
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: https://www.tandfonline.com/loi/tgis20

Fast Geographically Weighted Regression
(FastGWR): a scalable algorithm to investigate
spatial process heterogeneity in millions of
observations

Ziqi Li, A. Stewart Fotheringham, Wenwen Li & Taylor Oshan

To cite this article: Ziqi Li, A. Stewart Fotheringham, Wenwen Li & Taylor Oshan (2019) Fast
Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial
process heterogeneity in millions of observations, International Journal of Geographical Information
Science, 33:1, 155-175

To link to this article: https://doi.org/10.1080/13658816.2018.1521523

Published online: 05 Oct 2018.

Submit your article to this journal

Article views: 273

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgis20
https://www.tandfonline.com/loi/tgis20
https://doi.org/10.1080/13658816.2018.1521523
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2018.1521523&domain=pdf&date_stamp=2018-10-05
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2018.1521523&domain=pdf&date_stamp=2018-10-05

Fast Geographically Weighted Regression (FastGWR): a
scalable algorithm to investigate spatial process
heterogeneity in millions of observations
Ziqi Li a, A. Stewart Fotheringhama, Wenwen Li a and Taylor Oshanb

aSpatial Analysis Research Center, School of Geographical Sciences and Urban Planning, Arizona State
University, Tempe, AZ, USA; bCenter for Geospatial Information Science, Department of Geographical
Sciences, University of Maryland, College Park, MD, USA

ABSTRACT
Geographically Weighted Regression (GWR) is a widely used tool for
exploring spatial heterogeneity of processes over geographic space.
GWR computes location-specific parameter estimates, whichmakes its
calibration process computationally intensive. The maximum number
of data points that can be handled by current open-source GWR soft-
ware is approximately 15,000 observations on a standard desktop. In
the era of big data, this places a severe limitation on the use of GWR. To
overcome this limitation, we propose a highly scalable, open-source
FastGWR implementation based on Python and the Message Passing
Interface (MPI) that scales to the order of millions of observations.
FastGWR optimizes memory usage along with parallelization to boost
performance significantly. To illustrate the performance of FastGWR, a
hedonic house price model is calibrated on approximately 1.3 million
single-family residential properties from a Zillow dataset for the city of
Los Angeles, which is the first effort to apply GWR to a dataset of this
size. The results show that FastGWR scales linearly as the number of
cores within the High-Performance Computing (HPC) environment
increases. It also outperforms currently available open-sourced GWR
software packages with drastic speed reductions – up to thousands of
times faster – on a standard desktop.

ARTICLE HISTORY
Received 15 May 2018
Accepted 5 September 2018

KEYWORDS
Geographically Weighted
Regression; GWR; parallel
computing; statistical
software; spatial analysis

1 Introduction

Geographically Weighted Regression (GWR) is a widely used tool for exploring potential
spatial heterogeneity in processes over geographic space (Brunsdon et al. 1996,
Fotheringham et al. 1996, 2002). It has been widely used in many areas such as climate
science (Brown et al., 2012), geology (Atkinson et al. 2003), criminology (Cahill and Mulligan
2007), transportation analysis (Cardozo et al. 2012), and house price modeling
(Fotheringham et al. 2015). While a traditional global model assumes the processes gen-
erating the observed data are the same everywhere so that a single parameter is estimated
for each covariate in the model, GWR allows this assumption to be relaxed by calibrating a
model at each location to obtain location-specific parameter estimates for each process.
This is achieved by ‘borrowing’ data using a distance-weighting scheme such that nearby

CONTACT Ziqi Li lziqi@asu.edu

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
2019, VOL. 33, NO. 1, 155–175
https://doi.org/10.1080/13658816.2018.1521523

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0003-2237-9499
http://orcid.org/0000-0003-2237-9499
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2018.1521523&domain=pdf

data are weighted more heavily than data observed at locations farther away. In this way,
local parameter estimates, associated local standard errors, and t-values can be obtained for
each location, and these can be mapped to explore potential spatial variation in the
processes that generated the data.

However, since GWR entails an individual regression for each calibration location, the
calibration algorithm is computationally intensive. Many studies have explicitly reported the
computational limitations of GWR (Osborne and Suárez-Seoane 2002, Griffith 2008),
although these are typically much less than those of alternative frameworks for local
modeling such as eigenvector filtering and Bayesian spatially varying coefficients models
(Wolf et al. 2018). Harris et al. (2010) stated that GWR scales exponentially as the number of
calibration locations increases, and that a GWR model with 100,000 observations may take
two or more weeks to calibrate. Yu (2007) had to use a sub-sample of 68,906 records to
calibrate a GWR model because it was computationally prohibitive to use all the observa-
tions. However, using a subset of the data has the obvious problems of potentially com-
promising the quality of the results and introducing sample bias. Feuillet et al. (2018)
explored the use of GWR on a dataset with 40,480 observations to investigate spatial
variation among walking-environment relationships but were limited from directly utilizing
the entire dataset because of the computational burden. As a result, they split the study area
into smaller geographic units, calibrated a separate GWR model for each geographic unit in
parallel, and then subsequently pooled the results. However, this solution may not be
equivalent to a full GWR model because the subsetted analyses will be subject to boundary
and zoning effects that limit the ability to capture the true spatial variation in relationships.
The challenges highlighted above demonstrate that traditional GWR tools begin to fail
when the number of observations becomes excessively large (i.e. tens of thousands).

A few studies have made efforts to address the computational challenges in GWR from
various perspectives. Harris et al. (2010) developed a Grid-enabled GWR within the open-
source spgwr software package in the R environment. They leveraged the parallelizable
nature of GWR by implementing an algorithm that divides the set of location-specific
model calibrations across a set of nodes on a grid computing system. Despite this
advance, a dataset containing 31,378 observations still required 1–2 h for model calibra-
tion. The modesty of this improvement despite utilizing 100 nodes on the grid is probably
the result of the algorithm not parallelizing the calculation of the model diagnostics,
which can require significant computational costs. Pozdnoukhov and Kaiser (2011) imple-
mented a scalable local regression algorithm using a MapReduce parallelization frame-
work to analyze streaming geo-referenced data. The algorithm is able to handle a large
amount of streaming data for a relatively small number of locations, but it is severely
limited in handling a large number of locations. Zhang (2010) proposed a theoretical
parallel framework for running GWR on a Graphical Processing Unit (GPU) using a spatial
indexing perspective, but no operational implementation was provided. Finally, Tran et al.
(2016) implemented distributed GWR by leveraging Spark framework; however, this
requires a cluster computing environment, and it is not easily accessible to regular users.

