
Autonomous Robots
https://doi.org/10.1007/s10514-018-9772-z

Relaxed-rigidity constraints: kinematic trajectory optimization and
collision avoidance for in-grasp manipulation

Balakumar Sundaralingam1 · Tucker Hermans1

Received: 1 December 2017 / Accepted: 22 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper proposes a novel approach to performing in-grasp manipulation: the problem of moving an object with reference to
the palm from an initial pose to a goal posewithout breaking ormaking contacts. Ourmethod to perform in-graspmanipulation
uses kinematic trajectory optimization which requires no knowledge of dynamic properties of the object. We implement our
approach on an Allegro robot hand and perform thorough experiments on ten objects from the YCB dataset. The proposed
method is general enough to generate motions for most objects the robot can grasp. Experimental results support the feasibillty
of its application across a variety of object shapes. We explore the adaptability of our approach to additional task requirements
by including collision avoidance and joint space smoothness costs. The grasped object avoids collisions with the environment
by the use of a signed distance cost function. We reduce the effects of unmodeled object dynamics by requiring smooth joint
trajectories. We additionally compensate for errors encountered during trajectory execution by formulating an object pose
feedback controller.

Keywords Dexterous manipulation · Trajectory optimization · Motion planning

1 Introduction andmotivation

The problem of robotic in-handmanipulation—changing the
relative pose between a robot hand and object, without plac-
ing the object down—remains largely unsolved. Research
in in-hand manipulation has focused largely on using full
knowledge of the mechanical properties of the objects of
interest in finding solutions (Li et al. 1989; Mordatch et al.
2012; Han and Trinkle 1998; Andrews and Kry 2013). This
reliance on object specific modeling makes in-hand manip-
ulation expensive and sometimes infeasible in real-world
scenarios, where robots may lack high-fidelity object mod-
els. Learning-based approaches to the problem have also
been proposed (Kumar et al. 2016; Hoof et al. 2015); how-
ever, these methods require significant experience with the
object of interest to work and learn only a single motion
primitive (e.g. movement to a specific goal pose). Solv-
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ing the general in-hand manipulation problem using real
world robotic hands will require a variety of manipulation
skills (Bicchi 2000). As such, we focus on a subproblem of
in-handmanipulation: in-graspmanipulationwhere the robot
moves an object under grasp to a desired pose without chang-
ing the initial grasp. We explore a purely kinematic planning
approach for in-grasp manipulation motivated by recent suc-
cesses in kinematic grasp planning (Ciocarlie et al. 2007;
Carpin et al. 2016).

Giving robots the ability to perform in-graspmanipulation
would allow for changing a grasped object’s pose without
requiring full armmovement or complexfinger gaiting (Hong
et al. 1990). Many tasks requiring a change in relative pose
between the hand and the grasped object do not require a
large workspace and can be performed without changing
the grasp. Example tasks include turning a dial, reorient-
ing objects for insertion, or assembling small parts such as
watch gears. This is especially beneficial in cluttered environ-
ments where small movements would be preferred to avoid
collisions. In this paper, we propose a kinematic planner for
in-grasp manipulation through trajectory optimization. The
proposed planner gives a joint space trajectory that would
move the object to the desired pose without losing grasp of
the object. By attempting to maintain the contact points from
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Fig. 1 Example trajectory produced by our method executed on the
Allegro hand. The trajectory moves the Lego from its initially grasped
pose to a desired pose. The robot follows the joint space trajectory
produced from our trajectory optimizer with a PD based joint position
controller. The images on the right show frames from execution where
t refers to the timestep

the initial grasp during manipulation, we do not require any
detailed models of the grasped object.

The in-grasp manipulation problem is under-actuated, as
the object’s states are not fully or directly controllable. As
such, it does not immediately offer a kinematic solution. A
naive approach would be to model all contacts between the
object and robot as rigid links and plan for a desired object
pose as if the robot were a parallel mechanism. However, in
most robotic hands, thefingers have fewer degrees of freedom
(DOF) than necessary to control a 6 DOF world pose. Thus,
we introduce a novel cost function which relaxes the rigidity
constraints between the object and fingers. This cost function
penalizes the robot fingertips for changing the relative posi-
tions and orientations between each other from those used
in the initial grasp. We name this cost function the relaxed-
rigidity constraint. We combine relaxed-rigidity constraints
for all fingers with cost terms that encourage the object’s
movement to the desired pose. This combined cost function
defines the objective for our purely kinematic trajectory opti-
mization. The result allows for small position and orientation
changes at the contact locations, while maintaining a stable
grasp as the object moves toward the desired pose. Figure 1
shows an example trajectory from our planner. This kine-
matic planner successfully performed in-grasp manipulation
with 10 objects across 500 trials without dropping the object.

Our approach to in-grasp manipulation directly solves
for a joint space trajectory to reach a task space goal, in
contrast to previous methods (Mordatch et al. 2012; Li
et al. 2013) which rely on separate inverse kinematic (IK)
solvers to obtain joint space trajectories. Our direct solu-
tion is attractive, as IK solutions become complex when a
robot is under-actuated in terms of the dimensions of the
task space (i.e. the end-effector of a 4 joint manipulator can-
not reach all orientations in a 6 dimensional task space for
a given position). Our approach additionally handles hard
constraints on the robot’s joint positions and velocities. The
problem is efficiently solved as a direct optimization using a
sequential quadratic programming (SQP) solver. Ourmethod
allows for changing the object’s pose without the need to
know the dynamic properties of the object or the contact
forces on the fingers. Solving directly in the joint space also
allows us to have costs in the input space such as smooth joint
acceleration between time-steps to allow smooth operation
of the robot during manipulation. The use of Trajectory opti-
mization also allows for using advancements in collision-free
manipulator motion planning (Schulman et al. 2014) to our
in-graspmanipulation problem andwe showhowour planner
can avoid collisions with the environment during manipu-
lation. In addition, we compensate for error in trajectory
execution online by incorporating an object pose feedback
control scheme.

Our “Relaxed-Rigidity” plannermakes the following con-
tributions validated with real-world experiments:

1. We demonstrate that a purely kinematic trajectory opti-
mization sufficiently solves a large set of in-graspmanip-
ulation tasks with a real robot hand.

