
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

A comment on geographically weighted regression
with parameter-specific distance metrics

Taylor Oshan, Levi John Wolf, A. Stewart Fotheringham, Wei Kang, Ziqi Li &
Hanchen Yu

To cite this article: Taylor Oshan, Levi John Wolf, A. Stewart Fotheringham, Wei Kang, Ziqi
Li & Hanchen Yu (2019): A comment on geographically weighted regression with parameter-
specific distance metrics, International Journal of Geographical Information Science, DOI:
10.1080/13658816.2019.1572895

To link to this article:  https://doi.org/10.1080/13658816.2019.1572895

Published online: 12 Feb 2019.

Submit your article to this journal 

Article views: 138

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2019.1572895
https://doi.org/10.1080/13658816.2019.1572895
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2019.1572895&domain=pdf&date_stamp=2019-02-12
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2019.1572895&domain=pdf&date_stamp=2019-02-12
https://www.tandfonline.com/doi/citedby/10.1080/13658816.2019.1572895#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/13658816.2019.1572895#tabModule


SHORT COMMUNICATION

A comment on geographically weighted regression with
parameter-specific distance metrics
Taylor Oshana, Levi John Wolf b, A. Stewart Fotheringhamc, Wei Kangd, Ziqi Lic

and Hanchen Yue

aCenter for Geospatial Information Science, Department of Geographical Sciences, University of Maryland,
College Park, MD, USA; bSchool of Geographical Sciences, University of Bristol, Bristol, UK; cSpatial Analysis
Research Center, School of Geographical Sciences and Urban Planning, Arizona State University, Tempe,
USA; dCenter for Geospatial Sciences, School of Public Policy, University of California, Riverside, CA, USA;
eSchool of Government, Peking University, Beijing, PRC

ABSTRACT
A recent paper in this journal proposed a form of geographically
weighted regression (GWR) that is termed parameter-specific dis-
tance metric geographically weighted regression (PSDM GWR).
The central focus of the PSDM generalization of the GWR frame-
work is that it allows the kernel function that weights nearby data
to be specified with a distinct distance metric. As with the recent
paper on Multiscale GWR (MGWR), the PSDM framework presents
a form of GWR that also allows for parameter-specific bandwidths
to be computed. As a result, a secondary focus of the PSDM GWR
framework is to reduce the computational overhead associated
with searching a massive parameter space to find a set of optimal
parameter-specific bandwidths and parameter-specific distance
metrics. In this comment, we discuss several concerns with the
PSDM GWR framework in terms of model interpretability, complex-
ity, and computational efficiency. We also recommend some best
practices when using these models, suggest how to more holisti-
cally assess model variations, and set out an agenda to construc-
tively focus future research endeavors.
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1. Introduction

Lu et al. (2016, 2017) develop in this journal a form of geographically weighted regres-
sion (GWR) that they term parameter-specific distance metric geographically weighted
regression (PSDM GWR), which is then further developed elsewhere (Lu et al. 2018). The
central focus of the PSDM generalization of the GWR framework is that it allows the
kernel function that weights nearby data to be specified with a distinct distance metric,
such as Euclidean distance (ED), network distance (ND), travel time (TT) or
a parameterized Minkowski distance for each variable in a model. As with the recent
paper on Multiscale GWR (MGWR) (Fotheringham et al. 2017), the PSDM framework
presents a form of GWR that also allows for parameter-specific bandwidths to be
computed. As a result, a secondary focus of the PSDM GWR framework is to describe
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a method to reduce the computational overhead associated with searching a massive
parameter space to find a set of optimal parameter-specific bandwidths and parameter-
specific distance metrics (Lu et al. 2017, 2018).