Despite these efforts, therefore, there is still a lack of an operational and accessible
GWR algorithm that is able to analyze a large number of observations within a reason-
able timeframe. As data are collected at increasingly finer spatial resolutions, datasets
with hundreds of thousands of observations are becoming commonplace. Therefore,

156 Z. LI ET AL.

novel implementations of the GWR algorithm are needed to remove computational
bottlenecks and to enable applications in very large datasets.

2 The basics of GWR

2.1 Model formulation

Geographically Weighted Regression (GWR) calibrates a separate regression model at
each location through a data-borrowing scheme that distance-weights observations
from the regression point. It is formulated as

yi ¼
Xk
j¼1

βijxij þ εi (1)

where yi is the response variable at location i, i 2 1; 2; . . . ; nf g, xij is the jth predictor
variable, j 2 1; 2; . . . ; kf g, βij is the jth parameter estimate, and εi is the error term. GWR

calibration in matrix form is given by

β̂i ¼ XTWiX
� ��1

XTWiy (2)

where β̂i is a k by 1 row vector of parameter estimates at location i. X is an n by k matrix of
predictor variables, y is an n by 1matrix of the response variable, andWi is an n by n diagonal
spatial weighting matrix specific to location i, which is calculated based on a specified kernel
function and bandwidth. The most widely used kernel functions are bisquare and Gaussian
although other functions, such as a tri-cube kernel have been used (McMillen and McDonald,
2004). The equations for the bisquare and Gaussian kernel functions are given by:

Bisquare wij ¼ 1� dij
bw

� �2
" #2

if dij < bw

0 otherwise

Gaussian wij ¼ e�1=2
dij
bw

� �2

(3)

where wij is the weight between locations i and j, dij is the distance between i and j, and
bw is the bandwidth parameter, which can be either the number of nearest neighbors
(which generates a spatially adaptive bandwidth) or the distance of the neighborhood
radius (which generates a spatially fixed bandwidth) (Fotheringham et al. 2002). The
bandwidth is a crucial parameter in controlling the degree of smoothness in GWR. If the
bandwidth is very large, the GWR results will be similar to those obtained from global
OLS with little spatial variation in the parameter estimates. If the bandwidth is very
small, estimated parameters will vary greatly over space but may have very large
standard errors because of being estimated using very few data points. Finding the
optimal bandwidth is therefore based on a bias-variance tradeoff. This is usually done by
examining the corrected Akaike Information Criterion (AICc) score, which is given by

AICc ¼ 2n ln σ̂ð Þ þ nln 2πð Þ þ n
nþ tr Sð Þ

n� 2� tr Sð Þ
� �

(4)

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 157

where n is the number of observations, σ̂ is the estimated standard error, and tr(S) is the
trace of the hat matrix, which serves as the effective number of parameters (ENP) of the
model and describes the model complexity. Other optimization criteria can also be used
to generate the bandwidth such as AIC, Bayesian Information Criterion (BIC), or cross-
validation (CV). A golden section search heuristic is usually used to efficiently search for
the optimal bandwidth associated with lowest AICc score.

2.2 The hat matrix in GWR

The hat matrix S, also referred to as the projection matrix or influence matrix, is an n by n
matrix that projects the response values onto the fitted values such that

ŷ ¼ Sy (5)

and is important in GWR because it is needed to compute the effective number of
parameters (ENP), model diagnostics such as the AICc, and the inferential statistics such
as local standard errors and local t-values. Each row i of the hat matrix S is given by:

si ¼ xi XTWiX
� ��1

XTWi (6)

Consequently, the full hat matrix, S, can be expressed as

S ¼
s1
. . .
sn

0
@

1
A ¼

x1 XTW1X
� ��1

XTW1

. . .
xn XTWnX
� ��1

XTWn

0
@

1
A

n�n

(7)

The ENP of the model is then given by

ENP ¼ tr Sð Þ (8)

2.3 Standard errors of the local parameter estimates

The parameter estimates from calibrating a GWR model expressed in equation (2) may
also be expressed as a function of the response variable y such that

β̂i ¼ Ci y (9)

where

Ci ¼ XTWiX
� ��1

XTWi (10)

In addition, let σ̂2 be the estimated variance defined by Yu et al. (2018) as

σ̂2 ¼
P

yi � ŷið Þ2
n� tr Sð Þ (11)

Then the variance of the local parameter estimates at location i is given by

Var β̂i

� �
¼ diag CiCi

T
� �

σ̂2 (12)

and the standard errors are obtained from:

158 Z. LI ET AL.

SE β̂i
� �

¼ sqrt var β̂i
� �h i

(13)

so that the local standard errors for all the parameter estimates are

SE β̂
� �

¼ SE β̂1

� �
; SE β̂2

� �
. . . SE β̂n

� �h iT
n�k

(14)

and the local t-values can be computed as

t ¼ β̂

SE β̂
� �

0
@

1
A

n�k

(15)

3. Computational issues in GWR calibration

3.1 Time

As indicated above, much of the GWR calibration routine involves computing matrix
operations. For matrix multiplication, the time complexity for an n by m matrix multiplied
by anm by kmatrix is O(nmk), where the big O is an asymptotic notation for describing the
upper bound of an algorithm’s efficiency. In calculating the local parameters β̂i in equation

(2), the twomost time-consuming computations are calculating XTXiX that takes O(k2n) and

calculating its inverse XTWiX
� ��1

that takes O(k3) where n is the number of observations and
k is the number of predictor variables. Given that k is normally far smaller than n, the time

complexity for calculating β̂i is O(k
2n), and this will be repeated at each location for a total of

n times. So the total time complexity in GWR for calibrating parameter surfaces is O(k2n2) if
the bandwidth is given. If golden section search is used to find the optimal bandwidth,
which has a time complexity close to log(n), bandwidth selection and model calibration will
have a total time complexity of O(k2n2logn). Harris et al. (2010) and Feuillet et al. (2018) both
mention that GWR scales exponentially as the number of observations grows. However,
given a detailed explanation of the time complexity of GWR as O(k2n2logn), it scales in a
quasi-quadratic fashion that is more efficient than an algorithm that scales exponentially.

3.2 Memory

Despite the time complexity that arises from repeated calculations for each calibration
location, the primary bottleneck in a GWR calibration concerns the memory complexity
incurred by storing the hat matrix and other model results. Suppose n = 100,000 and each
number is represented by a 32-bit float, the n by n hat matrix alone needs 38GB of memory,
which currently exceeds or is very near to the limit of most desktop computers. Current
open-source GWR software such as the Python-based MGWR module in Python Spatial
Analysis Library (PySAL), or the R-based GWmodel (Gollini et al. 2013) and spgwr (Bivand
et al. 2017) packages, store the entire n by n hat matrix in the memory. Harris et al. (2010)
mention this memory requirement to store the hat matrix but do not report a solution.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 159

4 Increasing computational efficiency in GWR calibration

Generally, GWR calibration takes place in two steps. The first step (section 4.1) involves
finding the optimal bandwidth by minimizing a model diagnostic (e.g. AICc). The second
step (section 4.2) involves the computation of local parameter estimates, standard errors
and t-values, as well as some model diagnostics based on the optimal bandwidth. We
now demonstrate how FastGWR is able to undertake both these steps without storing
the entire hat matrix, significantly reducing the memory complexity from O(n2) to O(nk)
and making the calibration procedure accessible and efficient for very large datasets.

