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Abstract—This work studies energy-aware real-time scheduling of a set of sporadic Directed Acyclic Graph (DAG) tasks with implicit
deadlines. While meeting all real-time constraints, we try to identify the best task allocation and execution pattern such that the average
power consumption of the whole platform is minimized. To our knowledge, this is the first work that addresses the power consumption
issue in scheduling multiple DAG tasks on multi-cores and allows intra-task processor sharing. We first adapt the decomposition-based
framework for federated scheduling and propose an energy-sub-optimal scheduler. Then we derive an approximation algorithm to identify
processors to be merged together for further improvements in energy-efficiency and to prove the bound of the approximation ratio. We
perform a simulation study to demonstrate the effectiveness and efficiency of the proposed scheduling. The simulation results show that
our algorithms achieve an energy saving of 60% to 68% compared to existing DAG task schedulers.

Index Terms—Parallel task, Real-time scheduling, Energy minimization, Convex optimization.

1 INTRODUCTION

Energy consumption remains the cornerstone in design-
ing embedded systems which are mostly battery-operated.
Energy-efficient and power-aware computing therefore are
gaining increasing attention in the embedded systems re-
search. It is important due to the market demand of in-
creased battery life for portable devices. Moreover, reducing
energy consumption could lead to smaller power bills. Being
motivated by this goal, there has been a trend in embedded
system design and development towards multi-core plat-
forms. In order to better utilize the capacity of multi-core
platforms, parallel computation (where an individual task
executes in multiple processors simultaneously) needs to
be considered. E.g., a recent study [1] has shown that the
energy consumption of executing certain workload perfectly
distributed in two cores is significantly less than that of ex-
ecuting the same workload in one core at double frequency.

In this paper, we deal with tasks that are represented
as DAGs — that are considered to be the most generalized
model of deterministic parallel tasks. For such task models,
several results are obtained on schedulability tests under
various scheduling policies in [2] [3] [4]. Bonifaci et al. [3]
prove a speedup bound of 2—1/m for Earliest Deadline First
(EDF) and 3 — 1/m for Deadline Monotonic (DM) respec-
tively, where m is the number of processors. For global EDF
scheduling, these techniques are further generalized [4] with
an improved pseudo-polynomial time sufficient schedula-
bility test. Analysis of federated and global EDF schedul-
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ing is performed in [5] [6]. Processor-speed augmentation
bounds for both preemptive and non-preemptive real-time
scheduling on multi-core processors is derived in [7]. The
work in [8] studies global EDF scheduling for conditional
sporadic DAG tasks, which is an extension to the normal
sporadic DAG task model. Certain conditional control-flow
constructs (such as if-then-else constructs) can be modeled
using the conditional sporadic DAG task model. Despite of
those nice preliminary work on the schedulability analysis
of parallel tasks, none of them addresses the energy/power
consumption issue.

Energy-Aware Real-Time Scheduling. In the design of
embedded systems, energy minimization is a prime re-
quirement. Much work has been done on minimizing the
energy cost with respect to sequential tasks for multi-core
systems [9] [10] [1] [11]. Specifically, [1] and [10] present an
energy efficient task partitioning scheme, where the cores
are grouped in frequency islands. The authors in [12] consid-
ers both feasibility and energy-awareness while partitioning
periodic real-time tasks on a multi-core platform. For EDF
scheduling, they show that if the workload is balanced
evenly among the processors, deriving optimal energy con-
sumption and finding a feasible partition is NP-Hard. Till
date, only a little work has been done for energy-aware real-
time scheduling of parallel task models. In general, mini-
mizing energy/power consumption of a real-time system is
challenging due to the complex (non-linear) relationship be-
tween frequency, energy consumption, and execution time
of each task.

In this paper, we study the scheduling of a set of sporadic
DAG tasks with implicit deadlines on a multi-core platform.
To the best of our knowledge, this is the first work that
addresses the power consumption issue in scheduling mul-
tiple DAG tasks on multi-core. We assume that all the cores
that are assigned to a DAG task will always remain active
which may lead to a non-negligible power consumption. In
order to reduce this effect, we also allow intra and inter-



task processor sharing if any core is lightly loaded. First,
it will balance the load among the cores and reduce idle
time. Second, the required number of cores to schedule a
task can be reduced. After merging the cores that are not
required can be shut off completely. When the average case
execution times are typically small compared to the worst-
case execution time (WCET), the cores will remain idle (in
that case the active power consumption will be minimized,
please see the Power/Energy model described at Section 2).
Specifically, we make the following key contributions:

(i) We propose a multi-processor scheduling algorithm
along with the power consumption issues for sporadic DAG
tasks with implicit deadlines.

(if) Under the federated scheduling and task decompo-
sition framework, our table-driven scheduler is shown to
be optimal in the sense of average power consumption (i.e.,
named sub-optimal due to extra constraints included).

(iii) We propose an efficient processor merging technique
that is widely applicable for energy-efficiency improve-
ments to most of the existing work on federated DAG task
scheduling. We formally prove the NP-completeness of the
problem, propose an approximation algorithm, and prove
the upper bound of its approximation ratio.

(iv) Simulations are conducted to verify the theoretical
results and demonstrate the effectiveness of our algorithm.

The rest of this paper is organized as follows. Section
2 presents the system model and formally defines our
problem. Section 3 adapts the task decomposition scheme
and proposes an (sub-)optimal federated scheduler based
on segment extension and problem transformation (into
a convex optimization with linear inequality constraints).
Section 4 relaxes the federated limitation by presenting and
analyzing techniques for intra-DAG and inter-DAG proces-
sor merging, so that energy consumption is further reduced.
Section 5 implements gradient based solvers and compares
the proposed method with state-of-the-art schedulers. Sec-
tion 6 discusses related work and Section 7 concludes the

paper.

2 BACKGROUND AND SYSTEM MODEL

We consider a multi-core platform of m identical cores to
schedule a set of sporadic parallel tasks. The task set is
denoted by 7 = {7y, 72, -+ , T}, where each task 7;(1 < i <
n) is represented as a DAG with a minimum inter-arrival
separation of T; time units (often referred as the period). The
nodes in a DAG stand for different execution requirements
while the edges represent the dependencies among the corre-
sponding execution requirements. A parallel task 7; contains
a total of n; nodes, each denoted by /(1 < j < n;). The
execution requirement of node N7 is denoted by ¢]. A directed
edge from node N to node N (N} — NF) implies that
the execution of N} cannot start until ; finishes for every
instance (precedence constraints). N7/, in this case, is called
a parent of NF, while N} is a child of N}. The degree of
parallelism M; of a DAG task 7; is the number of nodes that
can be simultaneously executed.

Each DAG 7; has an execution requirement (i.e., work) of
C; which is the sum of the execution requirements of all
of its nodes; i.e., C; = Y7L, ¢]. A critical path of a DAG

2

task is a directed path with the maximum total execution
requirements among all other paths in the DAG. For T;, the
critical path length, denoted by L;, is the sum of execution
requirements of the nodes on a critical path. Thus, L; is the
minimum makespan of 7;, meaning that it needs at least L;
time units even when the number of cores m is unlimited.