We have two general concerns and several technical concerns with this framework
and the body of work it has evolved from. First, the importance of employing parameter-
specific distance metrics is exaggerated, which has the consequence of clouding the
importance of correctly obtaining parameter-specific bandwidths. Parameter-specific
distance metrics appear to provide relatively modest gains in model fit in particular
scenarios while potentially diminishing the overall model interpretability. In contrast,
parameter-specific bandwidths are the core of MGWR, which generally provides both an
increase in model fit and a greater understanding of the processes that generate the
observed dependent variable in the model. Second, focusing on the simpler MGWR
specification is a more straightforward strategy to achieve similar ends as the PDSM
GWR specification. MGWR has lower computational overhead relative to the PSDM GWR
specification, increases the interpretability of the model, and comports with other
multiscale model specifications (Wolf et al. 2017). To further formulate these general
concerns, we provide a brief background on the development of the PSDM GWR
framework and associated concepts and then expand our reasoning based on several
conceptual and technical issues, providing some empirical evidence to demonstrate our
concerns and the importance of these issues.

While some evidence is reproduced or extracted from the literature, additional
experiments are reported here using the London house price (LHP) data utilized by Lu
et al. (2014a, 2016, 2017, 2018), as well as the Prenzlauer Berg AirBnB (PBA) rental price
data introduced and described in Oshan et al. (2018). It should be noted that although
the LHP data are made available as part of the GWmodel software package (Gollini et al.
2015), it is only a subset (n = 315) of the original dataset used in the literature (n = 2002).
Therefore, though the model specifications utilized are the same, some of the results
discussed here are necessarily different from those previously presented. Furthermore,
while the GWmodel1 package provides some of the necessary functionality to investigate
the issues described here, certain procedures are only presently available in the mgwr2

software package (Oshan et al. 2018). Wherever possible we indicate which software was
used in each experiment, but otherwise strive to keep the focus on substantive issues.

2. Background

The initial basis for the PSDM GWR framework arises from a study that investigated the use of
non-Euclidian distance (non-ED) metrics in a traditional geographically weighted regression
framework (i.e., not MGWR or PSDMGWR) where only a single distancemetric and bandwidth
are specified for a given model (Lu et al. 2014a). The rationale for exploring non-ED metrics is
that different representations of space require commensurate measures of distance to
accurately capture spatial processes. Though the substantive differences between three
GWR models using ED, ND, and TT, respectively, are very small, the discrepancies between
models using ED and non-ED apparently are driven by the spatial distribution of the observa-
tions and the shape of the underlying road network (Lu et al. 2014a). Therefore, it may be
beneficial to employ a non-ED measure in GWR when it is theoretically appropriate for the
relationships included in the model. If nearby sites are related to one another over a network,
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then network or travel metrics make more sense than raw euclidean distances. This is useful
when conceptually relevant, despite the fact that the practical impacts of using non-ED
metrics are often small (Phibbs 1995, Jones et al. 2010, Carling et al. 2012). However, in the
case that there is no obvious non-ED metric, it does not seem that using an ED metric would
be conceptually inapt. Further, unless the data have a highly uneven spatial distribution
dispersed across a highly irregular study area, the literature suggests that the numerical results
will be substantially similar.

A subsequent study proposed the use of a generalized measure of distance, known as
the Minkowski distance (often called lp metrics), that contains Manhattan distance (l1), ED
(l2), Chebyshev distance (l∞), and a continuum of other metrics based on the selection of
two parameters, p and theta (Lu et al. 2016). This data-driven approach optimizes model
fit using a GWR-specific Akaike Information Criterion (AICc) to simultaneously select the
two Minkowski parameters, along with the local parameter estimates and an optimized
bandwidth, but has the effect of significantly increasing the computational overhead of
the model calibration. The methodology is evaluated on three simulation scenarios with
known coefficient surfaces that are: (i) spatially smooth across a regular grid; (ii) aniso-
tropic and irregularly spatially distributed; and (iii) randomly distributed across a regular
grid. Though the Minkowski GWR approach is shown to achieve a marginally lower AICc
value and sum of squared error between the known and estimated parameters, there
are some flaws in the experimental design that are discussed below.