4.1 Optimizing the AICc calculation for optimal bandwidth selection

Consider the AICc formulation in equation (4), which can be expressed equivalently as

AICc ¼ n ln
RSS

n� tr Sð Þ
� �

þ nln 2πð Þ þ n
nþ tr Sð Þ

n� 2� tr Sð Þ
� �

(16)

where RSS is the residual sum of squares and tr Sð Þ is the effective number of para-
meters. Note that RSS is calculated as

RSS ¼
Xn
i¼1

εi
2 ¼

Xn
i¼1

yi � ŷið Þ2 (17)

where εi is the residual at location i, yi and ŷi are the observed and fitted values of the
dependent variable at location i, and that

ŷi ¼ xiβ̂i (18)

where xi is the ith row of the predictor matrix X. It is also possible to substitute β̂i with
the right-hand side of equation (9) to obtain

ŷi ¼ xiCiy (19)

where

Ci ¼ XTWiX
� ��1

XTWi (20)

Since the location-specific distance weight, Wi, used to compute Ci is a sparse matrix
with only diagonal non-zero elements, it can also be represented as a dense 1� n row
vector such that

Wi ¼
wi1

wi2

. .
.

win

0
BB@

1
CCA

n�n

) wi ¼ wi1 . . . winð Þ1�n (21)

Row vector wi may have a different degree of sparsity depending on the bandwidth
estimate and spatial kernel employed. wi can be highly sparse if there is a small
bandwidth and a bisquare kernel is used, since distant observations will be weighted
to zero. In contrast, wi can be dense if a large bandwidth is used, especially for non-

160 Z. LI ET AL.

truncated functions such as a Gaussian kernel. The computational costs may vary
according to the sparsity of wi .

Let

Pi ¼ XTWi ¼
x1T � wi

. . .
xkT � wi

0
@

1
A

k�n

(22)

where xjT is a row vector of the jth column of the predictor matrix X and xjT � wi is an
element-wise multiplication of two row vectors of dimension 1� n. Then Ci can be
replaced by C�

i in subsequent calculations where

Ci
� ¼ PiXð Þ�1Pi (23)

and the local squared residual εi2 can be calculated as

εi
2 ¼ yi � ŷið Þ2 ¼ yi � xiCi

�yð Þ2 (24)

The next step is to compute the effective number of parameters for GWR denoted in
equation (8). Updating equation (7) to use C�

i (equation 23), the hat matrix can also be
equivalently expressed as

S ¼
x1 C1

�

. . .
xn Cn

�

0
@

1
A ¼

r11 r12 . . .
r21 r22

.
.

r1n

rn1 rnn

0
BB@

1
CCA

n�n

(25)

Let rii be the ith element of the diagonal that can be computed directly as

rii ¼ xici� (27)

where c�i is the ith column of C�
i in equation (23). Then the ENP can be computed much

more efficiently as the sum the diagonal elements of the hat matrix such that

ENP ¼
Xn
i¼1

rii (26)

rather than as in equation (8). This is because, for each row of S, we only calculate the
element on the diagonal and ignore the off-diagonal elements since they are not used in
the trace operator. In this way, we do not need to compute and store the entire hat
matrix S to extract its diagonal elements. Moreover, in bandwidth selection, the goal is
to find the bandwidth that minimizes the AICc. Therefore, further computational savings
can be obtained by avoiding the calculation or storage of other model diagnostics (e.g.
local standard errors) that are unnecessary for this step of the calibration routine.

In sum, given a predefined bandwidth, the steps to efficiently calculate the AICc are
summarized in Algorithm 1.

Algorithm 1: Optimizing AICc calculation in bandwidth searching

1: Given a bandwidth bw
2: For location 1 . . . n, at each location i, calculate:
3: Local spatial matrix wi from equation (3) and (21)
4: Local residual squared εi

2 from equation (24)
5: Local diagonal element of hat matrix rii from equation (27).
6: End for
7: Calculate RSS from equation (17)
8: Calculate ENP from equation (26)
9: Calculate AICc from equation (16)

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 161

As discussed above, parallelization is a straight-forward and natural way to reduce the
computation time of a GWR model calibration (Harris et al. 2010). However, to more
effectively reap the benefits of parallelization, it is important to also consider how the
model diagnostics are computed. Since the additive method to compute ENP presented
here lends itself to parallelization, as does the computation of the RSS, it is possible to
much more efficiently parallelize the entire GWR calibration. Compared with the con-
ventional approach that involves storing the entire n by n hat matrix S, the memory
overhead in this algorithm is reduced since the largest stored matrix is the n by k design
matrix of predictors, which only results in a modest memory complexity of O(kn).

4.2 Optimizing the local standard error calculation

Once the optimal bandwidth is found (e.g. by golden-section search), the local standard
errors are computed as

SE β̂i
� �

¼ sqrt diag Ci
� C�

i
T� �
σ̂2

h i
¼ sqrt diag Ci

� C�
i
T� �� 	

σ̂ (28)

where C�
i is from equation (23). Let

hi ¼ sqrt diag Ci
�Ci

�T� �� 	
(29)

so that

SE β̂i
� �

¼ hiσ̂ (30)

where

σ̂ ¼ sqrt

P
yi � ŷið Þ2

n� tr Sð Þ

" #
¼ sqrt

RSS
n� tr Sð Þ

 �
(31)

And the RSS and tr Sð Þ can be computed from equations (16) and (25), respectively.
The details of the algorithm to efficiently compute the standard errors are summar-

ized in Algorithm 2.

As with the AICc calculation, the local standard error calculation can also be easily
parallelized since the regression at each calibration location is independent of all the
others. The base memory complexity of the above algorithm is O(kn), while the base

Algorithm 2: Optimizing the local standard error calculation

1: Given the optimal bandwidth bw
2: For location 1 . . . n, at each location i, calculate:
3: Local parameter estimates β̂i from equation (9)
4: Local residual squared εi

2 from equation (24)
5: Local diagonal element of hat matrix rii from equation (27)
6: hi from equation (29)
7: End for
8: Calculate RSS from equation (17)
9: Calculate ENP from equation (26)
10: Calculate σ̂2 from equation (31)

11: Calculate SE β̂
� �

from equation (30)

162 Z. LI ET AL.

time complexity is O(k2n2). If golden section search is used for bandwidth selection, then
the time complexity of the AICc calculation is increased by O(logn), which results in a
total time complexity of O(k2n2logn).

