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A recent paper expands the well-known geographically weighted regression (GWR) 
framework significantly by allowing the bandwidth or smoothing factor in GWR to be 
derived separately for each covariate in the model—a framework referred to as multiscale 
GWR (MGWR). However, one limitation of the MGWR framework is that, until now, no 
inference about the local parameter estimates was possible. Formally, the so-called “hat 
matrix,” which projects the observed response vector into the predicted response vector, 
was available in GWR but not in MGWR. This paper addresses this limitation by reframing 
GWR as a Generalized Additive Model, extending this framework to MGWR and then 
deriving standard errors for the local parameters in MGWR. In addition, we also 
demonstrate how the effective number of parameters can be obtained for the overall fit of 
an MGWR model and for each of the covariates within the model. This statistic is essential 
for comparing model fit between MGWR, GWR, and traditional global models, as well as 
for adjusting multiple hypothesis tests. We demonstrate these advances to the MGWR 
framework with both a simulated data set and a real-world data set and provide a link to 
new software for MGWR (MGWR1.0) which includes the novel inferential framework for 
MGWR described here.

Introduction

There is a great deal of interest in both the geographical and statistical literature on modeling 
frameworks that allow the estimation of spatially varying parameters (inter alia Casetti 1972; 
Fotheringham, Brunsdon, and Charlton 2002; Fotheringham, Charlton, and Brunsdon 1998; 
Gelfand et al. 2003; Griffith 2008; LeSage 2004; Oshan and Fotheringham 2017). Two main 
frameworks dominate the literature—geographically weighted regression (GWR) and spatially 
varying coefficients models (SVC). The former is a purely local model and based on a spatial 
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disaggregation of a classical regression model in which the local parameter estimates are gener-
ated by “borrowing data” around locations and then calibrating separate models for each location 
(Fotheringham, Brunsdon, and Charlton 2002; Fotheringham et al. 1996). The latter is framed in 
a Bayesian context and although it produces local parameter estimates, it uses all the data to do 
so rather than being a purely local model (Wolf, Oshan, and Fotheringham 2018). Until recently, 
the Bayesian SVC framework, while usually estimated using many more free parameters (such 
as prior specifications and Markov chain Monte Carlo tuning parameters), had an advantage over 
the GWR framework: a variant existed that allowed separate bandwidths to be estimated for each 
covariate in the model. GWR, however, was limited to fit a single optimal bandwidth, which 
typically reflected an “average” of the best bandwidths for each process.

Recently, this limitation was removed by the development of multiscale GWR (Fotheringham, 
Yang, and Kang 2017) which allows covariate-specific bandwidths to be optimized. This is a 
significant development for three reasons. First, allowing each covariate its own level of spatial 
smoothing places MGWR on the same footing as the non-separable spatially varying coefficients 
model in the Bayesian framework (Finley 2011) and in so doing addresses a limitation of the 
GWR framework. Second, these covariate-specific bandwidths can be used as indicators of the 
spatial scale over which each process operates. Third, the multi-bandwidth approach produces a 
more accurate and useful model of real-world processes than GWR and is arguably more more 
intuitive and easier to calibrate than the Bayesian SVC models. A comparison and fuller discus-
sion of MGWR and Bayesian SVC models is given by Wolf, Oshan, and Fotheringham (2017).

However, although MGWR is a considerable improvement over GWR, a limitation of the 
MGWR model is that until now no formal inferential framework existed for the local parame-
ter estimates.1 Formally, the so-called “hat matrix,” which projects the observed response vec-
tor into the predicted response vector, was available in GWR but not obtained for MGWR. 
This paper addresses this limitation by reframing GWR as a generalized additive model (GAM) 
(Buja, Hastie, and Tibshirani 1989; Hastie and Tibshirani 1990), and extending this framework 
to MGWR to derive standard errors for the local parameter estimates. The paper also derives 
covariate-specific and overall model formulations for the effective number of parameters (ENP) 
to be computed for MGWR. These diagnostics are essential for comparing model fit between 
MGWR, GWR, and traditional global models as well as for adjusting multiple comparisons 
during parameter hypothesis testing. We demonstrate these advances to the MGWR framework 
with both a simulated data set and a real-world data set. We first reframe GWR as a GAM and 
then extend this framework to MGWR to derive the standard errors of the local parameter es-
timates. We provide a link to a user-friendly software package for MGWR which includes the 
inferential framework described here.