N1=4 > Ns=2

Fig. 1. A DAG ; with total execution time C; = 18 and minimum inter-
arrival separation 7; = 12. It is a heavy task since C; > T;. The path
N} — N2 — NP is the critical path with minimum makespan of P; =
10 < T;. As a result, this task may meet its deadline provided enough
processors.

Any two consecutive instances of task 7; is separated by

at least T; time units — T is also the relative deadline of
the task as we only consider implicit deadlines. Since L, is
the minimum execution time of task 7; even on a machine
with an infinite number of cores, the condition T; > L; must
hold for 7; to be schedulable. A DAG task is heavy if it will
miss its deadline when all nodes are run sequentially on a
processor. A schedule is said to be feasible when all sub-tasks
(nodes) receive enough execution (up to their execution
requirements) within 7; time units from their arrivals, while
all precedence constraints are satisfied. The aforementioned
terms are illustrated in Figure 1.
Power/Energy Model. Let s(t) (we are assuming continuous
frequency scheme) denote the main frequency (speed) of a
processor at a certain time ¢. Then its power consumption
P(s) can be modeled as:

P(s) =Py + Py(s) = B+ as”, ey

where P; denotes the static power consumption which
is introduced in the system due to the leakage current
and Py4(s) denotes the active power consumption. Py(s) is
introduced due to the switching activities and it depends
on the processor frequency. Py(s) can be represented as as”
where the constant o > 0 depends on the effective switching
capacitance [1], v € [2, 3] is a fixed parameter determined by
the hardware, and 3 > 0 represents the leakage power (i.e.,
the static part of power consumption whenever a processor
remains on). Clearly, the power consumption function is a
convex-increasing function of the processor frequency. By
means of dynamic voltage and frequency scaling (DVFS),
it is possible to reduce P;(s) by reducing the processor
frequency. In this paper, we focus on minimizing the active
energy consumption (due to P;(s)) by means of DVFS. We
also target to minimize the static power consumption (due
to Ps) by reducing the number of processors by allowing
intra-task processor sharing.

The energy consumption of any given period [b, f] can
be calculated as F(s) = fbf P(s,t) dt, which is known as
a nice approximation to the actual energy consumption of



many known systems. Specifically, given a unit-amount of
workload to be executed on a speed-s processor, the total
energy consumption is the integral of power over the period
of length 1/s; i.e.,

E(s) = (8+ as)/s = B/s +as™™" @

Figure 2 shows how different values of 7 (varying from
2 to 3) and processor speed s may affect the total energy
consumption to complete a certain amount of computation.
It is obvious that execution under a speed much lower
than the critical frequencies [1] (the highlighted most energy
efficient execution speed) is extremely energy inefficient
(as leakage power becomes the major “contribution”). The
power model we adapted complies with much existing (and
recent) work in the community, e.g., [12] [13] [14] [15] [1]
[10].
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Fig. 2. Energy consumption for executing a job with 10° computation
cycles under various v values, where o = 1.76 Watts/GHz" and 8 =
0.5 Watts, according to Equation (2).

Problem Statement. Given a set of implicit-deadline spo-
radic parallel tasks to be scheduled on a multi-core platform
consisting of enough number of identical cores, we want to
determine a feasible scheduling strategy, while minimizing
the overall power consumption for the assigned processors.
Here by enough, we mean the number of available proces-
sors is no smaller than the sum of max degree of parallelism
of the DAG tasks. Energy-optimal scheduling of parallel
tasks on multi-cores is NP-hard in the strong sense [16].
Thus we do not expect to solve this energy optimization
problem optimally in this paper. Instead, we will tackle this
problem in the following two steps:

o First, we put additional constraints of federated
scheduling and follow the existing task decompo-
sition framework [7] (Section 3), such that the NP-
hardness no longer holds. We identify an energy-
sub-optimal table-driven scheduler under those ad-
ditional conditions.

e Then, based on the “sub-optimal” solution, we pro-
pose heuristics for merging the assigned processors
(Section 4) to further improve the overall energy
efficiency when the unnecessary restrictions are re-
moved.
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3 ENERGY-SUB-OPTIMAL FEDERATED SCHEDUL-
ING FOR DAG TASKS

In this section, we restrict our focus on the federated
scheduling of DAG tasks. Under the federated approach
to multi-core scheduling, each individual task is either re-
stricted to execute on a single processor (as in partitioned
scheduling), or has exclusive access to all the processors on
which it may execute. Since each processor is dedicated to
one DAG task, we can consider each task individually, and
try to minimize the energy consumption for a single DAG
task (which is the goal of this section).

Given a DAG task, we first apply the existing task
decomposition [7] technique to transform a parallel task
into a set of sequential tasks with scheduling window (for
a specific node it denotes the time frame from its release
offset to its deadline) constraints for each node (Subsection
3.1) — they are further relaxed into necessary conditions by
segment extension (Subsection 3.2). By variable substitution,
we then transform the energy minimization problem into
a convex optimization problem with linear inequality con-
straints, which can be solved optimally with gradient-based
methods (Subsection 3.3).

3.1

Task decomposition is a well-known technique that simpli-
fies the scheduling analysis of parallel real-time tasks [7]. In
our approach, we adopt task decomposition as the first step
that converts each node N} of the DAG task 7; to an individ-
ual sub-task 7! with a release offset (b!), deadline (f}), and
execution requirement (ct). The release time and deadlines
are assigned in a way that all dependencies (represented by
edges in the DAG) are respected. Thus the decomposition
ensures that if all the sub-tasks are schedulable then the
DAG is also schedulable. For the sake of completeness,
we briefly describe how task decomposition works in this
subsection with an example (Please refer to Section 4 of [7]
for more details).

We adapt a slightly modified version of the approach
used in [7]. First, we perform the task decomposition using
the techniques in [7] as described below. Assuming the
execution of the task is on an unlimited number of cores, we
draw a vertical line at every time instant where a node starts
or ends for each node starting from the beginning. These
vertical lines split the DAG into segments, and each segment
consists of an equal amount of execution by the nodes that
lie in the segment. Parts of different nodes in the same
segment can now be considered as threads of execution that
run in parallel, and the threads in a segment can start only
after those in the preceding segment have finished their
executions. Now we will say that the resulting segmented
structure of the task is converted into synchronous form and
will denote it as 7;¥". We first allot time to the segments and
then add all times assigned to different segments of a node
to calculate its allocated time.

Since P; < T, at the end of each period, there may
be a slack where all processors are idle (which is typically
energy inefficient). We allocate such idle period uniformly by
multiplying each segment by a common factor of T;/P; for
task 7;.

Task Decomposition



Task decomposition provides its processor assignment
MLl (i.e., a node-to-processor mapping) and a scheduling
window [b}, f!) on top of it, in which each node N} of a task
7; will be scheduled.The following example demonstrates
how task decomposition works.