5 FastGWR: a parallel implementation using Python and MPI

The computational enhancements described above are implemented in a fully paralleliz-
able GWR algorithm called FastGWR. The implementation is carried out using Python,
which is a high-level, open-source programming language. For the parallelization of the
algorithm, we use Message Passing Interface (MPI), which is a common protocol for
facilitating communication across cores and nodes of parallel computing architectures
(Gropp et al. 1996) and has been widely adopted for scientific computing in many research
fields (Schmidt et al. 2002, Neese 2012, Wu et al. 2013). The primary reason for choosing
MPI over other alternatives, such as MapReduce on Hadoop, is that MPI-based programs
can be executed on both computers with a single CPU and HPC clusters. There are many
MPI implementations available, and for convenience we used OpenMPI1 that is an open-
source implementation (Gabriel et al. 2004). We also used a Python wrapper for MPI called
mpi4py2 (Dalcin et al., 2008) to directly integrate MPI into the FastGWR algorithm. A
summary of the FastGWR parallel implementation is described in Algorithm 3.

6 FastGWR as an open-source program

A script to run the FastGWR software routine and documentation of the development of
the source code are available via GitHub.3 Once the software is obtained, an example
call to the FastGWR program is as follows:

Algorithm 3: MPI-based parallel FastGWR implementation

1: The root processor P0 reads in data from a disk. Assuming there are m processors available, P0 broadcasts the data
to processor P1. . .m, so each processor has a copy of the data.

2: The local regressions are divided evenly across the m processors, and each processor calculates 1/m proportion of
them.

3: In the golden section search for the current bwj:
4: P0 broadcasts bwj to P1. . .m
5: For each processor p in P0. . .m:
6: Calculate 1/m portion of RSS,

P
1=m

εi
2

7: Calculate 1/m portion of ENP,
P
1=m

rii

8: End for
9: Root P0 gathers

P
1=m

εi
2 and

P
1=m

rii from P1. . .m

10: Calculate AICc for bwj

11: Once the optimal bandwidth is found, run another iteration, for each processor P1. . .m:
12: Calculate 1/m portion of parameter estimates, β̂

h i
1=m13: Calculate 1/m portion of RSS,

P
1=m

εi
2

14: Calculate 1/m portion of ENP,
P
1=m

rii

15: Calculate 1/m portion of h½ �1=m
16: End for
17: Root P0 gathers

P
1=m

εi
2,

P
1=m

rii , β̂
h i

1=m
, and h½ �1=m calculated from P1. . .m

18: Calculate SE β̂
� �

19: Output β̂, SE β̂
� �

to disk

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 163

mpiexec – np 32 python fastgwr-mpi.py – data input.csv – out gwr.csv – a -bw
1000

where mpiexec is the command to execute an MPI-based program; argument – np 32
indicates the number of processors to allocate; – data input.csv is the name of the input
data table containing coordinates and associated dependent and independent variables;
-out gwr.csv is the file containing the GWR outputs that include an ID for each calibra-
tion location, predicted values, residuals, local parameter estimates, and local standard
errors; -a (-f) indicates the use of an adaptive (fixed) bandwidth using a bisquare
(Gaussian); and – bw 1000 indicates a user-defined bandwidth for calibrating the GWR
model. If the argument – bw is not given, the program will default to searching for an
optimal bandwidth using a golden section search heuristic and an AICc selection
criterion to calibrate the GWR model. Since FastGWR and MGWR (PySAL) are both written
in Python, it is possible to integrate the advantages of FastGWR into the MGWR (PySAL)
implementation that can be accessed via either a user-friendly command-line API or a
graphical user interface. However, this is left for future work.

7. An empirical example

7.1 Data and model

To illustrate the performance of FastGWR, we use a Zillow property dataset containing
over a million geo-referenced properties in the city of Los Angeles. Zillow is an online
real estate company with property data across the entire United States. In 2017, Zillow
held a data science competition aimed at helping them improve their property value
estimation algorithm, Zestimate. As a result, the data were published on Kaggle.com4

and are freely available to download. From this database, we select a subset of data
consisting of single-family housing having one or more bedrooms and one or more
bathrooms within the metropolitan area of Los Angeles, which results in approximately
1.28 million geo-referenced properties. Figure 1(a) shows the spatial distribution of the
selected properties. Solely for the purposes of visualization, we aggregate the properties
to a 1km by 1km grid covering the city of Los Angeles and display the number of
properties within each grid cell with darker shading representing larger numbers of
properties. Based on the attributes of the data, we constructed a simple hedonic house
price model as:

Valuei ¼ βi0 þ βi1Areai þ βi2NBathsi þ βi3NBedsi þ β4iAgei þ εi (32)

where Valuei is the assessed value of the property at location i expressed in thousands
of US dollars provided by Zillow; Areai is the total finished living area; NBedsi is the
number of bedrooms; NBathsi is the number of bathrooms; and Agei is the age of the
property in years as of 2017. Before conducting a GWR analysis, we checked that the
variance inflation factor (VIF) of each covariate in the global model is less than 4, to
ensure that strong multicollinearity is not present.

164 Z. LI ET AL.

7.2 Testing environment and specifications

The calibration of the model in equation (32) using the FastGWR algorithm was under-
taken on the Agave HPC Cluster managed by Arizona State University Research
Computing. It has 268 compute nodes, each with 28 Intel Broadwell CPU cores with
128 GB of Random Access Memory (RAM). The computers are connected using Inter

Figure 1. (a) Locations of properties in the city of Los Angeles, California. The color represents the
number of properties within each 1km by 1km grid cell. (b)–(e) Maps of significant parameter
estimates for the predictor variables Intercept, Area, NBeds, Nbaths, and Age. Parameter estimates are
aggregated into 1km by 1km grids with values displayed indicating the average of the local
parameter estimates falling into each grid-cell.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 165

Omni-Path, which is a high-throughput, low-latency network. Python and any additional
dependencies were installed using the Anaconda3 version 4.4.0 installer, and version
3.0.0 of OpenMPI was utilized. The single-CPU desktop used for comparing the perfor-
mance of other packages is equipped with an Intel i7–4790 3.60Ghz 4-core CPU and
16GB of RAM. Note that Python was installed on this machine using the Anaconda3
version 4.3.34 installer, rather than version 4.4.0, though the version of MPI used is the
same as above. The differences in versions between the Python installers are minimal
and are not problematic for the results we subsequently present since we only compare
performances across a single machine and not between machines.