2. We enable this kinematic solution by introducing a novel
relaxation of rigid-contact constraints to a soft constraint
on rigidity expressed as a cost function.We name this the
relaxed-rigidity constraint.

3. Our method directly solves for joint configurations at
all time steps, without the need of a separate inverse
kinematics solver, a novel contribution over previous
trajectory optimization approaches for in-hand manip-
ulation (e.g. Mordatch et al. 2012).

4. We are the first to extensively validate an in-graspmanip-
ulation planner on a real robot hand. We do so with
multiple objects from the YCB dataset (Calli et al. 2015)
and introduce relevant error metrics, paving the way for
a unified testing scheme in future works (c.f. Sect. 5).

This articles makes the following contributions over our
previous work (Sundaralingam and Hermans 2017):

1. We introduce a joint acceleration cost to prefer smooth
joint space paths, leading to lower object dynamics exci-
tation.
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2. We enable collision-free manipulation planning of the
object in cluttered environments by including a signed
distance cost function.

3. We compensate for error online during trajectory execu-
tion through an object-pose feedback controller.

We organize the remainder of the paper as follows.We dis-
cuss in-hand manipulation research related to our approach
in Sect. 2. We follow this with a formal definition of the in-
graspmanipulation problem and a detailed explanation of our
in-grasp planner in Sect. 3. We present our extensions over
the initial planner in Sect. 4.We then discuss implementation
details and define our experimental protocol in Sect. 5. We
analyze the results of extensive robot experiments in Sect. 6.
We discuss the limitations of our approach in Sect. 7 and
conclude in Sect. 8.

2 Related work

In-hand manipulation has been studied extensively (Li et al.
1989; Bicchi and Sorrentino 1995; Fearing 1986; Härtl
1995). The topic is often referred to as dexterous manip-
ulation (e.g. Han and Trinkle 1998) or fine manipulation
(e.g. Hong et al. 1990). We choose the term in-hand manip-
ulation to highlight the fact that the operations happen with
respect to the hand and not the world or other parts of the
robot. We believe that dexterity can be leveraged for a num-
ber of tasks, which do not fundamentally deal with in-hand
manipulation, and that a robot can finely manipulate objects
without the need for multi-fingered hands or grasping. This
section covers those methods that are most relevant to our
approach and does not discuss in detail methods for finger
gaiting (e.g. Hong et al. 1990; Rus 1992) or dynamic in-hand
manipulation (Srinivasa et al. 2005; Bai and Liu 2014).

Salisbury and Craig (1982) explore grasping of objects
with different hand designs. Salisbury and Roth (1983)
explore gripping forces on grasped objects with three fin-
ger, three joint hand designs. Their work on force control
with tendon driven articulated hands showed the need for
dexterity near the end-effector for manipulation of grasped
objects.

Li et al. (1989) developed a computed torque controller
for coordinated movement of multiple fingers on a robot
hand. The controller takes as input a desired object motion
and contact forces and outputs the set of finger torques
necessary to create this change. The controller requires
models of the object dynamics (mass and inertia matrix)
in order to compute the necessary control commands. The
authors demonstrate in simulation the ability for the con-
troller to have a planar object follow a desired trajectory,
when grasped between two fingers. Härtl (1995) factors
forces on objects and force to joint torque conversions to

perform in-hand manipulation accounting for slippage and
rolling. An analytical treatment of dynamic object manipu-
lation is explored with ways for reducing the computations
required.

Han et al. (Han er al. 1997; Han and Trinkle 1998) attempt
in-hand manipulation with rolling contacts and finger gait-
ing requiring knowledge of the object surface. They solve
for Cartesian space finger-tip and object poses. Results for
rolling contacts are demonstrated using flat fingertips to
manipulate a spherical ball. The robot tracks the end-effector
velocities using the manipulator Jacobian to determine the
joint velocities.

Bicchi and Sorrentino (1995) analyze the kinematics
of rolling an object grasped between fingers. The authors
present a planner for rolling a sphere between two large plates
acting as fingers. This is achieved through creating a state
feedback law of vector flow fields. All these early methods
require extensive details about the object which is hard to
obtain in the real world and is inefficient when attempting to
manipulate novel objects.

In-hand manipulation research has diverged in terms of
approaches.Mordatch et al. (2012) formalize in-handmanip-
ulation as an optimization problem. They solve for a task
space trajectory and obtain joint space trajectories for the
robot using an IK solver independent of their optimization.
The trajectory optimization approach factors in force clo-
sure, but uses a joint level position controller to perform the
manipulation assuming they have a perfect robot dynamics
model to convert end-effector forces to positions. Experi-
mental evaluation is shown only in simulation.

Similar to our approach, Hertkorn et al. (2013) seek to
find a trajectory to a desired object pose without changing
the grasp. Their approach additionally solves for an initial
grasp configuration to perform the desired motion in space.
They discretize the problem by creating configuration space
graphs for different costs and use a union of these graphs
to choose a stable grasp. They perform an exhaustive search
through this union of graphs to find the desired trajectory.
Their approach does not scale, even to simple 3D problems,
with multi-fingered robot hands as stated by the authors and
they show no real-world results. Their method is computa-
tionally inefficient as the reported time for finding a single
feasible trajectory was 60min for a two fingered robot with
2 joints each. In contrast, we efficiently and directly solve
for joint positions in the continuous domain using trajectory
optimization.

Andrews and Kry (2013) take a hierarchical approach
to in-hand manipulation by splitting the problem into three
phases: approach, actuation, and release. Their method uses
an evolutionary algorithm to optimize the individualmotions.
This requires many forward simulations of the full dynami-
cal system and does not leverage gradient information in the
optimization. Another drawback, as stated by the authors, is
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that their approach cannot be applied to objects with complex
geometry.

Hang et al. (2016) explore grasp adaptation to maintain a
stable grasp and compensate for slippage or external distur-
bances with tactile feedback. They use the object’s surface
geometry to choose contact points for grasping and when
performing finger gaiting to maintain a stable grasp. Their
method could be used to obtain an initial stable grasp which
could then be used in our approach to move the object to a
desired pose.