Example 3.1. Consider task T; shown in Figure 1. First of all,
we assign all the nodes with no parent (N} and N?) to separate
processors. Then we continue to consider nodes only when all
its parent node(s) are assigned. As a result, the beginning of the
node will be the latest finishing time of its parent(s) — these are
boundaries of the segments, denoted by vertical lines in Figure 3.
Specifically, if a node has a single parent, we can start to consider
the node right after the finishing time of its parent. For example,
when N? is completed, N? is immediately assigned to the same
processor (as N? is the only parent).

When a node has multiple parents, we consider the parent that
has the latest finishing time. The child node may be assigned to
the same processor assigned to its parent with the latest finishing
time. For example, N}* has two parents N} and N? where N}
completes execution later. So N} is assigned to the same processor
of N} Please note that a node may have multiple siblings such
that it may not always share the same processor with its latest
finished parent node — under such scenario, a new processor is
allocated to the node. For example, the only parent of N is N}
which completes execution at t2. So NP would be able to execute
in the same processor starting from the third segment. But N is
assigned to a different processor as that specific processor at t3 is
already “taken” by its sibling N2

4 T =12 ;
t'=3 =1 t=2 tt=4 |
Ni1 Nt I N I NE I
N2 N2 N3
N?
mi1=2 mi2=2 mi3=3 mi4=1

Fig. 3. Scheduling window assignments to the nodes of 7; (in Fig-
ure 1) after task decomposition, where mf denotes the degrees
of parallelism at k-th segment and the node-processor mapping is:
M; = {1,2,2,1,3,1}, and scheduling windows for the nodes are
[1,2],[1,1],[2,3],[3,3],[3, 3], [4, 4] respectively. The average power con-
sumption under such settings is 3.33 Watts after extending each seg-
ment by a common factor of T; / P; = 1.2.

3.2 Segment Extension

For a DAG task 7;, the aforementioned task decomposition
results in a mapping between a node (A}) and a processor
(ML). One of the key issues with the task decomposition
process is that the identified scheduling window constraints
for the nodes may not be necessary. Take the task described
in Figure 3 as an example, where Node N} may execute
in the 4th segment. However, task decomposition requires
that Node N must finish by the end of Segment 3, which
is unnecessary. In this subsection, we describe a systematic
way of eliminating such unnecessities so that the boundary
constraints for all nodes (b!’s and f!’s) are both necessary and
sufficient.

Each DAG 7; is first converted to a synchronous form

denoted by 7;Y" with techniques described in Section 3.1.
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We use m? to denote the number of parallel threads in
the k-th segment of 7;¥". We then apply Algorithm 1 to
greedily extend the deadlines f! of each node N}, following
any topological order. Note that while performing task
decomposition, a node starts execution immediately when
all of its predecessors finish execution. Thus the starting
time b} cannot be moved earlier — only fi’s have room to
be relaxed.

Please note that we have considered table-driven sched-
ulers which usually pre-compute which task would run
when. This schedule is stored in a table at the time the
system is designed or configured. So what would be the
size of the scheduling table for a given set of real-time tasks
to be run on a system? The answer is when a set of n
tasks is to be scheduled, then the entries in the table will
replicate themselves after LCM (13,15 - - - T},), where LCM
(Th,Ts - --T,) is the hyper-period for the tasks. However,
while considering energy consumption we did not consider
the space complexity of the scheduling solutions.

Algorithm 1 Segment Extension

1: Input: A DAG task 7;, scheduling windows after decom-
position [bL, /] for any node N} € 7.

2: Output: Extended segment window [b!, f!) for each
node NV} € 7;.

3: Assume that all nodes N} are ordered topologically,
such that predecessor constraint may only occur be-
tween N! — N whenl < 1'.

: for each node NV} € 7; do
if node V! has successor node(s); i.e., 3/, N — NV
then f! minl'u\@%—mf}’{bé/} -1
else f! « last segment of 7,";

end for

: return [b}, f!] for each node N}.

o X N Ak

Example 3.2. Consider again the DAG task T; shown in Figure
1. Our algorithm greedily extends the ending segment f! of the
nodes as much as possible in the topological order (i.e., increasing
1). Using this approach, Node N2 can now execute in Segment 4
(dashed rectangle at Figure 4) and the execution window for all
the other nodes remain unchanged. Please note that the processor
assignment M for any node N} of a task T; remains unchanged
in the segment extension process.

f: Ti=12 >
t1=3.6 t2=12y t3=24 t*=4.8 '
Ni1 Ni1 Ni4 Ni6
N? N2 N2 N2
N?
mi1=2 mi2=2 mi3=3 mi4=2

Fig. 4. The segment-node mapping for 7; (in Figure 1) after
segment extension. Scheduling windows for the nodes become
[1,2],[1,1],[2,4],[3,3], 3, 3], [4, 4] respectively, which results in an av-
erage power consumption of 3.08 Watts. The height of each block
represents the speed of the processor during each segment.



Lemma 1. Under the task decomposition and scheduling frame-
work, after running Algorithm 1 (Segment Extension), the timing
constraints we set for each node in a DAG become necessary and
sufficient.

Proof. The sufficient part is trivial. The scheduling window
satisfies all predecessor constraints, while the deadline of
the DAG task does not change.

Assume the window after modification [b}, f/] for some
node J\fil is not necessary; i.e., it can be further extended.
Then it must be one of the following two cases:

« Anearlier b! still satisfies all predecessor constraints,
which is impossible since it is the time all parents are
finished.

« Alater f! is possible, which contradicts with Lines 5
- 7 of Algorithm 1 as it is already the starting point
of its child, or the deadline of the whole DAG.

O

3.3 Problem Transformation

After task decomposition and segment extension, we have
identified the scheduling window [b!, f!] for each node A},
and there is no overlap for any two windows (for different
nodes) on the same processor. A natural question arises:
Given a specific node (job) with a pre-determined scheduling
window on a dedicated processor, what is the most energy-efficient
execution (speed) pattern?

Theorem 2. The total energy consumption (assuming processor

remains on) faa+A s(t)Y dt is minimized in any scheduling

window [a,a + A] of length A when execution speed remains
the same; ie., s(t) = C/A, where C = f:+A s(t) dt is the
(given) task demand in the window.

Proof. We define p(x) = s(t)/C, then p(x) is a probability
density function (PDF) over [a,a + A]; ie.,

a+A
/ p(t) dt = 1. 3

As a result,

a+A a+A
/+ s(t)? dt:/ ey dt

{re-arranging}

o at+A
- (i [ @y dt)

{Jensen’s Inequality [17], the convexity of function z”
when 2 <y < 3 and x > 0, and p(z) being a PDF}

cv a+A v
> AT (/ p(t) dt)

{From (3)}
o
{Definition of integrating a constant function}

a+A C vy
== /a (Z) dt

4)
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Thus, the minimal total energy consumption in the
specified interval f;JrA s(t)Y dt can be achieved when
speed s(t) remains constant (C'/A) throughout the interval
[a,a + Al O

According to Theorem 2, executing all segments with a
uniform speed yields minimum possible power consump-
tion under such framework. Hence we can assume that the
speed of any processor does not change within a segment. Let SJ’?C
denote the speed of processor j in the k-th segment (exe-
cuting node A}), and t¥ denote the length of the segment.
The objective is to determine the length of each segment
t¥(> 0) and its execution speed S¥(> 0) such that total
power consumption is minimized.

