An Improved Speedup Factor for Sporadic Tasks
with Constrained Deadlines under Dynamic Priority
Scheduling

Xin Han, Liang Zhao
Software School,

Abstract—Schedulability is a fundamental problem in real-time
scheduling, but it has to be approximated due to the intrinsic
computational hardness. As the most popular algorithm for
deciding schedulability on multiprocess platforms, the speedup
factor of partitioned-EDF is challenging to analyze and is far
from being determined. Partitioned-EDF was first proposed in
2005 by Barush and Fisher [1], and was shown to have a speedup
factor at most 3 — 1/m, meaning that if the input of sporadic
tasks is feasible on m processors with speed one, partitioned-EDF
will always succeed on m processors with speed 3—1/m. In 2011,
this upper bound was improved to 2.6322 — 1/m by Chen and
Chakraborty [2], and no more improvements have appeared ever
since then. In this paper, we develop a novel method to discretize
and regularize sporadic tasks, which enables us to improve, in the
case of constrained deadlines, the speedup factor of partitioned-
EDF to 2.5556 — 1/m, very close to the asymptotic lower bound
2.5 in [2].

Index Terms—Sporadic tasks, resource augmentation, parti-
tioned scheduling, demand bound function

I. INTRODUCTION

Scheduling is a hot topic in the real-time systems com-
munity. Basically, given a finite set of tasks, each sequen-
tially releasing infinitely many jobs, the mission of real-
time scheduling is to allocate computing resources so that
all the jobs are done in a timely manner. The fundamental
question of schedulability naturally arises: Is it possible at
all to successfully schedule these tasks, such that all of them
receive enough execution before their deadlines?

Unfortunately, answering this question is often not ‘easy’;
e.g., the schedulability of a set of constrained-deadline spo-
radic tasks, which is the focus of this paper, is co-NP-hard
even on a uniprocessor platform [3]. For multiprocessor case, it
remains NP-hard for partitioned paradigm, even if the relative
deadline of each task equals to its period [4]. Here partitioned
paradigm means that once a task is assigned to a processor, all
the jobs released by the task will be scheduled on the dedicated
processor. These hardness results imply that it is impossible
to exactly decide schedulability in polynomial time, unless
P=NP.

Due to the hardness, real-time schedulability problems are
usually solved approximately by pessimistic algorithms which

*Corresponding author, liuxingwu@ict.a.cn.

Zhishan Guo
Department of ECE,
Dalian University of Technology, China University of Central Florida, US

Xingwu Liu*
University of Chinese Academy of Sciences,
Chinese Academy of Sciences, China

always answer ‘No’ unless some sufficient-only conditions for
schedulability are met. To evaluate the performance of such
an approximate algorithm (say, .A), the concept of speedup
factor, also known as resource augmentation bound, has been
proposed. Specifically, whenever a set of tasks is schedulable
on a platform with speed one, algorithm 4 will return ‘Yes’ on
the same platform with speed » > 1. The minimum such 7 is
referred to as the speedup factor of A. Despite of some recent
discussion on potential pitfalls [5] [6] [7], speedup factor has
been a major metric and standard theoretical tool for assessing
scheduling algorithms since the seminal work in 2000 [8].

Recent years has witnessed impressive progress on finding
scheduling algorithms with low speedup factors. For the
preemptive case (i.e. running jobs might be interrupted by
emergent ones), Global-EDF has a speedup factor 2—1/m [9]
for scheduling tasks on m identical processors, and there is a
polynomial-time algorithm for uniprocessors whose speedup
factor is 1 + € [10], where ¢ > 0 is sufficiently small for
uniform processors, refer to [11]. For the non-preemptive case,
there are also a variety of results, refer to [12], [13]. Except
the speedup factor, there are many papers concerning about
the utilization upper bound, refer to [14]-[16].

Although the speedup factor on uniprocessors is tight,
the multiprocessor case remains open. Due to its simplicity,
partitioned scheduling is of particular interest and has been
attracting more and more attention from researchers and
practitioners. Partitioned-EDF is the most popular scheduling
algorithm of partitioned style, while the above-mentioned
Global-EDF is not of partitioned paradigm. Breakthrough
was made in the year of 2005, when Baruah and Fisher [1]
established a 3—1/m (4—2/m, respectively) upper bound for
the speedup factor of partitioned-EDF on constrained-deadline
(arbitrary-deadline, respectively) task sets, where m is the
number of identical processors. A set of tasks is said to be
constrained-deadline, if the relative deadline of each task is at
most its period, otherwise is arbitrary-deadline. Then in 2011,
Chen and Chakraborty [2] further improved the speedup factor
to 2.6322 — 1/m (3 — 1/m, respectively) for the constrained-
deadline case (arbitrary-deadline case, respectively). Also in
the same paper, a lower bound 2.5 of the speedup factor

was established for the constrained-deadline case (via counter
example). Throughout the last seven years, the bounds in [2]
were never improved.