Li et al. (2013) use two KUKA arms to emulate in-hand
manipulationwith tactile andvisual feedback tomoveobjects
to a desired pose. The use of flat contact surfaces limits the
possible trajectories of the object. The use of a 7 joint manip-
ulator as a finger also allows for reaching a larger workspace
than common robotic hands which are mostly limited to 4
joint fingers. The evaluation is limited to position experi-
ments and single axis orientation changes.

Scarcia et al. (2015) perform in-grasp manipulation as
a coordinated manipulation problem by adding arm motion
planning. They assume a point contact with friction model
between the object and the fingertips. They enumerate to
obtain the reachability for an object pose. They do not per-
form extensive experiments with objects.

Rojas and Dollar (2016) present a method to analyze the
kinematic-motion of a hand with respect to a grasped object.
This tool could be used to find feasible goal poses for an
object without changing the current grasp similar toHertkorn
et al. (2013). However the authors aremotivated by designing
dexterous robot hands and do not perform any planning with
their technique.

Kumar et al. (2014) examine the use of model-predictive
control for a number of tasks including in-handmanipulation.
They rely on hand synergies and full models of the robot and
object dynamics to compute their optimal controllers. How-
ever, they recently built on this approach (Kumar et al. 2016)
and used machine learning to construct dynamics models for
the object-hand system. These models could then be used
to create a feedback controller to track a specific learned
trajectory. They show results on a real robot hand with a
high number of states and actuators. However, their method
requires retraining to be used if manipulating a new object
or moving to a new goal pose. Hoof et al. (2015) use rein-
forcement learning to learn a policy for rolling an object in
an under-actuated hand. The resulting policy leverages tac-
tile feedback to adapt to different objects, however they must
learn a new policy if they were to change the desired goal.
Finally, while these learning-basedmethods show promise in
rapidly converging to a desired controller, they still require
multiple runs on the robot.

In contrast, we perform in-grasp manipulation on a physi-
cal robot handwith novel objects,without requiring extensive
object information or performing any iterative learning.

3 In-graspmanipulation planning through
relaxed-rigidity constraints

We define the problem of in-grasp manipulation planning as
finding a trajectory of joint anglesΘ ∈ [Θ1,ΘT ] that moves
the object from its initial pose X0 at time 0 to a desired
object pose Xg at time T without changing the fingertip con-
tact points on the object. We address this problem under the
following simple assumptions:

1. The object’s pose can only be affected by the robot and
gravity, i.e. there are no external systems acting on the
object.

2. The object is rigid.
3. The initial grasp is a stable grasp of the object.
4. The desired object pose is in the reachable workspace of

the fingertips.

We formulate our solution as a nonlinear, non-convex con-
strained kinematic trajectory optimization problem:

min
Θ

Eobj (ΘT , Xg) + k1

T−1∑

t=0

Eobj (Θt ,Wt )

+ k2

T∑

t=0

Epos(Θt ) + k3

T∑

t=0

Eor (Θt ) (1)

s.t.

Θmin � Θt � Θmax ,∀t ∈ [0, T ] (2)

− Θ̇max � Θt−1 − Θt

Δt
� Θ̇max ,∀t ∈ [1, T ] (3)

The first constraint enforces the joint limits of the robot hand,
while the second inequality constraint limits the velocity of
the joints to prevent rapid movements. The scalar weights,
k1, k2, k3, on each cost term allow us to tune the trade-off
between the four cost components. Wt defines the way-
point of the object pose at time t computed automatically
as described below.

In order to achieve a purely kinematic formulation, we
plan with a number of approximations, which we validate
with experiments in Sect. 6.Wenowdescribe the components
of the cost function in detail.

3.1 Object pose cost

The first term in the cost function (Eq. 1), Eobj (ΘT , Xg),
is designed to minimize the euclidean distance between the
planned object pose at the final time step XT to the desired
final object pose Xg . Our kinematic trajectory optimization
approach assumes no knowledge of the dynamic properties
of the object, as such we can not directly simulate the object
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Fig. 2 Depiction of a trajectory optimization solution at the initial and
final time steps. The thumb-tip frame is shown as frame i , finger f ’s tip
frame is f , andw defines the world frame. The initial pose of the object
with the grasp is shown in a, the object has to reach the goal pose (b).
Our approach models the thumb frame as rigidly attached to the object
during the trajectory, while finger f has a relaxed-rigidity constraint.

The effect can be seen in b, where the relative orientation and position
between frames i and f have changed from the initial grasp at t = 0.
The i

0P f , i
T P f , c0 and cT terms fromSect. 3.2 are shown as green, blue,

orange and red vectors respectively. θi1-i3, θf1-f3 are the joint angles of
thumb and finger f . a (t=0) b (t=T)

pose Xt during our optimization. Instead,we leverage the fact
that in-graspmanipulation assumes no breaking ormaking of
contacts during execution, meaning, in the ideal case, contact
points between the robot and object remain fixed.

In our approach we thus plan as if the contact point
between the thumb-tip1 and the object is rigid. This allows
us to define a reference frame for the object X with respect
to the thumb-tip i such that the transformation between the
thumb-tip and the object remains fixed during execution. As
the thumb-tip moves with respect to the world frame w, we
compute the transform to the object frame as

wT X = wT i · i T X (4)

where the superscript refers to the reference frame and the
subscript to the target frame. The object’s transformation
matrix is represented by i T X with reference to thumb-tip
i .

We can now transform the desired object pose Xg into
a desired thumb pose Gi in the world frame w. The cost
function Eobj can now be formally defined as

Eobj (ΘT , Xg) = ||Xg · XT i − FK (ΘT , i)||22 (5)

where, Xg · XT i and FK (ΘT , i) gives the pose of the thumb-
tip i with reference to the world frame. Thus by using the
forward kinematics (FK) internally within the cost function

1 The choice of thumb is arbitrary and made only to clarify the discus-
sion. Any fingertip could be chosen to define the reference frame for
the object.

we can directly solve for the joint angles of the thumb at the
desired object pose.

