combinatorial testing (CT) strategy [19] that employs

the category-partition method [37], t-wise testing [39], and the

random testing approach. Specifically, CT generates test frames

by combining elements under each input category with respect to

the constraints. The first difference between PerfLearner and CT

is that CT does not analyze bug reports or rank frame elements in

terms of their relevance to the report; instead, CT ranks the frame

elements in a random order. The second difference is that in CT,

the workload is randomly assigned to a frame element. To make a

fair comparison, the interaction strength of configuration options

and that of data inputs are the same as those used in PerfLearner.

To evaluate the cost-effectiveness of PerfLearner and CT in gen-

erating performance test frames, we wish to know whether frame

elements frequently appeared in historical bug reports can be used

to generate test frame for testing future versions of the programs.

For each bug report used for evaluation, we manually inspect and

derive the test frame that triggers the performance bug described

in the report (Section 3.1). We refer to this test frame as the ground

truth test frame. Since test frames cannot be executed directly, we

consider an approach detects the bug if the ground truth test frame

is included in the generated test frames. To do this, we first list the

100 bug reports from each program in ascending order by the bug

creation date. We then select the first 90 bug reports (training set)

and apply techniques (PerfLearner and CT) described in Section 4.2

to generate test frames. We compare the test frames generated by

each technique against the remaining 10 bug reports (test set) from

each subject. Specifically, we examine at which iteration the ground

truth test frame of the test set bug report is generated by the tech-

nique. To evaluate the efficiency of the two techniques, we evaluate

the time they take to generate the ground truth test frames.

RQ3: Detecting Performance Bugs. Besides evaluating PerfLearner on

generating performance test frames, wewould like to knowwhether

the generated frames are useful for detecting actual performance

bugs. PerfLearner is orthogonal to existing performance testing

tools. It aims to improve the efficiency of testing by focusing on

selecting commands and input parameters that are more likely to

expose performance bugs. To answer RQ3, we combine PerfLearner

with GA-Prof, a performance test input generation tool to detect

performance bugs [46]. We choose GA-Prof because it is the only

tool that can evolve both configuration option and data input values.

GA-Prof employs a genetic algorithm to explore the space of input

Table 3: RQ1: Test Frame Extraction Accuracy

App. Metric
Command Data Input Config. Option

Metric
Workload

CD CDs DI DIs CO COs PLa WL WLr

Ap.
Top-N 91% 78% 83% 67% 71% 71% 67%

Acc. 78% 60%
MAP 0.80 0.70 0.70 0.60 0.37 0.22 0.33

My.
Top-N 83% 75% 91% 81% 83% 75% 53%

Acc. 67% 43%
MAP 0.60 0.50 0.80 0.70 0.24 0.23 0.21

Fi.
Top-N 82% 80% 90% 90% 85% 83% 60%

Acc. 80% 42%
MAP 0.80 0.60 0.70 0.60 0.28 0.22 0.20

combinations among all input parameters. We re-implemented the

genetic algorithm part of GA-Prof to handle C/C++ applications.

We compare two settings of GA-Prof: 1) a default setting (denoted

by GA) in which the combinations are evolved for all commands

and input parameters, and 2) an enhanced technique, denoted by

GPPL where it utilizes test frames generated from PerfLearner to

iteratively select and evolve input values to generate performance

test cases.

To evaluate whether the two techniques are able to detect per-

formance bugs within a reasonable time limit, we select real per-

formance bugs that we can reproduce. We iteratively select a bug

report from the 1083 performance bug reports (excluding the 300

sampled bug reports in the dataset) and try to reproduce the bug. Be-

cause reproducing performance bugs is challenging and expensive,

we stop this process after we have 10 bugs successfully reproduced

ś this process took approximately 400 work hours.

Next, we apply the two techniques to the program versions

corresponding to the 10 performance bugs. We evaluate whether

the performance bug described in the bug report can be detected and

record the time it takes. Specifically, we conduct test experiments on

High-Performance Computer (HPC) clusters. The basic HPC node

is equipped with a 6 core 2.66 GHz Intel Xeon X5650 Westmere, 36

GB memory, and 256 GB hard drive. This environment enables us

to run multiple experiments simultaneously without interruption.