The first set of constraints guarantees the real-time
correctness that each node A} receives enough execution
within its designated window [b., f!) on its assigned pro-
cessor ./\/lé; ie.,

s
VI,Ml € T - Z tfsf\/ll Z Ci,l-
k=b'li

©)

We need one more set of inequalities to bound the total
length for all segments of each DAG by its period:

Vi, tf < Ti. ©)
k

Any non-negative speed assignment and segment length
setting that satisfy the constraints described in (5) and
(6) yield a correct schedule that all nodes receive enough
execution in their specified scheduling windows (that satisfy
all predecessor constraints). Based on these constraints, we
would like to add our objective for minimizing average
energy consumption per period:

l
Minimize s 5o MiT,+ > D tfa(Shu)?,
I=1 k=)

where M; is the degree of parallelism (and also the number
of processors assigned to the task) and n; is the total
number of segments assigned to DAG task 7; (determined
in the previous step). Since the constraints represented in
(5) are non-convex quadratic inequalities, it is in general
computationally intractable to solve in polynomial time.
We transform this problem into a convex optimization by
substituting some variables.

Remark 1. According to Theorem 2, executing all segments
with a uniform speed yields minimum possible power con-
sumption. If any segment of any core remains idle (schedul-
ing window for any node does not fall at that segment), we
simply consider that the execution speed for that segment is
0.

Remark 2. In this paper, we are assuming that the time
required to finish a task is exactly equaled to their worst-
case execution time (WCET). However, it may happen that
some of the tasks may finish early than their WCET. In
that case, some of the cores (that are assigned to that tasks)
may remain idle for some time. It would lead to the further
minimization of the active power consumption (please see



the Power/Energy model described at Section 2). So our
model actually provides the upper bound of the energy
consumption.

Replacing speed with period lengths and executions.
Fortunately, Theorem 2 provides us the basis to get rid of
part of the variables. Since all nodes are executed at constant
speeds within their scheduling windows, given the total
length of each assigned segments (i.e., scheduling window),
the execution speed of any given node can be determined.
As a result, the energy consumption to finish this node can
also be calculated. Le., given a node N} with total execution
requirement of c!, to be executed on segments between b}
and fil, we have:

sl
vk € [b, fil, Sk = i/ (3 t]), @)

7=t}

which means although a node may be executed in consec-
utive segments Vk € [bl, f!], the speed remains constant
throughout the scheduling window and can be represented
by a function of executions ¢} and segment lengths ¢/. Sub-
stituting Equation (7) into the second term of the objective
function, we have:

3 tarsh)r =0 [ 2 tratd) (X #)
1=1 k=b} =1 \k=b! j=bt

{moving unrelated terms out of the summations}

n; 1 1
=« Oty ®)
=1 \ j=b! k=b!

{combining similar terms}
1!

—a Y ()

IMi=5  k=bl

Thus, the original optimization problem can be equiva-
lently transformed into the following one with only t¥ as
variables.

l
Minimize .y M ST 4+ v, c?(Zi;bi thy1=v

Vi, Yot < T, ©)
Vi, tF > 0.

Subject to

Lemma 3. The objective function (according to Equation (9)) is
a convex function.

Proof. Since leakage power consumption remains constant
(which is convex), we will prove that the dynamic part of
the energy consumption function is convex:

E(r) = Z CY (< a7 >,

1<i<n

(10)

Here 7 refers to a k-dimension positive vector, in which
each element is positive and refers to the length of a specific
segment of a DAG task. «; is a binary vector, in which
each element «; ; € {0, 1} identifies if the node is selected
for the segment. |a;| > 1 since at least one segment must
be assigned). < «;,7 > refers to the inner-product of
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the two vectors, C; refers to a non—negative constant, and
v € [2, 3]. Thus the energy consumption is modeled as E(7)
—a function over the time-allocation 7 € ]R’j_.

We prove the convexity of E() when 7 € RY with the
following four steps:

1) We name f(7) =< a,7 > as a function of inner-
product of 7 with any binary vector « and |a| >
1. Obviously, this function is a linear function over
7 and should be both convex and concave. Further,
given 7 € R%, we have f(r) > 0. Thus we can
conclude f(7) is a positive concave function.

2) According to page 3-3 of [18], xP is convex when
2 > 0and p < 0. Thus, when v € [2,3] (ie., —2 <
1 -5 < —1)and = > 0, the function g(z) = z'~7
should be a non-increasing convex function.

3) According to page 3-17 of [18], if g(z) is a non-
increasing convex function and f(7) is a concave
function over V7 € RY, then g(f(7)) is a convex
function over V7 € R% .

4) The function E(7) and f;(7) could be written as:

B = Y i) an
fl(’T) = (< oG, T >) (12)

As C] is non-negative, E(7) could be considered
as the non-negative-weighted sum of convex functions
(i-e., g(fi(7))), and E(7) is a convex function.

O

Theorem 4. Any gradient based method (e.g., fmincon [19] in
Matlab) would lead to sub-optimal power consumption under
federated scheduling scheme with task decomposition.

Proof. The sub-optimality comes from three facts:

o The objective function is convex as it is a sum of
several convex (including linear) functions of the
variables t¥ (detailed proof in Lemma 3).

e The linear equality constraints are necessary and
sufficient (Lemma 1) for real-time schedulability and
predecessor conditions from the input DAG task.

o The variables t¥ are sufficient to represent a possible
optimal scheduler regarding power consumption;
i.e., it is safe to assume uniform speed during each
segment (Theorem 2). 0

Figure 5 shows the sub-optimal segment length assign-
ment for the given task ;.

Ei Ti=12 >
t'=4.81, t2=0 t3=2.78 ti*= 4.41 i
Ny’ Ni* Ni® I
N? N3 N
NS
m'=2 m3=3 mi# =2

Fig. 5. The sub-optimal segment length assignment for power efficiency
of the sample task 7; (in Figure 1), with an average power consumption
of 2.94 Watts. The height of each block represents the speed of the
processor during each segment.



4 PROCESSOR SHARING: EFFICIENCY IMPROVE-
MENT

Task decomposition transforms the parallel task into a set of
sequential tasks. The process tries to maximize the degree
of parallelism (i.e., assigning as many processors to each
DAG task as possible). However, some of these processors
may be lightly loaded with poor energy efficiency as the
leakage power consumption becomes the majority cost (as
demonstrated in Figure 2). Thus the solution derived in
Section 3 is only sub-optimal and can be further improved if
we allow merging the lightly loaded processors into a single
one, such that leakage power is reduced (see Figure 6 as an
example).