The second term
∑T−1

t=0 Eobj (Θt ,Wt ) present in the cost
function (Eq. 1) encourages shorter paths to the desired pose.
We define the waypointsWt for every time-step t be linearly
interpolated from the initial object pose to the desired object
pose Xg , equally spaced across all timesteps. We weigh this
term at a very low scale relative to the other cost terms, to
encourage a shorter path as a linear path is not always guar-
anteed.

3.2 Relaxed-rigidity constraints

Since most robotic fingers are under-actuated with respect
to possible 6 DOF fingertip poses, we can’t apply the same
rigid-contact constraint with respect to the object pose, as
we did for the thumb for all the remaining fingers. Doing so
would reduce the reachable space for the remaining fingers,
resulting in a smaller manipulable workspace for the object
(manipulable workspace being the workspace covering all
possible object poses for a given grasp). Instead, we relax
the rigid-contact constraint for all other fingers in the grasp,
allowing for a larger manipulable workspace. The remain-
ing two terms in the cost function (Eq. 1), Epos and Eor ,
define our novel relaxed-rigidity constraint. The combined
effect of the terms encourages the fingertips to remain at
the same contact points on the object throughout the trajec-
tory.
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We define the cost term Epos(Θt ) to maintain the initial
relative positions between the thumb, i , and the remaining
fingertips, f throughout execution:

Epos(Θt ) =
n∑

f=1

|| i0P f − i Tw · FKP (Θt , f )||22 (6)

where i Tw · FKP(Θt , f ) defines the fingertip position for
finger f in the thumb frame i at time t and FKP (Θt , f )
computes the position of fingertip f for joint configuration
Θt . Combined with the object pose cost, which moves the
thumb towards the goal pose, this cost minimizes deviation
from the initial grasp, while moving towards the goal pose.

The last cost term Eor (Θt ) encourages the other fingers to
maintain their relative orientation to the thumb to be the same
as that in the initial grasp. Maintaining this cost across all
three orientation dimensions, would again over-constrain the
problem to the full rigidity constraint.We relax this constraint
by introducing a weight vector ψ which defines a relative
preference for deviation in different orientation dimensions

Eor (Θt ) =
n∑

f =1

||(FK i
RPY (Θ, f ) − c f

0 ) · ψ ||22 (7)

where FK i
RPY (Θ, f ) computes the roll, pitch, yaw of the

unit vector between the thumb, i and finger f at time t .
Figure 2 illustrates the vectors used in the relaxed-rigidity
constraints.

4 Extensions

In this section we introduce two extensions to our relaxed-
rigidity trajectory planner-joint acceleration smoothness and
collision avoidance. We additionally propose an object pose
feedback controller to compensate for errors encountered
during execution of the in-grasp plan.

4.1 Joint acceleration

We find that the linear interpolation cost term

T−1∑

t=0

Eobj (Θt ,Wt )

in Eq. 1 aids our trajectory optimization in finding a path to
the desired object pose; however, it imposes two limitations:

1. The planner prefers a linear object path to the desired
pose which may not always be possible.

2. The object velocity prefers to be constant during the
manipulationwhichmight cause sudden jerk of the object
and thereby the joint control.

We explore an alternative cost which prefers smooth paths in
the joint space. We minimize the acceleration between time
steps following the sum of squares formulation from Tous-
saint (2017). This allows for smoother paths, while also not
encouraging the object to follow a linear path to the desired
pose. We replace the linear waypoint interpolation cost term
with the following cost term,

α1

T+1∑

t=0

(||Θt−2 − 2Θt−1 + Θt ||22 (8)

where we force ΘT+1 = ΘT , and Θ−1 = Θ−2 = Θ0. We
discuss the empirical effects of this in Sect. 6.2.

4.2 Collision avoidance

As proposed in Sect. 3 our planner does not avoid collisions
between the object and the robot palm or the object and the
environment.We now propose adding an obstacle-based cost
function to the optimization in order to obtain collision-free
plans while moving the object to the desired pose. We use
signeddistance functions tomeasure the distancebetween the
grasped object and the environment motivated by other tra-
jectory optimization approaches formotion planning (Zucker
et al. 2013; Schulman et al. 2014).

The signed distance computes the shortest distance bet-
ween a point p and the mesh M . The sign denotes if p lies
within the mesh (negative) or outside the mesh (positive).
Given the object mesh, M , in the palm frame, the hand joint
configuration,Θ , and the environment as a set of objects,W ,
the truncated signed distance function can be written as:

C(Θ, M,W ) = α2

∑

w∈W
(β − min(β, SD(M, w))) (9)

which penalizes the objectwhen it comeswithinβ distance of
any obstacles in the environment. Ideally collision functions
should be used as constrains as in Schulman et al. (2014).
However, we found that having the collision constraint as
a cost term with a large scalar weight α2 provided better
trajectories and quicker solutions. Hencewe add this as a cost
term. This collision cost can be used to avoid both collisions
with the environment and also with the hand. We add this
as an additional cost term to Eq. 1 and perform trajectory
optimization as before.
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4.3 Object pose feedback controller

While our purely kinematic trajectory optimization performs
well in practice, it still suffers some error during execution
caused by friction, contact dynamics, and other unmodeled
effects. Explicitly modeling these variables proves difficult
and complex on real-world objects and impossibly to know
prior to interaction with a novel object. As such we propose
compensating for these errors through feedback controller
based on visually tracking the object’s pose.We use as targets
the desired object pose trajectory XD from initial pose X0

to the desired object pose XG generated by our “relaxed-
rigidity” planner.

We define our object pose feedback controller to only
affect the thumb joints, as we assume only the thumb attaches
rigidly to the object during planning. To ensure the object
remains in the robot’s grasp, we track the planned joint tra-
jectory ΘD for the remaining fingers. As long as the object
does not deviate from the planned trajectory by a large mar-
gin, thumb-only feedback should prove sufficient tomaintain
grasp of the object. (We validate this claim in Sect. 6.3.) The
robot receives as input the joint position configuration U [t]
at every time step t . We define this as a combination of the
feedforward planned joint trajectoryΘD[t+1] and the object
pose feedback term Θ̇ f b,

U [t] = ΘD[t + 1] + λ f bΘ̇ f b[t] (10)

where the positive weight λ f b allows for tuning the feedback
compensation.