Each experiment is repeated 10 times and we report the mean to

reduce the bias due to randomness. We default the time limit to

24 hours before terminating the experiment and set the maximum

number of GA iterations in each run to be 10.

6.2 Results and Analysis

RQ1: Accuracy of Bug Reports Analysis. Table 3 shows the effec-

tiveness of different techniques at ranking frame elements and

extracting workload. The success rates are based on the default

values specified in the strength file. The results indicate that com-

mands appear in the top-2 positions for 82-91% of bug reports; the

correct data input appears in the top-2 positions for 83-90% of the

bug reports; the correct configuration option appears in the top-5%

returned results for 71-85% of the reports. Additionally, the work-

load is identified with 56-80% accuracy. Compared to the baseline

approaches, the success rate is higher in each category over all

programs.

Where the MAP scores are concerned, PerfLearner is more ef-

fective than the baseline techniques over all three types of frame

elements across all subject programs. The improvements range from

14% to 40%. These results suggest that heuristics used by PerfLearner

is effective in boosting accuracy.

24

PerfLearner ASE ’18, September 3–7, 2018, Montpellier, France

Table 4: RQ2: Performance Test Frame Generation

Application # of Const.
PerfLearner CT

Space Count Avg. Space Count Avg.

Apache 45 445K 2662 64M 10K
MySQL 12 1.4M 1831 2.9B 10K
Firefox 25 443K 7659 3.9B 10K

of Const.=the number of constraints. Space=the number of total configurations w.r.t.
constraints and the default weight. Count Avg.=the average number of test frames
generated by the test method before reaching the ground truth.

Table 5: RQ3: Performance Testing with GA

Application Bug ID
Effectiveness Efficiency
GA GAPL GA Count GPPL CountPL

Apache

54852 NO YES 24H 8297 5.2H 1714
52914 NO YES 24H 9429 10.1H 3052
37680 NO NO 24H 8790 24H 9764
43081 NO YES 24H 8822 20.2H 6085
46749 NO NO 24H 9037 8.7H 3125

MySQL

21727 NO YES 24H 8614 14.8H 4097
44723 NO YES 24H 9259 11.7H 3015
74325 NO YES 24H 8458 11.3H 4055
15653 NO YES 24H 7446 7.3H 2910
26938 NO NO 24H 9793 24H 9425

RQ2: Effectiveness and Efficiency of Performance Test Frame Genera-

tion. Table 4 shows the results of PerfLearner and CT in generating

performance test frames. Since CT does not rank test frames, we

allow CT to generate test frames among randomly sampled input

space for each input category. We limit the number of test frames

to 10,000. The threshold number is based on practical considera-

tions as 10,000 tests may take considerable executing time. With

the default CT method, all three subjects failed to generate the

ground truth test frame before the frame limit threshold. These

results suggest that PerfLearner is more cost-effective at generating

performance test frames than the traditional combinatorial testing

approach. Figure 8 shows the distribution of test frames generated

in each subject for both PerfLearner (PL) and CT. Firefox has the

worst performance of all, this is largely due to Firefox bugs require

multiple steps to trigger. Firefox also has the largest number of

commands and lowest command extraction accuracy. As a result,

the ranking of test frames does not work as effectively as the other

two subjects.

Figure 8: Test frame generation

RQ3: Enhancing Performance Bug Detection. Table 5 shows the re-

sults of GA and GPPL (GA enhanced with PerfLearner). GA failed

to detect all 10 performance bugs. Like other test case generation

techniques, the genetic algorithm for generating input values is ap-

plied only after a test frame is selected. However, without knowing

which frame element is more likely to cause a performance bug,

a random method is used to allow frame elements in each input

category to have an equal chance to be selected. As a result, many

low-quality test frames are generated. The ground truth test frame

often fails to be generated within the time limit (24 hours).