Coincidental to the use of non-ED metrics in GWR, Yang (2014) in her PhD thesis
proposed flexible-bandwidth (FB)GWR which allows parameter-specific bandwidths to
be estimated and which is a precursor to the more fully developed Multiscale (M)GWR
(Fotheringham et al. 2017). These latter two models are focused explicitly on providing
an indicator of scale (bandwidth) for each process surface which can enhance intuition
regarding the spatial relationships in the model and provide improved model fit. The
concept of allowing aspects of spatial processes to be investigated separately across
covariates was taken up in parameter-specific distance metric (PSDM) GWR by allowing
the non-ED metrics from Lu et al. (2014a) to vary across the covariates. The PSDM GWR
framework was then extended to also incorporate ideas from Lu et al. (2016) by allowing
parameter-specific Minkowski distances to be derived from the data again at the cost of
significant computational overhead (Lu et al. 2018). Minkowski GWR and PSDM GWR are
typically shown to achieve slight improvements in model fit compared to a traditional
GWR using ED or non-ED metrics (Lu et al. 2017) or MGWR (Lu et al. 2018), respectively.
However, there are several issues with these studies we believe readers should be aware
of that make it difficult to confirm whether or not the gains of Minkowski GWR and the
PSDM GWR framework are worth the increased computational time and potential loss of
model interpretability. These issues are addressed in detail below.

3. Issues

3.1. Veracity and importance of the results

The assessment of the PSDM GWR framework is obscured by several points of
contention. First, claims that non-ED and PSDM GWR offer worthwhile performance
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gains is exaggerated. This is due to how the results are reported and compared.
For example, some of the figures reporting parameter estimates for different
model specifications have axes with very small ranges that are not conducive to
the metric being reported. For instance, Figure 1 in Lu et al. (2018, p. 52) presents
the parameter estimate surfaces’ root mean square error (RMSE) values across
a series of models with varying Minkowski distances (i.e. p ¼ 0; 1; 2;1) calibrated
on simulated data using three known synthetic parameter surfaces (i.e. β0;β1;β2)
with varying levels of spatial heterogeneity. Since the RMSE is an un-normalized
measure of error, its magnitude depends on the size of the values being com-
pared. Examining the figure in Lu et al. (2018), it can be seen that the ranges of
the RMSE values for each subplot (β0 ffi 0:023; β1 ffi 0:01; β2 ¼ 0:015) are all rela-
tively small compared the magnitude of the known parameter values
(β0 ¼ 3f g;β1 ¼ 1; 5f g;β2 ¼ 1; 5f g). Therefore, despite the patterns in RMSE dis-
played in the figures, the RMSE and changes within the RMSE are all quite small
relative to the estimated effects.

Another example of obfuscation stems from inconsistent model comparisons, such as
when model fit improvements are sometimes compared against OLS results and some-
times compared against competing GWR specifications. Table 1 contains the R2 model fit
metrics reported throughout the non-ED and PSDM GWR literature for the same model
specification for the LHP modeling example (Lu et al. 2014a, 2016, 2017, 2018). In addition,
the percentage change in model fit is calculated using the R2 from the OLS or standard
GWR models as a baseline. It can be seen that using the two different baselines for
comparing model fit improvements produces values with much different magnitudes.
Thus, in order to better understand the relative performance increases amongst GWR
specifications it is necessary to consistently compare the results to a common baseline
result. Moreover, using a common baseline shows that using non-ED or TT for GWR or
allowing for different distance metrics in multiscale models provides relatively small gains
in model fit compared to standard GWR or MGWR for this example. This means that the
differences between the GWR specifications in this study are minor and it is not clear that
the more complex specifications are worthwhile. It would be insightful to carry out the
same comparative exercise using the residual sum of squares (RSS) and the AICc, but these
values are either not consistently reported across the aforementioned literature or are not
calculated correctly. This later issue is discussed next.

A second point of contention is that different generalized additive models (GAMs) (i.e.
PSDM GWR and MGWR) are evaluated by assigning the minimum component-wise AICc
across all iterations during the backfitting calibration process as a descriptor of the
overall model fit (Lu et al. 2017, 2018). Such a criterion is not a well-defined measure of

Table 1. Model fit reported in the literature for different models calibrated on the London house
price data for the same specification according to R2:.