The feedback input Θ̇ f b[t] corrects for errors between the
planned fingertip pose and the predicted contact pose of the
fingertip on the object. The planned fingertip pose at time
step t +1 is given by FK (ΘD[t +1]). The predicted contact
pose at time step t + 1 is computed from the desired object
pose XD[t+1] and the observed transformation matrix from

fingertip to object frame,
O
T̂ f , as

H
(
XD[t + 1], O T̂ f

)
= Q

(
R(XD[t + 1]) · O T̂ f

)
(11)

where R(·) converts a pose into a homogenous transforma-
tion matrix and Q(·) transforms a homogenous matrix back
into a pose. This essentially accounts for changes in rigid
transformation between the object and the fingertip.

We define our feedback law by transforming the Cartesian
space object pose error into the joint space using the inverse
of the finger’s Jacobian:

Θ̇ f b[t] = −J−1
Θ̂[t]

(
FK (ΘD[t + 1]) − H

(
XD[t + 1], O T̂ f

))
(12)

We found that approximating the Jacobian inverse by its
transpose, rather than theMoore-Penrose pseudoinverse per-
formed better for our underactuated fingers.

5 Implementation details and experimental
protocol

We now describe important details relating to our implemen-
tation and the setup of our experiments.

5.1 Trajectory generation and feedback
implementation

Directmethods for trajectoryoptimization, such as sequential
quadratic programming (SQP), have shownpromising results
in robotics (Schulman et al. 2014; Posa andCantu 2014; Posa
et al. 2016). We solve our trajectory optimization problem
using SNOPT (Gill et al. 2005) an SQP solver designed for
sparsely constrained problems.We run the solverwith amax-
imum limit of 5000 iterations using analytical gradients for
the costs and constraints. The computer used to run the solver
and experiments is an Intel i7-7700K CPU with 32GB of
RAMrunningUbuntu 16.04withROSKinetic (Quigley et al.
2009). The robot used is the Allegro Hand, which has four
fingers with 4 joints each.2 We solve for T = 10 time steps
with each time step being Δt = 0.167s long. We expand
the obtained solution to a higher resolution of 100 time steps
by linearly interpolating the joint trajectories. We limit the
joint velocities to be less than 0.6 rad/s. Our approach has
four weights- three on scaling the importance of each cost
term-k1, k2, k3 and a projection weight ψ for the orientation
cost term Eor .

The orientation cost Eor reduces orientation changes
along the weight vector ψ . Ideally, we would want to reduce
the impact of any contact model on the manipulation task by
having weights across all three dimensions. However, this
would reduce the reachable workspace of the manipulation
task as the Allegro hand is under-actuated with respect to the
6 DOF poses. Hence, we chose to reduce orientation changes
along a single axis, which covers the largestworkspace of fin-
gertip positions. This is the y-axiswith respect to the palm for
the index, middle and ring fingers, making ψ = [

0 1 0
]
. We

consider this weight as a trade off between allowing a larger
manipulation workspace and enforcing smaller changes at
contact points. We see in Sect. 6.1 that restricting orienta-
tion changes along one axis improves the position error over
assuming a point contact model.

The remaining three weights model the relative impor-
tance between the cost terms of our optimization. We want
the robot to alwaysmaintain contacts close to the initial grasp

2 http://www.simlab.co.kr/Allegro-Hand.htm.
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Fig. 3 Objects from the YCB dataset with labels below each of them
used in our experiments

during manipulation, this is taken care of by large value for
k2. Keeping the initial orientation is less important, allowing
k3 to be less than k2. Theweight for waypoints k1 should help
guide the fingers to the goal pose, while being low enough to
allow for non-linear trajectories when linear trajectories are
not feasible. We examined various weights under this scal-
ing and found k1 = 0.09, k2 = 100, k3 = 1 to work well
across a variety of trajectories and objects. For k2 < 1.0,
the hand dropped the object when unreachable object poses
were given. The chosenweights, however, were able tomain-
tain the object in-grasp while still moving the object towards
the desired pose. The weights chosen for the extensions are
α1 = 0.01, α2 = 1000, β = 0.005, λ f b = 50.

For the collision avoidance experiments, the grasped
object and the environment are approximately decomposed
into convex groups using (Mamou and Ghorbel 2009) to
speedup signed distance computation. We compute signed
distances using libccd3 based on a combination of the
Gilbert–Johnson–Keerthi (GJK) algorithm and the expand-
ing polytope algorithm (EPA), extensive details are found
in (Van Den Bergen 2001). For object pose feedback con-
troller, we use a GPU based particle tracker from Gar-
cia Cifuentes et al. (2017) to track the object using aNVIDIA
GTX 1060 GPU.

5.2 Experimental protocol

We selected objects of different size, texture and shape from
the YCB dataset Calli et al. (2015), shown in Fig. 3, as a
benchmarking set. The ten objects used are: screwdriver,
Lego, fork, banana, spatula, toy plane, Jello, tuna, apple, and
orange. A variety of three-fingered grasps were performed
across the objects to show the reachability of the proposed
method; examples can be seen in Fig. 4.

3 https://github.com/danfis/libccd.

Fig. 4 Example grasps tested with various objects in our method

The set of experiments consist of moving the object under
grasp to a goal pose. Finding feasible desired poses given an
initial grasp is a complex problem (Rojas and Dollar 2016;
Hertkorn et al. 2013) and we do not formalize a method to
obtain them. Instead, we focus on obtaining trajectories to a
reachable pose and not on finding reachable poses.We obtain
goal poses by having a humanmove the object in-grasp to the
desired pose with the robot in gravity compensation mode.
Any other method could be used to obtain desired poses. The
Euclidean distance to the desired positions from the initial
object positions, range from 0.8 to 8.33cm with a mean of
4.87. Desired poses with small positional change have a large
orientation change. One trajectory for each goal pose was
generated.

The ground truth of the object pose is obtained using
Aruco markers Garrido-Jurado et al. (2014). The initial pose
of the object is obtained by placing the object in the hand
and forming a grasp manually. Once the grasp is set, the
joint angles are recorded and the object pose with respect to
the palm link is obtained using the Aruco markers. We align
the object with the initial pose used for trajectory generation
using themarkers and robot forwardkinematics. Executionof
all trials are recorded (video, robot frames, and object poses).
All associated data is available (https://robot-learning.cs.
utah.edu/project/in_hand_manipulation) to facilitate direct
comparison.