GWR as a GAM

Standard models such as those calibrated by OLS regression assume that the processes gen-
erating the data we observe are the same across space. GWR removes this assumption and 
allows processes to vary over space. It does this by calibrating a separate regression model at 
each location by borrowing data from nearby locations and weighting these data by distance 
from the regression point such that data from locations nearer to the regression point are 
weighted more than data from more distant locations. This approach is a generalization of 
kernel regression concepts (Cleveland 1979), and has significant and powerful meaning in the 
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context of spatial statistics. The rate at which the weights of locations decline as distance in-
creases is controlled by a bandwidth, which is optimized in the GWR calibration procedure. 
GWR is formulated as

where for the observation at location i∈{1, 2,… , n}, yi is the response variable, xij is the jth pre-
dictor variable, j ∈{1, 2,… , k}, �ij is the jth parameter estimate, and �i is the error term. GWR 
calibration for the (k,1) coefficients at location i in matrix form is given by

where X is the (n, k) matrix of predictor variables (including a column of 1 s for the intercept), y 
is the (n,1) response variable, and Wi is the (n, n) diagonal spatial weighting matrix for location 
i with the diagonal elements representing the weights attached to each location and is calculated 
based on a specified kernel function and bandwidth. The bandwidth is assumed to be constant 
across all the covariates implying that the processes producing the observed values of each co-
variate vary at the same spatial scale.

MGWR (Fotheringham, Yang, and Kang 2017) is a more generalized GWR that loosens the 
constant bandwidth assumption and allows each predictor to have a different optimized band-
width. Both GWR and MGWR can be thought of as GAMs. A GAM represents the response 
variable as the sum of smoothed predictor variables. A typical GAM can be expressed as:

where fj is a smooth function applied on the jth predictor variable (Wood 2017). In the context 
of (M)GWR, each smooth function fj is a spatial GWR parameter surface calibrated using a 
known bandwidth. This bandwidth is constant for all predictor variables in GWR but can be 
varying over j in MGWR.

The hat matrix in GWR

The derivation of the hat matrix, also referred as a projection matrix or influence matrix, is cru-
cial to deriving inferential statistics in GWR. The hat matrix maps the response values directly 
to the fitted values and is necessary for calculating model diagnostics such as the corrected 
Akaike Information Criterion (AICc) and the equivalent/effective number of parameters as well 
as inferential statistics such as local standard errors and local t values. Each row i in the GWR 
hat matrix S is given by:

where Xi is the ith row of predictors X. So, the full hat matrix S can be expressed as:

(1)yi =

k∑
j=1

�ijxij+�i

(2)�̂i=
(
XTWiX

)−1
XTWiy, i∈{1, 2, … , n}

(3)y=

k∑
j=1

fj+�

(4)si=Xi

(
XTWiX

)−1
XTWi
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The hat matrix S can be decomposed into covariate-specific additive hat matrices R1…k that 
map y to the fitted additive terms f̂1…k. The R1…k matrices have two properties:

To derive Rj we first express f̂j as a column vector

where xij and 𝛽ij are the jth covariate and parameter estimate, respectively, at location i. Let ej be 
the jth row vector of a k by k identity matrix

so

where �̂i is a column vector of k parameter estimates at location i. To proceed, we replace �̂i in 
Equation (10) with the GWR estimator and obtain a place-specific estimator:

Finally, replace each 𝛽ij in Equation (8) to define the partial smooth for process j as:

(5)S=

⎛
⎜⎜⎜⎝

X1

�
XTW1X

�−1
XTW1

…

Xn

�
XTWnX

�−1
XTWn

⎞
⎟⎟⎟⎠n×n

(6)(1). f̂j=Rjy. Rj projects y onto each fitted additive term f̂j.

(7)(2). ŷ=Sy=

k∑
j=1

Rjy, which implies

k∑
j=1

Rj = S.

(8)f̂j=

⎛⎜⎜⎜⎝

x1j𝛽1j

…

xnj𝛽nj

⎞⎟⎟⎟⎠

(9)ej=

(
0… 0
⏟⏟⏟

j−1

1 0… 0
⏟⏟⏟

k−j

)

(10)𝛽ij = ej�̂i

(11)𝛽ij = ej
(
XTWiX

)−1
XTWiy

(12)f̂j=

⎛⎜⎜⎜⎝

x1jej
�
XTW1X

�−1
XTW1

…

xnjej
�
XTWnX

�−1
XTWn

⎞⎟⎟⎟⎠
y
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Then, the hat matrix Rj for the jth additive term f̂j is:

Given that the above hat matrix is derived for GWR when represented as a GAM, we can 
now develop this same framework to derive the hat matrix equivalent for MGWR.