Our results show that the GPPL approach can detect 7 out of

10 performance bugs within an average of 10.9 hours. These re-

sults suggest that PerfLearner can potentially enhance existing per-

formance testing tools. For the three bugs GPPL failed to detect: 1)

Apache bug#37680 requires two entries of the łListenž option.When

selecting configuration options, we do not allow duplications of

configuration option since multiple appearances of the same option

normally overwrites one another. 2) Apache bug#46749 executes a

test frame (server graceful stop) that causes a long response time.

This test frame is considered to trigger a performance bug, however,

the ground truth test frame of this bug is related to cache utilization.

This is the only false positive case appeared in our experiment. 3)

For MySQL bug#26938, the łprofilež command is required to trigger

this bug. However, none of the bug reports used to generate test

frames includes the command łprofilež. We conjecture false nega-

tive cases can be reduced as more bug reports are used for mining

test frames.

Figure 9: Weight sensitivity analysis

7 DISCUSSION

Sensitivity of Strength. By default, PerfLearner uses strengths {nc
= 2, no = 5%, nd = 2, nw = 2, t = 2 }. The selected values are based on

the empirical study that achieves best test frame element extracting

results. To understand the influence of selecting different sets of

strengths, we evaluate PerfLearner on two other sets of strengths:

w1={ nc = 1, no = 2%, nd = 1, nw = 1, and t = 1 } and w2= { nc = 3,

no = 10%, nd = 3, nw = 3, and t = 3 }. Figure 9 reports the results

of test frame generation using the three sets of strengths on the

test set (10 bug reports) for each of the three subjects. The vertical

axis indicates the number of frames generated before reaching the

ground truth. The results indicate that, in general, default strengths

outperform the other two sets. In Apache, w1 outperforms the

default strengths in terms of the average frames generated, but w1

exhibits a larger standard deviation. The weight sensitivity analysis

implies that the strengths should not be set too low or too high.

Low strength values may cause PerfLearner to miss certain relevant

frames, whereas high strength values may result in generating too

many performance test frames and thus reduce the efficiency of

PerfLearner.

Threats to Validity. The primary threat to the external validity of

this study involves the representativeness of our subjects and bug

reports. We do reduce this threat to some extent by using several

varieties of well studied open source projects and bug tracking

25

ASE ’18, September 3–7, 2018, Montpellier, France Xue Han, Tingting Yu, and David Lo

systems for our study. Combining keyword search and manual

inspection is an effective technique to identify bugs of a specific type

from a large pool of generic bugs and has been used successfully

in prior studies [28, 33, 54]. We cannot claim that our results can

be generalized to all systems of all domains though. The primary

threat to the internal validity involves the manual inspection to

identify the ground truth test frame from a bug report. To minimize

the risk of incorrect results given by manual inspection, the analysis

process was done independently by two trained inspectors.

Limitations. The textual quality of a bug report has substantial

impact on the effectiveness of the proposed approach. For example,

a bug report may not use the standard names of the frame elements.

This can be addressed by integrating advanced NLP techniques,

such as Word2Vec [51]. The incompleteness of bug reports is also

a major obstacle for PerfLearner to work well, like for many bug

report analysis techniques. One strategy is to filter out bug reports

containing missing information using an automated approach [9]

and apply PerfLearner only to complete bug reports to improve

accuracy. Other classification techniques can be integrated with

PerfLearner as well, such as detecting reproducible [15] and dupli-

cate [26] bug reports.

PerfLearner takes only labeled performance bug reports. One

extension point is to build a prediction model that can automatically

predict whether a new bug report is related to performance or not.

There has been some research on using text mining to classify bug

reports [17, 47, 49], which can be easily tuned to handle perfor-

mance bug reports. In addition, when a performance bug requires

a specific system state (e.g., networking events) to be triggered, the

current approach cannot extract such information. For example,

a state may be associated with the topology of the target system

(e.g., the firewall setup may negatively affect the performance of a

system). Nevertheless, we believe PerfLearner can be extended to

handle system-level triggering events by defining additional frame

databases and linguistic patterns.