Relatively little empirical evaluation has been performed
for in-hand manipulation on real robot hands. The lack of a
common benchmarking scheme prohibits us from compar-
ing directly with methods described in Sect. 2. The Allegro
hand we use for physical validation has hemispherical fin-
gertips which could cause rolling motion on the grasped
object.Modeling rollingmotion (Cutkosky andWright 1986)
between the fingertips and the grasped object requires exten-
sive information about the object (surface geometry, friction)
and precise force control of the fingertips. TheAllegro hand’s
lack of joint level torque sensing prevents us from com-
paring our method to methods that use force control. We
compare to the “point contact with friction”model which can
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be approximated to a kinematic solution for object manip-
ulation (Li et al. 1989). We formulate this as a trajectory
optimization problem similar to our method with different
cost terms. Specifically, we attempt to keep the fingertip
positions fixed with respect to the object, while allowing the
relative orientation to change. The cost function can be found
in Sundaralingam and Hermans (2017).

We define the following error metrics for evaluating in-
grasp manipulation. The position error is computed as the
Euclidean distance between the reached position and the
desired position of the object. Additionally, we report posi-
tion error normalized with respect to the length of the
trajectory as “Position Error%”.

The second metric measures the final orientation error,
calculated using quaternions, as the difference between rota-
tion frames is not well defined using Euler angles (Huynh
2009).

errorient = 100 × min(||qd − q||2, ||qd + q||2)√
2

(13)

where qd is the unit quaternion of the desired object pose and
q is the unit quaternion of the object pose reached. This error
is in the range [0,√2] and hence normalized with

√
2 and

stated as “Orientation error%”. Finally, where appropriate,
we report as failed attempts trials where the robot dropped
the object during execution.

Ten unique reachable goal poses and two initial grasps
per object are chosen to validate our planner. To account for
variation in execution and evaluate robustness, 5 trials are run
for each trajectory giving a total of 50 trials per object. The
difference in initial position between trials has a mean error
of 0.59cm with an associated variance of 0.09cm. A total of
2000 trials are run across different methods to evaluate our
proposed method.

To evaluate the joint acceleration extension to our planner
and the object pose feedback controller, we conduct exper-
iments with three objects—Apple, Banana and Jello. We
choose 5 goals poses per object across two initial grasps
per object. We run three trials per generated trajectory. To
validate collision avoidance, we show two applications on a
physical robot.

6 Results

We now discuss the results of our empirical experiments. We
first validate our “Relaxed-Rigidity” planner on a real robot
comparing with alternative formulations for in-grasp manip-
ulation. We then discuss results from our extensions to the
“Relaxed-Rigidity” planner. In all plots results correspond to
objects grasped with three fingers, unless otherwise stated.
For every trajectory that is run on the robot, the position error

Fig. 5 A comparison of the relaxed-rigidity constraint performance
with alternative formulations. Top: position error Middle: posi-
tion error%. Bottom: orientation error%. The median position error
decreases for all objects with our method. Except for Banana and Jello,
the orientation error% improves for our method for all objects

and orientation error is recorded. The errors are plotted as a
box plot (showing first quartile, median error, third quartile)
with whiskers connecting the extreme values.

6.1 Relaxed-rigidity physical robot validation

The position error and orientation error for all trials across
all objects are shown in Fig. 5. Our method has the lowest
median position error across all objects. The maximum error
across all objects is also much smaller for our method than
assuming a point contact model with friction. The “Position
Error%” plot shows that our method-“Relaxed-Rigidity” is
closer to the desired pose than the initial pose for all trials
with a maximum error of 75%. In contrast “PC” obtains error
greater than 100% for several trials, showing the object is
moving further away from the desired pose than at the initial
pose. Additionally, one can see that our method has a lower
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t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 6 Images showing manipulation of objects during trajectory
execution. The trajectories are generated from our method (“Relaxed-
Rigidity”). The frame ‘O’ represents the current object pose and ‘G’
frame is the desired object pose.Tunabeingheavier than all other objects
has a larger error due to the PD controller of the hand being insufficient

to counteract the gravitational forces. Banana, having a complex sur-
face also shows a larger error than objects with a flat surface. Markers
used for ground truth collection only. Additional execution of different
objects are shown at https://youtu.be/Gn-yMRjbmPE

variance in final position than the competing methods across
nearly all objects. Four samples from our experiments are
shown in Fig. 6 with overlaid current object pose and desired
object pose.

Table 1 shows the success rate and the median errors
across all these methods. The success rate and position error
improve as we add additional costs from our method. It is
also seen that our method performs better than assuming a
point contact model. The point contact model also resulted
in dropping the object on 25 out of 500 trials, while our pro-
posed method never dropped an object. The orientation error
for all methods remains low across all objects except forFork
where the fingertips are larger than the object causing it to
roll with very small orientation changes at the fingertips. In
all objects except Banana and Jello, the orientation error%
improves with our method. A large improvement in orienta-

tion error is seen in Spatula, an object for which the point
contact model with friction achieves relatively high orienta-
tion error.

To show our method generalizes to n-fingered grasps, we
show results for 2-fingered and 4-fingered grasps in Fig. 7.
We note that 2-fingered grasps tend to shake the object more
during trajectory execution than 3-fingered grasps. With 4-
fingered grasps, the ring finger sometimes loses and regains
contact, adding little benefit over 3-fingered grasps.

6.2 Effect of joint acceleration

The inclusion of joint acceleration cost term, gives a smooth
velocity profile for the object during the in-grasp manipula-
tion as shown in Fig. 8. Linear interpolation has sudden jerks
in the object trajectory if the goal pose is not reachable along
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Table 1 Summary of results with the best value in bold text

Method Suc.% Pos. Error%

Error (cm) Pos. Orient.