7.3 Results

We first describe the results of calibrating both an OLS model and a GWR model using
the specification from equation (32) on the 1.28 million observations, and then we
compare performance times using FastGWR versus other existing algorithms. Only
FastGWR allows the calibration of a GWR model on 1.28 million observations so the
comparison against other GWR algorithms is based on various subsets of the data.

7.3.1 OLS and GWR calibration for 1.28 million house price observations
Table 1 summarizes the parameter estimates and associated t-values for the predictor
variables generated from an OLS and a GWR model, respectively. Unsurprisingly with
1.28 million observations, all the parameter estimates in the OLS model are highly
significant based on their t-values. The variables Area and NBaths both have positive
associations with Value, indicating larger properties with more bathrooms tend to have
higher prices, ceteris paribus. In contrast, the variables NBeds and Age have negative
associations with Value, indicating that newer properties and those with fewer bed-
rooms given the size of the property (i.e. properties with larger living areas) tend to be
higher priced.

In GWR, the location-specific parameter estimates (and associated t-values) are highly
varied across locations within the city of Los Angeles. The optimal bandwidth in GWR is
close to 1% of the total observations. Figure 2 shows maps of the local parameter
estimates for Area, NBeds, NBaths, and Age. Due to the challenges of visualizing 1.2
million location-specific parameter estimates, we aggregate them into 1km by 1km grid
cells. Consequently, the values displayed in Figure 2 are the average significant para-
meter estimates within each grid cell and insignificant parameter estimates are not

Table 1. Comparison of parameter estimates between OLS and GWR.
OLS GWR

Beta t Beta range t range

Intercept −43.35 −54.23 −312.62 ~ 373.22 −39.48 ~ 32.82
Area 0.17 666.94 0.01 ~ 0.37 2.71 ~ 240.99
NBaths 21.72 87.20 −45.96 ~ 136.65 −25.63 ~ 63.85
NBeds −34.56 −184.31 −107.94 ~ 9.75 −56.82 ~ 4.06
Age −0.47 −63.69 −6.44 ~ 2.03 −58.20 ~ 20.55
N 1,276,889 1,276,889
ENP 5 1357.1
Adj. R2 0.562 0.686
AICc 1.63 × 107 1.59 × 107

166 Z. LI ET AL.

included in the visualizations. Note that hypothesis testing was carried out using the
correction of da Silva and Fotheringham (2016) to account for multiple testing (adjusted
critical t-value = 3.74). The parameter estimates for Area can be considered as a proxy for
property value in dollars per square foot, adjusted for the effects of the remaining
covariates. As can be seen in Figure 2(c), GWR is able to capture a spatially varying
‘unit price’ effect with high unit price hotspots in Beverly Hills, Malibu, Pasadena and
Rancho Palos Verdes and price cold spots in South Los Angeles, San Fernando, and West
Covina. In Figure 2(d), the number of bathrooms generally has a significant positive
effect on house value, except for the south and east part of LA where the number of
bathrooms is not significant. In Figure 2(e), the parameters for the number of bedrooms
ate not significant in most of the eastern half of the city, though where they are
significant, they indicate a negative effect on house values. For the Malibu region, in
particular, an increase in bedrooms will decrease house value, indicating that people
may prefer a larger living area, ceteris paribus. In Figure 2(f), it can be seen that older
properties are associated with lower property values across the city of LA except for the
Malibu region where older properties are more expensive, ceteris paribus. One caution in
interpreting the parameter maps presented here is that there seems to be a local
multicollinearity or concurvity issue between NBeds and NBaths, despite the VIFs from
the global model all being less than 4. These two parameter estimate surfaces display
inverse trends such that one is high where the other is low and vice versa and several
potential lines of investigation could be pursued to examine this further: determine if a
variable should be removed based on local measures of multicollinearity (Wheeler 2007);
apply regularized versions of GWR that can reduce the variance in some parameter
estimates but can increase bias in others (Wheeler 2009); or decrease the chance of
bandwidth misspecification by adopting Multi-scale GWR (Fotheringham et al. 2017).
However, since the main purpose of this empirical study is to demonstrate the compu-
tational power of FastGWR, we do not pursue this issue here.

In terms of model diagnostics, although GWR uses more effective parameters than
OLS (1357.1 vs. 5), the AICc for GWR is smaller than that from OLS (1.59 × 107 vs.
1.63 × 107) and the adjusted R2 for GWR is larger than that or OLS (0.562 vs. 0.686), both
indicating GWR achieves a better model fit. Maps of the residuals from OLS (left) and
GWR (right) are shown using the same color scheme in Figure 2. The OLS residuals are

Figure 2. Maps of Residuals from OLS (left) and GWR (right).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 167

much larger than the GWR residuals, and they are spatially clustered, providing further
evidence that GWR is a more appropriate specification than OLS for this house price
model.

7.3.2 The scalability of FastGWR
This section examines the sensitivity of the performance of FastGWR to the number of
cores utilized within an HPC environment. Based on the 1.28 million house price
observations, we calibrated the same GWR model given in equation (32) with the
optimal bandwidth while varying the number of cores. As can be seen in Figure 3
(left), as the number of cores increases from 32 to 512, the computation time decreases
linearly and is approximately halved with each doubling of the number of available
cores. To further examine this scaling relationship, Figure 3 (right) compares the empiri-
cal speed-ups of FastGWR against the theoretical speed-ups for a linear relationship.
Here speed-ups are based on the reduction of computation time for 64, 128, 256, and
512 cores compared to 32 cores. The orange bars are the theoretical levels, while the
blue bars depict the measured speed-up factor using FastGWR. The obvious similarity in
the empirical and theoretical speed-up factors indicates that the FastGWR algorithm has
little communication overhead across an increasing number of cores and nodes.

7.3.3 A comparison of computation time for FastGWR and other open-source
GWR software on a single desktop
HPC can be costly and is not always available for every research project. However, the
FastGWR algorithm can also offer advantages when deployed on a single desktop that
has multiple cores, a scenario that is now commonplace. Consequently, we can compare
the performance of FastGWR to other open-source GWR software. Specifically, we
compare computation time across four GWR software packages,5 FastGWR, MGWR
(PySAL),6 GWmodel,7 and spgwr8, using differently sized subsets of the 1.28 million
house price observations described above. To do this, we randomly select subsets of
the Zillow data and examine the performance of the four GWR packages in calibrating
the house price model specified in equation (32). The computation times9 shown in
Table 2 and Figure 4 are based on house price model calibrations using a predefined
bandwidth on the single-CPU desktop specified in section 7.2. Computational times for
optimal bandwidth searching are not compared because searching is a repetitive
approach that evaluates a set of calibrations using different predefined bandwidths
and the processes are the same throughout the implementations compared here.
Note that due to the fact that spgwr took such a large amount of time, it was necessary
to use a log scale for the runtime displayed on the y-axis. The result shows that for
10,000 observations, FastGWR is approximately 12 times faster than MGWR (PySAL),
approximately 160 times faster than GWmodel, and approximately 3400 times faster
than spgwr. Furthermore, when the data are increased to 15,000 observations, FastGWR
is approximately 14 times faster than MGWR (PySAL), approximately 348 times faster
than GWmodel, and spgwr was not be able to yield results. Once the number of
observations is increased to 20,000, FastGWR is the only software that is able to
successfully calibrate a GWR model, and this is due to the memory bottleneck caused
by storing the full hat matrix in the other software routines.