It is worth noting that deriving the upper bound of the
speedup factor of partitioned-EDF relies heavily on a quantity
about scheduling on uniprocessors, denoted by p which is
formally defined in (1) of Section II. Roughly speaking, p
measures how far the approximate demand bound function
(defined in Section II) deviates from the actual deadline time-
points. Baruah and Fisher [1] bridged p and the speedup factor
of partitioned-EDF by showing that in case of constrained
deadlines, the speedup factor is at most 1 + p — 1/m. As
a result, upper-bounding the speedup factor is reduced to
upper-bounding p, and it is in this manner that both [1] and
[2] obtained their estimations of the speedup factor. Hence,
the quantity p itself deserves a deep investigation. Actually,
Baruah and Fisher [1] upper-bounded it by 2, Chen and
Chakraborty [2] narrowed its range into [1.5,1.6322].

On this ground, this paper will explore a better upper bound
of p, and on this basis, provide a better estimation of the
speedup factor of partitioned-EDF for sets of constrained-
deadline sporadic tasks. The contributions are summarized into
the following three aspects.

1) We improve the best existing upper bound of p for
constrained-deadline tasks from 1.6322 to 1.5556 (The-
orem 1), which is very close to the lower bound 1.5. The
speedup factor of partitioned-EDF for the constrained-
deadline case accordingly decreases from 2.632 — 1/m
to 2.5556 — 1/m (Theorem 2).

2) We identified a way to discretize and regularize the
constrained-deadline tasks with out losing tightness. As
a result, the execution times of the tasks of interest be-
comes essentially all 1 and the deadlines are 1,2,--- ,n
respectively, where n is number of tasks to be scheduled
(Lemmas 3, 5, 6). The only parameter that varies is
the period. The transformation is tight/lossless in the
sense that the quantity p does not change although the
parameters are extremely simplified.

3) We invent a method to further transform the tasks so that
the period of each task ranges over integers between
1 to 2n (Lemma 7). Although tightness is no longer
preserved during this second transformation step, the
loss is negligible since we prove that p increases by at
most 0.0556. We expect these transformation techniques
may be further applied to real-time scheduling analysis
or other problems.

The rest of the paper is organized as follows: Section II
presents the model and preliminaries; Section III focuses on
uniprocessor case and derives a new upper bound (14/9) of p
for feasible sporadic tasks; Section IV provides a new upper
bound (23/9 — 1/m) of the speedup factor for partitioned-
EDF. Finally, Section V concludes the paper and mentions
some potential future directions.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a finite set 7 of sporadic tasks. Each task 7;
can be represented by a triple 7; = (e;, d;, p;), where e; is
the worst-case execution time, d; is its relative deadline, and
p; is the minimum inter-arrival separation length (also known
as period), respectively. The task 7; is said to be constrained-
deadline if d; < p;.

This paper focuses on constrained-deadline tasks. Hereun-
der, every task has a constrained deadline unless otherwise
mentioned.

Given a task 7;, we can calculate its demand bound function
dbf(7;,t) [17] and its approximate demand bound function
dbf*(r;,t) [10] in the following manner:

0 if t <d;
dbf(ri,t) = ([MJ +1)-¢;, otherwise
pi
and
. 0 if t <d;
dbf*(mi,t) = { (4 4 1) e, otherwise.

Similarly for any set 7 of tasks, we define

dbf(r,t) =Y dbf(ri,t), dbf*(r,t) =Y dbf*(m;1).
Ti€T TET
Lemma 1: [17] A set of tasks 7 is feasible on uniprocessor
if and only if dbf(7,t) < t, for V¢t > 0.
To analyze the speedup factor of partitioned-EDF on mul-
tiprocessor platforms, the following quantity plays a critical
role:

dbf*(r,d)
R
where 7 ranges over sporadic task sets that are feasible on
uniprocessor platforms, and d is the largest relative deadline
in 7. Here feasible means that there exists a correct schedule
to the set of tasks, i.e., each task could receive up to e; time
units of execution after its release and before its deadline.

We will see that actually, p is the optimum value of the
following math programming M Fy:

p = sup ()

dbf*(,d,
sup ¥7 (MPy) ()
subject to dbf(r,t) <t, vt>0 (3)
dit+pi>d,, 1<i<n-1 (4

di <ds <---<dyp, (5)
neZb e di,p; eRT, 1<i<n. (6

where Z™ is the set of positive integers while R stands for
the set of positive real numbers.
Lemma 2: p is the optimum value of M F.