MGWR as a GAM

Fotheringham, Yang, and Kang (2017) proposed a backfitting algorithm for the calibration of 
MGWR models based on viewing the model as a GAM. Firstly, parameter estimates at all loca-
tions are initialized and fitted additive terms f̂1…k are computed based on the initial parameter 
estimates and data on the covariates.2 The model residuals �̂ at this point are obtained from:

Then, the residuals �̂ plus the first additive term f̂1 are regressed on X1 (first covariate) using 
GWR to find an optimal bandwidth bw1 as well as a new set of parameter estimates in order to 
update the first additive term f̂1 and residuals �̂. This procedure is then repeated for covariate X2 
to update the second additive term f̂2 and residuals �̂. The process continues in this way through 
to the final covariate Xk when f̂k and �̂ are updated. This finishes the first round iteration and the 
second round starts from the first additive term using the new values for the estimated fk and �̂. 
The iterations continue until the change in a convergence indicator (such as the residual sum of 
squares) becomes sufficiently small between successive iterations.

The hat matrix in MGWR

In this section, we propose a solution to calculate the hat matrix for MGWR using the backfitting 
calibration procedure described above. We start with initializing the backfitting algorithm using 
GWR local parameter estimates. We then calculate the additive hat matrix Rj for each covariate 
using Equation (13). Then, we regress the jth covariate Xj against f̂j+ �̂ and find the partial opti-
mal model for the jth covariate yielding an optimized bwj. Let Aj be the hat matrix of the partial 
optimal model so that

where f̂
*

j
 is the updated f̂j and f̂j is the jth fitted additive term from the previous iteration.

From Equation (14) and the properties of R1…k defined in Equations (6) and (7), we have

(13)Rj=

⎛
⎜⎜⎜⎝

x1jej
�
XTW1X

�−1
XTW1

…

xnjej
�
XTWnX

�−1
XTWn

⎞
⎟⎟⎟⎠n×n

(14)�̂=y−

k∑
j=1

f̂j

(15)f̂
*

j
=Aj

(
f̂j+ �̂

)

(16)f̂j+ �̂= f̂j+y−

k∑
j=1

f̂j=Rjy+ y−Sy
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Combining Equations (15) to (16), we then obtain

Therefore, the additive hat matrix R*
j
 for MGWR in the next iteration is:

The new hat matrix S*is then updated accordingly

The pseudo-code for the hat matrix calculation is as follows:
MGWR hat matrix calculation

1: Initiate f̂1…k, �̂,R1…k,S from GWR {y ∼ X}

2: Do until f̂1…k converge:
3:        For each term j from 1 to k:

4:                 f̂j, �̂,Aj←GWR
{
f̂j+ �̂∼Xj

}
 using optimal bwj

5:                 Rj ←AjRj+Aj−AjS

6:                 S←
k∑
1

Rj

7:         End for
8: End do

Local standard errors of the parameter estimates in MGWR

Given we now have a hat matrix defined for MGWR, we can use this to derive standard errors 
of the local parameter estimates and other diagnostics. We rewrite Equation (8) into matrix 
multiplication form as:

where

Then, �̂j can be given by

(17)f̂
*

j
=Aj

(
f̂j+ �̂

)
=Aj

(
f̂j+y−

k∑
j=1

f̂j

)
=Aj

(
Rjy+y−Sy

)
=
(
AjRj+Aj−AjS

)
y

(18)R*
j
= AjRj+Aj−AjS

(19)S*= S−Rj+R*
j

(20)f̂j=diag
(
Xj

)
�̂j

(21)diag
�
Xj

�
=

⎛
⎜⎜⎜⎜⎝

x1j 0 0

0 x2j 0

0 0 ⋱

0

0

0

0 0 0 xnj

⎞
⎟⎟⎟⎟⎠
n×n

(22)�̂j=
[
diag

(
Xj

)]−1
f̂j
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and we replace f̂j with Rjy to yield

where C=
[
diag

(
Xj

)]−1
Rj. The variances of the parameter estimates �̂j are then given by

where 𝜎̂2 is the normalized residual sum of squares from MGWR defined by

where

Once the variances of the jth parameter estimates for all n locations are obtained from Equation 
(24), the standard errors are available using:

and the local standard errors for all the MGWR parameter estimates are:

which means the pseudo- t test for the local parameter estimate in process j at location i is given 
by the typical t test:

Covariate-specific ENP values in MGWR

In the iterative procedure described above, to derive a hat matrix, S, for MGWR, we recognize 
that 

∑k

j=1
Rj=S. That is, the overall hat matrix for the MGWR is composed of k covariate-spe-

cific projection matrices Rj which are derived from an iterative process where for each of the k 
covariates the smoother f̂j is projected onto y as:

and the additive projection matrix R*
j
 in the next iteration is:

(23)�̂j=
[
diag

(
Xj

)]−1
f̂j=

[
diag

(
Xj

)]−1
Rjy=Cy

(24)var
(
�̂j
)
=diag

(
CCT𝜎̂2

)

(25)𝜎̂2=

∑�
yi− ŷi

�2
n−v1

(26)v1= trace (S)

(27)SE
(
�̂j
)
=

√
var

(
�̂j
)

(28)SE
(
�̂
)
=
[
SE

(
�̂1
)
,SE

(
�̂2
)
…SE

(
�̂k
)]

n×k

(29)
𝛽ij

SE
(
𝛽ij
) ∼ tn−v1

(30)f̂j=
(
AjRj+Aj−AjS

)
y

(31)R*
j
= AjRj+Aj−AjS
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with the new hat matrix S*updated accordingly

At the final iteration of this process, each Rj represents a covariate-specific hat matrix, which 
can then be used to derive the ENP for each covariate from:

The value of ENPj is useful because it is used to adjust the critical value of t to account for 
multiple testing as shown below. Note that the sum of the covariate-specific ENPj values will 
equal the ENP for the whole model.

Covariate-specific adjustments to the critical value of t due to multiple 
hypothesis testing

The local t tests for GWR and MGWR suffer from false positives induced by multiple hypothesis 
testing (Miller 1981; Tukey 1991). The issue is further complicated by the potential dependence 
across local estimates (Benjamini and Yekutieli 2001). We follow da Silva and Fotheringham 
(2016) who propose an effective correction to the significance level � for the local t tests to main-
tain a proper family-wise error rate ξ (often set as 0.05) and to avoid false postitves in GWR.3 
The adjusted value of � for the local t tests is given by:

where ENP is the effective number of parameters in GWR and P is the number of parameters in 
the global model. In the case of the calibration of a model by GWR, when the processes are all 
stationary, the bandwidth would tend to infinity, ENP would tend to P and α would tend to ξ; in 
all other situations, α < ξ.

In MGWR, given that we are able to compute ENPj, a separate value of ENP for each co-
variate, the adjustment to alpha should be undertaken separately for each covariate as:

For those covariates where the optimized bandwidth tends to infinity, ENPj tends to 1 and 
�j tends to ξ; in all other situations, �j < ξ.

An example using simulated data

To demonstrate the validity of the analytical results provided above, we construct a simulation 
experiment as follows. Consider a model with two covariates of the following form:

(32)S*= S−Rj+R*
j

(33)ENPj = trace
(
Rj

)

(34)
�=

�
ENP

P

(35)
�j =

�

ENPj

(36)yi =�1ix1i+�2ix2i+�i
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where values of the covariates are randomly drawn from a normal distribution (0, 2) for 625 
locations on a regular 25 × 25 grid. The local parameter values, �1i and �2i, are obtained from 
pre-specified surfaces (see Fig. 1). The values of y are derived from Equation (36) with �i set 
to zero for all i. Given the values of yi, x1i, and x2i for all locations, we calibrate the model in 
Equation (36) by MGWR to obtain covariate-specific optimized bandwidths and an estimate of 
σ2 in Equation (25).4 To simulate the standard errors of the local parameter estimates, we then 
undertake the following iterative process:

1.	 Draw a random error term, �i, from N(0, 𝜎̂2) for each i.
2.	 Use these values in Equation (40) to generate a new value of yi for every i.
3.	 Regress the new y against x1 and x2 using the MGWR calibration procedure and store the 

local parameter estimates.