Specification: PURCHASEi ¼ β0i þ β1iFLOORSZi þ β2iPROFi þ β3iBATH2i

OLS GWR(ED) GWR(ND) GWR(TT) FB-ED-GWR FB-TT-GWR BP-PSDM-GWR PSDM

R2 0.708 0.864 0.875 0.885 0.91 0.905 0.911 0.901
% R2 OLSð Þ - 18.055 19.086 20 22.198 21.768 22.283 21.421
% R2 GWRð Þ - - 1.257 2.373 5.055 4.53 5.159 4.107

ED = Euclidean distance, ND = Non-Euclidean distance, TT = travel time, FB = flexible bandwidth, BP = best performing,
PSDM = parameter-specific distance-metric.
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model performance since the model fit for each component of the GAM is based on
a regression of the partial residuals from the previous step of the calibration algorithm.
That is, the component-wise AICc values are not computed from a proper overall hat
matrix that projects the values of the response variable onto the final predicted values.
Our results using the LHP data (Table 2) and the PBA data (Table 3) show that the
appropriate AICc value for the entire model, which requires a few full-model statistics
developed in Yu et al. (2018), is not equivalent to any of the ad-hoc minimum compo-
nent-wise AICc values. Therefore, some doubt should be cast on the results reported in
Lu et al. (2017) and Lu et al. (2018) where the ad-hoc model fit criterion is employed to
evaluate alternative model specifications in comparative experiments.

Third, the choice of distance metric is largely inconsequential compared to the
selection of the correct optimized parameter-specific bandwidths, which is the objective
of MGWR as described by Fotheringham et al. (2017). The results in Lu et al. (2017, 2018)
and Fotheringham et al. (2017) reinforce this argument – the differences in parameter
estimate surfaces caused by the use of different metrics are minor whereas using
different bandwidths (and holding distance metric constant) can cause major differences
in parameter estimate surfaces. Lu et al. (2017, p. 992) demonstrates this for the LHP
data: the left column displays relatively strong linear relationships between GWR models
that use exclusively either ED or TT while the middle and right columns demonstrate
relatively weak or non-existent linear relationships between results from either GWR-ED
or GWR-TT and PSDM GWR, respectively.

Fourthly, it would appear that the results presented from the PSDM GWR framework
(Lu et al. 2017, 2018) are based on unstandardized variables and as such, the resulting
parameter-specific bandwidths may not necessarily be comparable. In the context of
MGWR, Fotheringham et al. (2017) describe how if the covariates and dependent
variable are not on the same scale then it is possible for the process-specific bandwidths
to be influenced by the range and variation of each covariate. Indeed, in other local
spatial models, variance and bandwidth are known to be inseparable (Warnes and Ripley
1987, Zhang 2004). To demonstrate the importance of this issue, the estimated band-
widths using standardized and unstandardized variables for the LHP data (Table 4) and
PBA data (Table 5) were generated using MGWR. It can be seen that for most covariates
a different bandwidth is obtained and in some cases the difference is relatively large (i.e.
Intercept in Table 4 or Review Score in Table 5). The difficulty of interpreting the
bandwidths in comparison to each other is compounded if different distance metrics

Table 2. Bandwidths and AICc for MGWR and PSDM GWR calibrated on the London house price data
for the same specification.

Specification: PURCHASEi ¼ β0i þ β1iFLOORSZi þ β2iPROFi þ β3iBATH2i

MGWR Entire Model Intercept FLOORSZ PROF BATH2

BW - 46 18 242 84
AICc 368.722 - - - -

PSDM Entire Model Intercept FLOORSZ PROF BATH2

BW - 47 18 154 84
AICc - 242.389 291.898 214.702 225.209

All variables have been standardized to have a mean of 0 and variance of 1 and the minimum possible bandwidth is set
to 2 nearest-neighbors. MGWR results pertain to the mgwr implementation while the PSDM results pertain to the
GWmodel implementation.
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(i.e. meters vs. seconds) are used for each covariate and especially if the kernel used is
a Gaussian one as in Lu et al. (2017). The bandwidth from a Gaussian kernel does not
have a straightforward interpretation in comparison to the bisquare kernel where the
bandwidth indicates the distance or number of neighbors at which data are weighted to
zero (i.e. further observations have no influence). Therefore, comparing a bandwidth
from ED and TT is particularly problematic in terms of deducing information on the
relative spatial scales at which processes occur.