PC 95 1.69 36.81 9.74

Relaxed-1 91 1.64 30.95 10.43

Relaxed-2 93 1.54 29.19 9.84

Relaxed-Rigidity 100 1.32 28.67 9.86

The errors are the median of all trials. “relaxed-1” refers to “relaxed-
position” and “relaxed-2” refers to “relaxed-position-orientation”

the linear path as seen in Fig. 8. There was no significant
difference in planning time and offline convergence errors
between the two formulations. However, physical robot val-
idation shows the the joint acceleration generates lower
maximum position error and similar median position error to
the linear interpolation, as shown in Fig. 9. The orientation
error for Banana sees a significant improvement with “joint-
acc” as it prevented rolling of the object duringmanipulation.
The Jello object sees a significant reduction in position error
as the smooth path reduces inertia caused by the powder
moving inside the box. We infer the following from our vali-
dation: the exclusion of linear interpolation for the waypoint
allows for finding a smooth trajectory to the desired pose,
the smooth acceleration reduces rolling of the object due to
rapid changes to object velocity, andObjectswith non-rigidly
attached parts have lower error as the smooth acceleration
keeps inertia at a minimum.

6.3 Object pose feedback controller

We now show results for incorporating the object pose feed-
back controller on the original relaxed-rigidity planner with
linear interpolation costs. Figure 9 shows that the feedback
controller drastically reduced the variance in the position and
orientation error. We note that nontrivial noise on the object
pose persists, caused by the RGB-D based object tracker.
This manifests by the lack of error reduction by the feedback
controller when error is less than 1cm. Objects with an axis
of symmetry such as the Apple object proved particularly
difficult to track, since the particle filter was unable to find a
unique pose.

6.4 Collision avoidance

An interesting application of in-grasp manipulation is to
avoid collisions in a cluttered environment by making small
changes to the object pose. We setup two such experiments
and used our collision avoidance extension to generate tra-
jectories. Figure 10 shows our in-grasp planner avoiding
collisions with the environment while reaching the desired
pose. This shows the effectivness of making small changes to

t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 7 Execution of in-grasp manipulation for four fingered and two
fingered grasps. Frame “O” is the object pose and frame “G” is the goal
pose. With the Banana, the ring finger loses contact during execution at
t=0.4 s but makes contact again at t=0.8 s and the object reaches the
desired pose

(b)(a)

Fig. 8 a Shows the object velocity from the generated trajectory and
b shows the object pose trajectory from “waypoint-interp” method as
fat axes frames and “joint-acc” trajectory as slim tall axes frames. The
waypoint interpolation method sees a sudden jump at timestep 8 which
creates a jerk on the object as seen in b

the object pose to avoid obstacles in the environment which
otherwise would require large motions with the arm. Adding
the collision avoidance cost increased the planning time as
we compute the signed distance in every iteration between
the grasped object and the environment which we decom-
pose into many convex obstacle. It took approximately 120s
to generate each collision free plan.

7 Discussion

We found several open questions to explore from extensive
validation of our in-grasp manipulation planner which we
discuss below.

7.1 Improvingmanipulation accuracy

Our planner was able to achieve an average position error of
13mmwithout feedback of the object pose. While this might
seem large, there aremany tasks that could be performedwith
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Fig. 9 Plots show the position and orientation error in reaching the
desired pose across the four methods- “waypoint-interp” is our vanilla
version, “joint-acc” is with our joint acceleration cost, and the meth-
ods with suffix “-fb” are run with the object pose feedback controller.
Variance is reduced with the use of the feedback controller across all
objects. Object Jello sees a significant reduction in position error due
to reduced object dynamics excitation

this accuracy. One task we explore in this paper is moving a
spoon into a cup (Fig. 10). If only the arm is used to move
the spoon, a very precise arm controller or visual servoing is
required to move inside the cup.With in-grasp manipulation,
the spoon is moved inside the cup without visual servoing,
using the dexterity in the fingers. At a broader scale, in-grasp
manipulation cannot achieve large object pose changes, as the
fingers have limited reachability. We have started exploring
methods to switch to a different fingertip grasp to extend the
reachable object poses (Sundaralingam and Hermans 2018).
Two potential bottlenecks prevent us from improving the
accuracy through online replanning: slow planning time and

poor object pose tracking accuracy. Our current trajectory
optimization implementation takes on an average 2 seconds
to generate a trajectory. The optimization is computation-
ally expensive as the reachability of the fingertips and the
objective function are highly non-convex. This led us to use
a Jacobian object pose feedback controller (Sect. 4.3). The
feedback controller was unable to reduce the median object
position error to less than 1cm. Upon further analysis, we
found the object pose tracker was not precise to less than
1cm. We will explore improving the object pose tracking
system and study the effect on manipulation accuracy. We
will revaluate if the Jacobian controller is sufficient or online
replanning is a necessity to improve accuracy.

7.2 Losing contact duringmanipulation

Physical experiments showed some of the fingers losing con-
tact on the object during manipulation and making contact
again before the manipulation is complete when four fingers
were used as seen in Fig.7. This did not lead to dropping
of the object. We will be exploring adding tactile feedback
to maintain contact with the object. We never observed the
object slipping from the grasp during manipulation.

7.3 Cost versus constraints

Our approach formulates the “relaxed-rigidity” terms as part
of the cost as we want to minimize changes to the initial
grasp as much as possible. Another perspective would be to
formulate them as inequality constraints with thresholds (i.e.
max allowed deviations). Formulating them as constraints
provides a potential advantage of faster planning times.
However, finding the thresholds for the “relaxed-rigidity”
terms that would lead to successful executions on the phys-
ical robot is not straightforward. Additionally, a constraint
based approach treats all feasible solutions equally while our
approach attempts to minimize the deviation when possible.