In this section, we deal with this issue and further
improve the overall energy efficiency of our scheduler by
merging the workloads assigned to different processors
onto a single one. Specifically, in Subsection 4.1, we merge
processors that have been assigned to the same DAG task.
In this step, each DAG task is handled individually and the
resulting processor-node/DAG assignment remains in the
federated scheduling framework. However, in this subsec-
tion, we have assumed that each processor to be merged
only once. That is we only allow the combination of two pro-
cessors that have never been part of any merging previously.
In Subsection 4.2, this constraint is relaxed and we allow
merging three or more processors into one. In Subsection
4.3, we discuss the importance (in order to improve the
overall energy efficiency of our scheduler) of applying any
gradient based method to calculate the optimal segment
length after an intra-DAG processor merging. In Subsection
4.4, we further extend the technique for inter-DAG proces-
sor merging.

f: Ti=12 >
t'=4.81, t2=0 13=2.78 ti*=4.41
Ni1 Ni4 Nie
N2 N2 &N;® e

Fig. 6. The execution pattern for 7; (in Figure 1) after merging Pro-
cessors 2 and 3, where Nodes N and NP will share Processor 2
(i.e., execute under EDF) within time window [4.81,7.59) at a higher
execution speed. The average power consumption is further reduced
to 2.80 Watts. The height of each block represents the speed of the
processor during each segment.

Remark 3. Normally, the effect of task migrations and con-
text switches is not considered while deriving schedulability
test for real time tasks. We are also not considering the
effects of these phenomena.

4.1 Merging Processors Assigned to the Same DAG

Federated scheduling of DAG tasks provides isolation
among tasks during execution, such that inter-task inter-
ference as well as context switch delays remain small dur-
ing run-time. In this subsection, we stay in the federated
scheduling framework and only consider potential merges
among processors of the same DAG.

Given a DAG task 7; with a federated task-to-processor
assignment j = M}, the processor execution speeds S¥ for
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each segment, segment lengths ¢¥, and the period T;. For
any processor j assigned to this DAG, its original power
consumption can be calculated as

tk
Pj=f+Y (st
k ?

Any pair of processors {7, j'} share the same period and
segment information as they are assigned to the same DAG
task. As a result, the new execution speed for each segment
(when merged together) will simply be the sum of the two
old ones; i.e., S ; + Sé,, and the average power consumption
for this new processor can be calculated as:

JJ/*ﬂJFZ

The pairwise potential power saving can be calculated
directly by:

(13)

S’“ +55) (14)

With the pairwise potential power saving, the Maximiza-
tion of Power Saving (MPS) problem we are dealing with in
the section can be described as follows:

e Given the potential power savings (Par,xn;) for
merging each pair of the M; processors, we wish
to find a list of mutual exclusive processor-pairs
{(p1,P}), s (DN, D) F(N < M;/2), such that the
total power saving P; = Zszl Py, p, is maximized.

Theorem 5. The MPS problem is NP-Complete.

Proof. MPS is in NP as it takes linear time to verify whether
a given solution satisfies the mutual exclusion constraints.
The NP-Hardness comes from the reduction from a well
known NP-Complete problem: Maximum Independent Set
(MIS). An independent set is a set of (weighted) vertices in
a graph that no two of which are adjacent. For each vertex
in the graph of MIS, we can construct an edge with the
same weight in the graph of MPS, and the adjacency of
those edges (whether or not they share a common vertex)
in MPS can be determined by the adjacency of the edges in
the graph of MIS; i.e., each edge in MIS corresponds to a
vertex in MPS (see Figure 7 for an illustration). Since this
polynomial (linear)-time mapping maintains the adjacency
relationship of weighted vertices (in MIS) or edges (in MPS),
a solution of MIS (a subset of n,, non-adjacent vertices with
maximum total weight) will correspond to a solution of MPS
(ny, non-adjacent edges with maximum total weight), and
vice versa. O

Example 4.1. Take the processor assignment in Figure 7 as an
example, where four processors are assigned to a DAG task. The
weight ‘P; ; for each edge represents the potential power saving
when merging processors ¢ and j, calculated from (15). The edge
{2,4} is missing since merging these two processors will lead to
higher power consumption (i.e., P24 < 0).

For each vertex in Figure 7 (b), there is a corresponding edge
with the same weight in Figure 7 (a), and vice versa. A feasible
subset of edges in Figure 7 (a) (e.g., {1,4} and {2, 3}) corresponds
to a subset of vertices in Figure 7 (b) (e.g., E1 4 and Es 3) that
none of the two are directly connected by an edge.



Fig. 7. The equivalence of the MPS problem and the MIS problem,
where (a) shows a DAG of four processor assignments with potential
power savings for merging each pair of the processors, and (b) shows its
alternative (equivalent) expression with vertices representing all edges
in (a), and edges representing the mutual exclusive constraints.

For this example, we could choose to merge Processors 1&2
and 3&4 (with a gain of 1.1 Watts), 1&4 and 2&3 (with a gain of
1.7 Watts), or 1&3 (with a gain of 0.1 Watts). Although obviously
the second option is leading to the optimal solution, we need to
explore all combinations to find that out (Theorem 5 already shows
the intractability). As a result, instead of seeking for the global
optimal solution for merging, here we choose to greedily select (see
Step 2 below) the pair with the maximum gain in each step.

Now we describe the key steps of our proposed proces-
sor merging method:

1) For each pair of processors {j,j'} of the (same)
DAG, calculate the potential power savings P; ;- for
merging them together according to (15).

2) Greedily choose the pair {j,j'} of processors with
the maximum power saving P; ;-, and merge them
together by updating P’ value(s) of the nodes on
j' to j. The merged nodes will be executed on
processor j under EDF, with given per-segment
(fixed) speed settings. Note that EDF is an optimal
uni-processor scheduler for sporadic task systems,
and thus will guarantee temporal correctness as far
as cumulative capacity remains the same.

3) Remove the two processors (and also the new one,
see Remark 3) from the candidate pool, by updating
elements in the jth row, the j'-th row, the jth
column, and the j’-th column of the power saving
matrix P into 0.

4) If there is no positive elements in P, return the
updated mapping P’, else go to Step 2 (i.e., merg-
ing two un-touched processors may lead to further
energy savings).

Although the MIS problem in general cannot be approx-
imated to any constant factor in polynomial time (unless P
= NP) [20], fortunately, each edge in the original figure can
be joint with at most 2(M; — 2) other edges, which indicates
that the degree of each vertex in the graph after problem
transformation is upper bounded by 2(M; — 2). Thus we
have the following approximation ratio bound.

Theorem 6. The greedy approach has an approximation ratio no
greater than (2M; — 2)/3, where M; > 3 is the total number
of processors before merging of DAG task T;; i.e., the degree of
parallelism of the task.

Proof. Since we only allow a processor to be considered in
one pair in each round, the graph resulted from the reduction
in Theorem 5 is a (2M; — 4)-regular graph; i.e., the degree of
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each vertex cannot exceed 2M; — 4. According to Theorem
5 in [21], the greedy algorithm achieves an approximation
ratio of (2M; — 2)/3. O

Remark 4. Note that when M; = 2, there are only two pro-
cessors in the candidate pool, and the decision is straightfor-
ward — based on whether merging them can lead to lower
power consumption.

4.2 Multiple Merging Among the Processors Assigned
to the Same DAG

In the previous subsection, we have described the technique
of merging processors assigned to the same DAG to reduce
the total number of processors (by means of merging two
lightly loaded processors onto one). So far we have assumed
that each processor should be merged only once. However,
allowing multiple merging to any specific processor can
further increase the energy saving. We are relaxing the
assumption of only one merge per processor and in this
section, we will describe the technique of multiple merging.
Here are the key steps of our proposed intra-DAG processor
merging (multiple times) method:

1) For each pair of processors {j,j'} of the (same)
DAG, calculate the potential power savings P; ;- for
merging them together according to Equation (15).

2) If there is no positive element in P, return with no
power saving, else go to Step 3.

3) Greedily choose the pair {j,j'} of processors with
the maximum power saving P; -, and merge them
together by updating P’ value(s) of the nodes on
j' to j. The merged nodes will be executed on
processor j under EDF, with given per-segment
(fixed) speed settings. Note that EDF is an optimal
uni-processor scheduler for sporadic task systems,
and thus will guarantee temporal correctness as far
as cumulative capacity remains the same.

4)  Remove the two processors (and also the new one,
see Remark 3) from the candidate pool by updating
elements in the jth row, the j’-th row, the jth
column, and the j'-th column of the power saving
matrix P into 0.

5) If there is no positive elements in P, go to Step
6, else go to Step 3 (i.e., merging two un-touched
processors may lead to further energy savings).

6) Let M’ be the total number of merges conducted
in Steps 1 to 4, where M’ < M,;/2 (M; = the total
number of processor allocated to 7;). Update M; as
M; +— M; — M !

7) Repeat Steps 1 to 4.

4.3 Calculating Optimal Segment Length After the
Intra-DAG Processor Merging

In Subsection 3.3, we have discussed the technique to opti-
mally determine the segment length for a DAG task 7; and
in Subsection 4.1, we have described the processor merging
technique among the same DAG task. We already know
from Theorem 4 that any gradient based method would
lead to sub-optimal power consumption under federated
scheduling scheme with task decomposition.



Now we will show that if we re-apply any gradient
based method to calculate segment length after applying
the intra-DAG processor merging it will further reduce the
power consumption (more details can be found in Section
5). Once we solve the optimization problem mentioned in
Subsection 3.3, for each node Ml we have the information
regarding its execution speed within its scheduling window.
As all the processors assigned to the same DAG share the
same period and segment information, after merging the
new execution speed for each segment will simply be the
sum of the two old ones. We consider that the DAG 7; is
reduced to 7/ after a merge. The consecutive time windows
where the speed remains same will be considered under
the same node (according to Theorem 2). As we have the
updated information regarding the execution speed of 7]
within its scheduling window it is easy to calculate the
execution time for each node as well.

Example 4.2. Figure 8 shows how the DAG task T; from Figure
1 is modified after intra-task processor sharing. For this specific
task T; (see Figure 6) node N* and N share processor 2. In this
case, we will consider that the node N and the node NP jointly
form a new node N?°. The remaining part of node N (which
is executing within time window [7.59,12)) will be considered as
another node.

Now we have a changed DAG 7, where each node
N} has some execution requirements and predecessor con-
straints. After merging we did not change the segment
length. As we are merging two different processors into one,
the execution requirement at specific segment changes. So it
is worth calculating the segment length of the DAG 7/. In
order to determine the sub-optimal segment length t¥, we

Fig. 8. The modification bought into 7; (from Figure 1) after merging
processors 2 and 3, where nodes N7 and N will share processor 2
(i.e., execute under EDF) within time window [4.81,7.59) at a higher
execution speed. Prior to merging, the predecessor constraint was
N2 — N3 and N} — NP. In order to respect this constraint both the
nodes /! and N2 will be considered as the parent of the newly formed
node NV

will use any gradient based (e.g., fmincon [19] in Matlab)
method because:

o The objective function still remains convex as it is the
sum of multiple convex functions of the variables ¢¥;
and

e The linear equality constraints are necessary and
sufficient (Lemma 1) for real-time schedulability and
predecessor conditions from the modified DAG task.

Figure 9 shows the sub-optimal segment length assignment
for the modified DAG (which is achieved by merging the
lightly loaded processors) 7/

Ei Ti=12 >
t'=4.25, 2=0 t3=3.93 t4=3.81
Ni1 Ni4 Ni6
Ni2 Ni3 & Nis Ni3

Fig. 9. The sub-optimal segment length assignment (after merging Pro-
cessors) for power efficiency of the sample task ;. Again, the height of
each block represents the speed of the processor during each segment.

4.4 Merging Processors Assigned to Different DAGs

The merging process described in the previous subsections
may significantly reduce the total number of lightly loaded
(energy-inefficient) processors. However, due to the feder-
ated scheduling limitation, one (or more) lightly loaded
processor(s) for each DAG may still not get paired with
just because it (they) cannot find a good “partner” that
was assigned the same DAG task. In this subsection, we
further select the lightest loaded unmerged processors of
each DAG (after intra-DAG merging) as a candidate, and
perform inter-DAG merging under a similar approach; i.e.,
calculate all pairwise energy savings and greedily merge the
pairs with maximum possible power saving.

Note that different tasks may have different periods,
release patterns (sporadic), and execution patterns (segment
lengths after decomposition), such that we cannot simply
cumulate the execution speeds with Equation (14) when
calculating the new speed pattern for power consumption
upon inter-DAG merging. In this section, we propose a
fast algorithm to estimate the average energy consumption
of the two processors from two different DAG tasks after
merging them into one processor, with (potential) unsyn-
chronized release.

With respect to the unknown phase difference between
the two DAGs, we assume that all phases are equally likely
to occur, and model the speed patterns of them as two
random processes S;(t) and S;(t), where ¢ € [0, +00). The
power consumption of the merged processor at time instant
tis:

em(t) =f0+a- (Sz(t) + Sj (t))v. (16)
The expectation of e; ;(t) over t € [0, +00) is
E(e;;(t) = B+ a-E((Si(t) + 5;(1)7)

{The values of S (t) and Sy(¢) are finite} 17)

:6+C¥ Z S'p(S),

s€S1,2

where 5] 5 is the (finite) set of values that (S (t) + Sa(t))”
can possibly take, which can be calculated as:

Sio={(sh 4851 U< M1 <M},

and p(s) refers to the probability of the value s € S} ; i.e.,

1 /
— l l 1
p(s) - Z Z M M .6(87(81 +S2 )’7)'
1<IS My 1<V <M, 1772
1.6(s, (s} + 312,)”) =1lifs= (s} + 312,)”, and = 0 else-wise.



The key for calculating average power consumption is
to identify all the possible execution speeds (sum of a pair
of speeds, each of which is selected from the set of possible
execution speeds of the two processors being merged), and
the likelihood (or joint distribution) of this speed to occur
according to the original execution patterns.

5 SIMULATION STUDY

In this section, we use experiments to evaluate the power
efficiency of the proposed mechanisms, and compare them
with existing algorithms for DAG task systems.
Generation of workloads. Our DAG generator follows the
Erdos-Renyi method [22] with a given number of nodes. For
the harmonic period case, the periods are multiples of each
other [7] by enforcing them to be powers of 2. Specifically,
we find the smallest value « such that L; < 2% and set T;
to be 2¢. Regarding the arbitrary period case, we use Gamma
distribution [23] to generate a random parameter, and set the
period as T; = L; + 2(¢;/m)(1 + T'(2,1)/4) (according to
[7D).

5.1 Experiment Under Single Merging of Processors

Here compare the power consumption by varying two pa-
rameters: (i) task periods (densities) (Subsubsection 5.1.1)
and (ii) number of nodes in each DAG task (Subsubsection
5.1.2). Under each parameter setting, we randomly generate
100 different DAG task sets, each consisting of 5 DAG
tasks, and compare the average power consumption of the
following scheduling algorithms:

e Federated scheduling with task decomposition,
where each node is executed as soon as possible
under full speed [7], denoted by D-Saifullah;

o Federated scheduling with task decomposition,
where length of each segment is further extended
uniformly (according to their loads) [7], denoted by
UniExt_D-Saifullah ;

o Federated scheduling with task decomposition,
where lengths of segments are determined by the
proposed convex optimization (Subsection 3.3);

o Energy-sub-optimal federated scheduling with task
decomposition, where lengths of segments are deter-
mined by convex optimization (Subsection 3.3) after
performing segment extension (Subsection 3.2);

o Federated scheduling with intra-DAG processor
merging (Subsection 4.1);

5.1.1 Varying Task Periods (or Utilization)

Here we vary the minimum inter-arrival separation for each
task, such that the average utilization of a set is controlled.
We vary the period in an allowable range (P; < T; < ()
by assigning T; as P; + (1 — k)(C; — P;), where k € [0,1]
is named as the utilization of the task — note that this is dif-
ferent from the normal utilization definition for sequential
tasks. We fix the number of nodes within each DAG task as
30, and show the average power consumption in Figure 10.

The first thing we notice from Figure 10 is that the aver-
age energy consumption increases as the average utilization
of the set increases (due to decreasing of the period). This
phenomenon makes sense as higher utilization would lead
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Fig. 10. Comparison of power consumption with different approaches for
DAG tasks with a fixed number of nodes as 30.

to tighter real-time restrictions, which lead to less room for
our segment length optimization.

As shown in Figure 10, stretching each segment would
lead to significant power savings compared to finishing
them at full speed and leaving the processor idle for some
portion of time (matching Theorem 2). Comparing to the
existing uniform stretching for all segments of each DAG
task, our convex optimization based methods would find a
better execution pattern in terms of power efficiency. We also
found that segment extension is helpful in removing unnec-
essary constraints for finding better execution patterns.

It is easy to tell that the improvements to the average
power consumption are huge when applying the processor
merging techniques described in Section 4. The improve-
ment is larger when utilization of the task is high. On av-
erage, our proposed methods (including segment extension
and intra-DAG merging) are leading to a reduction of the
power consumption ranging from 29.2% to 40.5%.

5.1.2 Varying Numbers of Nodes in a DAG Task

Now we vary the number of nodes within each DAG task
without changing the period T;. In this set of comparisons,
we consider both harmonic (reported in Figure 11) and
arbitrary periods (reported in Figure 12) for a set. For each
setting of parameters, we randomly generate 100 task sets
with various number of nodes (from 10 to 55, with an
increment of 5) and report the average performances of the
power consumption over the 100 sets for each case.

First of all, we observe similar improvements in energy
efficiency with the proposed techniques when the number
of nodes vary, comparing to the previous set of experiments
(with fixed number of nodes and varying task utilization).

Specifically, the intra-DAG merging techniques dis-
cussed in Subsection 4.1 lead to a reduction in the power
consumption for at least 27.29% and 34.27% for harmonic
and arbitrary periods, respectively (compared to the result
of convex optimization with segment extension discussed in
Subsection 3.3), while the average power savings are 28.23%
and 37.80%.

Secondly, when comparing curves in Figures 11 and 12,
we observe that task sets with harmonic periods typically
result in lower energy consumption compared to arbitrary
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Fig. 11. Comparison of average power consumption per task set with
different approaches for tasks with harmonic periods.
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Fig. 12. Comparison of average power consumption per task set with
different approaches for tasks with arbitrary periods.

periods (under same task utilization and number of nodes
per task).

Finally, from the reported performances, we did not
observe significant dependencies between the power con-
sumption and the number of nodes for the DAG tasks. This
indicates that the proposed methods are robust to various
settings of parameters and combination of DAG tasks.

5.2 Experiment Under Multiple Merging of Processors

In this subsection, we show the improvement in power
consumption using our proposed technique of multiple
merging among the processors. We compare our results with
a simple baseline that was studied in [24]. This baseline
approach was not designed for energy-efficient parallel
scheduling. It studied a greedy slack stealing scheduling
(GSS) approach for energy minimization for an application
consisting of inter-dependent sequential tasks. While those
dependencies among the tasks were represented by a DAG,
the model consists of a single DAG and does not consider
recurrent tasks. We can consider that approach for schedul-
ing one DAG. As the work in [24] did not consider parallel
task and we consider this work as a baseline to compare
with our work, in order to provide a fair comparison it is
required to modify the power and system models and the
graph model used in [24].
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Regarding the power model, first, [24] did not consider
the processor static power dissipation which is considered
by our model (refer to Equation (1)). Second, [24] considered
two real processor models, (a) the Transmeta model [25]
and the (b) Intel XScale model [26] (refer to Subsection
2.3 in [24]). Both of them provide a set of voltage/speed
levels. But in our model, we have considered continuous
frequency scheme. So while executing the GSS algorithm
proposed in [24], we use the energy model used in Equation
(1). We will assume that whenever a processor is introduced
in the system it always remains on. We will also consider
minimum inter arrival separation (i.e. period) for a DAG.
We make these assumptions in order to incorporate the
static power consumption according to Equation (9).

Regarding the graph model, [24] considered three dif-
ferent kinds of vertices: computation nodes, AND nodes,
and OR nodes (refer to Subsection 2.1 in [24]). Here the
computation nodes are labeled by two attributes, ¢; and
a;, which denotes the maximum and average computa-
tion requirement for the corresponding node. AND nodes
and OR nodes do not have any such attributes. An AND
node can be executed after all of its predecessors finish
execution. Similarly, all of its successors can start execution
after it finishes execution. But for the OR nodes, it depends
on only one of its predecessors. Similarly only one of its
successors depends on this node. However, in our work,
we have considered only the computation nodes with only
one attribute, their worst-case execution time. In order to
provide a fair comparison, we change the graph model used
in [24] according to ours. So we will consider the DAG
where each node will be considered as a computation node.
Instead of two, there will be only one attribute CZ which
denotes maximum computation requirement for the node
N/ . We also consider the precedence constraints among the
computation nodes.

In this subsection, we will evaluate the performance of
the technique proposed by us and the technique proposed
in [24] based on power consumption. Like the previous
subsection, we will vary two parameters (i) task periods
(utilization) (Subsubsection 5.1.1) and (ii) number of nodes
in each DAG task (Subsubsection 5.1.2) and will use the
same set of DAGs. In this subsection, we compare the aver-
age power consumption considering the following schemes:

e No Power Management (where every task executes
at full speed)

e Greedy Slack Stealing (GSS) algorithm, denoted by
GSS-Zhu;

o Federated scheduling with intra-DAG processor
merging (each processor to be merged only once)
(Subsection 4.1)

e Federated scheduling with intra-DAG processor
merging (each processor can be merged multiple
times) (Subsection 4.2)

e Recalculation of the segment lengths later to the
intra-DAG processor merging, where lengths of seg-
ments are determined by the proposed convex opti-
mization (Subsection 4.3)

e Shared scheduling with inter-DAG processor merg-
ing (Subsection 4.4);
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Fig. 13. Comparison of power consumption with different approaches for
DAG tasks with a fixed number of nodes as 30.
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Fig. 14. Comparison of average power consumption per task set with
different approaches for tasks with harmonic periods.

5.2.1 The Effect of Varying Task Periods (or Utilization)

Here we have compared the performance of intra-DAG
processor merging (only one merge), intra-DAG processor
merging (multiple merges), inter-DAG processor merging,
and the recalculation of the segment lengths after applying
the intra-DAG processor merging by varying the minimum
inter-arrival separation for each task as described in Section
4. We use the same settings, the number of nodes within
each DAG task is 30. We show the average power consump-
tion in Figure 13.

Similar to the phenomenon we have noticed before (Fig-
ure 10) the average energy consumption is directly propor-
tional to the average task utilization. The results in Figure
13 indicate that our scheduling algorithm is superior to the
GSS. Total energy consumption by the intra-DAG processor
merging (only one merge) is significantly less than the GSS,
which is further reduced by allowing multiple merging and
recalculating the optimal segment length after merging. In
particular, the energy consumption by the intra-DAG pro-
cessor merging (only one merge) is at least 44.85% less than
the GSS. It is easily observable that the improvements to
the average power consumption are huge when our convex
optimization based methods find a better execution pattern
after intra-DAG processor merging (only one merge) and
the improvement is larger when the utilization of the task
is high. On average, it leads to a reduction of the power
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Fig. 15. Comparison of average power consumption per task set with
different approaches for tasks with arbitrary periods.

consumption ranging from 59.41% 63.09%.

5.2.2 Varying Numbers of Nodes in a DAG Task

Now we will show the comparison of the above-mentioned
algorithms by varying the number of nodes (from 10 to 55,
with an increment of 5). We randomly generate 100 task
sets and report the average power consumption over the
100 sets. Again we will consider both harmonic (reported in
Figure 14) and arbitrary periods (reported in Figure 15).

Again, the improvements observed in energy efficiency
with our proposed techniques under varying number of
nodes are similar to that in the previous set of experiments
(varying task utilization with a fixed number of nodes).
Figures 14 and 15 suggest that both versions (single and
multiple) of intra-DAG processor merging performs signif-
icantly better than the GSS algorithm. Intra-DAG processor
merging results in at least 23.3% (single merge) and 25.05%
(multiple merges) lower energy consumption compared to
the GSS for the harmonic periods. When considering the
arbitrary periods, this reduction becomes 42.22% (single
merge) and 45.83% (multiple merges). When we consider
the gradient based methods to find a better execution pat-
tern after intra-DAG processor merging (only one merge),
it brings further improvements in energy consumption.
On average, for the harmonic task periods, it leads to a
reduction of the power consumption ranging from 27.8% to
52.94% and for the arbitrary task periods the range is 53.55%
to 68.22%. All these results indicate that our proposed
techniques outperform the GSS algorithm in terms of energy
efficiency.

Finally, Figures 14 and 15 report that the task sets
with harmonic periods result in lower energy consumption
compared to the task sets with arbitrary periods. Also, for
the DAG task sets, we have observed that there are no
significant dependencies between the energy consumption
and the number of nodes.

6 RELATED WORK

The work that deals with schedulability tests for vari-
ous scheduling policies on parallel task model is already
mentioned in Section 1. None of them has considered
power/energy consumption issues. In addition, much work



has been done in energy /power consumption minimization
for sequential tasks. Bini et al. discuss the problem of find-
ing an optimal solution for a system with discrete speed
levels for a set of periodic/sporadic tasks [27]. They have
considered both EDF and Fixed-Priority (FP) scheduling
policies. Jejurikar has considered non-preemptive tasks in
order to deal with shared resources [28]. Chen et al. presents
an energy-efficient design for heterogeneous multiprocessor
platform [29]. No previous work considers parallel task
model.

Actually, intra-task parallelization and power consump-
tion issues have not yet received sufficient attention. Zhu
et al. have considered power-aware scheduling for graph-
tasks [30]. The work in [24] proposed the greedy slack
stealing algorithm that is able to deal with the task rep-
resented by AND/OR graphs. It proves the correctness of
the proposed algorithm in terms of meeting the applica-
tions time constraint considering it is executing on an N-
processor system. Through simulation, it has also analyzed
the performance of the algorithm in terms of processor
energy saving and showed that the GSS is able to achieve
some energy efficiency. However, that work considered the
scheduling of only a single DAG and the DAG was not
periodic/recurrent. For dependent tasks, [31] provides tech-
niques that combine dynamic voltage and frequency scaling
(DVES) and dynamic power management, where each core
in the platform can be switched on and off individually.
For block-partitioned multi-core processors (where cores are
grouped into blocks and each block has a common power
supply scaled by DVES), energy efficiency is investigated
in [32]. The authors in [33] consider power-aware policy
for scheduling parallel hard real-time systems, where the
multi-thread processing is used. [34] considers dealing with
parallel tasks under Gang scheduling policy, where all par-
allel instances of a task use a processor in the same window.
Based on level-packing, an efficient scheduling algorithm is
proposed [35] [36]. The authors in [36] have considered en-
ergy minimization for frame-based tasks (i.e., same arrival
time and a common deadline for all the tasks) with implicit
deadlines. Similar frame based model is considered in [37],
where precedence constraints can be specified among the
tasks. As mentioned previously, no existing work allows
intra and inter-task processor sharing when considering the
(more general) sporadic DAG task workload model.

7 CONCLUSION

This paper studies the scheduling of a set of sporadic
DAG tasks with implicit deadlines. Upon guaranteeing real-
time correctness, we try to minimize the overall power
consumption of the whole platform. A power-sub-optimal
scheduler is proposed under the condition of federated
scheduling and task decomposition. Achieving the optimal
solution for the more general (non-federated) case is shown
to be NP-Complete. Based on the solution under federated
scheduling, a greedy heuristic is proposed to further im-
prove the power efficiency, with proved upper bound of the
approximation ratio.

To our knowledge, this is the first work in the real-
time systems community that considers power issues for
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scheduling recurrent DAG tasks. We have shown the evalu-
ation through simulation via randomly generated task sets
that has passed artifact evaluations. In the future, we plan
to study energy-efficient real-time scheduling of constrained
deadline DAG tasks and validate our algorithm in modern-
generation processor to show how much the predicted
energy savings correlate to the measurements on a real
system.
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