168 Z. LI ET AL.

Figure 5 further compares the scalability of the four GWR implementations as the
number of observations grows. Because of the large amount of variation in computation
time across the four implementations, it is useful to visualize differences using several
subplots. Each subplot in Figure 5, for example, depicts runtime on the vertical axis and
the number of observations on the horizontal axis but each has a different range of run
times on the vertical axis. Figure 5(a) compares all four software packages and clearly
demonstrates the limitation of spgwr in terms of producing acceptable runtimes, and so
this package is not included in the comparison shown in Figure 5(b). Here it is now more
clearly seen that GWmodel produces much slower runtimes compared to the other two
packages. Finally, in Figure 5(c), a comparison is made solely between FastGWR and
MGWR (PySAL). This final plot clearly demonstrates that FastGWR is the most efficient of
all the software implementations.

7.3.4 Validation of FastGWR parameter estimates
To provide assurance that FastGWR results are in alignment with those from other GWR
implementations, we compare parameter estimates computed from all four open-source
GWR packages based on the well-known ‘Georgia’ dataset often used for examples in
MGWR(PySAL), GWmodel, and spgwr. The same GWR model was calibrated using PctBach
as the dependent variable, and PctPov, PctRural, and PctBlack as the independent
variables, respectively, for each package. The optimal bandwidth estimated by all four
packages is 93 nearest neighbors when using a bisquare kernel and golden-section
search. Means and standard deviations of local parameter estimates computed based on
that optimal bandwidth are summarized in Table 3. As shown in Table 3, the results from
FastGWR are the same as results from the other three packages confirming that FastGWR
is a reliable implementation of GWR.

7.3.5 Memory usage reduction
The improvements that allow FastGWR to be applied to very large datasets are not only
concerned with speed-ups in computational time but also result in the reduction of

Figure 3. Scalability of FastGWR for an increasing number of cores.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 169

memory usage. By avoiding storing the n by n hat matrix, the memory complexity is
reduced from O(n2) down to O(nk), where O(nk) is the dimension of the predictor matrix
X (k = 5 for the house price model used above). Though it is hard to report the exact
amount of memory used for each GWR software, we compare the largest memory
allocation in FastGWR to that of the other three implementations in Table 4. Note that
32-bit floats are used in all matrices. For 1,000 and 10,000 observations, FastGWR with O
(nk) memory complexity only needs approximately 19KB and 0.19MB of memory,
respectively, while other implementations with O(n2) memory complexity need approxi-
mately 3.8MB and 380MB of memory, respectively. For this magnitude of data, an
algorithm with O(n2) memory complexity is not problematic. However, for 100,000
observations, an O(n2) algorithm needs approximately 38GB, and for 1,000,000 observa-
tions, it needs approximately 3.8 TB of memory, which in both cases is prohibitive for
many modern desktops. In comparison, FastGWR with O(nk) memory complexity only
requires approximately 1.9MB and 19MB of memory for 100,000 and 1,000,000 observa-
tions, respectively.

Table 2. Runtime (in seconds) for four open-source GWR packages using
different numbers of data points on a single desktop computer.
Number of Data Points FastGWR MGWR (PySAL) GWmodel spgwr

500 0.05 0.33 0.38 1.75
1,000 0.09 0.54 1.46 14.41
2,000 0.21 1.58 6.93 100.43
5,000 0.78 9.05 88.59 1826.34
10,000 4.09 47.24 655.51 13,743.22
15,000 7.37 98.29 2440.20 n/a
20,000 11.27 n/a n/a n/a
50,000 107.61 n/a n/a n/a
100,000 511.86 n/a n/a n/a
200,000 2444.32 n/a n/a n/a

Figure 4. Runtime comparison for four open-source packages using different numbers of data points
on a single desktop.

170 Z. LI ET AL.

8 Conclusions

Geographically Weighted Regression is a local modeling technique that is widely
applied across a variety of disciplines. However, the location-specific calibration
process makes GWR computationally intensive, and this has restricted its application
to only small and medium-sized datasets. For example, current open-source GWR
software can only handle datasets up to around 15,000 geo-referenced observations
because the memory demands at that point become too large. To allow GWR to be
applied to larger datasets, we proposed a FastGWR implementation, which has
several advantages over current software. First, FastGWR optimizes the linear algebra
within the GWR calibration routine to overcome memory restrictions. As a result,
memory requirements are reduced from O(n2) to O(nk), where n is the number of
observations, and k is the number of covariates. Given that k is far smaller than n in
most GWR applications, this approach saves a significant amount of memory. For
example, if n = 100,000 and k = 10, an n by k matrix only needs 3.8MB of memory
compared to 38GB for an n by n matrix. Second, FastGWR introduces parallel model
diagnostic calculation procedures that significantly reduce the computation time
required for GWR calibration by factors up to 1000x faster than existing implementa-
tions. In addition, since both of these advantages can naturally be leveraged in a

Figure 5. Comparison of scalability as data size grows.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 171

parallel framework, the FastGWR algorithm scales linearly with the number of avail-
able cores.

To demonstrate the utility of FastGWR, we conducted an empirical study using a
hedonic house price model based on a Zillow dataset containing 1.28 million single-family
residential properties in the city of Los Angeles. To our knowledge, this is the first time a
GWR model has been calibrated for over a million locations (and possibly the first time
such a model has been calibrated for more than 100,000 locations). The bandwidth
selection procedure for 1.28 million locations took only 4–5 h using a 512-core computing
cluster, while the calibration of parameter estimates and computation of standard errors
using a known bandwidth took less than 10 min. Furthermore, based on a sample of
10,000 data points, FastGWR is approximately 12 times faster than MGWR(PySAL), approxi-
mately 160 times faster than GWmodel, and approximately 3400 times faster than spgwr,
and these speed-ups are even greater as the number of observations are increased.

Consequently, FastGWR potentially enables GWR to be unrestricted in scale and
across large study areas, avoiding the need to sacrifice data quality and resolution by
either data aggregation or sampling. One implication of this is that GWR can now be
more easily applied to remote sensing data or social media data where a large number
of geo-referenced observations are increasingly available. The challenges in the applica-
tion of GWR to very large datasets are no longer computational but are in the realms of
visualization and interpretation – the ability to estimate large numbers of local para-
meters, associated standard errors, t statistics, and so on. raise important new challenges
for how to efficiently interpret model results. Future work will also focus on extending
the principles in FastGWR to the recently developed and more computationally intensive
Multi-scale GWR (Fotheringham et al. 2017).