8 RELATED WORK

There has been a great deal of research on analyzing, detecting,

and fixing performance bugs [7, 28, 29, 34, 36]. Burnim et al. [7]

designed a technique to generate worse-case inputs (larger input

sizes) to find performance bugs. As discussed in Section 1, these

techniques often rely on initial test cases and do not address the

challenges of finding the right combination of input parameters

to create effective initial test cases. As our empirical study shows,

workload only helps to trigger some but not all performance bugs.

Although PerfLearner also takes workload into consideration, it

focuses more on the combination of elements to be used in the test

frame. Our method is orthogonal to the test case generation tools, as

our experiment shows, PerfLearner can be integrated into existing

performance testing techniques to improve the effectiveness and

efficiency of bug detection.

A great body of work has been conducted on applying combina-

torial testing (CT) to address the problem of large input space in

complex and configurable systems [13, 32, 52, 57]. CT systematically

samples the input space and tests only the selected input parame-

ters combinations. Zhang et al. [57] proposed a method to optimize

combinatorial testing to generate test cases to find a balanced point

of coverage without pressuring on achieving the maximum cov-

erage. Dumlu et al. [13] proposed a feedback-driven approach to

detect and avoid masking effect resulted from CT. These techniques

focus on sampling combinations from the entire input space. There-

fore, it is often inevitable to result in a large sampling space. In

the contrast, PerfLearner detects and uses only the error-prone

commands and input parameters from the historical bug reports.

Empirical results show that our approach can significantly reduce

the sampling space when generating test frames for performance

bugs.

There has been considerable work on using natural language and

information retrieval techniques to improve code documentation

and understanding [9, 14, 24, 25] and to create code traceability

links [1, 12, 38]. While our work applies some of these same basic

techniques, such as tokenization, lemmatization, vector spacemodel

with term frequency-inverse document frequency weighting [4],

the prior work has not applied these techniques to performance

bug reports and has not considered or extracted input parameters

to generate test frames.

There has been a large body of work that demonstrates the need

for configuration-aware testing techniques and proposes methods

to sample and prioritize the configuration space [27, 31, 42, 43, 53]

to reduce the cost of testing. For example, Jamshidi et al. [27] con-

duct an empirical study to evaluate the feasibility of applying the

transfer learning technique to reduce the dimensionality of the

configuration space when constructing performance models. Nair

et al. [31] use inexpensive and inaccurate models to find optimal

configurations with less cost compared to the state-of-the-art sam-

pling techniques. Unlike the above technique, our approach focuses

on creating test frames to aim performance testing for finding per-

formance bugs instead of performance modeling.

9 CONCLUSIONS

Performance bugs are difficult to expose because they often man-

ifest under special input conditions and system configurations.

In this paper, we studied 300 real-world performance bugs from

three popular open source projects. Our findings indicate that

combinations of input parameters, especially configurations, can

play an important role in exposing performance bugs. Guided by

these findings, we designed PerfLearner, an automated approach

to extract test frame elements, and to generate test frames for

performance testing. We evaluated PerfLearner on 300 bug re-

ports and the results show that PerfLearner extracts test frame

elements with high accuracy. PerfLearner is also effective in gen-

erating performance-bug-triggering test frames. Our evaluation

on combining PerfLearner with GA-Prof to detect real-world per-

formance bugs indicates that PerfLearner can enhance existing

performance testing tools for generating test cases and detecting

performance bugs. For reproducibility and further research, Per-

fLearner and all the data from the experiments are publicly available

at https://github.com/xha225/PerfLearner.

ACKNOWLEDGMENTS

This research is supported in part by the NSF grant CCF-1652149.

26

PerfLearner ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] N. Ali, W. Wu, G. Antoniol, M. Di Penta, Y. G. Guéhéneuc, and J. H. Hayes.

Moms: Multi-objective miniaturization of software. In International Conference
on Software Maintenance, pages 153ś162, 2011.

[2] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Software Engineering
(ICSE), 2011 33rd International Conference on, pages 1ś10. IEEE, 2011.

[3] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI, pages
307ś320, 2012.