Proof: Let 7 = {1; = (e;,d;,p;) : 1 < i < n} be an
arbitrary set of sporadic tasks that is feasible on a uniprocessor
with speed 1. Assume that dy < ds < --- < d,,. Apply the
transformation proposed in [2]:

144

: 2
dyp e
: 7
12 /'/
: .
: e
10 | § £
: 7
v |
* ol I
8t dbf (T,t 4 _———
/
- db
6 f () de f (7‘1,)
f/'
4+ e ———N\dbf(ia)
- |
7/ :
2 ¢ =
i
I
O A i : 1 1 1 1
0 5 10 15 20 25 30
Fig. 1. An example for task transformation and dbf modifications, with task

parameters of e; = 2,d; = 3,p; =5, and d, = 9.

/ d,, —d;

eiz(' +1> e, (7)
L Di

/ d, —d;

pi=(+1) “Di, (3
L Di

/ d, —d;

di:<p_)'pi+di-)

Let 7 = {7y, 79, , 7o} with 7, = (e;,dy,p;) for any 1 <
1< n.

Please refer to Figure 1 for an illustration of the above
mentioned transformation.

For any 1 < i < n,p;—d; =
constrained-deadline since so is 7.

In [2], it was proven that the following results hold simul-
taneously:

i) dbf*(r,t) = dbf* (T’ t) for any t > d,;

i) dbf(T t) > dbf(T t) fort >0;

111)d <d +p, for1<i<nmn;

iv) dn =dp.

This immediately leads to our lemma.]

ro.
p; — d;. Hence 7 is

III. IMPROVED BOUND FOR UNIPROCESSOR CASE

In order to estimate the speedup factor for multiprocessor
partitioned scheduling, we first focus on the uniprocessor case.
The main result of this section is Theorem 1, which establishes
14/9 as an upper bound of p for sporadic tasks.

The basic idea of our proof is to discretize the tasks into
regular form, thus reducing the problem into an optimization
one on bounded integers. Roughly speaking, Lemma 3 makes
sure that p does not change if the parameters of the tasks are

Constrained-deadline tasks:
arbitrary parameters

MP,

Lemma 2: p is equal Theorem 1

v

Arbitrary-deadline tasks:
Aligned, so all p; take

Constrained-deadline tasks:
Rational parameters

Py bounded values MP,
A
Lemma 4] p is equal Lemma 6 p does not
decrease

Constrained-deadline tasks:
All e; are equal, so all
e; and d; are fixed MP3

Constrained-deadline tasks

do=do .+ : Lemma 5:
(ThmTe MP, p is equal

Fig. 2. The flow of the proofs of this section. The constraints are added
incrementally, so each box only presents the new constraint. The overall

- constraints in each box is formulated into a math programming whose name

M P is labeled at the lower-right corner of the box.

restricted to be rational numbers, Lemma 5 claims that further
requiring e; = d; — d;—1 for all i keeps p unchanged, the
trend continues by Lemma 6 even if all the tasks are required
to have the same worst-case execution time, and finally,
Lemma 7 enables us to only consider tasks with bounded
discrete periods. These transformations reduce estimating p to
a simpler optimization problem which is solved approximately
in Lemma 9. These results immediately lead to Theorem 1.
The overall proof flow is illustrated in Figure 2.

Specifically, we first observe that the optimum value of
M Py remains unchanged even if the domain R¥ is replaced
by QT, the set of positive rational numbers.

dbf*(r,dy)

sup d) (MPy) (10)
subject to dbf(r,t) <t, Vt>0 (11)
di+pi>dn, 1<i<n-—1, (12)

dy <dg <+ <dp, (13)

nEZ+7ei7di7pi€Q+a 1§Z§n (14)

Lemma 3: M Py and M P; has the same optimum value.
Proof: The lemma immediately holds if both of the
following claims are true:

1) The objective functions of M Py and M P; are the same
and continuous.

2) The domain of M P; is a dense subset of that of M F,.
The term ‘dense’ means that for any ¢ > 0 and any
feasible solution 7 = {7; = (e;,d;,pi) : 1 < i < n}
to MP,, there is a feasible solution 7/ = {7/ =
(ef,dl,pl) : 1 <4 < n} to MP; such that for any
1< <n,

lef —e;] < e |d; —d;| < e |p;—pi|l <e. (15)

It suffices to prove Claim 2 since the other is obvious.