This process is repeated 1,000 times to generate 1,000 estimates for each local coefficient, 
the standard deviation of which yields an experimental standard error for each local coefficient 
estimator. Note that in step (i) it is important to draw the random error terms from the normal 
distribution with mean 0 and variance 𝜎̂2 which is obtained by calibrating the model in Equation 
(36), where all �i are set to 0 by MGWR. Using some other prior value for the variance of the 
error term will result in simulated standard errors of the local parmater estimates that are only 
correct up to some scaling factor.

The resulting experimental local standard errors of the estimates of β1 and β2 are shown 
in Figs. 2 and 3, respectively, along with the equivalent analytically derived standard errors 
from Equation (24). The similarity in the two sets of local standard errors is reinforced in the 
scatterplots in Fig. 4 and confirms that the analytical expression in Equation (24) yields correct 
estimates of the local standard errors of the parameters obtained in the calibration of a model by 
MGWR. We now demonstrate the use of Equation (24) in a real-world data set on educational 
attainment across counties in Georgia, commonly used in GWR as a demonstrator. We use this 
to show that when the MGWR covariate-specific bandwidths are all similar to the single band-
width obtained in GWR, the standard errors of the local parameter estimates from both models, 

Figure 1. Parameter Surfaces for β1 and β2.
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and subsequent inferences drawn from the results, are similar, as expected. This provides further 
reinforcement of the methodology described above.

An example of educational attainment in Georgia

To demonstrate the calculation of local standard errors in a model calibrated by MGWR, we 
establish a simple model in which the percentage of people with a bachelor’s degree is regressed 
on three covariates: the percentage of foreign-born residents, the percentage of people classified 

Figure 2. Analytical and simulated local standard errors for β1.

(a) (b)

Figure 3. Analytical and simulated local standard errors for β2.

(a) Analtical SEs (b) Simulated SEs
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as rural, and the percentage of African Americans. The data are drawn from the 1990 US census 
of population for the 159 counties in the State of Georgia and have been provided as a sam-
ple data set in successive releases of the GWR software, the current version being available at 
https://sgsup.asu.edu/sparc/software/mgwr.  The covariates used here were checked extensively 
for local multicollinearity using local correlations, local VIFs, and local condition numbers from 
both GWR and MGWR and no problems were identified.5

The global OLS model calibration results are shown in Table 1 and indicate that higher pro-
portions of people with a bachelor’s degree are associated with counties having higher propor-
tions of residents who are foreign-born and lower proportions of rural population. The proportion 
of African Americans in each county has no impact on the proportion of people with a bachelor’s 
education. The AICc for this model is 885 and the adjusted r-squared value is 0.54.

In order to demonstrate the validity of Equation (24) in deriving the standard errors of the 
local parameter estimates from MGWR, the model described above was calibrated by GWR 
(where the standard error formulation is well-known) and MGWR. Both calibrations utilize an 

Figure 4. Scatterplots of the analytical and simulated standard errors for β1 and β2.

(a) (b)

Table 1. Global OLS Calibration Results from the Georgia Data

Covariate Est. Parameter SE t value

Intercept 0.0 0.054 0
Foreign-born 0.458 0.066 7.0
Rural –0.374 0.065 –5.7
African American –0.084 0.055 –1.5

AICc = 332
Adj. R2 = 0.54
n = 159

https://sgsup.asu.edu/sparc/software/mgwr
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adaptive bandwidth using a bisquare weighting function (Fotheringham, Brunsdon, and Charlton 
2002). Both produce four sets of local parameter estimates and for each we map three infer-
ence-related diagnostics: the local parameter estimates themselves; their estimated standard er-
rors; and a map of the local parameter estimates associated with t values which exceed the critical 
threshold using a 95% confidence interval and adjusted for multiple comparisons during param-
eter hypothesis testing (da Silva and Fotheringham 2016). This latter map is useful in identifying 
just those locations with significant local parameter estimates to help focus attention on areas of 
interest. These are given in Figs. 5‒8, respectively. Unlike in GWR, the adjusted critical value 
for the t statistics in MGWR is covariate-specific as the effective number of parameters for each 
covariate is a function of the covariate-specific bandwidth. The covariate-specific bandwidths, 
effective number of parameter estimates, adjusted alpha, and critical t values from the MGWR 
calibration along with their GWR equivalents are shown in Table 2.