[4] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[5] Beautiful soup, 2017. https://www.crummy.com/software/BeautifulSoup/.
[6] Bugzilla keyword descriptions, 2016.

https://bugzilla.mozilla.org/describekeywords.cgi.
[7] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test

generation for worst-case complexity. In Proceedings of the International
Conference on Software Engineering, pages 463ś473, 2009.

[8] Andrea Calvagna and Angelo Gargantini. A formal logic approach to
constrained combinatorial testing. Journal of Automated Reasoning,
45(4):331ś358, 2010.

[9] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano
Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing
information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 396ś407, 2017.

[10] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan Rhee, Nipun
Arora, and Geoff Jiang. Perfscope: Practical online server performance bug
inference in production cloud computing infrastructures. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1ś13. ACM, 2014.

[11] Andrea Di Sorbo, Sebastiano Panichella, Corrado A Visaggio, Massimiliano
Di Penta, Gerardo Canfora, and Harald C Gall. Development emails content
analyzer: Intention mining in developer discussions (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages 12ś23,
2015.

[12] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. Can
better identifier splitting techniques help feature location? In International
Conference on Program Comprehension, pages 11ś20, 2011.

[13] Emine Dumlu, Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Feedback
driven adaptive combinatorial testing. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 243ś253, 2011.

[14] Eric Enslen, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Mining source code
to automatically split identifiers for software analysis. In International Working
Conference on Mining Software Repositories, pages 71ś80, 2009.

[15] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for me!
characterizing non-reproducible bug reports. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 62ś71, 2014.

[16] Christos Faloutsos and Douglas W Oard. A survey of information retrieval and
filtering methods. Technical report, 1998.

[17] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug reports via
text mining: An industrial case study. In Mining software repositories (MSR), 2010
7th IEEE working conference on, pages 11ś20, 2010.

[18] Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding performance
problems with feedback-directed learning software testing. In 2012 34th
International Conference on Software Engineering (ICSE), pages 156ś166. IEEE,
2012.

[19] Mats Grindal, Jeff Offutt, and Sten F Andler. Combination testing strategies: a
survey. Software Testing, Verification and Reliability, 15(3):167ś199, 2005.

[20] Robert J Grissom and John J Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[21] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Performance
debugging in the large via mining millions of stack traces. In Proceedings of the
International Conference on Software Engineering, pages 145ś155, 2012.

[22] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Performance
debugging in the large via mining millions of stack traces. In ICSE, pages
145ś155, 2012.

[23] Xue Han and Tingting Yu. An empirical study on performance bugs for highly
configurable software systems. In Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, page 23. ACM,
2016.

[24] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova,
Lori Pollock, and K. Vijay-Shanker. Amap: Automatically mining abbreviation
expansions in programs to enhance software maintenance tools. In International
Working Conference on Mining Software Repositories, pages 79ś88, 2008.

[25] Matthew J. Howard, Samir Gupta, Lori Pollock, and K. Vijay-Shanker.
Automatically mining software-based, semantically-similar words from
comment-code mappings. In International Working Conference on Mining
Software Repositories, pages 377ś386, 2013.

[26] Nicholas Jalbert and Westley Weimer. Automated duplicate detection for bug
tracking systems. In IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC, pages 52ś61, 2008.

[27] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. Transfer learning for performance modeling of
configurable systems: An exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, pages
497ś508. IEEE Press, 2017.

[28] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and detecting real-world performance bugs. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 77ś88, 2012.

[29] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if you can:
Performance bug detection in the wild. In Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications, pages 155ś170, 2011.

[30] Andrew J Ko, Brad A Myers, and Duen Horng Chau. A linguistic analysis of how
people describe software problems. In Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on, pages 127ś134, 2006.

[31] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Using bad learners
to find good configurations. arXiv preprint arXiv:1702.05701, 2017.

[32] Changhai Nie, Huayao Wu, Xintao Niu, Fei-Ching Kuo, Hareton Leung, and
Charles J Colbourn. Combinatorial testing, random testing, and adaptive
random testing for detecting interaction triggered failures. Information and
Software Technology, 62:198ś213, 2015.