Finally, it is unclear whether or not the Minkowski approach used in both GWR (Lu et al.
2016) and PSDM GWR (Lu et al. 2018) chooses non-ED metrics because the ED metric is
a misspecification or because the model is overfitting. Though Lu et al. (2016) perform
simulation experiments, their experimental design does not generate data using known
values of the Minkowski parameters, p and theta, and therefore does not properly verify
the approach. Furthermore, their null model (scenario iii) is actually a scenario where both
the data and the known processes surface are randomly distributed in space – a scenario
where no variant of GWR should be seen as appropriate. More work is needed to show
that the Minkowski approach recovers a known true distance metric alongside a known
true bandwidth on that metric and is not instead convoluting different aspects of the

Table 3. Bandwidths and AICc for MGWR and PSDM GWR calibrated on the Prenzlauer Berg AirBnB
rental price data for the same specification.

Specification: log PRICEð Þi ¼ β0i þ β1iREVIEWSCOREi þ β2iACCOMMODATESi þ β3iBATHROOMSi

MGWR Entire Model Intercept Review Score Accommodates Bathrooms

BW - 190 1279 79 2200
AICc 5245.832 - - - -

PSDM Entire Model Intercept Review Score Accommodates Bathrooms

BW - 189 1279 79 2200
AICc - 5075.262 5017.855 5162.689 5011.011

All variables have been standardized to have a mean of 0 and variance of 1 and the minimum possible bandwidth is set
to 2 nearest-neighbors. MGWR results pertain to the mgwr implementation while the PSDM results pertain to the
GWmodel implementation.

Table 4. Bandwidths for MGWR calibrated using the mgwr software on the London house
price data for the same specification using standardized and unstandardized covariates.

Specification: PURCHASEi ¼ β0i þ β1iFLOORSZi þ β2iPROFi þ β3iBATH2i

MGWR(mgwr) BWs Intercept FLOORSZ PROF BATH2

Standardized 315 19 315 151
Unstandardized 46 18 242 84

All variables have been standardized to have a mean of 0 and variance of 1 and the minimum possible
bandwidth is set to 2 nearest-neighbors.

Table 5. Bandwidths for MGWR calibrated using the mgwr software on the Prenzlauer Berg AirBnB
rental price data for the same specification using standardized and unstandardized covariates.

Specification: log PRICEð Þi ¼ β0i þ β1iREVIEWSCOREi þ β2iACCOMMODATESi þ β3iBATHROOMSi

MGWR(mgwr) BWs Intercept Review Score Accommodates Bathrooms

Standardized 190 1279 79 2200
Unstandardized 268 2110 129 2202

All variables have been standardized to have a mean of 0 and variance of 1 and the minimum possible bandwidth is set
to 2 nearest-neighbors.
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model. Given these concerns, it is not clear why the Minkowski approach is superior to
using ED when there is no obvious theoretical non-ED metric.

3.2. Prediction versus inference

Another contention throughout the literature developing the PSDM GWR framework is that
it is unclear whether the method is intended primarily for spatial prediction or also for
exploratory/inferential work. While Lu et al. (2014a, 2016, 2017, 2018) discuss differences in
parameter estimates across various model specifications, there is no mention of inference
nor discussion of whether or not any framework is able to more reliably estimate parameter
surfaces. When there are differences in parameters across specifications it is important to
understandwhether these differences are substantive or if they are statistically equivalent to
noise. A GWR-specific hypothesis testing procedure has been developed (da Silva and
Fotheringham 2016), explored (Fotheringham and Oshan 2016), and extended to MGWR
(Yu et al. 2018) but to date similar frameworks have not been developed for non-ED GWR,
Minkowski GWR or PSDM GWR. Rather, it seems that the PSDM GWR framework is aimed at
spatial prediction3 As such, it would be appropriate to adopt an out-of-sample prediction
accuracy approach to evaluate performance across specifications while accounting for
overfitting instead of the in-sample prediction accuracy that is currently reported in the
literature (Hastie et al. 2009, James et al. 2013). Thus, the distinction between focusing on
inference and prediction is important because each scenario suggests different criteria for
evaluating competing specifications (Hofman et al. 2017).