The single optimal bandwidth obtained in the GWR calibration is 117. This is the number of 
locations (out of a possible 159) that have a non-zero weighting in the local model calibration. 
However, this is a weighted average across the covariates in the model which themselves may 
have different optimal weighting functions. The MGWR results demonstrate this. The optimal 
bandwidths for each of the four sets of parameter estimates are 92 for the intercept, 101 for 
foreign-born, 158 for rural, and 136 for African American. Conceptually, this means that the 
site-specific baseline for the model (reflected in the intercept) is more local than in GWR, as 
are the relationships between foreign-born population fractions and educational attainment. To 
counterbalance this, the relationships between the remaining covariates and educational attain-
ment are more global than in GWR. So, although all four local sets of parameter estimates from 
MGWR exhibit only broad regional variations, they do differ slightly with the intercept exhib-
iting the most spatial variation and rural exhibiting the least. Indeed, the influence of the rural 
covariate is effectively stationary over space.

Because in this example the four sets of local parameter estimates vary at a similar spatial 
scale, the GWR and MGWR results should be similar, as seen by the ENP for both models (11.80 
for GWR and 11.37 for MGWR). ENP is a measure of model complexity and represents the 
equivalent number of independent parameters estimated in a local model. For the whole model, 
if there is no spatial non-stationarity in the processes being examined, ENP tends to the number 
of parameters estimated in the global model. Because ENP is a function of the hat matrix, and be-
cause we can now obtain a hat matrix for each covariate in MGWR, as well as a “whole model” 
estimate of ENP, it is possible to obtain a separate ENP value for each covariate as shown in 
Table 2. These values indicate the equivalent number of independent local parameters required 
to model the smoother for each covariate. In the limit, as the local model tends to the global 
model, this value will tend to 1 as the global parameter would apply everywhere. ENP is used 
to adjust the value of alpha which determines the critical value of t in the presence of multiple 
tests (da Silva and Fotheringham 2016). The effect of this can be seen in Table 2 in the reported 
adjusted values of alpha and the associated critical t values for each covariate.

Figs. 5‒8 demonstrate both the validity and the usefulness of the local standard error estima-
tor for MGWR given in Equation (24). The local parameter estimates and associated standard er-
rors are mapped in (a) and (b), respectively, for both GWR and MGWR while (c) indicates only 
the significant local parameter estimates defined as having an associated t value greater than the 
critical value given in Table 2 which has been adjusted for multiple tests. In the case of the local 
intercept, the parameter estimates from GWR and MGWR are similar, although the MGWR 
local standard errors tend to be slightly larger. The maps of the significant local estimates show 
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Figure 5. Intercept.

(a)

(b)

(c)
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Figure 6. Foreign-born.

(a)

(b)

(c)
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Figure 7. Rural.

(a)

(b)

(c)
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Figure 8. African American.

(a)

(b)

(c)
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very similar patterns with a raised percentage of people having a bachelor’s education centered 
around Athens and the University of Georgia in the northeast and a lowered percentage in the 
southern part of the state. The extent of this latter region, however, is more curtailed for the 
MGWR results.

In Fig. 6, both the maps of the local parameter estimates and standard erros for the foreign- 
born covariate are very similar when derived from GWR and MGWR and consequently the re-
sulting maps of significant local estimates are almost identical and both techniques would yield 
similar inferences about the role of foreign-born population and education levels which is that 
higher proportions of people with a bachelor’s education are positively associated with higher 
levels of foreign-born population throughout the state except for the southern counties near the 
Florida border.

In the MGWR results from Fig. 7, it is clear that although a slight amount of variation in 
the local parameters exists, the effect of the rural population variable is effectively global. The 
optimized bandwidth is just about as large as it can get (158 out of 159) and the maps of the local 
parameter estimates, standard errors, and significant local estimates are very similar throughout 
the state.6 The inference from the MGWR results is that the association between the percentage 
of people with a bachelor’s education and the percentage of the population born abroad is signifi-
cantly positive throughout the state. Although the inferential results from GWR are similar, some 
difference in the three sets of maps are clear—a result of the optimized GWR bandwidth being 
117 instead of the MGWR value of 158. There is a greater variation across the state in all three of 
the GWR-based maps with a spurious “banding” of intensity of association apparent from north 
to south.  The standard errors of the parameter estimates are consistently larger for GWR than 
for MGWR but especially so in the southeast of the state.