[33] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing
performance bugs. In Proceedings of the International Conference on Mining
Software Repositories, pages 237ś246, 2013.

[34] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting
performance problems via similar memory-access patterns. In Proceedings of the
International Conference on Software Engineering, pages 562ś571, 2013.

[35] Natural language toolkit, 2017. http://www.nltk.org/.
[36] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic

performance bugs in collection traversals. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
369ś378, 2015.

[37] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for
specifying and generating fuctional tests. Communications of the ACM,
31(6):676ś686, 1988.

[38] Annibale Panichella, Collin McMillan, Evan Moritz, Davide Palmieri, Rocco
Oliveto, Denys Poshyvanyk, and Andrea De Lucia. When and how using
structural information to improve ir-based traceability recovery. In European
Conference on Software Maintenance and Reengineering, pages 199ś208, 2013.

[39] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon.
Automated and scalable t-wise test case generation strategies for software
product lines. In International Conference on Software Testing, Verification and
Validation (ICST), pages 459ś468, 2010.

[40] Jay M Ponte and W Bruce Croft. A language modeling approach to information
retrieval. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 275ś281, 1998.

[41] Michael Pradel, Markus Huggler, and Thomas R. Gross. Performance regression
testing of concurrent classes. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 13ś25, 2014.

[42] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware regression
testing: An empirical study of sampling and prioritization. In ISSTA, pages
75ś86, 2008.

[43] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof
Czarnecki. Cost-efficient sampling for performance prediction of configurable
systems (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 342ś352. IEEE, 2015.

[44] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction
to information retrieval, volume 39. Cambridge University Press, 2008.

[45] scikit-learn, 2017. http://scikit-learn.org/stable/.
[46] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating

performance bottleneck detection using search-based application profiling. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, pages 270ś281, 2015.

[47] Wei Wen, Tingting Yu, and Jane Huffman Hayes. Colua: Automatically
predicting configuration bug reports and extracting configuration options. In
EEE 27th International Symposium on Software Reliability Engineering, pages
150ś161, 2016.

[48] Alexander Wert, Jens Happe, and Lucia Happe. Supporting swift reaction:
Automatically uncovering performance problems by systematic experiments. In
Proceedings of the International Conference on Software Engineering, pages
552ś561, 2013.

[49] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou. Automated configuration bug
report prediction using text mining. In Computer Software and Applications
Conference, pages 107ś116, 2014.

27

ASE ’18, September 3–7, 2018, Montpellier, France Xue Han, Tingting Yu, and David Lo

[50] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. Context-sensitive delta
inference for identifying workload-dependent performance bottlenecks. In
Proceedings of the International Symposium on Software Testing and Analysis,
pages 90ś100, 2013.

[51] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embedding
and orthogonal transform for bilingual word translation. In Proceedings of the
2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1006ś1011,
2015.

[52] C. Yilmaz. Test case-aware combinatorial interaction testing. IEEE Transactions
on Software Engineering, 39:684ś706, 2013.

[53] Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. TSE, 29(4), July 2004.

[54] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on configuration
errors in commercial and open source systems. In SOSP, pages 159ś172, 2011.

[55] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. A qualitative study on
performance bugs. In MSR, pages 199ś208, 2012.

[56] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative study on
performance bugs. In IEEE Working Conference on Mining Software Repositories
(MSR), pages 199ś208, 2012.

[57] Zhiqiang Zhang, Jun Yan, Yong Zhao, and Jian Zhang. Generating combinatorial
test suite using combinatorial optimization. Journal of Systems and Software,
98:191ś207, 2014.

28

	Abstract
	1 Introduction
	2 Background
	3 Performance Bug Study
	3.1 Data Collection
	3.2 Results Analysis

	4 PerfLearner Approach
	4.1 Test Frame Element Extraction
	4.2 Performance Test Frame Generation
	4.3 Performance Test Case Generation

	5 Implementation
	6 Evaluation of PerfLearner
	6.1 Techniques and Metrics
	6.2 Results and Analysis

	7 Discussion
	8 Related Work
	9 Conclusions
	References

