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Abstract
We give nearly matching upper and lower bounds on the oracle complexity of finding g-stationary

points ([IVF(x)lI<p) in stochastic convex optimization. We jointly analyze the oracle complexity in both

the local stochastic oracle model and the global oracle (or, statistical learning)model. This allows us to

decompose the complexity of finding near-stationary points into optimization complexity and sample

complexity, and reveals some surprising differences between the complexity of stochastic optimization

versys learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic
;LG] 1 4 Febpﬁqéleon smoothness is requiredto find a near-stationarypoint, whereas polynomialdependenceon
smoothness is necessary in the local stochastic oracle model. In other words, the separationin complexity
between the two models can be exponential, and that the folklore understanding that smoothness is
required to find stationary points is only weakly true for statistical learning.

Our upper bounds are based on extensions of a recent “recursive regularization” technique proposed
by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in
particular show how to leverage the extra information available in the global oracle model. Our algorithm
for the global model can be implemented efficiently through finite sum methods, and suggests an
interesting new computational-statistical tradeoff.

1 Introduction

Success in convex optimization is typically defined as finding a point whose value is close to the minimum
possible value. Information-based complexity of optimization attempts to understand the minimal amount
of effort required to reach a desired level of suboptimality under different oracle models for access to the
function (Nemirovski and Yudin, 1983; Traub et al., 1988). This complexity—for both deterministic and
stochastic convex optimization—is tightly understood across a wide variety of settings (Nemirovski and
Yudin, 1983; Traub et al., 1988; Agarwal et al., 2009; Braun et al., 2017), and efficient algorithms that
achieve optimal complexity are well known.
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Table 1: Upper and lower bounds on the complexity of finding x such that [[VF(x)|l < ¢ for convex problems
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with H-Lipschitz gradients, where 02is a bound on the variance of gradient estimates.

Recently, there has been a surge of interest in optimization for non-convex functions. In this case, finding a
point with near-optimal function value is typically intractable under standard assumptions—both
computationally and information-theoretically. For this reason, a standard task in non-convex optimization
is to find an g-stationary point, i.e., a point where the gradient is small ([[VF(x)Il < 9).

In stochastic non-convex optimization, there has been a flurry of recent research on algorithms with provable
guarantees for finding near-stationary points (Ghadimi and Lan, 2013, 2016; Reddi et al., 2016; Allen-Zhu,
2017; Lei et al., 2017; Jin et al., 2017; Zhou et al., 2018; Fang et al., 2018). However, the stochastic oracle
complexity of finding near-stationary points is not yet well understood, so we do not know whether existing
algorithms are optimal, or how we hope to improve upon them.

Recent work by Carmon et al. (2017a,b) establishes tight bounds on the deterministic first-order oracle
complexity of finding near-stationary points of smooth functions, both convex and non-convex. For convex
problems, they prove that accelerated gradient descent is optimal both for finding approximate minimizers
and approximate stationary points, while for non-convex problems, gradient descent is optimal for finding
approximate stationary points. The picture is simple and complete: the same deterministic first-order
methods that are good at finding approximate minimizers are also good at finding approximate stationary
points, even for non-convex functions.

However, when one turns their attention to the stochastic oracle complexity of finding near-stationary
points, the picture is far from clear. Even for stochastic convex optimization, the oracle complexity is not
yet well understood. This paper takes a first step toward resolving the general case by providing nearly tight
upper and lower bounds on the oracle complexity of finding near-stationary points in stochastic convex
optimization, both for first-order methods and for global (i.e., statistical learning) methods. At first glance,
this might seem trivial, since exact minimizers are equivalent to exact stationary points for convex functions.
When it comes to finding approximate stationary points the situation is considerably more complex, and the
equivalence does not yield optimal quantitative rates. For example, while the stochastic gradient descent



(SGD) is (worst-case) optimal for stochastic convex optimization with a first-order oracle, it appears to be
far from optimal for finding near-stationary points.
1.1 Contributions

We present a nearly tight analysis of the local stochastic oracle complexity and global stochastic oracle
complexity (“sample complexity”) of finding approximate stationary points in stochastic convex
optimization. Briefly, the highlights are as follows:

» We give upper and lower bounds on the local and global stochastic oracle complexity that match upto
log factors. In particular, we show that the local stochastic complexity of finding stationary points is
(up to log factors) characterized as the sum of the deterministic oracle complexity and the sample
complexity.

* As a consequence of this two-pronged approach, we show that the gap between local stochastic
complexity and sample complexity of finding near-stationary points is at least exponential in the
smoothness parameter.

» We obtain the above results through new algorithmic improvements. We show that the recursive reg-
ularization technique introduced by Allen-Zhu (2018) for local stochastic optimization can be
combined with empirical risk minimization to obtain logarithmic dependence on smoothness in the
global model, and that the resulting algorithms can be implemented efficiently.

Complexity results are summarized in Table 1. Here we discuss the conceptual contributions in more detail.

Decomposition of stochastic first-order complexity. For stochastic optimization of convex functions, there
is a simple and powerful connection between three oracle complexities: Deterministic, local stochastic, and
global stochastic. For many well-known problem classes, the stochastic first-order complexity is equal to
the sum (equivalently, maximum) of the deterministic first-order complexity and the sample complexity.
This decomposition of the local stochastic complexity into an “optimization term” plus a “statistical term”
inspires optimization methods, guides analysis, and facilitates comparison of different algorithms. It
indicates that “one pass” stochastic approximation algorithms like SGD are optimal for stochastic
optimization in certain parameter regimes, so that we do not have to resort to sample average approximation
or methods that require multiple passes over data.

We establish that the same decomposition holds for the task of finding approximate stationary points. Such
a characterization should not be taken for granted, and it is not clear a priori that it should hold for finding
stationary points. Establishing the result requires both developing new algorithms with near-optimal sample
complexity in the global model, and improving previous local stochastic methods (Allen-Zhu, 2018) to
match the optimal deterministic complexity.

Gap between sample complexity and stochastic first-order complexity. For non-smooth convex objectives,
finding an approximate stationary point can require finding an exact minimizer of the function (consider the
absolute value function). Therefore, as one would expect, the deterministic and stochastic firstorder oracle
complexities for finding near-stationary points scale polynomially with the smoothness constant, even in
low dimensions. Ensuring an approximate stationary point is impossible for non-smooth instances, even
with an unbounded number of first-order oracle accesses. Surprisingly, we show that the sample complexity
depends at most logarithmically on the smoothness. In fact, in one dimension the dependence on smoothness
can be removed entirely.



Improved methods. Our improved sample complexity results for the global stochastic oracle/statistical
learning model are based on a new algorithm which uses the recursive regularization (or, “SGD3”’) approach
introduced by Allen-Zhu (2018). The methods iteratively solves a sequence of subproblems via regularized
empirical risk minimization (RERM). Solving subproblems through RERM allows the method to exploit
global access to the stochastic samples. Since the method enjoys only logarithmic dependence on
smoothness (as well as initial suboptimality or distance to the optimum), it provides a better alternative to
any stochastic first-order method whenever the smoothness is large relative to the variance in the gradient
estimates. Since RERM is a finite-sum optimization problem, standard finite-sum optimization methods can
be used to implement the method efficiently; the result is that we can beat the sample complexity of
stochastic first-order methods with only modest computational overhead.

For the local stochastic model, we improve the SGD3 method of Allen-Zhu (2018) so that the “optimization”

term matches the optimal deterministic oracle complexity.of the initial distance to the optimum (the “radius”
of the problem),F(xo) — F(x ) This leads to a quadratic improvement in terms||xo - x+|l. We also extend the
analysis

to the setting where initial sub-optimality *is bounded but not the radius—a common setting in the analysis
of non-convex optimization algorithms and a setting in which recursive regularization was not previously
analyzed.

2 Setup

We consider the problem of finding an g-stationary point in the stochastic convex optimization setting.
Thate is, for a convex function F: Ri+ R, our goal is to find a point x Résuch that [VF(x)ll <9, (1)

given access to F only through an oracle.” Formally, the problem is specified by a class of functions to which
Fbelongs, and through the type of oracle through which we access F. We outline these now.

Function classes. Recall that F: R?-> R is is said to H-smooth if

£() < P (TP -a) eyl vey<R] o

and is said to be A-strongly-convex if

F0)> P2+ (97 -a) Sl -l oy <] .

7 Here, and for the rest of the paper, |I-|lis taken to be the Euclidean norm.
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We focus on two classes of objectives, both of which are defined relative to an arbitrary initial point xo
provided to the optimization algorithm.

1. Domain-bounded functions.

FSH -strongly convex

DB, [HA;R] = | I { kFt R->R Rﬂargminx* € argminx F(x)x2FD(x) s.t. Ix0— x<ll < R

Fﬂ|}|. )

2. Range- bounded functions.

I I UsrAm

- () () -strongly convex 1 (1))« ] |

RB. &)
<A
We emphasize that while the classes are defined in terms of a strong convexity parameter, our main
complexity results concern the non-strongly convex case where A = 0. The strongly convex classes are used
for intermediate results. We also note that our main results hold in arbitrary dimension, and so we drop the
superscript d except when it is pertinent to discussion.

Oracle classes. An oracle accepts an argument x €ERYand provides (possibly noisy/stochastic) information
about the objective F around the point x. The oracle’s output belongs to an information space |. We consider

three distinct types of oracles:

1. Deterministic first-order oracle.d R Denotedr O=vr, withVI (§><))RR‘7’¢:1>< (R9)«. When queried at a point

oracle returns

ov(x) (Flx) Fx . (6)



2. Stochastic first-order oracle. Denoted OD2 Z . The oracle is specified by a functionx Z - and a

distribution< with the property that ando . When queried at a point independent z ~ D

o . ()

3. Stochastic global oracle.
R). The oracle is specified by a

function

R over with the property thatand
< 0. When queried, the oracle draws an independent and

returns the complete specification of the function f-,z, specifically,

0. ®)
For consistency with the other oracles, we say that raccepts an argument x, even though this the loss
of a model evaluated on an instance z ~ D, and this component function is fully known to the( )
argument is ignored. The global oracle captures the statistical learning problem, in which f;z is

optimizer. Consequently, we use the terms “global stochastic complexity” and “sample complexity”
interchangeably.

For the stochastic oracles, while Fitself may need to have properties such as convexity or smoothness, f{+;z)

as defined need not have these properties unless stated otherwise.F O |

Minimax oracle complexity. Given a function class and an oracle with information space , we define the
minimax oracle complexity of finding an g-stationary point as

meFO=infmeN 4
inferasup E|IVF xm)]|

<9, )

where xt € Rdis defined recursively as and the expectation is over the



stochasticity of the oracle 0. ( () ( )

Recap: Deterministic first-order oracle complexity. To position our new results on stochastic optimization
we must first recall what is known about the deterministic first-order oracle complexity of finding near-
stationary pointst. This complexity is tightly understood, with

m, FDB H,A = O;R ,Ovr= " VHR Vg, and myFRB H,A = 0;A,0vp,= 0" VHA 9,

accelerated gradient descent (AGD).
3 Stochastic First-Order Complexity of Finding Stationary Points

Interestingly, the usual variants of stochastic gradient descent do not appear to be optimal in the stochastic
model. A first concern is that they do not yield the correct dependence on desired stationarity o.

As an illustrative example, let F € FDB[H,A = O;R] and let any stochastic first-order oraclebe given.

We adopt the naive approach of bounding stationarity by function value suboptimality. In this case the
standard analysis of stochastic gradient descent (e.g., Dekel et al. (2012)) implies that after m iterations,

, and thus

I | . )

The dependence on ¢ is considerably worse than the ¢ dependence enjoyed for function suboptimality.
In recent work, Allen-Zhu (2018) proposed a new recursive regularization approach
and used this in an algorithm called SGD3 that obtains the correctO ¢ 2 dependence.’

Forany F € FpBand

. . SGD3 iteratively augments the objective with
increasingly strong regularizers, “zooming in” on an approximate stationary point. Specifically,

in the first iteration, SGD is used to find , an approximate minimizer of. The
objective is then augmented with a strongly-convex regularizer so

. In the second round, SGD is initialized at x™1, and used to find x™2, an

8 See Section 3 for discussion of randomized algorithms.
9 Allen-Zhu (2018) also show that some simple variants of SGD are able to reduce the poor ¢~ dependence to, €.g., 9752, but

they fall short of the p~2 dependence one should hope for. Similar remarks apply for F € Fre[H,A = 0;A].
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. This process is repeated, with F(t) x := F(t1)x + 2014 x - X" 2 for

each t €T]. Allen-Zhu (2018) shows that SGD3 find an g-stationary points using at most() () I
Il

(10)

local stochastic oracle queries. This oracle complexity has a familiar structure: it re\s;embles the sum of an

“optimization term” (HR/¢) and a “statistical term” (02/9?). While we show that Ql(e stp]ﬂfg;tigz)ll term is tight

deterministic setting (Carmon et al., 2017b).

Algorithm 1 Recursive Regularization Meta-Algorithm

A function o
Input: n oracle CFaﬁd an ﬁloted number of oracle accesseg= A C;_L)L /| 1] m, an initial
X0, arid an optimization sub-routine 23

0 0
t 1to T do

point F(%):= F,x":=x, T < |log2Hr|. t1 [

, with A ,m

for =

. is output of A used to optimize F() intitialized at X1
+ AStk=1 2k-1llx — X k|2

end for return




Our first result is to close this gap. The key idea is to view SGD3 as a template algorithm, where the inner
loop of SGD used in Allen-Zhu (2018) can be swapped out for an arbitrary optimization method A. This

template, Algorithm 1, forms the basis for all the new methods in this paper.'

Algorithm 2 AC-SA

Input: F FDB[H,A;R], a . , and an alloted number of oracle
stochastic first-order oracle O

ag
0

fort=1,2,...,mdo -

Xagt

end for return
X,

To obtain optimal complexity for the local stochastic oracle model we use a variant of the accelerated
stochastic approximation method (“AC-SA”) due to Ghadimi and Lan (2012) as the subroutine. Pseudocode
for AC-SA is provided in Algorithm 2. We use a variant called AC-SA2, see Algorithm 3. The AC-SA2
algorithm is equivalent to AC-SA, except the stepsize parameter is reset halfway through. This leads to
slightly different dependence on the smoothness and domain size parameters, which is important to control
the final rate when invoked within Algorithm 1.

Toward proving the tight upper bound in Table 1, we first show that Algorithm 1 with AC-SAZ as its
subroutine guarantees fast convergence for strongly-convex domain-bounded objectives.

10 The idea of replacing the sub-algorithm in SGD3 was also used by Davis and Drusvyatskiy (2018), who showed that recursive
regularization with a projected subgradient method can be used to find near-stationary points for the Moreau envelope of any
Lipschitz function.



Theorem 1. EFor anyll ( F)IIE<FDB[H,A;R] and any O., Algorithm I using AC-SA? as its subroutine finds a

l '\/_ / vV
point X | H (1), HR  (H) (Mo * (H), o® 3(H) with VFx
0 “log Tt T log Tt —— log T *t71 —
m < 3 og 1 0 og 3 2o og 1 7 og A
o using
2 \
total stochastic first-order oracle accesses.\ ) |/

The analysis of this algorithm is detailed in Appendix A and carefully matches the original analysis of
SGD3 (Allen- Zhu,). The essential component of the analysis is Lemma 2, which provides a
bound on [[VF(x")|| in terms of the optimization error of each invocation of AC-SAZon the increasingly

strongly convex subproblems.

Our
AC-

bounded functions.

Corollary 1. =, Algorithm 1 with AC-SA? as its _

subroutine applied tox” such that E|IVF(x")|l < o

final result for non-strongly convex objectives uses Algorithm 1 with
SAZ on the regularized objective. The performance guarantee is as
follows, and concerns both

domainbounded

and  range-

using

ol | 4

total stochastic first-order oracle accesses.
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For any F € FrRB[H,A = 0;A] and any O., the same algorithm with _ (

{0 H }) vields Algorithm 3 AC-SA2

Input: A function F € FDB[H,A;R], a stochastic first-order oracle O, and %} alloted number of oracle accesses

< ( )
x1 AC-SA FEx o7
& acsalpy 2

return Xx;

a point ( o ( 0 ) 02 (o
)

total stochastic first-order oracle accesses.

This follows easily from Theorem 1 and is proven in Appendix A. Intuitively, when A is chosen

appropriately, the gradient of the regularized objective F” does not significantly deviate from the gradient of

F, but the number of iterations required to find an O(g)-stationary point of F~ is still controlled.

We now provide nearly-tight lower bounds for the stochastic first-order oracle complexity. A notable feature
of the lower bound is to show that show some of the logarithmic terms in the upper bound—which are not
present in the optimal oracle complexity for function value suboptimality—are necessary.

Theorem 2. For any H, | the stochastic first-order oracle complexity for

r\a7gebounded functions is lower bounded as m_

For any-, the stochastic first-order complexity for domain-bounded functions is lower bounded as
vV
(F [ lo,) _(_HA  o* (
o rsHA =08 00 s T+ O gg
Y

7

HA))

¢

m
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The proof, detailed in Appendix C, combines the existing lower bound on the deterministic first-order oracle
complexity (Carmon et al., 2017b) with a new lower bound for the statistical term. The approach is to show
that any algorithm for finding near-stationary points can be used to solve noisy binary search (NBS), and
then apply a known lower bound for NBS (Feige et al., 1994; Karp and Kleinberg, 2007). It is possible to
extend the lower bound to randomized algorithms; see discussion in Carmon et al. (2017b).

4  Sample Complexity of Finding Stationary Points

Having tightly bound the stochastic first-order oracle complexity of finding approximate stationary points,

we now turn to sample complexity. If the heuristic reasoning that stochastic first-order complexity should

decompose into sample complexity and deterministic first-order complexity (,(F Of) mQ(F,OVU,)

(=m2/o(2F),0vr )+ m, ) is correct, then one would expect that the sample complexity should be O™ o ¢ for
both domain-bounded and range-bounded function.

A curious feature of this putative sample complexity is that it does not depend on the smoothness of the
function. This is somewhat surprising since if the function is non-smooth in the vicinity of its minimizer,
there may only be a single g-stationary point, and an algorithm would need to return exactly that point using
only a finite sample. We show that the sample complexity is in fact almost independent of the smoothness
constant, with a mild logarithmic dependence. We also provide nearly tight lower bounds.

For the global setting, a natural(algor)ithm fo try is”regularized empirical risk minimization (RERM), which
. 1 an o 4 i —_ 2 5
argminy - 2i=1f X;Zzi 5 XTXo0 .
R_, a.standgrd analysis of ER&\X based gn stability)(
returnsVY & ForFany ddRaintbouid® FudeniohAR( )3/ 3) F= €E(FIl/pB-[3)HA( ) =

9—2

0;Shalev-Shwartz et al., 2009) shows that VEX <
E 2H . Choosing m L HR ¢ and A © ¢ R yields an g-stationary point. This upper bound, however, has two

shortcomings. First, it scales with g rather than that we hoped for and, second, it does not approach 1 as o
— 0, which one should expect in the noise-free case. The stochastic first-order algorithm from the previous

section has better sample complexity, but the number of samples still does not approach one when o - 0.

We fix both issues by combining regularized ERM with the recursive regularization approach, giving an
upper bound that nearly matches the sample complexity lower bound Q(02/92). They key tool here is a sharp
analysis of regularized ERM—stated in the appendix as Theorem 7—that obtains the correct dependence
on the variance o;.

As in the previous section, we first prove an intermediate result for the strongly convex case. Unlike

12



Section 3, where F was required to be convex but the components f-;z were not required to be, we

must assume here either that€f{-;z]) is convex for all z.° or( ) ()

Theorem 3. For any F F[H,A and any global stochastic oracle with the restriction that f -z is convex for all

z, Algorithm 1 with ERM as its subroutine finds using at most

total samples.
The proof
- Corollary  2.and any

is given in Appendix B. As before, we handle the non-strongly
case by applying the algorithm to.

global stochastic oracle OF with the

restriction= - with A ( /R) with )l < o using at most () ()

is convex for all z, with ERM as its subroutine, when applied to F-y Fx+

total samples.

For any F € FrB[H,A = 0;A] and any global stochastic oracle= ( 2/ ) OF with the restriction that f{-;z) is convex

for all z, the same approach with A © ¢ A finds an ¢-stationary point using at most

total samples.
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SWhile it is also tempting to try constrained ERM, this does not succeed even for function value suboptimality (Shalev-
Shwartz et al., 2009).

%We are not aware of any analysis of ERM for strongly convex losses that does not make such an assumption. It is interesting
to see whether this can be removed.

This follows immediately from Theorem 3 by choosing A small enough such that [|[VF(x)Il = [VF(x)Il.

Details are deferred to Appendix B.

With this new sample complexity upper bound, we proceed to
provide an almost- _ tight lower bound.

Theorem 4. For any H,, the sample complexity to find a o-stationary point'' is lower bounded as

m_.

This lower bound is similar to constructions used to prove lower bounds in the case of finding an
approximate minimizer (Nemirovski and Yudin, 1983; Nesterov, 2004; Woodworth and Srebro, 2016).
However, our lower bound applies for functions with simultaneously bounded domain and range, so extra
care must be taken to ensure that these properties hold. The lower bound also ensures that f{-;z) is convex
for all z. The proof is located in Appendix C.

Discussion: Efficient implementation. Corollary 2 provides a bound on the number of samples needed to find a

near-stationary point. However, a convenient property of the method is that the ERM objective F(t) with m/T

components. These subproblems can therefore be solved using at most( ¢) ( ¢) _

solved in each iteration is convex, H + 2 A -smooth, 2 A -strongly convex, and has finite sum structure

gradient computations via a first-order optimization algorithm such as
Katyusha ( plies that the method can be implemented with a total gradient
complexity of O

over all T iterations, and similarly for the bounded-range case. Thus, the
algorithm is not just sampleefficient, but also computationally efficient, albeit slightly less so than the
algorithm from

' This lower bound applies both to deterministic and randomized optimization algorithms.

8This lower bound does not enter the sample complexity quantitatively.
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Removing smoothness entirely in one dimension. The gap between the upper and lower bounds for the
statistical complexity is quite interesting. We conclude from Corollary 2 that the sample complexity depends
at most logarithmically upon the smoothness constant, which raises the question of whether it must depend
on the smoothness at all. We now show that for the special case of functions in one dimension, smoothness
is not necessary. In other words, all that is required to find an g-stationary point is Lipschitzness.

Theorem 5. Consider any convex, L-Lipschitz

below,® _ and any global

is convex for all z. There exists an algorithm which usessamples and outputs a point such that E[infyear(x)

function F R - R that is bounded from

stochastic oracle . with the restriction that

lgll < 0.

The algorithm calculates the empirical risk minimizer on several independent samples, and then returns the
point that has the smallest empirical gradient norm on a validation sample. The proof uses the fact that any
function F as in the theorem statement has a single left-most and a single right-most g-stationary point. As
long as the empirical function’s derivative is close to F’s at those two points, we argue that the ERM lies
between them with constant probability, and is thus an g-stationary point of F. We are able to boost the
confidence by repeating this a logarithmic number of times. A rigorous argument is included in Appendix
B. Unfortunately, arguments of this type does not appear to extend to more than one dimension, as the
boundary of the set of g-stationary points will generally be uncountable, and thus it is not apparent that the
empirical gradient will be uniformly close to the population gradient. It remains open whether smoothness
is needed in two dimensions or more.

The algorithm succeeds even for non-differentiable functions, and requires neither strong convexity nor

knowledge of a point xo for which [lxo - x*|l or F(xo) - F *is bounded. In fact, the assumption of Lipschitzness
(more generally, L-subgaussianity of the gradients) is only required to get an in-expectation statement.

Without this assumption, it can still be shown that ERM finds an g-stationary point with constant probability

using- samples.

5 Discussion

We have proven nearly tight bounds on the oracle complexity of finding near-stationary points in stochastic
convex optimization, both for local stochastic oracles and global stochastic oracles. We hope that the
approach of jointly studying stochastic first-order complexity and sample complexity will find use more
broadly in non-convex optimization. To this end, we close with a few remarks and open questions.

1. Is smoothness necessary for finding o-stationary points? While the logarithmic factor separating the
upper and lower bound we provide for stochastic first-order oracle complexity is fairly
inconsequential, the gap between the upper and lower bound on the sample complexity is quite
interesting. In particular, we show through Theorem 4 and Corollary 2 that

Q,
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A/

2 2 —_
(§)<M9(FRB[H,A _ oA ],O?)<O(§log3( HA))

. : () . .
and similarly for the domain-bounded case. Can the facfpolyhdfehfight-hand side be removed entirely?
Or in other words, is it possible to find near-stationary points in the statistical learning model without
smoothness?'?, we know that this is pd¥yibheremeddimension.

2. Tradeoff between computational complexity and sample complexity. Suppose our end goal is to find
a near-stationary point in the statistical learning setting, but we wish to do so -
efficiently. For rangebounded functions, if we use Algorithm 1 with AC-SAZas a

_ subroutine we require ¢ samples, and the total computational effort (measured by
number of gradient operations) is also -

. On the other hand, if we use _ Algorithm 1 with RERM as a

subroutine and implement RERM with Katyusha, then we obtain an improved
sample complexity of, but at the cost of a larger number of gradient operations:. Tightly characterizing
such computationalstatistical tradeoffs in this and related settings is an interesting direction for future

work.

3. Active stochastic oracle. For certain stochastic first-order optimization algorithms based on variance
reduction (SCSG (Lei et al., 2017), SPIDER (Fang et al., 2018)), a gradient must be computed at
multiple points for the same sample f{;z). We refer to such algorithms as using an “active query”
first-order stochastic oracle, which is a stronger oracle than the classical first-order stochastic oracle
(see Woodworth et al. (2018) for more discussion). It would be useful to characterize the exact oracle
complexity in this model, and in particular to understand how many active queries are required to

obtain logarithmic dependence on smoothness as in the global case.

4. Complexity of finding stationary points for smooth non-convex functions. An important open problem
is to characterize the minimax oracle complexity of finding near-stationary points for smooth
nonconvex functions, both for local and global stochastic oracles. For a deterministic first-order
oracle,

the optimal rate is -( 0 ). In the stochastic setting, a simple sample complexity lower bound

follows from the convex case, but this is not known to be tight.
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12 For a general non-smooth function F, a point x is said to be an g-stationary point if there exists v € dF(x) such that [[Vll2< .
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A Proofs from Section 3: Upper Bounds

Theorem 6 (Proposition 9 of Ghadimi and Lan (2012)). For any F € Fpa[H,A;R] and any O., the AC-SA

algorithm returns a point X"rafter making T oracle accesses such that

o G,

Lemma 1. Forany F  F [HA;R] and any Ovy, the AC-SA algorithm returns a point X" after making

T oracle accesses such that

18



19



Proof. By Theorem 6, the first instance of AC-SA outputs x"1 such that

and since F is A-strongly convex,

Also by Theorem 6, the second instance of AC-SA outputs such that
(13)
(14)

(11)

(15)
O

Lemma 2the iterates of

Algorithm 1
satisfy

1. Forall |l

2. For every

3. Foral .
Theorem 1. EFor arpz@r[ld 5]@8 AL Midrithm 1 usinéAC—SAz as its subroutine finds a point X" with |[VF
X <ousing
l av4 av4 vV

|l v, B HR . H . Mig)' H _d° 3 H
= log + = log
A AP

A A Ao A\
mSO\ () () () ()|/

total stochastic first-order oracle accesses.



Proof. As in
the final

Lemma 2 < §:for each t 2 1. The objective in

iteration, F(71)

(16)
(17)
(18)
(19)
T1
S 2NIVETY(X -7 )ll + 4 5-VA2¢5: (20)
t=1
- T1 -
< 4VHST+ 4 5 V2465, (21)
t=1
; -
<4 3 VA2¢18, (22)
t=1

Above,rely on the triangle
inequality; (19) follows from the -strong convexity _
of

F(T"1); (20) applies the third conclusion of Lemma 2; (21) uses the fact that is H + A2T| #/4] -smooth; and
finally (22) uses that

We chose A F(t'1),x"~1to be AC-SAZapplied to F(¢'!)initialized at X"~1 using m T stochastic gradients.
Therefore, ( )/

(23)

Using part two of Lemma 2, for



We can

M &1281-12” 2 256H0 2 . 1642
8> 21216 <8 O+ )

U 7,.)) U 7,.))

t=1 & T AmT?3 mT
T 2 2 2
1284285 4 . _ 256Ho*, flggi

+8> 7 ) 7
= 25MAm'TY 22Am'T? m'T

therefore bound T
é

(25)

1602
(26)

8
t=2 2t-1A(m/T)4 2t-1A(m/T)3 {m{Ty

_64V2H |lxo-x*|IT2 = 128VHaT323/2¢r1V 161
=25 (2Q7Yymim/=2

———  -326T32 128HT2T 6r1
+ + >

=22+ tVZ\/




(28)
64V2H ||x3022—- x*[|T?2 25 127\/VVHO'T3t—213/2t

IN
+

€29) m—Anry

v 320T; 128HT
++ 5 A2 6.m
Am =1

Above, we arrive at (25) by upper bounding each &:via (24); (26) follows from the fact that for a,b > 0,

_ uses the fact that ; and finally, (29) follows by

multiplying each non-negative term in the sum by 2t1. Rearranging inequality (29) and combining with (22)
yields

Choosing
A

term

Lemma 3.



1. FEFDB

2. F €€ FFrRBDB[ =V /1 [ Ons ()

FH+AALR2A X and VxVFx 2 VE x. Proof. Let X™ € argmin ,

where we used the A-strong convexity of F~ () AxX™ -

Xo. Therefore,

Alixo=-xI2= ((VFX" ,Xo— X

< Mixo= X" Hllxo - x |I.

The first inequality follows from the convexity of F and the second from the Cauchy-Schwarz inequality.

When F € FpB[H,A = O;R], then ||x0 - X~*|| < R, which, combined with (33) proves the first claim.

Alternatively, when F € FRB[H,A0 == 0;A]o > * = * 0 * 2
N/ /
. U) . 7) . U ) C.))
_)?*II 2F xo —F x* 2 F xo _F x* .
< <
A A
(33), completes the proof. () (
) ( ) ( ) 2
Fx Fx Fx Fx +Ax-x . (39)

Rearranging,



0 <V2A

I X, (40)
A
This, combined with[]
16
Corollary 1. For any F € FDB[H,A =
O;R] and any Ovey, Algorithm 1 with
AC-S42 as

L
m<0 \

total stochastic first-order oracle accesses.

ForanyFe = and any O., the same algorithm with  yields a pointusing

total stochastic first-order oracle accesses.

Proof.

AC-SA?

_. Our choice of ensures that (H) -strongly convex; that

-. Therefore, by Theorem 1, in particular, (30), the output
satisfies




where x™ = argminy F'(x). For F € FDB[H,A = O;R], by part one of Lemma 3, ||xo- x™|| < R and

I HR
E VF.
(43)
Solving for m such that this
expression is completes the first part of the proof. For this m,
0 Ho*
(44)
For F € FrRB[H,A = 0;A], by part two ofand _( )M (
()
) (45)
Solving for m such that this expression is Ogpcompletes the the
proof. For this m, O
02 Ho*
(46)
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B Proofs from Section 4: Upper Bounds
Theorem 7. For any F € F[H,A] and any O with the restriction that fx;z) is A-strongly convex with respect

to X for all z, define the empirical risk minimizer via

Then the empirical risk minimizer enjoys the guarantee




each

Since, x™is the empirical risk minimizer, we have= *22m( *)F (x7)+=) F< Il(%m)( 0+, and so,

rearranging, )|l |l |

le—xII (VF x X' -x VF x X -x

IfxX*-x 0, then we are done. Otherwise,
o< 3o [

Now square both sides and take the expectation, which gives

The final result follows by observing that _

(47)

Proof. Let Fx=13mfx;z;

fxz

is A-strongly convex for



Theorem 3. For any F € F[H,Alwith the restriction that( )|l < fi-;z) is convex for all z, Algorithm 1 with ERM

as its subroutine finds " with VF X" ¢ using at most

Proof.  Consider the function

total samples.

(48)

(49)

(50)

<2VF)Xx +A32 X -x (51)

l T(er)ll 1-Te1=-11¢t] ¢ 7]

<S6HX -x +A32 X -x (52)
Irre 7l =1 Nle 7l

<12A3%2 X -x . (53)

=1 e

Above, (49) and (50) rely on the triangle inequality;-strong convexity of
F); (52) uses the fact tha R ;. o



Define _ Note that our upper bound (53) is equal to
_, so we will estimate the terms of this sum.

k_
l l
P-P 2X - x+32 X-x -XxX-x (54)
k  k-1=kk skt==111 ¢t (|| #ex=kll |l ¢ xk-1]])
k
S2kX" = X+ 5 2 X-X (55)
kll ek skl =15k Il prk-1 k-1l
< 2k(lIxX" = x Il + llx - x
)
(56)
<2 (57)

Above, we used the reverse triangle inequality to derive . By optimality of x*-1and x,

Thus_ and, combining (53) and (57) yields

RN

Since x*:is the output of ERM on the -strongly convex function F  using m/T samples, by Theorem 7,

il < 700

(59)

E VF X361 2 X -x(607<36x5122¢2V  (61)

)l =111 %ElV: Tl



1440T3/ A4
=—62) m

Solving for m such that the expression is less than ¢ completes the proof. O
Corollary 2. For _ anyand any global stochastic oracle OfF with the

restriction= -’1 (x0ll)2 with A = O(9/R), finds a point X" with E|IIVF(X")|| <

o using at most () () that f+;z is convex

for all z, with ERM as its subroutine,

when applied to F~yFx+



total samples.

For any F € FrRB[H,A = 0;A] and any global stochastic oracle Of with the restriction that f{-;z) is convex for

all z, the same approach with _ _ -

Stationary point using at most

total samples.

Proof. The objective _ function-smooth and  A-strongly

convex. Thus by Theorem 3, in particular (62)

1440log /2 HA

[ BV v
) (63)

For F € FpB[H,A = O;R], with A = O(p/R) and m = Q(%2log3 (#&,)) and using part one of Lemma 3
we conclude
EIVF(x")Il < O(o + AR) £ O(9),

which completes the first part of the proof.

Similarly, for F € FrB,
two of

(64)

by part

Lemma 3 we conclude (65)

which completes the proof.
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Theorem 5. Consider any convex, L-Lipschitz . function F : R - R that is bounded from

below,"* and any global stochastic oracle O with the restriction that - is convex for allg 4Zor.
There exists an algorithmy < which use- samples and outputs a point such that [inf € ()
lgl] 0.

Proof. Our algorithm involves calculating the ERM on several independent samples, evaluating the gradient
norm at these ERMs on a held-out sample, and returning the point with the smallest gradient norm.

Let V_F(x) denote the left-derivative of F at x, and let V.eF(x) denote the right-derivative. Since F is bounded

from below,_, thus there exists at least one

Vx < a V.F( ()x)>< —¢. The point< a is the left-most g-stationary point. It is possible - -

thate R{{ }} = - () <, in g-stationary point for . Consequently, there is a unique a U for whichand

which case there are no x a. Similarly, there is a unique b U o forwhichV Fb g and

Vx>bV-Fx 9. The point b is the right-most p-stationary point. It is possible that b oo, in which case
there are no x > b.

By convexity, Vx  yVFx VFx
VFy VFy.
Therefore,

IV.F(x)| > 9 and<x > b-0=( ) <infy.ear(x))|<gl >-IV(-F)(<x)| +> ¢(. Therefore,).

Consequently, all that we need to show is that our algorithm returns a point within the interval

~ () m )
LetF X = ;HLZ,:lf X; Zi

sider first the case that

be the empirical objective function and let x F

a>—=we-wil argue that X" > a. Observe that if V_-F'(a) < 0, then since

13 This lower bound does not enter the sample complexity quantitatively.
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FAand thus x” a. Since a -0, VFa -0, so the value

V_F'is the sum of 1.1.d. random variables that have mean> >

- (V2)F<(a) < -¢ and vari-

ance . By Chebyshev’s inequality, the random variable v-F 2A(a) will not deviate too far from its mean:
VF —
P @ 0 o . (66)
[ - ()z]<smo
Similarly,
2
[V+ﬁ W= p (67) mo?

2 2 A
1- mo? > the minimum of F

Therefore, with probability at leastlies in the range [a,b] and thus the

ERM X" is an g-stationary point of F.

Consider calculating k ERMs x73,...,.x"xon k independent samples of size m. Then with probability at least ,

- at least one of these points is an g-stationary point of F.

Now, suppose we have km additional heldout samples which constitute an empirical objective F Since the

- N

Condition on the event that at least one of the ERMs is an and denote one of

ERMs x;are independent of these samples,

(68)

those ERMs as x” . Denote this event E. Let i argmin vl ¥ where we abuse notation and say



VF"(X i)l := infyiar «i1g| for cases where F” is not differentiable ate |l ( x/')ill. Then

_ event that one of the ERMs is an o¢-

[l
stationary point happens with
probability at least. Choos-
ingensures. Therefore,
(74)
(75)

(76)

This entire algorithm required samples in total, completing the proof. O

C  Proofs of the Lower Bounds

Theorem 4. For any _ H,, the sample complexity to find a o-

stationary point'* is lower bounded as

m_.

Proof. For a constant b €R to be chosen later, let

(77)

14 This lower bound applies both to deterministic and randomized optimization algorithms.
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The distribution€ D of the random _ variable> z is the uniform distribution

over {z1,..,Zm} where the vectors z;R?are orthonormal (d m). Therefore,

: _.

attains 1ts unique

minimum at x*

(78)

This function is clearly convex, -

“pm@Ymi=1 z; which b > vom ensures, so has norm, so

choosing

R

choosing-ensures

X"<A ensures both simultaneously.
Finally, E[IVfe F )M D <020
Therefore, F 0; properly define a .

Suppose, for now, that (_ ) /. Then

2 obm )
b — 7 Y voti— 3 nu
(79)
2 02
(80)
m i<m/2Mm 1'<m/2 ( )

302+

b2zm ,+ oby

(81)

(82)



Therefore, for all such _ vectors. This holds for any b 2 - 0 and

{ set. From here, we will argue that any randomized algorithm with access to less than m/2 samples from

is likely to output such an x. We consider a random function instance determined by drawing the
orthonormal set zy,...,Zm} uniformly at random from the set of orthonormal vectors in R4. We will argue that
with moderate probability over the randomness in the algorithm and in the draw of z1,...,zm, the output of the

algorithm has small inner product with Zzu/,..,Zm. This approach closely resembles previous work

(Woodworth and Srebro, 2016, Lemma 7).

Less€han srgm%)lss fiX less than m/2 of the vectors z; assume w.l.o.g. that the algorithm’s sample> / S = .
Z1,.Z /221

The vectors z;are a uniformly random orthonormal set, therefore for any i m 2,

36



zilS-dimensional unit sphere in the subspace
orthogonal to span be  the
output of any randomized

algorithm  whose

input i<

. Otherwise, we analyze
(83)
(84)
(85)
This probability only increases if we assume that ( 1 m/2-1), in which case we are considering the inner product

between a fixed unit vector and a uniformly random unit vector. The probability of the inner product being

large is proportional to the surface area of the “cap” of a unit sphere in (d - m/2 + 1)-dimensions lying above

and below circles of radius-. These end caps, in total,

have surface area less than that of a sphere with
that same radius. ﬁ Therefore,é

(86) \/ (87) am

<exp — - . (88)
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(, )
% being small, so for d > ™ 512mlog 2m
[ ) o I Il w1 1
X p—

XVi <~ <

e

8bm “bm So2m
[ I (. 4 ] /.. . /
X > or Xvi > gy, forall i >m 2 with probability at least 1 2
l
Zl,0wZ  m, ?nd consequfintly, that Ex VF & *> g%
2 2
- . For this ;5‘7?_,52; <‘?‘§+§‘A"L
¢ < min Hg‘, LLSA' . -
(1024 5122m)
This did not require anything but the norm of + , this ensures that
P (89)
A union bound ensures that either b¥m
SettingO | | ensures this is at least>9 € ( m/,)b=max{ }R—> R e Fpawhich must
be less[ = )|l ] over the randomness in the algorithm and draw of

than H, consequently, this lower bound applies for

Theorem 8. For any H,R,c 0 and any ¢ 0,0 2, there exists a F: HA O;R and a . such that for any algorithm
interacting with the stochastic first-order oracle, and returning an gapproximate stationary point with some

_ fixed constant probability, the expected number of queries is
at leas (- los (52))

. Moreover, a similar lower bound ofholds if the radius constraint R

is replaced by a suboptimality constraint A.

Proof. We prove the lower bound by reduction from the noisy binary search
(NBS)problem: In this classical - problem, we have N sorted elements, and we wish to

insert a new element e using only queries of the form “is e > a;?” for some . Rather than
getting the true answer, an independent coin is flipped and we get the correct answer only with probability

-for some fixed parameter p. Moreover, let j* be the unique index such that aj< e < aj.1'>. It is well-
known (see for example Feige et al.

- Karp and Kleinberg (2007)) that in order to identify j* with any fixed constant
probability, at least

Q queries are required.

15 This is w.l.0.g., since if e < a1 or e > an, we can just add two dummy elements smaller and larger than all other elements and
e, increasing N by at most 2, hence not affecting the lower bound.
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Let us first consider the case where the radius constraint R is fixed. We will construct a convex stochastic

optimization problem with the given parameters, such that if there is an algorithm solving it (with constant

probability) after T local stochastic _ oracle queries, then it can be used to solve an
NBS problem (with the same probability) using 2T queries, where p = /o and'® N = HR/4¢. Employing the
lower bound above for NBS, this immediately implies the Qlower bound in our theorem.

To describe the reduction, let us first restate the NBS problem in a slightly different manner. For a fixed
query budget T, let Z be a T x N matrix, with entries in {-1,+1} drawn independently according to the

following distribution:

Comy=laep 55
PrZ 1 |{ | kl S
24p j s

Each Ztjcan be considered as the noisy answer provided in the NBS problem to the t-th query, of the form
“is e > a;” (where -1 corresponds to “true” and 1 corresponds to “false). Thus, an algorithm for the NBS
problem can be seen as an algorithm which can query T entries from the matrix Z (one query from each
row), and needs to find j* based on this information. Moreover, it is easy to see that the NBS lower bound
also holds for an algorithm which can query any T entries from the matrix: Since the entries are independent,

this does not provide additional information, and can only “waste” queries if the algorithm queries the same
entry twice.

We now turn to the reduction. Given an NBS problem on N = HR 4¢ elements with p=9p o and a

randomly-drawn matrix.Z, we first divide the interval [0 R] intoR N equal sub-intervals of length/ t= R//N

each,

16 /40 is a whole number — otherwise, it can be rounded and this will only affect constant factors in the lower bound.
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and w.l.o.g. identify each element aj with the smallest point in the interval. Then, for every (statistically
independent) row Z of Z, we define a function f{x,Z) on by f{0,Z) 0, and the rest is defined via its derivative

as follows:

Note that by construction RN ; <o\ o

since the expected value of 0Z;;is[ o -](-2p) = -20{if j <j}', and o( - 2p =)12¢ if j >{j*, it is easily verified}

Noting that

1S a convex

that

whenFor simplicity we assume thatx € [a e j*+1). Overall,
we get a valid convex stochastic optimization problem (with parametersHr | () <| | < | ()] < function with
H-Lipschitz gradients, with a unique minimum at some x : x R F x ¢ only

H,R,0 as required), such that if we can identify x such that F b'¢ 0, then we can uniquely identify
Jj*. Moreover, given an algorithm to the optimization problem, we can simulate a query to a local stochastic
oracle (specifying an iterate t and a point x) by returning f(x,Z:) as defined above, which requires querying
at most 2 entries Z;;and Z;j+1 from the matrix Z. So, given an oracle query budget T to the stochastic problem,
we can simulate it with at most 2T queries to the matrix Z in the NBS problem.

To complete the proof of the theorem, it remains to handle the case where there is a suboptimality constraint

A rather than a radius constraint R. To that end, we simply use the same construction as above, with-.

Since the derivative of F has magnitude at most 29, and its global minimum satisfies |x*| < R, it follows that

F in the lower bound, the result follows. [1
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Theorem 2. , the stochastic first-order oracle
complexity for rangebounded functions is lower
bounded as m_\/ .

For any-, the stochastic first-order complexity for domain-bounded functions is lower bounded as
v

(F [ 10, ) (_HA o> (HA))
m , o a2 .2 =77,
0 RB H,A = O,A , >0 log
v 0o ¢ 7
( ./ 5) /) ( ./ /5)
Proof. By Theorem S,Kbret@legzcalldxg éﬂﬁlpb:samf&m%dg%i) togt!mﬂAarpZQ—stationary point. Furthermore, a
deterministic first-order oracle is a special case of a stochastic first-order oracle (corresponding to the case
). Therefore, lower bounds for deterministi@ firs€-order optimization apply also to stochastic first-order
optimization. Therefore, the lower bound of (Carmon et al., 2017b, Theorem 1) completes the proof.

O
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