8 Conclusion

We presented an in-grasp manipulation planner, which given
only the initial joint angles, the joint limits, and the initial
object pose, solves for a joint-level trajectory to move the
object to a desired goal pose. We implemented and experi-
mentally validated the proposed method on a physical robot
hand with ground truth error analysis. The results show that
our relaxed-rigidity constraint allows better real-world per-
formance than assuming a point contact model. We show
how to use our planner with a collision avoidance cost to
manipulate the grasped object in a cluttered environment.
We show the ability to reduce unmodeled dynamic effects by
adding a cost for smooth joint space paths. We show that use
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t=0s t=0.4s t=0.8s t=1.2s t=1.6s

Fig. 10 Images showing collision-free manipulation of objects during trajectory execution. The Banana object moves around the pear fruit to avoid
a collision and reaches its desired pose. The Fork object moves to inside the cup avoiding the brim of the cup

of an object pose feedback controller reduces the variance in
trajectory execution.
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Mordatch, I., Popović, Z., & Todorov, E. (2012). Contact-invariant
optimization for hand manipulation. In: Proceedings of the ACM
SIGGRAPH/Eurographics symposium on computer animation,
Eurographics Association (pp. 137–144).

Posa, M., Cantu, C., & Tedrake, R. (2014). Direct method for trajectory
optimization of rigid bodies through contact. International Journal
of Robotics Research, 33(1), 69–81.

Posa,M.,Kuindersma,S.,&Tedrake,R. (2016).Optimization and stabi-
lization of trajectories for constrained dynamical systems. In IEEE
international conference on robotics and automation (ICRA).

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. Y. (2009). Ros: an open-source robot oper-
ating system. In ICRA workshop on open source software, Kobe,
Japan (vol 3, p. 5).

Rojas, N., & Dollar, A. M. (2016). Gross motion analysis of fingertip-
based within-hand manipulation. IEEE Transactions Robotics and
Automation, 32(2), 1009–1016.

Rus, D. (1992). Dexterous rotations of polyhedra. In IEEE international
conference on robotics and automation (ICRA)

Salisbury, J. K., & Craig, J. J. (1982). Articulated hands: Force con-
trol and kinematic issues. The International journal of Robotics
Research, 1(1), 4–17.

Salisbury, J. K., & Roth, B. (1983). Kinematic and force analysis of
articulated mechanical hands. Journal of Mechanisms, Transmis-
sions, and Automation in Design, 105(1), 35–41.

Scarcia, U., Hertkorn, K., Melchiorri, C., Palli, G., & Wimböck, T.
(2015). Local online planningof coordinatedmanipulationmotion.
In IEEE international conference on robotics and automation
(ICRA), IEEE (pp. 6081–6087).

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., et al.
(2014). Motion planning with sequential convex optimization and
convex collision checking. Intl Journal of Robotics Research,
33(9), 1251–1270.

Srinivasa, S. S., Erdmann, M. A., Mason, M. T. (2005). Using projected
dynamics to plan dynamic contact manipulation. In IEEE/RSJ
international conference on intelligent robots and systems (IROS),
IEEE (pp. 3618–3623).

Sundaralingam, B., Hermans, T. (2017). Relaxed-rigidity constraints:
In-grasp manipulation using purely kinematic trajectory optimiza-
tion. In Proceedings of robotics: Science and systems, Cambridge,
MA. https://doi.org/10.15607/RSS.2017.XIII.015.

Sundaralingam, B., & Hermans, T. (2018). Geometric in-hand regrasp
planning: Alternating optimization of finger gaits and in-grasp
manipulation. In IEEE international conference on robotics and
automation (ICRA).

Toussaint, M. (2017). A tutorial on Newton methods for constrained
trajectory optimization and relations to slam, Gaussian process
smoothing, optimal control, and probabilistic inference. In Geo-
metric and numerical foundations of movements (pp. 361–392).
Berlin: Springer.

Van Den Bergen, G. (2001). Proximity queries and penetration depth
computation on 3d game objects. In Game developers conference
(Vol. 170).

Zucker, M., Ratliff, N., Dragan, a D, Pivtoraiko, M., Klingensmith,
M., Dellin, C. M., et al. (2013). CHOMP: Covariant Hamilto-
nian optimization for motion planning. The International Journal
of Robotics Research, 32(9–10), 1164–1193. https://doi.org/10.
1177/0278364913488805.

Balakumar Sundaralingam is a
Ph.D. student at the University
of Utah affiliated with the School
of Computing and the Utah
Robotics Center. He is advised by
Dr. Tucker Hermans and works at
the Learning lab for Manipualtion
Autonomy. His current research
focuses on in-hand manipulation
and grasp planning using multi-
fingered hands.

123

https://doi.org/10.15607/RSS.2017.XIII.015
https://doi.org/10.1177/0278364913488805
https://doi.org/10.1177/0278364913488805


Autonomous Robots

Tucker Hermans is an assis-
tant professor in the School of
Computing at the University of
Utah, where he is affiliated with
the Utah Robotics Center and is
director of the Learning Lab for
Manipulation Autonomy. Previous-
ly he was a postdoctoral researcher
in the Intelligent Autonomous Sys-
tems lab at TU Darmstadt in Darm-
stadt, Germany. There he worked
with Jan Peters on tactile manip-
ulation and robot learning, while
serving as the team leader at TUDa
for the European Commission pro-

ject TACMAN. He was at Georgia Tech from 2009 to 2014 in
the School of Interactive Computing. There he earned his Ph.D. in
Robotics under the supervision of Aaron Bobick and Jim Rehg in the
Computational Perception Laboratory. His dissertation research dealt
with robots learning to discover and manipulate previously unknown
objects. At Georgia Tech he also earned a M.Sc. in Computer Science
with specialization in Computational Perception and Robotics.

123


	Relaxed-rigidity constraints: kinematic trajectory optimization and collision avoidance for in-grasp manipulation
	Abstract
	1 Introduction and motivation
	2 Related work
	3 In-grasp manipulation planning through relaxed-rigidity constraints
	3.1 Object pose cost
	3.2 Relaxed-rigidity constraints

	4 Extensions
	4.1 Joint acceleration
	4.2 Collision avoidance
	4.3 Object pose feedback controller

	5 Implementation details and experimental protocol
	5.1 Trajectory generation and feedback implementation
	5.2 Experimental protocol

	6 Results
	6.1 Relaxed-rigidity physical robot validation
	6.2 Effect of joint acceleration
	6.3 Object pose feedback controller
	6.4 Collision avoidance

	7 Discussion
	7.1 Improving manipulation accuracy
	7.2 Losing contact during manipulation
	7.3 Cost versus constraints

	8 Conclusion
	References