In Fig. 8, although there is some variation in the local estimates for the African American 
percentage, the local standard errors for each location are relatively high and no location in either 
the GWR or MGWR results exhibits any significant association between educational attainment 
levels and the percentage of African American population.

These results are informative because they demonstrate the similarity between the GWR 
and MGWR results when the optimal covariate-specific bandwidths are all similar to that of the 
single GWR bandwidth. This is reassuring because the MGWR standard errors derived from (24) 
yield, as they should, similar values to those obtained in GWR.

Summary

The recent development of MGWR by Fotheringham, Yang, and Kang (2017) significantly adds 
to the GWR framework by allowing the optimization of covariate-specific bandwidths which 
yield potentially valuable information on the spatial scales at which different processes opeate. 
This development also removes an advantage that the Bayesian non-separable spatially varying 
coefficients model had over the GWR framework. However, lacking in the MGWR framework 
was the ability to calculate standard errors for the local parameter estimates and the ENP for 
both the overall model and each covariate. This paper shows how both these diagnostic statsitics 
can be computed for MGWR and demonstrates this for both a simulated and an empirical data 
set. The key to this advance is the derivation of both GWR and MGWR as GAMs from which 
a hat matrix can be computed and which allows the computation of local standard errors and 
ENP values.
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The derivation of MGWR with a full set of local regression diagnostics is a significant ad-
vance in spatial modeling not only because it offers the ability to examine the spatial scales over 
which different processes operate and to make inferences about local parameter estimates but 
also because the framework is eminently expandable and scable and therefore arguably offers 
greater potential for new developments and empirical applications than the equivalent Bayesian 
framework. A user-friendly suite of software for MGWR that includes the advances made to 
the model’s inferential framework described here is available at https://sgsup.asu.edu/sparc/
software/mgwr.

Notes
1 Wood(2017) provides a very useful general simulation method to approximate confidence intervals which 

involves iterative resampling and re-fitting of models. In each step, one first samples new local coeffi-
cients from the estimated slopes and parameter variance-covariance matrix. Then an artificial auxiliary 
response vector is constructed using these re-sampled local slopes and the model re-fit. This approx-
imates the posterior distribution of the slopes and bandwidth parameters, assuming that the estimates 
obtained during backfitting reflect the true estimates, and whose sampling distributions are stable. While 
this approach is useful in its generality, we aim for an explicit, theory-driven formal statement of standard 
errors specific to the MGWR specification, not a generic Monte Carlo approach to approximate them.

2 The local parameters for the MGWR calibration can be initialized as 0, or as the parameter estimates from a 
global OLS model or as the local parameter estimates from a GWR calibration (Fotheringham et al. 2017).

3 A GWR-specific adjustment to a false discovery rate (FDR)-based correction (Benjamini and Hochberg 
1995) for multiple hypothesis testing is not currently available but is the subject of active investigation. 
Even though there are debates (deCastro and Singer 2006) on the relative efficiacy of FWER and FDR-
based corrections for multiple hypothesis testing, there is no doubt that the use of a GWR-specific FWER 
adjustment for multiple hypothesis tests is far superior to a FDR adjustment which does not account for 
the appropriate level of dependency in the tests.

4 The MGWR calibration is initialized with the GWR estimates and the calibration process is deemed to 
have converged once the score of change in the GWR smooth functions (SOC-f) between consecutive 
backfitting iterations is smaller than 10−5, a threshold suggested by Fotheringham et al. (2011) based on 
some Monte Carlo experiments. The same initialization and termination criteria are applied to the analy-
sis of the empirical data set. The software (MGWR 1.0) used to derive all the results in this paper can be 
downloaded at https://sgsup.asu.edu/sparc/software/mgwr where users can download a Windows (64 bit) 
and a MacOS (64 bit) version of the software plus a user manual and three sample data sets, one of which 
(Georgia) is used below.  Users can also access and contribute to the Python source code for MGWR 1.0 
at https:/github.com/pysal/mgwr.

5 These results are available from the second author.
6 Note that although the bandwidth is very close to its maximum value, there remains some spatial vari-

ation in the local parameter estimates because even though almost all the locations are used in the 
estimation of the local parameters, the data from these locations are still weighted. For the result to be 
truly global, the optimized bandwidth would need to be infinite which is operationally impossible.  We 
therefore treat relationships as global if the optimized bandwidth is very close to the maximum possible 
operationally.
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