Let 7 = {7, = (e;,d;,p;) : 1 <i < n} be an arbitrary set of
tasks that is a feasible solution to M Py, and € be an arbitrary
positive real number. Without loss of generality, assume that
€ < minj<;<p ¢;. For any 1 <4 < n, arbitrarily choose

€
p; € (pi + FPiten Qt,

(i —1)e i€
d; + —)NnQT,
2n + 2n) Q

e € (e;—e,e)NQT.

K2

d: € (d; +

Let 7/ denote the set of tasks {7} = (e}, d;,p;) : 1 <i < n}.
Obviously, 7/ meets Conditions (14) and (15).

To proceed, arbitrarily fix an integer 1 <7 < n.

Note that p} — d} > p; + § — (d;i + 25) > p; — d;. This,
together with the fact that 7; is constrained-deadline, means
7/ is also constrained-deadline.

Observe that

(i-1)

€
> d;_
2n 2 G-t

(i—1)e
2n

d;>d; + >d;_.

Hence, 7’ satisfies Condition (13) of M P;.

Because
1—1)e €
d;+p§>di+() +pitg
2n 2
>di+pi+ s

> d, + % (since 7 satisfies (4))
>d,,
the task set 7/ satisfies Condition (12).
As to Condition (11), arbitrarily fix ¢ > 0.

When t < d}, dbf(r],t) =0 < dbf(m;,1).
When ¢ > d, because p; > p;,d; > d;, e; < e;, we have

dbf (! t) = (V_p’-ng +1) e

< (V‘diJ +1) cer = dbf(7, 1),

Di

As a result, we always have dbf(7',t) < dbf(r,t). Then
7/ satisfies Condition (11) since 7 satisfies (3).

Altogether, 7/ is a feasible solution to M P;. [|

Now we present a technical lemma that will be frequently
used.

Lemma 4: Suppose d,p,d’,p’ € Rt are such that d + p =
d +p’' and d > d’'. For any real number ¢,

t—d
P’

t—d

p

if and only if ¢t < d + p.

Proof: Let 6 =d —d = p’ — p. Then
t—d
p/

t—d

p

< p-(t—d)>p - (t—d)
& p-(t—d+6)>(p+9d) - (t—4d)
& p-d>0-(t—d)
& p>t—d.

|

Hereunder, let dy = 0. Then it is time to show that the

optimum value of M P; remains unchanged even if we further

require e; = d; — d;—1 for all + > 1. We define a new math
programming

dbf*(71,d,
sup % (MPs) (16)
subject to dbf(r,t) <t, Vet>0 (17)
di+pi>dn7 ISZSTZ—L (18)
di=e;+di—1, 1<i<n, (19)
neZt e,di,p;eQf, 1<i<n. (20)

Lemma 5: M Py and M P, have the same optimum value.
Proof: For any feasible solution 7 = {7; = (e;,d;,p;) :

1 <i<n}to MPy, define M(7) 2 |{i : 1 <i<mn,d; #
e; +d;—1}|. Obviously, 7 is a feasible solution to M P; if and
only if M(7) = 0.

Consider the following proposition: for any feasible solution
T to M Py with M(7) > 0, there is a feasible solution 7/ to
MP; such that M(7') < M(7) and the objective value of
7' is at least that of 7. If it is true, one can easily prove the
lemma by iteratively applying the proposition. Hence, the rest
of the proof is devoted to proving this proposition.

Arbitrarily fix a feasible solution 7 = {7; = (e;,d;,p;) :
1 < i < n}to MP. Suppose M(7) > 0. Assume k is
the smallest index such that ey # dj — dy_1, meaning that
e; = d; — d;_q for all i < k. Then we have

k—1
E €e; = d/k‘fl'
=1

Since dj, > d; for any ¢ < k, one has

2n

k k
> e; <Y dbf(ri,dy) (by definition of dbf)
i=1 =1

< dbf(7,dk)
S dkv
where the last inequality holds because 7 satisfies Condition

(11). This, together with (21), leads to e < dp — dg—1. By

the assumption that ey # dj — di_1, we get
er < dp —dp_1. (22)
Construct 7/ = {7/ = (e}, d},p;) : 1 <i <n} where

(3

U / !/
d; = di,p; = pi,€; = €;

for any ¢ # k, and
er = ek, dy, = di—1 + eg, py, = dy + pr, — dj.

By (22), d), < dy.

Obviously, M(7') = M(r) — 1 < M(r), and 7’ is
constrained-deadline since so is 7.

Now we prove that 7’ is a feasible solution to M P;. Since
7 satisfies Conditions (12)-(14), so does 7'. To show that
Condition (11) is satisfied by 7/, we arbitrarily choose ¢ > 0
and proceed case by case.

Case 1: if ¢ < d). