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Abstract—This paper presents a model-free solution to the
robust stabilization problem of discrete-time linear dynamical
systems with bounded and mismatched uncertainty. An optimal
controller design method is derived to solve the robust control
problem, which results in solving an algebraic Riccati Equation
(ARE). It is shown that the optimal controller obtained by
solving the ARE can robustly stabilize the uncertain system. To
develop a model-free solution to the translated ARE, off-policy
reinforcement learning (RL) is employed to solve the problem in
hand without the requirement of system dynamics. In addition,
the comparisons between on- and off-policy RL methods are
presented regarding the robustness to probing noise and the
dependency on system dynamics. Finally, a simulation example
is carried out to validate the efficacy of the presented off-policy
RL approach.

Index Terms—system uncertainty, robust control, reinforce-
ment learning, on-policy, off-policy, model free.

I. INTRODUCTION

Robust control of uncertain dynamical systems has received
considerable attention in the control community as well as
many other fields such as chemical process, power systems,
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robotics, and aerospace engineering. It is of paramount im-
portance to achieve robust performance and/or stability in the
presence of bounded system uncertainties, such as external
disturbances, unmodeled dynamics, and time-varying system
parameters, and so on [1]–[5]. There has been extensive
research on the robust control theory, including the frequency-
domain analysis [6], [7], optimization methods [8] and time-
domain method [9]. However, in most existing results, the
system dynamics is required for the robust controller design,
which might be vulnerable to exhaustive modeling and poten-
tial attacks. The main concern of this paper is to obviate the
requirement of complete knowledge of system dynamics for
the robust stabilization problem of discrete-time linear systems
with mismatched uncertainty.

Recently, the relation between robust stabilization and op-
timal controller design has been studied in [10], in which it
is shown that the optimal controller of an auxiliary system
can stabilize the uncertain system. Solving the optimal control
problem results in solving the algebraic Riccati equation
(ARE) for linear systems or Hamilton-Jacobi-Bellman (HJB)
equation for nonlinear systems. However, for general nonlinear
systems, the HJB equation is essentially a nonlinear partial
differential equation, of which the analytical solution might
not exist. Besides, dynamic programming has to be imple-
mented backward-in-time which often makes the computa-
tion unavailable with increasing dimension [11]. Therefore,
approximate dynamic programming (ADP) algorithms [12] are
developed to approximately solve the HJB equation forward-
in-time by using function approximation techniques, such as
neural networks [13]. Variants of ADP methods are developed
since then [14]–[16], including iterative off-line ADP [17],
[18] and model-based on-line ADP [19] and identification-
based ADP [20]–[22]. Even though the identification-based
ADP does not require the system dynamics, the accuracy
of the system identification has an impact on the control
performance. Therefore, the data-driven controller design of
which the performance does not depend on the complete
knowledge of system dynamics is desired.

Reinforcement learning (RL) techniques have been success-
fully applied to solve the decision-making problems when
the agent is interacting with an uncertain environment [23],
[24]. In general, RL approaches can be divided into on-
and off-policy RL methods. In the on-policy RL method, it
is required that the control policy to be evaluated has to
be applied to the systems. Typical on-policy RL method is
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SARSA algorithm [25], which updates the value function
based on the experience obtained by executing some policy.
In contrast, the off-policy RL approach aims at learning the
optimal control policy when another admissible policy, not
necessarily optimal, is interacting with the environment. The
well-known Q-learning algorithm belongs to the off-policy RL
class because the learning policy is different from the policy
to be carried out [26]. Off-policy RL has been applied to
deal with optimal regulation problems [27], optimal tracking
problem [28] and differential games [29], [30] for single-
agent systems. Recently, off-policy RL has also been applied
to output synchronization problem [31]–[33], containment
control problem [34] and graphical games [35] for multi-agent
systems. To the authors’ knowledge, the off-policy RL method
has not been applied to the robust stabilization problem of
discrete-time uncertain systems yet. This paper develops an
off-policy RL method to obtain the robust controller of the
uncertain system without requiring the system dynamics a
priori.

Motivated by the above-mentioned work, in this paper, an
off-policy RL-based method is developed for the robust con-
troller design of discrete-time linear systems in the presence
of mismatched uncertainty. First, the robust control problem
for the original uncertain system is translated to the optimal
control problem for an auxiliary system with a properly
modified reward function. Then, the sufficient condition that
guarantees the translation equivalence, i.e., the optimal control
for the auxiliary system can robustly stabilize the original
uncertain system, is also discussed. Meanwhile, on- and off-
policy RL methods are compared and discussed in detail. The
main contributions of this paper are as follows.

1) Model-free robust controller design is derived to achieve
robust stabilization of the discrete-time uncertain system
by solving an optimal control problem for an auxiliary
system with a modified performance function. Sufficient
condition that guarantees the optimal controller could
ensure robust stabilization of the discrete-time uncertain
systems is also provided.

2) Variants of on- and off-policy RL method are derived.
In addition, comparisons between on- and off-policy RL
methods are discussed in terms of the robustness to
the probing noise and the dependency on the system
dynamics.

The remainder of this paper is organized as follows. Section
II describes the robust control problem of the discrete-time
linear system with mismatched uncertainty. In Section III, the
robust control problem is translated into the optimal control
problem of an auxiliary system. The sufficient condition,
which guarantees the optimal control policy of the auxiliary
system can robustly stabilize the uncertain system, is also
given in Section III. Two types of RL methods, on- and
off-policy RL, are discussed in detail in Section IV and
V, respectively. In Section VI, a simulation is conducted to
demonstrate the validity of the proposed approach. Finally,
concluding remarks and future works are presented in Section
VII.

II. PROBLEM FORMULATION

In this paper, a class of discrete-time nonlinear systems with
uncertainty is considered, which can be described as

xk+1 = [A+ ∆ (p)]xk +Buk, (1)

with the system state xk ∈ Rn, the control input uk ∈ Rm, the
drift dynamics A+∆ ∈ Rn×n, the input dynamics B ∈ Rn×m

and p is a vector of uncertain parameters which is restricted to
a prescribed bounded and compact set Ω. The drift dynamics
A+ ∆ ∈ Rn×n consists of nominal part A and uncertain part
∆ ∈ Rn×n. In addition, the nominal system of (1) is

xk+1 = Axk +Buk. (2)

Moreover, the nominal system (2) satisfies the following
assumption.

Assumption 1. The pair (A,B) is stabilizable.

The system uncertainty ∆ can be classified as matched and
mismatched uncertainty according to its relation to the input
dynamics B [10]. To be specific, the uncertainty in system (1)
belongs to the type of matched uncertainty if ∆ (p) can be
expressed as

∆ (p) = Bφ (p) . (3)

That is, the system uncertainty ∆ is in the space spanned by
the columns of input matrix B. For the case of mismatched
uncertainty, ∆ cannot be expressed in the form of (3). More-
over, mismatch uncertainty can be decomposed of match part
and mismatched part

∆ (p) = Sφ (p)

= BB†Sφ (p) +
(
I −BB†

)
Sφ (p) , ∀p ∈ Ω, (4)

where B† is the pseudo-inverse of B, S 6= B, S ∈ Rn×r

is a known weight matrix and φ (p) ∈ Rr×n is unknown
perturbation. In this paper, the perturbation φ (p) is bounded
in the following sense.

Assumption 2. There exists a positive semi-definite matrix F
such that

ε−1φT (p)φ (p) ≤ F, ∀p ∈ Ω, (5)

where ε is a positive constant.

The robust control problem of system (1) of interest in this
paper can be formulated as follows.

Problem 1. (Robust Control Problem) Find a state feedback
control law uk = Kxk such that the close-loop system

xk+1 = (A+BK)xk + ∆xk (6)

is asymptotically stable for ∀p ∈ Ω.

For the purpose of designing the robust control uk = Kxk
to stabilize system (1), the state feedback gain K is designed
by ARE approach in optimal control theory. By introducing
an extra term Dvk to the nominal system (2) one can obtain
an auxiliary system as,

xk+1 = Axk +Buk +Dvk, (7)
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where α is a positive constant, D = α
(
I −BB†

)
S ∈ Rn×r

and r is the rank of B. Then, the optimal control problem of
the auxiliary system (7), which is closely related to the above
robust control problem, can be described as follows.

Problem 2. (Optimal Control Problem) Find state feedback
control laws uk = K∗xk and vk = L∗xk such that the
performance

V (xk) =
1

2

∞∑
j=k

(
xTj Qxj+xTj Fxj + β2xTj xj

+ uTj R1uj + vTj R2vj
)

(8)

with respect to the auxiliary system (7) is minimized, where
Q ≥ 0 is a positive semi-definite matrix, R1 � 0 and R2 � 0
are positive definite matrices and β is a positive constant.

For simplicity, the terms in the summation in (8) is denoted
as

r (xk, uk, vk) = xTkQxk + xTk Fxk + β2xTk xk

+ uTkR1uk + vTk R2vk.

which is referred to as the utility function.

Remark 1. As shown later in Section III, under some specific
conditions, K∗ can be used as robust state feedback gain to
stabilize the uncertain system (1). That is, the robust control
problem of uncertain system (1) can be translated to the
optimal control problem of the auxiliary system (7) with the
performance defined in (8). Note that the control input vk only
appears in the auxiliary system (7). Therefore, the feedback
gain L∗ does not affect the system (1) directly and vk is
referred to as virtual control.

III. ROBUST CONTROLLER DESIGN USING ARE
APPROACH

In this section, ARE approach in optimal control theory
is used to solve the robust control problem of the uncertain
system (1). The robust control problem of the uncertain system
(1) is transformed to an optimal control problem of the
auxiliary system (7) with respect to the performance (8). The
condition that guarantees the equivalence between the robust
control problem and the optimal control problem is provided.

To begin with, the following are required for the subsequent
discussions.

Definition 1. (Admissible Control) For the auxiliary system
(7), the control mappings u (x) and v (x) are said to be
admissible with respect to performance (8) if

• u (xk) and v (xk) are continuous;
• u (0) = v (0) = 0;
• u (xk) and v (xk) stabilize the auxiliary system (7);
• The value function V (xk) w.r.t. the policies u(·) and v(·)

is finite for ∀xk.

Lemma 1. For arbitrary admissible control u (xk) = Kxk
and v (xk) = Lxk, the performance function V (xk) in (8) is
quadratic in xk, for ∀xk ∈ Rn.

Proof: Taking the control u (xk) = Kxk and v (xk) = Lxk
into the auxiliary system (7), the closed-loop dynamics should
be

xk+1 = (A+BK +DL)xk = Āxk.

Therefore, xk+j = Ājxk, ∀j = 0, 1, 2, · · · . Now inserting
u (xk) = Kxk and v (xk) = Lxk into the reward function
r (xk, uk, vk) yields

r (xk, uk, vk) = xTk
(
Q+ F + β2I +KTR1K + +LTR2L

)
xk

= xTkQxk,

where Q = Q+ F + β2I +KTR1K + LTR2L. Therefore,
the value function is equivalent to

V (xk) =
∞∑
j=k

r (xj , uj , vj) =
∞∑
j=k

xTj Qxj

= xTk

 ∞∑
j=k

(
ĀT
)j−kQĀj−k

xk.

This completes the proof.
To solve the optimal control problem of the auxiliary system

(7) with the performance (8), the optimal control laws uk =
K∗xk and vk = L∗xk are derived in the following theorem.

Theorem 1. Suppose that there exists a positive definite
solution P � 0 of the following algebraic Riccati equation
(ARE)

0 =−
[
BTPA
DTPA

]T[
R1 +BTPB BTPD
DTPB R2 +DTPD

]−1
[
BTPA
DTPA

]
+ATPA− P + Q̄, (9)

where Q̄ = Q+F+β2I . Then the optimal control of system (7)
with respect to the performance function (8) can be expressed
as u∗k = K∗xk and v∗k = L∗xk with gains K∗ and L∗

satisfying

K∗ = −
[
R1 +BTPB −BTPD

(
R2 +DTPD

)−1
DTPB

]−1
[
BTPA−BTPD

(
R2 +DTPD

)−1
DTPA

]
, (10)

L∗ = −
[
R2 +DTPD −DTPB

(
R1 +BTPB

)−1
BTPD

]−1
[
DTPA−DTPB

(
R1 +BTPB

)−1
BTPA

]
. (11)

Proof: The Bellman equation for the value function V (xk)
in (8) is

V (xk) = V (xk+1) + r (xk, uk, vk) . (12)

Define the Hamiltonian as

H (xk, uk, vk) = xTkQxk + xTk Fxk + β2xTk xk + uTkR1uk

+ vTk R2vk + V (xk+1)− V (xk) .

From Lemma 1, the value function in (8) can be denoted as

V (xk) = xTk Pxk. (13)



IEEE TRANSACTION ON NEURAL NETWORKS AND LEARNING SYSTEMS, MANUSCRIPT ACCEPTED, JANUARY 2019 4

Based on [36], the necessary conditions for optimal control
u∗k and v∗k is given by

∂H (xk, uk, vk)

∂uk
= 0,

∂H (xk, uk, vk)

∂vk
= 0. (14)

Considering the Hamiltonian and the quadratic value function,
(14) is equivalent to:[ (

R1 +BTPB
)

BTPD
DTPB

(
R2 +DTPD

) ] [ u∗k
v∗k

]
= −

[
BTPA
DTPA

]
xk.

Denote

E = BTPA,

G = DTPA,

M =

[
M11 M12

M21 M22

]
=

[ (
R1 +BTPB

)
BTPD

DTPB
(
R2 +DTPD

) ] .
then the optimal control u∗k and v∗k can be expressed as[

u∗k
v∗k

]
= −M−1

[
E
G

]
xk.

Let N = M−1 be partitioned into the block form as N =[
N11 N12

N21 N22

]
. Based on the matrix inversion lemma [37],

N can be expressed as:

N11 =
(
M11 −M12M−122M21

)−1
,

N12 = −
(
M11 −M12M−122M21

)−1M12M−122 ,

N21 = −
(
M22 −M21M−111M12

)−1M21M−111 ,

N22 =
(
M22 −M21M−111M12

)−1
.

Finally, the optimal control can be expressed u∗k = K∗xk and
v∗k = L∗xk with

K∗ = − (N11E +N12G) , (15)
L∗ = − (N21E +N22G) . (16)

By collecting above results, (15) and (16) are equivalent to
(10) and (11).

Let Q̄ = Q + F + β2I . The optimal control u∗k and v∗k
satisfy

0 = min
uk,vk

H (xk, uk, vk) = H (xk, u
∗
k, v
∗
k)

=

[
u∗k
v∗k

]T [
R1 +BTPB BTPD
DTPB R2 +DTPD

] [
u∗k
v∗k

]
+

[
u∗k
v∗k

]T [
BTPA
DTPA

]
xk + xTk

(
ATPA− P

)
xk

+ xTk
[
ATPB ATPD

] [ u∗k
v∗k

]
+ xTk Q̄xk. (17)

Inserting (15) and (16) into the Hamiltonian yields the ARE
in (9). This completes the proof.

Remark 2. In [38], an alternative form of ARE and the
optimal feedback gain K∗ and L∗ are described as

P = AT
(
P−1 +BR1B

T +DR2D
T
)−1

A+ Q̄, (18)

K∗ = −R−11 BT
(
P−1 +BTR−11 BT +DTR−12 DT

)−1
A, (19)

L∗ = −R−12 DT
(
P−1 +BTR−11 BT +DTR−12 DT

)−1
A. (20)

It can be shown that under some manipulations, (9)-(11) are
equivalent to (18)-(20). The proof of equivalence between (9)-
(11) to (18)-(20) is given in APPENDIX A and B.

As mentioned in Remark 1, the optimal control of the
auxiliary system (7) with performance (8) is able to solve
the robust control problem of uncertain system (1) only under
some specific conditions. The condition that guarantees the
feedback gain K∗ in (10) asymptotically stabilizes system (1)
is provided as the following theorem.

Theorem 2. Under Assumption 2, suppose that the positive
constant ε in (5) satisfies

ε−1I − STPS � 0. (21)

Then, the state feedback control uk = K∗xk with K∗ in
(10) can asymptotically stabilize system (1), provided that the
following is true

AT
c

(
P−1 − εSST

)−1
Ac ≺MTP−1M + (K∗)

T
R1K

∗

+(L∗)
T
R2L

∗ +Q+ β2I, (22)

where M =
(
P−1 +BTR−11 B +DTR−12 D

)−1
A and L∗ is

given by (11).

Proof: When the feedback gain K∗ in (10) is applied to
system (1), it can be shown that the performance function
V (xk) defined in (8) is a Lyapunov function of system (1)
if Assumption 2 and (22) are satisfied. First, because P is
the positive definite solution of the ARE (9), then V (xk) =
xTk Pxk > 0, xk 6= 0. Now it remains to show that the time
difference ∆V (xk) = V (xk+1)− V (xk) < 0, ∀xk 6= 0.

Inserting the feedback gain K∗ (10) into the uncertain
closed-loop dynamics (6)

xk+1 = (Ac + Sφ)xk,

where Ac = A + BK∗. The time difference of V (xk) along
the state trajectory of (23) is

∆V (xk) = xTk
(
AT

c PAc + φTSTPSφ

+ φTSTPAc +AT
c PSφ− P

)
xk. (23)

Based on condition (21), the following is true(
ε−1I − STPS

)−1 � 0.

Then, using the Young’s inequality, one can obtain,

AT
c PS

(
ε−1I − STPS

)−1
STPAc

+ φT
(
ε−1I − STPS

)
φ

≥ AT
c PSφ+ φTSTPAc.
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By rearranging items in above equation, the following is
obtained

AT
c PSφ+ φTSTPAc + φTSTPSφ

≤ AT
c PS

(
ε−1I − STPS

)−1
STPAc + ε−1φTφ.

Inserting above equation into (23) yields

∆V (xk) ≤ xTk
[
AT

c PS
(
ε−1I − STPS

)−1
STPAc

+ AT
c PAc + ε−1φTφ− P

]
xk. (24)

Based on the matrix inversion lemma [37], the following is
true(
P−1 − εSST

)−1
= P + PS

(
ε−1I − STPS

)−1
STP.

Then, (24) is equivalent to

∆V (xk) ≤ xTk
[
AT

c

(
P−1 − εSST

)−1
Ac

+ ε−1φTφ− P
]
xk. (25)

Replacing P in (25) with the expression in ARE (18)

∆V (xk) ≤ xTk
[
AT

c

(
P−1 − εSST

)−1
Ac + ε−1φTφ

− AT
(
P−1 +BTR−11 B +DTR−12 D

)−1
A− Q̄

]
xk. (26)

Let

N = P−1 +BTR−11 B +DTR−12 D,

M = N−1A,

then,

AT
(
P−1 +BTR−11 B +DTR−12 D

)−1
A

= ATN−1P−1N−1A+ATN−1BTR−11 BN−1A

+ ATN−1DTR−12 DN−1A

= MTP−1M +KTR1K + LTR2L.

Inserting (27) into (26) yields

∆V (xk) = xTk
(
ε−1φTφ− F

)
xk

+xTk

[
AT

c

(
P−1 − εSST

)−1
Ac −MTP−1M

− (K∗)
T
R1K

∗ − (L∗)
T
R2L

∗ −Q− β2I
]
xk (27)

Note that the first and second terms in (27) is negative definite
if (5) in Assumption 2 and (22) holds, which also guarantees
∆V (xk) < 0. This completes the proof.

Remark 3. In the proof of Theorem 2, one can observe that
the parameter ε and the parameter β are used to compensate
the effect of the mismatched uncertainty, ∆, on the closed-loop
stability. The parameter ε should be small and the parameter
β should be large to guarantee that (21) and (22) hold,
respectively. Then, the robust stabilization can be guaranteed
when applying the optimal solution of Problem 2 to the
uncertain system (1).

Remark 4. Condition (21) and (22) guarantee the asymptotic
stability of system (1) when K∗ serves as the state feedback
gain for uncertain system (1). Note that the optimal feedback
gain K∗ and L∗ depend on the solution of the ARE (9). In

order to obtain optimal feedback gains K∗ and L∗, the exact
model of the auxiliary system (7) is also required for solving
(9).

IV. ON-POLICY REINFORCEMENT LEARNING

Typically, RL approaches can be categorized into two
classes: on- and off-policy [23]. On-policy RL learns the per-
formance of the policy being carried out to the system. On the
contrary, off-policy RL learns the optimal policy independently
of the system’s control input [25]. In this section, two variants
of on-policy RL methods are developed to solve the ARE (9).
Moreover, the effect of adding probing noise to the on-policy
RL method is discussed.

A. Model-based On-policy RL

In this subsection, the on-policy RL-based algorithm for
solving ARE (9) is discussed.

The on-policy PI starts from an admissible policy u0(xk)
and v0(xk). In i-th iteration, the policy ui(xk) and vi(xk) are
evaluated by solving the following on-policy Bellman equation
for the value function V i (·)

V i (xk) = r
(
xk, u

i
k, v

i
k

)
+ V i (xk+1)

= r
(
xk, u

i
k, v

i
k

)
+ V i

(
Axk +Bui (xk) +Dvi (xk)

)
(28)

with boundary condition V i (0) = 0, where xk+1 = Axk +
Bui (xk) + Dvi (xk). Then, based on the value function in
i-th iteration ,V i (·), the iterative control law is updated as{

ui+1 (xk) , vi+1 (xk)
}

= arg min
uk,vk

{
r (xk, uk, vk) + V i (Axk +Buk +Dvk)

}
.

or equivalently in the form of feedback gain Ki+1 in (29)
and Li+1 in (30), which are shown on top of next page. The
on-policy PI algorithm is summarized in Algorithm 1.

Algorithm 1 On-Policy RL without noise in the control input
1: Begin with an admissible initial control policies ui(·),
vi(·) and set the iteration index to be i = 0;

2: Policy Evaluation Step: Evaluate policies ui(·) and vi(·)
by solving (28) for V i(·):

3: Policy Improvement Step: Update the iterative feedback
gain Ki+1 and Li+1 according to (29) and (30).

4: Let i = i+ 1.
5: Stop if the criteria

∥∥V i (xk)− V i+1 (xk)
∥∥ ≤ ε, for ∀xk

is satisfied; Otherwise, go to Step 2.

The on-policy RL Algorithm 1 guarantees the conver-
gence to the optimal value function and optimal control, i.e.,
V i (xk) → V ∗ (xk), ui (xk) → u∗ (xk) and vi (xk) →
v∗ (xk) as i → ∞. For convergence proof, see [18] for
reference.

Remark 5. ui (xk) and vi (xk) can be viewed as the approx-
imation of u∗ (xk) and v∗ (xk) in the i-th iteration. Note that
ui+1 (xk) and vi+1 (xk) are obtained based on V i (xk), which
is the performance of ui (xk) and vi (xk). Therefore, in each
iteration, the policy ui (xk) and vi (xk) have to be applied to
the system in order to be improved.
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Ki+1 = −
[
R1 +BTP iB −BTP iD

(
R2 +DTP iD

)−1
DTP iB

]−1 [
BTP iA−BTP iD

(
R2 +DTP iD

)−1
DTP iA

]
,(29)

Li+1 = −
[
R2 +DTP iD −DTP iB

(
R1 +BTP iB

)−1
BTP iD

]−1 [
DTP iA−DTP iB

(
R1 +BTP iB

)−1
BTP iA

]
.(30)

B. Dithered On-policy RL

The trade-off between exploration and exploitation in RL
is one of the critical issues with great impact on the learning
performance [23], [25]. The concept of persistent excitation
is closely related to the exploration in ADP [27]–[30], which
guarantees the convergence of the parameter learning to the
optimal case. In this subsection, we investigate the effect of
probing noise on the on-policy RL algorithm.

In the policy evaluation step in Algorithm 1, the on-policy
Bellman equation (28) can be equivalently written as(
xTk ⊗ xTk − xTk+1 ⊗ xTk+1

)
vec

(
P i
)

= r
(
xk, u

i
k, v

i
k

)
, (31)

which is a least squares equation of (n+1)n
2 independent

elements in P i. To guarantee the existence and uniqueness
of solution to (31) for online implementation, the concept of
persistent excitation is required.

Definition 2. (Persistent Excitation) [39] A bounded vector
signal ηi ∈ Rq , q > 1 is called persistently exciting (PE) if
there exist L > 0 and α0 > 0 such that

k+L∑
i=k

ηiη
T
i ≥ α0I, ∀k ≥ i0,

In order to satisfy the PE condition, a probing noise ek is
added into the control input [27]. Then, in i-th iteration, the
control signal that applied to the system is

ūik = uik + ek,

where ek is a probing noise. Applying (32) to the auxiliary
system (7) yields the following dithered on-policy Bellman
equation

xTk P̄
ixk = r

(
xk, ū

i
k, v

i
k

)
+ xTk+1P̄

ixk+1

= xTk Q̄xk +
(
ūik
)T
R1ū

i
k +

(
vik
)T
R2v

i
k

+
(
Axk +Buik +Bek +Dvik

)T
P̄ i(

Axk +Buik +Bek +Dvik
)
. (32)

Based on the dithered on-policy Bellman equation (32),
the on-policy PI algorithm when applying the control input
with probing noise to the auxiliary system (7) is shown in
Algorithm 2.

The effect of probing noise ek on solving on-policy Bellman
equation is investigated in the following lemma.

Lemma 2. Denote the solution of the on-policy Bellman
equation (28) or (31) as P i+1 when there is no probing
noise in the control input, i.e., ek = 0, and the solution
of dithered on-policy Bellman equation (32) as P̄ i+1 when
using a probing noise in the control input, i.e., ek 6= 0. Then,
P i+1 6= P̄ i+1.

Algorithm 2 On-Policy RL with noise in the control input
1: Set the iteration index to be i = 0. Begin with initial

admissible control policies uik, vik;
2: Add probing noise ek into the control input uik to obtain
ūik. Then, apply ūik and vik to the auxiliary system (7);

3: Policy Evaluation Step: Evaluate policies uik and vik by
solving the dithered on-policy Bellman equation (32) for
P̄ i;

4: Policy Improvement Step: Update the iterative feedback
gain Ki+1 and Li+1 according to (29) and (30);

5: Let i = i+ 1.
6: Stop if

∥∥P̄ i − P̄ i+1
∥∥ ≤ ε; Otherwise, go to Step 2.

Proof: Considering the auxiliary system dynamics (7), then
the dithered on-policy Bellman equation (32) is equivalent to

xTk P̄
ixk

= xTk Q̄xk +
(
uik
)T
R1u

i
k +

(
vik
)T
R2v

i
k + xTk+1P̄

ixk+1

+ eTk
(
R1 +BTP̄ iB

)
ek + 2eTkR1u

i
k + 2eTkB

TP̄ ixk+1. (33)

Note that the dithered on-policy Bellman equation (32) is the
on-policy Bellman equation (28) with three extra terms related
to the probing noise ek. Then, P i+1, the solution to the on-
policy Bellman equation (28) does not satisfy the dithered
on-policy Bellman equation (32) or (33). Therefore, P i+1 is
not the same as P̄ i+1. This completes the proof.

Remark 6. From Lemma 2, it is shown that the dithered on-
policy Bellman equation (32) in is inconsistent with the on-
policy Bellman equation (28). Therefore, Algorithm 2 will not
generate the same solution as Algorithm 1. That is, Algorithm
1 is not robust to probing noise, which restricts the exploration
of the on-policy RL approach.

Remark 7. In both variants of on-policy RL approaches
(Algorithm 1 and 2), it is shown that the policy to be evaluated
has to be applied to the system. Therefore, on-policy RL is
essentially an off-line algorithm. Meanwhile, in the policy
evaluate step of Algorithm 1 (solving (28) for V i(·)) and
Algorithm 2 (solving (32) for P̄ i), the complete knowledge of
system dynamics, i.e., (A,B,D), is required. Therefore, on-
policy RL is a model-based method.

In order to obviate the off-line and model-based features of
on-policy RL method, off-policy RL approach, which learns
the optimal policy in a online and model-free manner, is
developed in the next section.

V. OFF-POLICY REINFORCEMENT LEARNING

In this section, another type of RL methods, named off-
policy RL with its variants, are developed to solve the ARE
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(9), in order to obtain the robust control for Problem 1.
Compared with the on-policy RL approach, it is shown that
off-policy RL algorithm can solve the ARE in an online and
model-free manner, while being robust to the probing noise.

A. Model-Based Off-policy RL

Suppose that the admissible policies uk = u(xk) and uk =
u(xk) are applied to the system (7). The auxiliary system (7)
can be rewritten as:

xk+1 = Aixk +B
(
uk −Kixk

)
+D

(
vk − Lixk

)
,

i = 0, 1, 2, · · · (34)

where Ai = A + BKi + DLi, uik = Kixk, v
i
k = Lixk. The

policies u(·) and v(·) are the behavior policies that applied to
the system. The policies uik = Kixk and vik = Lixk are the
iterative policies in the learning process.

Considering the value function with respect to uik = Kixk
and vik = Lixk in i-th iteration V i (xk) = xTk P

ixk, applying
Taylor series expansion to the quadratic function V i (xk)
yields

V i (xk)− V i (xk+1)

= 2xTk+1P
i (xk − xk+1) + (xk − xk+1)P i (xk − xk+1) .

Inserting the closed-loop system dynamics (34) gives

V i (xk)− V i (xk+1)

= xTk P
ixk − xTk

(
Ai
)T
P iAixk

−
(
uk −Kixk

)T
BTP ixk+1 −

(
uk −Kixk

)T
BTP iAixk

−
(
vk − Lixk

)T
DTP ixk+1 −

(
vk − Lixk

)T
DTP iAixk. (35)

Based on (12), the following discrete time Lyapunov equation
holds:

P i = Q̄+
(
Ki
)T
R1K

i +
(
Li
)T
R2L

i +
(
Ai
)T
P iAi.

where Q̄ = Q + F + β2I . By taking the above equation and
V i (xk) = xTk P

ixk into (35) one can obtain the off-policy
Bellman equation

xTk P
ixk − xTk+1P

ixk+1

= xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

−
(
vk − Lixk

)T
DTP ixk+1 −

(
vk − Lixk

)T
DTP iAixk

−
(
uk −Kixk

)T
BTP ixk+1 −

(
uk −Kixk

)T
BTP iAixk.

(36)

To this end, the model-based off-policy RL for solving the
off-policy Bellman equation (36) is shown in Algorithm 3.

The equivalence between the off-policy RL in Algorithm
3 and the on-policy RL in Algorithm 1 is discussed in the
following lemma.

Lemma 3. The on-policy RL in Algorithm 1 is equivalent
to the off-policy RL in Algorithm 3 in the sense that the
on-policy Bellman equation (28) or (31) and the off-policy
Bellman equation (36) are equivalent.

Algorithm 3 Model-based Off-Policy RL without noise
1: Apply admissible control policies uk and vk to the aux-

iliary system (7). Let ui(xk) = uk, vi(xk) = vk and set
the iteration index to be i = 0;

2: Policy Evaluation Step: Evaluate policies ui(·) and vi(·)
by solving off-policy Bellman (36) for P i:

3: Policy Improvement Step: Update the iterative feedback
gain Ki+1 and Li+1 according to (29) and (30).

4: Let i = i+ 1.
5: Stop if

∥∥P i − P i+1
∥∥ ≤ ε; Otherwise, go to Step 2.

Proof: Inserting Ai = A + BKi + DLi into the off-policy
Bellman equation (36) gives

xTk P
ixk − (Axk +Buk +Dvk)

T
P i (Axk +Buk +Dvk)

= xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

−
(
uk −Kixk

)T
BTP i (Axk +Buk +Dvk)

−
(
uk −Kixk

)T
BTP i

(
A+BKi +DLi

)
xk

−
(
vk − Lixk

)T
DTP i (Axk +Buk +Dvk)

−
(
vk − Lixk

)T
DTP i

(
A+BKi +DLi

)
xk.

Eliminating the common terms in the above equation yields

xTk P
ixk − xTkATP iAxk

= xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

+ xTk
(
Ki
)T
BTP iBKixk + xTk

(
Ki
)T
BTP iDLixk

− 2xTk
(
Li
)T
DTP iAxk + xTk

(
Li
)T
DTP iBKixk

− 2xTk
(
Ki
)T
BTP iAxk + xTk

(
Li
)T
DTP iDLixk.

By rearranging terms in above equation on can obtain

0 = xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

+ xTk
(
Ak +BKi +DLi

)T
P i
(
A+BKi +DLi

)
xk,

− xTk P ixk

which is equivalent to the on-policy Bellman equation (28) or
(31). This completes the proof.

B. Dithered Model-Based Off-policy RL

Tn this subsection, the effect of the probing noise on the
convergence of the off-policy RL algorithm is investigated.

Let the behavior policy with probing noise be

ûk = uk + ek. (37)

Considering (34), the off-policy Bellman equation for the
control input ûk with the probing noise ek can be expressed
as

xTk P̂
ixk − [xk+1 +Bek]

T
P̂ i [xk+1 +Bek]

= xTkQxk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

−
(
uk + ek −Kixk

)T
BTP̂ iAixk −

(
vk − Lixk

)
DTP̂ iAixk

−
(
uk + ek −Kixk

)T
BTP̂ i [xk+1 +Bek]

−
(
vk − Lixk

)
DTP̂ i [xk+1 +Bek] . (38)
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Based on the dithered off-policy Bellman equation (38), the
off-policy RL algorithm with probing noise in the control input
is shown in Algorithm 4.

Algorithm 4 Model-based Off-Policy RL with probing noise
1: Begin with admissible policies uk and vk.
2: Add probing noise ek to admissible control policy uk to

obtain ûk. Apply ûk and vk to the auxiliary system (7).
Let ui(xk) = uk, vi(xk) = vk and set the iteration index
to be i = 0;

3: Policy Evaluation Step: Evaluate policies ûi(·) and vi(·)
by solving dithered off-policy Bellman (38) for P̂ i:

4: Policy Improvement Step: Update the iterative feedback
gain Ki+1 and Li+1 according to (29) and (30).

5: Let i = i+ 1.
6: Stop if

∥∥∥P̂ i − P̂ i+1
∥∥∥ ≤ ε; Otherwise, go to Step 3.

The effect of probing noise ek in (37) on solving the
off-policy Bellman equation is investigated in the following
lemma.

Lemma 4. Suppose that both the off-policy Bellman equation
(36) and the dithered off-policy Bellman equation (38) have
unique solution. Denote the solution of the off-policy Bellman
equation (36) as P i+1 when there is no probing noise in the
control input, i.e., ek = 0, and the solution of dithered off-
policy Bellman equation (38) as P̂ i+1 when using a probing
noise in the control input, i.e., ek 6= 0. Then, the off-policy
Bellman equation (36) is equivalent to the dithered off-policy
Bellman equation (38) in the sense that P i+1 = P̂ i+1.

Proof: By expanding the terms in (38) one can obtain

xTk P̂
ixk − xTk+1P̂

ixk+1 − 2xTk+1P̂
iBek − eTkBTP̂ iBek

= xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

−
(
uk −Kixk

)T
BTP̂ ixk+1 −

(
vk − Lixk

)
DTP̂ ixk+1

−
(
uk −Kixk

)T
BTP̂ iBek −

(
vk − Lixk

)
DTP̂ iBek

−
(
uk −Kixk

)T
BTP̂ iAixk −

(
vk − Lixk

)
DTP̂ iAixk

− xTk+1P̂
iBek − eTkBTP̂ iBek − eTkBTP̂ iAixk. (39)

Considering the fact that

xTk+1P̂
iBek = xTk

(
Ai
)T
P̂ iBek +

(
uk −Kixk

)T
BTP̂ iBek

+
(
vk − Lixk

)
DTP̂ iBek.

Then, inserting the above equation into (39) yields

xTk P̂
ixk − xTk+1P̂

ixk+1

= xTk Q̄xk + xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk

−
(
uk −Kixk

)T
BTP̂ ixk+1 −

(
uk −Kixk

)T
BTP̂ iAixk

−
(
vk − Lixk

)
DTP̂ ixk+1 −

(
vk − Lixk

)
DTP̂ iAixk,(40)

which is an alternative equivalent formulation of the dithered
off-policy Bellman equation (38). By comparing the dithered
off-policy Bellman equation (38) or (40) with the off-policy
Bellman equation (36), it can be shown that P̂ i, the solution
of the dithered off-policy Bellman equation (38), satisfies the

off-policy Bellman equation (36). Therefore, P i+1 = P̂ i+1.
This completes the proof.

Remark 8. According to Lemma 4, it is shown that the off-
policy Bellman equation (36) is consistent with the dithered
off-policy Bellman equation, i.e., Algorithm 3 is equivalent
to Algorithm 4. Therefore, the probing noise added into the
behavior policy will not yield a biased result for the off-
policy RL algorithm. This is in contrast to the on-policy RL
approaches, as discussed in Remark 6.

C. Model-free Off-policy RL
By using the Kronecker product, the off-policy Bellman

equation (36) can be rewritten as:(
xTk ⊗ xTk

)
vec

(
P i
)
−
(
xTk+1 ⊗ xTk+1

)
vec

(
P i
)

+ 2
[(
vk − Lixk

)T ⊗ xTk ] vec (DTP iA
)

+
[(
vk − Lixk

)T ⊗ (uk +Kixk
)T]

vec
(
DTP iB

)
+
[(
vk − Lixk

)T ⊗ (vk + Lixk
)T]

vec
(
DTP iD

)
+ 2

[(
uk −Kixk

)T ⊗ xTk ] vec (BTP iA
)

+
[(
uk −Kixk

)T ⊗ (uk +Kixk
)T]

vec
(
BTP iB

)
+
[(
uk −Kixk

)T ⊗ (vk + Lixk
)T]

vec
(
BTP iD

)
= xTk Q̄xk + xTk

(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk. (41)

Let

Xi =
[ (

Xi
1

)T (
Xi

2

)T (
Xi

3

)T
(
Xi

4

)T (
Xi

5

)T (
Xi

6

)T (
Xi

7

)T ]T
, (42)

with

Xi
1 = vec

(
P i
)
, Xi

2 = vec
(
DTP iA

)
, Xi

3 = vec
(
DTP iB

)
,

Xi
4 = vec

(
DTP iD

)
, Xi

5 = vec
(
BTP iA

)
,

Xi
6 = vec

(
BTP iB

)
, Xi

7 = vec
(
BTP iD

)
.

The data collected online in compact form is denoted as:

Hi
k =

[
Hik

xx Hik
vx Hik

vu Hik
vv Hik

ux Hik
uu Hik

uv

]
,

with

Hik
xx =

(
xTk ⊗ xTk

)
−
(
xTk+1 ⊗ xTk+1

)
,

Hik
vx = 2

[(
vk − Lixk

)T ⊗ xTk ] ,
Hik

vu =
(
vk − Lixk

)T ⊗ (uk +Kixk
)T
,

Hik
vv =

(
vk − Lixk

)T ⊗ (vk + Lixk
)T
,

Hik
ux = 2

[(
uk −Kixk

)T ⊗ xTk ] ,
Hik

uu =
(
uk −Kixk

)T ⊗ (uk +Kixk
)T
,

Hik
uv =

(
uk −Kixk

)T ⊗ (vk + Lixk
)T
.

Furthermore, the utility function can be expressed in terms of
the online measurement

rik = xTkQxk + xTk Fxk + β2xTk xk

+ xTk
(
Ki
)T
R1K

ixk + xTk
(
Li
)T
R2L

ixk.
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Finally, the Kronecker product based off-policy Bellman equa-
tion (41) can be rewritten in compact form as:

Hi
kX

i = rk. (43)

Note that in (41), there are N = n2+m2+r2+2mr+nr+mn
unknown components. Therefore, at least N data are required
to be collected in order to solve (41) or (43) by least squares
methods. Assumed that N1 ≥ N data are collected as

H1:N1
Xi =


Hi

1

Hi
2

...
Hi

N1

Xi =


r1
r1
...
rN1

 = r1:N1
. (44)

Therefore, the least squares (LS) solution of (44)

X̂i =
(
HT

1:N1
H1:N1

)−1
HT

1:N1
r1:N1 . (45)

Based on the least squares solution X̂i in (45), the feedback
gain Ki and Li are updated as

Ki+1 = −
[
R1 + X̂i

3 + X̂i
6

(
X̂i

7 +R2

)−1
X̂i

5

]−1
[
X̂i

2 − X̂i
6

(
X̂i

7 +R2

)−1
X̂i

4

]
, (46)

Li+1 = −
[
R2 + X̂i

7 − X̂i
5

(
R1 + X̂i

3

)−1
X̂i

6

]−1
[
X̂i

4 + X̂i
5

(
R1 + X̂i

3

)−1
X̂i

2

]
. (47)

To this end, the model-free off-policy RL algorithm for solving
the off-policy Bellman equation (36) or (41) is shown in
Algorithm 5.

Algorithm 5 Model-free Off-Policy RL
1: Data Collection Phase: Apply admissible policies uk and
vk with probing noise to the auxiliary system (7) and
collect the online data {xk}, {uk} and {vk} to form Hi

k

and rk in (43);
2: Initialization of Learning Phase: Set the iteration index to

be i = 0 and initialize the iterative policies as ui(xk) =
uk, vi(xk) = vk to be admissible.

3: Learning Phase 1: Evaluate policies ui(·) and vi(·) by
solving the LS equation (44) for X̂i;

4: Learning Phase 2: Update the iterative feedback gain
Ki+1 and Li+1 according to (46) and (47).

5: Let i = i+ 1.
6: Stop if

∥∥P i − P i+1
∥∥ ≤ ε̄, where ε̄ is a predetermined

error bound; Otherwise, go to Step 3.

Remark 9. The solution of LS equation (44) in Algorithm
5 is equivalent to the off-policy Bellman equation (36), i.e.,
Algorithm 5 is equivalent to Algorithm 3. Moreover, as shown
in Lemma 4, the model-based off-policy RL approach in
Algorithm 3 is robust to probing noise. Therefore, the ro-
bustness of the model-free off-policy RL method in 5 is also
guaranteed.

Remark 10. From the above discussions, one can observe
that Algorithm 5 is equivalent to Algorithms 4 and 3, which
can solve Problem 2. Based on Theorem 2, the feedback
gain K∗, obtained by Algorithm 5, also solves Problem
1. Therefore, the off-policy RL algorithm together with the
problem transformation provides a model-free solution to the
robust stabilization problem. That is, the system matrices A,
B and S are not required.

VI. SIMULATION

In this section, the on- and off-policy RL approaches are
compared in terms of both the robustness against the probing
noise and the dependency on the system dynamics.

Consider the discrete-time model for the rotating inverted
pendulum used in [38],

xk+1 = (A+ ∆)xk +Buk, (48)

with the nominal system drift matrix and control input dy-
namic matrix as

A =


1.0008 0.005 0 0
0.3164 1.008 0 0
−0.0004 0 1 0.005
−0.1666 −0.0004 0 1

 ,
B =

[
−0.0065 −2.6043 0.0101 4.0210

]T
.

The mismatched system uncertainty in (48) can be expressed
as ∆ = S × φ, with

S =
[

0.0064 −2.5648 0.019 3.9805
]T
,

φ = p× sin (6k)×
[

0.21 0.1 0.04 0.03
]
.

The parameters of the uncertainty bound in (5) is selected as

F =


48.4 24.2 9.68 7.26
24.2 12.1 4.84 3.63
9.68 4.84 1.936 1.452
7.26 3.63 1.452 1.089

 ,
and ε = 0.005. The parameter α in the auxiliary system
dynamics (7) is selected as α = 0.02. Then, for the optimal
regulation problem of the auxiliary system (7), the weight
matrix is selected as Q = diag

([
1 2 3 1

])
, R1 = 4,

R2 = 3 and β = 5. The exact solution of the ARE in (9) is

P ∗ = 105 ×


1.8279 0.2783 0.1518 0.1763
0.2783 0.0472 0.0263 0.0297
0.1518 0.0263 0.0691 0.0168
0.1763 0.0297 0.0168 0.0191

 ,
and the optimal feedback gain is

K∗ =
[

4.0643 0.7396 0.1668 0.2223
]
,

L∗ = −
[

18.6377 2.8882 1.8788 1.8317
]
.

We first implement Algorithm 1 to find the solution of the
ARE (9) in an off-line manner. The iterative learning process
begins from the following admissible policy the auxiliary
system (7)

K0 =
[

4.1682 0.7525 0.1668 0.2296
]
,

L0 =
[

15.6727 2.4466 1.5507 1.5519
]
. (49)
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Fig. 1. Convergence of on-policy RL Algorithm 1. P ∗, K∗ and L∗

corresponds to the optimal case, where as Pi, Ki and Li denotes the iter-
ative approximation in i-th iteration. The iterative learning process achieves
satisfactory result after 3 iterations.
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Fig. 2. Effect of probing noise on the convergence of on-policy RL algorithm.
The probing noise in the iterative policy makes the learning does not converge
to the optimal case.

Then, the convergence of the iterative iterative learning process
of Algorithm 1 the is shown in Figure 1. Note that Algorithm
1 requires complete knowledge of the system matrices, A, B
and D.

To investigate the robustness of the on-policy RL algorithm,
we add the probing noise into the iterative control policy. The
learning process is shown in Figure 2. As given in Lemma
2, adding the probing noise to the on-policy RL algorithm
yields a bias in the learning process. One can observe that
the iterative learning matrix P i does not converge. Also, there
exist nonzero residuals between the iterative feedback gains
(Ki and Li) and the optimal feedback gains (K∗ and L∗).
Therefore, the effect of the probing noise on the on-policy RL
algorithm can not be neglected.

In the next, we implement the off-policy RL algorithm to
solve the ARE (9) in an online fashion. In contrast to the
on-policy RL algorithm, the behavior policy applied to the
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Fig. 3. Convergence of the off-policy RL algorithm with probing noise (50).
P ∗, K∗ and L∗ represents the optimal case, where as Pi, Ki and Li denotes
the learning in i-th iteration.
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Fig. 4. The state trajectories using the off-policy RL algorithm with the
probing noise (50). The system state xk at time k is a vector which can
be denoted as xk = [xk(1) xk(2) xk(3) xk(4)]

T, where xk(j) is the j-th
element of the state xk , for j = 1, 2, 3, 4.

auxiliary system (7) is selected as

K =
[

4.1682 0.7525 0.1668 0.2296
]
,

L =
[

15.6727 2.4466 1.5507 1.5519
]
.

We add two types of probing noise into the off-policy RL
algorithm, i.e.,

e1 (k) = cos (k) + cos (2k) + cos (20k) ,

e2 (k) = sin (k) + sin (0.2k) . (50)

for the first case and

e1 (k) = 0.1 cos (k) + cos (2k) + sin2 (1.7k) ,

e2 (k) = sin (k) + sin (2k) + sin (0.538k) cos (0.538k) . (51)

for the second case, where e1(k) is added to the iterative policy
uk = Kxk and e2(k) is added to the iterative policy vk =
Lxk, respectively. The state trajectories and learning process
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Fig. 5. Convergence of the off-policy RL algorithm with probing noise (51).
P ∗, K∗ and L∗ represents the optimal case, where as Pi, Ki and Li denotes
the learning in i-th iteration.
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Fig. 6. The state trajectories using the off-policy RL algorithm with the
probing noise (51). The system state xk at time k is a vector which can
be denoted as xk = [xk(1) xk(2) xk(3) xk(4)]

T, where xk(j) is the j-th
element of the state xk , for j = 1, 2, 3, 4.

for these two cases with different probing noises are shown in
Figures 3 – 6. For the data collection phase, the probing noises
is added to the behavior policy until 3000 steps. Then, the
learning process begins from the same initial admissible policy
for the auxiliary system (7) as given in (49). After the 3000-th
step, the learning process converges to the optimal case and the
approximate feedback gains Ki and Li are implemented to the
auxiliary system (7), as shown in Figures 4 and 6, respectively,
which yields the asymptotically stable dynamics. The norm
of learning errors between the iterative control gain Ki and
K∗, Li and L∗, between the iterative learning value function
matrix Pi and optimal value function matrix P ∗ are shown in
Figures 3 and 5, respectively. One can observe that the iterative
value function matrix, Pi, the iterative control policies ui(x) =
Kix and vi(x) = Lix converges to the solution to the ARE
equation (9), P ∗, the optimal control policies u∗(x) = K∗x
and v∗(x) = L∗x, respectively, as the iteration continues. In
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Fig. 7. Robust stabilization using the optimal controller design method.
The system state xk at time k is a vector which can be denoted as
xk = [xk(1) xk(2) xk(3) xk(4)]

T, where xk(j) is the j-th element of
the state xk , for j = 1, 2, 3, 4.

addition, in both cases, both the learning errors for the gains
Ki and Li converge to the optimal gains K∗ and L∗, regardless
of the probing noise in the behavior policy.

When the off-policy RL algorithm converges, we use the
approximate optimal feedback gain Ki to solve the robust
stabilization problem. The uncertain system state trajectories
are shown in Figure 7. Note that the uncertain parameter p
switches from −1.6 to 9.6 at k = 600, which results in a
small perturbation in the state trajectories. However, the robust
stabilization of the closed-loop system is achieved in the sense
that the state trajectories converge to the origin asymptotically,
as shown in Figure 7. That is, with the presented optimal
control design based method, the robust control problem of the
linear dynamic system with bounded mismatched uncertainty
can be solved.

VII. CONCLUSION

In this paper, a model-free solution is presented to solve
the robust control problem of discrete-time linear dynamical
systems. The robust control problem is first translated into an
optimal control problem with sufficient condition which guar-
antees the equivalence of problem translation. Then, off-policy
reinforcement learning (RL) is used to solve the translated
optimal control problem using only measured data instead of
the system dynamics. Moreover, compared with the on-policy
RL method, it is shown theoretically that the off-policy RL
method has two main advantages. First, off-policy is robust to
the probing noise, i.e., there is no bias as a result of adding a
probing noise to the control input to satisfy the condition of
persistence of excitation. In addition, off-policy RL is a model-
free method, which is in contrast to the model-based on-policy
RL method. Finally, a simulation example is given to verify
the effectiveness of the presented off-policy RL algorithm.
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APPENDIX A
PROOF OF THE EQUIVALENCE BETWEEN (9) AND (18)

First,
(
P−1 +BTR−11 BT +DTR−12 DT

)−1
can be rewrit-

ten as

(
P−1 +BTR−11 BT +DTR−12 DT

)−1
=

(
P−1 −

[
BT

DT

]T[ −R1 0
0 −R2

]−1 [
BT

DT

])−1
.

Based on the matrix inversion lemma [37], the above equation
is equivalent to

(
P−1 −

[
BT

DT

]T[ −R1 0
0 −R2

]−1 [
BT

DT

])−1

= P − P
[
BT

DT

]T([ −R1 0
0 −R2

]
−
[
BT

DT

]
P

[
BT

DT

]T)−1 [
BT

DT

]
P

= P −
[
BTP
DTP

]T[
R1 +BTPB BTPD
DTPB R2 +DTPD

]−1
[
BTP
DTP

]
(52)

By multiplying AT and A on both sides of (52), then adding
Q̄ yields the equivalence between (9) and (18).

APPENDIX B
PROOF OF THE EQUIVALENCE BETWEEN (10), (11) AND

(19), (20)

Based on (15), the following holds

[
K∗

L∗

]
= −M−1

[
E
G

]
= −

[
R−11 0

0 R−12

] [
R1 0
0 R2

]
M−1

[
E
G

]
. (53)

Note that

[
R1 0
0 R2

]
=M−

[
BT

DT

]
P
[
B D

]
. (54)

Inserting (54) into (53) yields[
K∗

L∗

]
= −

[
R−11 0

0 R−12

](
M−

[
BT

DT

]
P
[
B D

])
M−1

[
E
G

]
= −

[
R−11 0

0 R−12

]([
E
G

]
−
[
BT

DT

]
P

[
B D

]
M−1

[
E
G

])
= −

[
R−11 BTPA
R−12 DTPA

]
+

[
R−11 BTP
R−12 DTP

] [
B D

]
[
R1 +BTPB BTPD
DTPB R2 +DTPD

]−1 [
BTPA
DTPA

]
.

(55)

The first row of (55) gives

K∗ = −R−11 BTPA+R−11 BTP
[
B D

][
R1 +BTPB BTPD
DTPB R2 +DTPD

]−1 [
BT

DT

]
PA

= −R−11 BT

{
P − P

[
B D

]([ R1 0
0 R2

]
+

[
BT

DT

]
P
[
B D

])−1 [ BT

DT

]
P

}
A

= −R−11 BT
(
P−1 +BTR−11 B +DTR−12 D

)−1
A.

Therefore, (19) is equivalent to (10). The equivalence between
(20) and (11) can be obtained in a similar way.
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