In summary, the advantages of FastGWR are:

1) It speeds up the GWR calibration routine by several orders of magnitude, especially
when data size is large.

Table 3. Means and standard deviations (in parenthesis) of GWR local parameter estimates for four
open-source GWR packages.
Independent Variables FastGWR MGWR (PySAL) GWmodel spgwr

Intercept 23.075 23.075 23.075 23.075
(4.105) (4.105) (4.105) (4.105)

PctPov −0.263 −0.263 −0.263 −0.263
(0.088) (0.088) (0.088) (0.088)

PctRural −0.118 −0.118 −0.118 −0.118
(0.037) (0.037) (0.037) (0.037)

PctBlack 0.045 0.045 0.045 0.045
(0.058) (0.058) (0.058) (0.058)

Table 4. Comparison of memory usage for FastGWR with memory com-
plexity of O(nk) against other packages with memory complexity of O(n2).
Number of Data Points FastGWR O(nk) Others O(n2)

1000 19KB 3.8MB
10,000 0.19MB 380MB
100,000 1.9MB 38GB
1,000,000 19MB 3.8TB

172 Z. LI ET AL.

2) It lowers memory complexity from O(n2) down to O(nk) to allow a single desktop to
run GWR on tens of thousands of observations within a reasonable time.

3) It is an open-sourced, parallel, and portable implementation based on Python and
MPI and can be used on either a desktop or within an HPC environment.

4) It opens up opportunities for applying GWR to very large datasets, previously
thought impossible.

Notes

1. https://www.open-mpi.org/.
2. http://mpi4py.scipy.org.
3. https://github.com/Ziqi-Li/FastGWR.
4. https://www.kaggle.com/c/zillow-prize-1.
5. gwrr is also an open-source GWR package. It is only optimizing cross-validation instead of

AICc in bandwidth searching, which cannot produce comparable results.
6. https://github.com/pysal/mgwr.
7. https://cran.r-project.org/web/packages/GWmodel/index.html.
8. https://cran.r-project.org/web/packages/spgwr/index.html.
9. Computation times are based on an average of five iterations to account for any small

variations that can occur due to passive consumption of computing resources by the operat-
ing system.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation [1455349,1758786].

Notes on contributors

Ziqi Li is a PhD Student in the School of Geographical Sciences and Urban Planning, Arizona State
University, Tempe, USA. His current research interest is developing geographically weighted
statistical methods and tools in better understanding spatial non-stationary processes. He is also
one of the developers of mgwr open-source python package for calibrating multi-scale and
traditional GWR models.

A. Stewart Fotheringham is Professor of computational spatial science in the School of
Geographical Sciences and Urban Planning, Arizona State University, Tempe, USA. He is also a
Distinguished Scientist in the Julie Ann Wrigley Global Institute of Sustainability. His research
interests are in the analysis of spatial data sets using statistical, mathematical, and computational
methods. He is well known in the fields of spatial interaction modeling and local statistical
analysis, the latter as one of the developers of geographically weighted regression (GWR). He
has substantive interests in health data, crime patterns, retailing, and migration.

Wenwen Li is Associate Professor and Director of the Cyberinfrastructure and Computational
Intelligence (CICI) Lab in the School of Geographical Sciences and Urban Planning at Arizona
State University. Her research interest is cyberinfrastructure, space-time big data analytics and
machine learning. She led the team who developed PolarHub - a large-scale web crawling engine

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 173

https://www.open-mpi.org/
http://mpi4py.scipy.org
https://github.com/Ziqi-Li/FastGWR
https://www.kaggle.com/c/zillow-prize-1
https://github.com/pysal/mgwr
https://cran.r-project.org/web/packages/GWmodel/index.html
https://cran.r-project.org/web/packages/spgwr/index.html

for distributed geospatial data and PolarGlobe - a web-based scientific visualization tool for Earth
science data.

Taylor Oshan is an assistant professor in the Center for Geospatial Information Science within the
Department of Geographical Science at the University of Maryland. His current research is focused
on adapting spatial analysis methods for large heterogenous datasets and applying them to reveal
how complex relationships change over space and time, especially within the context of cities. He
is also broadly interested in spatial statistics, spatial data science, geocomputation, and the
development of open source tools.

ORCID

Ziqi Li http://orcid.org/0000-0003-2237-9499
Wenwen Li http://orcid.org/0000-0003-2237-9499

References

Atkinson, P.M., et al., 2003. Exploring the relations between riverbank erosion and geomorpholo-
gical controls using geographically weighted logistic regression. Geographical Analysis, 35 (1),
58–82. doi:10.1111/gean.2003.35.issue-1

Bivand, R., et al., 2017. Package ‘spgwr’. R Software Package.
Brown, S., et al., 2012. Assessment of spatiotemporal varying relationships between rainfall, land

cover and surface water area using geographically weighted regression. Environmental Modeling
& Assessment, 17 (3), 241–254. doi:10.1007/s10666-011-9289-8

Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996. Geographically weighted regression: a
method for exploring spatial nonstationarity. Geographical Analysis, 28 (4), 281–298.
doi:10.1111/j.1538-4632.1996.tb00936.x

Cahill, M. and Mulligan, G., 2007. Using geographically weighted regression to explore local crime
patterns. Social Science Computer Review, 25 (2), 174–193. doi:10.1177/0894439307298925

Cardozo, O.D., García-Palomares, J.C., and Gutiérrez, J., 2012. Application of geographically
weighted regression to the direct forecasting of transit ridership at station-level. Applied
Geography, 34, 548–558. doi:10.1016/j.apgeog.2012.01.005

da Silva, A.R. and Fotheringham, A.S., 2016. The multiple testing issue in geographically weighted
regression. Geographical Analysis, 48 (3), 233–247. doi:10.1111/gean.2016.48.issue-3

Dalcín, L., et al., 2008. MPI for Python: performance improvements and MPI-2 extensions. Journal of
Parallel and Distributed Computing, 68 (5), 655–662. doi:10.1016/j.jpdc.2007.09.005

Feuillet, T., et al., 2018. A massive geographically weighted regression model of walking-environment
relationships. Journal of Transport Geography, 68, 118–129. doi:10.1016/j.jtrangeo.2018.03.002

Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2002. Geographically weighted regression: the
analysis of spatially varying relationships. New York: John Wiley & Sons.