3.3. Tradeoff between interpretability and computational complexity

Both MGWR and PSDM GWR are considered ‘big’ models because they estimate a large
number of parameters that can be used to better understand spatial processes, but this
advantage typically comes at the cost of increased computational overhead for model
calibration. Evaluating whether or not the increased computational cost that comes with
a new model specification is worthwhile is therefore an important area of study in the
big model paradigm. Section 3.1 discusses several reasons why model fit may not be the
best criterion to evaluate whether or not the additional computation time and complex-
ity of PSDM GWR are worthwhile. A more important criterion for judging the merit of
increased computation and complexity would be the extent that a specification lends
itself to better substantive interpretation – a big model must be more meaningful to
justify its expense. For example, MGWR will take longer to compute than GWR but the
model interpretation is significantly enhanced if the bandwidths for each parameter are
distinct. Hence, MGWR results are able to provide more accurate coefficient surface
estimates that are distinct from standard GWR estimates and the multiple estimated
bandwidths of MGWR can be interpreted as relative indicators of process scale for the
relationship between each explanatory variable and the dependent variable
(Fotheringham et al. 2017, Wolf et al. 2018, Oshan et al. 2018).

In contrast, using the data to choose (parameter-specific) distance metrics typically
requires as much or more computation effort than manually selecting them, but the
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interpretability of the model could be compromised. In the best case scenario, the
bandwidths for explanatory variables weighted with two different distance metrics can
be transformed into common units in order to be compared, such as using average
speed on a network to translate travel time to ED (Lu et al. 2014a, 2017). It is important
to note that these conversions are approximate and in some cases it is not possible to
translate between metrics, such as non-Euclidian distance and travel time where the
appropriate translation is unclear. In the worst case scenario, when certain Minkowski
metrics are selected, such as those associated with a fractional Minkowski norm (i.e.
value of p), it is difficult, if not impossible, to intuitively interpret the estimated band-
widths in terms of spatial scale using standard concepts such as distance, nearest-
neighbors, or travel time. Lack of interpretability is therefore a major drawback and
may not be worth the additional computational costs or complexity even if the model fit
is slightly improved from GWR or MGWR.

Figure 1 further demonstrates the interpretative value of ED over Minkowski metrics
for GWR/MGWR. Here the bandwidth and p value estimates for ED GWR, Minkowski
GWR, and ED MGWR using 100 random subsets of 85% of the LHP data are reported. It
can be seen that GWR more consistently estimates the bandwidth than Minkowski GWR
(left) and that the p value from Minkowski GWR (middle) appears to have little inter-
pretative value because it spans the entire range of possible values (.25–8.0) across the
100 data samples. It can also be seen that MGWR further increases our ability to interpret
scale (right): the bandwidth estimates for β0 and β1 are more local and more robust than
those for β2 and β3 across the 100 calibrations. These results reaffirm the notion that
data-driven distance metrics contribute less towards the interpretation of scale com-
pared to MGWR using simple ED.

Figure 1. Boxplots of estimated bandwidths for GWR and Minkowski GWR (left), estimated
Minkowski p values (middle), and estimated bandwidths for MGWR (right) for the same specification
using 100 random subsets of 85% of the London house price data. The MGWR results are based
upon standardized covariates. GWR and MGWR were calibrated using the mgwr software while
Minkowski GWR was calibrated using GWmodel.
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Though efforts have been made to reduce the computation time of PSDM GWR (Lu
et al. 2016, 2017, 2018), the proposed heuristic shortcuts can result in sub-optimal
solutions. The function for PSDM in GWmodel (Lu et al. 2014b) integrates some of
these heuristics, which cannot be turned off, so it is hard to directly demonstrate this
potential sub-optimality. One way around this is by calibrating a univariate4 GWR using
the Minkowski approach (i.e. exhaustive search) and comparing it to a univariate PSDM
GWR, which should be equivalent, as is the case for GWR/MGWR (both produce
a bandwidth estimate of 19 and an AICc of 7523.18 using mgwr). Results from this
experiment using GWmodel are as follows: the heuristic PSDM GWR yields a bandwidth
estimate of 12 and an AICc of 7561.9185 while the exhaustive Minkowski GWR yields
p ¼ 1, a bandwidth estimate of 19, and an AICc of 7521.233. This suggests the potential
sub-optimality of the heuristic PSDM GWR, though it would also be worth further
investigation in the multivariate context and using additional datasets. Otherwise,
heuristic PSDM GWR should be avoided when the main goal is inference on spatial
processes and an alternative and more parsimonious way to reduce computation time is
to simply use MGWR and to manually specify parameter-specific distance metrics when
they are theoretically appropriate.

4. Conclusion

Lu et al. (2017) state, ‘FB GWR [or MGWR] is a special case of PSDM GWR, when only ED’s are
specified’ and argue that PSDM GWR should always be the default specification when using
GWR to study spatially varying relationships (Lu et al. 2018). We disagree with several aspects
of this statement. First, MGWR is a special case of PSDM GWR only when the same distance
metric, whether Euclidean or non-Euclidean, is employed.MGWR in Fotheringham et al. (2017)
does not require Euclidean metrics, nor does it assume the metrics must be the same. If the
analyst chooses to manually set parameter-specific distance metrics, it does not substantively
change the model calibration routine nor increase computation time; this parameter-specific
distance metric model would remain an instance of MGWR. One could equally just use
parameter-specific kernel functions in MGWR rather than parameter-specific distance metrics.
Both are just minor variations to the main theme of MGWR. Second, a more apt name for
PSDM GWR would be PSDM MGWR since it always includes MGWR as a component of its
calibration routine. Third, MGWR is a simpler specification than PSDMGWR and, consequently,
we strongly recommend MGWR as the starting point for empirical applications.

As we have discussed throughout this comment, the PSDM extension to MGWR
would appear to afford relatively small gains in model fit at the cost of potentially
obfuscating aspects of model interpretation and increasing computational overhead.
MGWR provides a straight-forward solution to providing covariate-specific indicators of
process scale and enhancing model interpretation with limited additional computational
cost. Recent work proposes an inferential framework for MGWR (Yu et al. 2018), making
it an important tool for efficient and practical analysis of multiscale processes.
Nevertheless, several steps could be taken to further strengthen our understanding of
multiscale processes and improve the multiscale analytical tools described here. First,
future work should give more attention towards ensuring consistent model comparisons
that explicitly aim to assess inferential or predictive capabilities, since these tasks
suggest different criteria (Hofman et al. 2017). Second, there is a great need to continue
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refining best practices for measuring and interpreting the concept of scale. For example,
Wolf et al. (2018) raise the issue of bandwidth uncertainty in local multivariate statistical
models and more work is still needed to fully understand how this uncertainty can be
considered in GWR and MGWR. Finally, additional applications would help verify and
affirm the methods discussed throughout this comment. Such advancements would
vastly improve both intuition and technical capabilities for analyzing process hetero-
geneity and scale.

Notes

1. Version 2.0–6.
2. Version 2.0.1.
3. Lu et al. (2016) state, ‘This drawback tends to make the Minkowski approach more suitable for

prediction purposes with GWR’ (p. 17). Lu et al. (2017) conclude, ‘a PSDM GWR model can
clearly improve GWR model performance in terms of GoF and prediction accuracy over a GWR
model specified with EDs’ (p. 15). Lu et al. (2018) note that, ‘As expected the BP-PSDM-GWR
model makes the most accurate predictions’ (p. 8).

4. The LHP data was used for this with housing prices (‘PURCHASE’) being modeled as a function
of floor size in square meters (‘FLOORSZ’) and without an intercept.

5. GWmodel does not report the selected p and theta for the heuristic PSDM GWR.
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