Fotheringham, A.S., Charlton, M.E., and Brunsdon, C., 1996. The geography of parameter space: an
investigation into spatial non-stationarity. International Journal of Geographic Information
Systems, 10, 605–627. doi:10.1080/026937996137909

Fotheringham, A.S., Crespo, R., and Yao, J., 2015. Geographical and temporal weighted regression
(GTWR). Geographical Analysis, 47 (4), 431–452. doi:10.1111/gean.2015.47.issue-4

Fotheringham, A.S., Yang, W., and Kang, W., 2017. Multiscale geographically weighted regression
(MGWR). Annals of the American Association of Geographers, 107 (6), 1247–1265. doi:10.1080/
24694452.2017.1352480

Gabriel, E., et al. (2004). Open MPI: goals, concept, and design of a next generation MPI imple-
mentation. In: D. Kranzlmüller, P. Kacsuk, J. Dongarra, eds. Recent Advances in Parallel Virtual
Machine and Message Passing Interface,EuroPVM/MPI 2004. Lecture Notes in Computer Science,
3241. Berlin: Springer.

174 Z. LI ET AL.

https://doi.org/10.1111/gean.2003.35.issue-1
https://doi.org/10.1007/s10666-011-9289-8
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1177/0894439307298925
https://doi.org/10.1016/j.apgeog.2012.01.005
https://doi.org/10.1111/gean.2016.48.issue-3
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jtrangeo.2018.03.002
https://doi.org/10.1080/026937996137909
https://doi.org/10.1111/gean.2015.47.issue-4
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.1080/24694452.2017.1352480

Gollini, I., et al. (2013). GWmodel: an R package for exploring spatial heterogeneity using geographi-
cally weighted models. arXiv preprint arXiv:1306.0413.

Griffith, D.A., 2008. Spatial-filtering-based contributions to a critique of geographically weighted
regression (GWR). Environment and Planning A, 40 (11), 2751–2769. doi:10.1068/a38218

Gropp, W., et al., 1996. A high-performance, portable implementation of the MPI message passing
interface standard. Parallel Computing, 22 (6), 789–828. doi:10.1016/0167-8191(96)00024-5

Harris, R., et al., 2010. Grid-enabling geographically weighted regression: a case study of participation
in higher education in England. Transactions in GIS, 14 (1), 43–61. doi:10.1111/tgis.2010.14.issue-1

McMillen D. P., McDonald, J. F. (2004). Locally Weighted Maximum Likelihood Estimation: Monte
Carlo Evidence and an Application. In: L. Anselin, R. J. G. M. Florax, R. S.Jey, eds. Advances in
Spatial Econometrics. Advances in Spatial Science. Berlin: Springer.

Neese, F., 2012. The ORCA program system. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 2 (1), 73–78.

Osborne, P.E. and Suárez-Seoane, S., 2002. Should data be partitioned spatially before building
large-scale distribution models? Ecological Modelling, 157 (2–3), 249–259. doi:10.1016/S0304-
3800(02)00198-9

Pozdnoukhov, A. and Kaiser, C., 2011. Scalable local regression for spatial analytics. In: Divyakant
Agrawal, Isabel Cruz, Christian S. Jensen, Eyal Ofek, and Egemen Tanin, eds. Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(GIS '11), ACM, New York, NY, USA, 361–364. doi:10.1145/2093973.2094023

Schmidt, H.A., et al., 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets
and parallel computing. Bioinformatics, 18 (3), 502–504.

Tran, H.T., Nguyen, H.T., and Tran, V.T., 2016. Large-scale geographically weighted regression on
Spark. In: Knowledge and Systems Engineering (KSE), 2016 Eighth International Conference on,
October. IEEE.,127–132. doi: 10.1177/1753193416669263

Wheeler, D.C., 2007. Diagnostic tools and a remedial method for collinearity in geographically
weighted regression. Environment and Planning A, 39 (10), 2464–2481. doi:10.1068/a38325

Wheeler, D.C., 2009. Simultaneous coefficient penalization and model selection in geographically
weighted regression: the geographically weighted lasso. Environment and Planning A, 41 (3),
722–742. doi:10.1068/a40256

Wolf, L.J., Oshan, T.M., and Fotheringham, A.S., 2018. Single and multiscale models of process
spatial heterogeneity. Geographical Analysis, 50 (3), 223–246. doi:10.1111/gean.v50.3

Wu, Y., et al., 2013. Parallelization of a hydrological model using the message passing interface.
Environmental Modelling & Software, 43, 124–132. doi:10.1016/j.envsoft.2013.02.002

Yu, D., 2007. Modeling owner-occupied single-family house values in the city of Milwaukee: a
geographically weighted regression approach. GIScience & Remote Sensing, 44 (3), 267–282.
doi:10.2747/1548-1603.44.3.267

Yu, H., et al., 2018. Inference in multi-scale geographically weighted regression. Open Science
Framework. doi: osf.io/g4pbz

Zhang, J., 2010. Towards personal high-performance geospatial computing (HPC-G): perspectives
and a case study. In: Proceedings of the ACM SIGSPATIAL international workshop on high
performance and distributed geographic information systems. ACM, 3–10. doi: 10.1002/bit.22603

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 175

https://doi.org/10.1068/a38218
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1111/tgis.2010.14.issue-1
https://doi.org/10.1016/S0304-3800(02)00198-9
https://doi.org/10.1016/S0304-3800(02)00198-9
https://doi.org/10.1145/2093973.2094023
https://doi.org/10.1177/1753193416669263
https://doi.org/10.1068/a38325
https://doi.org/10.1068/a40256
https://doi.org/10.1111/gean.v50.3
https://doi.org/10.1016/j.envsoft.2013.02.002
https://doi.org/10.2747/1548-1603.44.3.267
https://doi.org/10.1002/bit.22603

	Abstract
	1 Introduction
	2 The basics of GWR
	2.1 Model formulation
	2.2 The hat matrix in GWR
	2.3 Standard errors of the local parameter estimates
	3. Computational issues in GWR calibration
	3.1 Time
	3.2 Memory

	4 Increasing computational efficiency in GWR calibration
	4.1 Optimizing the AICc calculation for optimal bandwidth selection
	4.2 Optimizing the local standard error calculation
	5 FastGWR: a parallel implementation using Python and MPI
	6 FastGWR as an open-source program
	mpiexec – np 32 python fastgwr-mpi.py – data input.csv – out gwr.csv – a -bw 1000
	7. An empirical example
	7.1 Data and model
	7.2 Testing environment and specifications
	7.3 Results
	7.3.1 OLS and GWR calibration for 1.28 million house price observations
	7.3.2 The scalability of FastGWR
	7.3.3 A comparison of computation time for FastGWR and other open-source GWR software on a single desktop
	7.3.4 Validation of FastGWR parameter estimates
	7.3.5 Memory usage reduction

	8 Conclusions
	Notes
	Disclosure statement
	Funding
	Notes on contributors
	References

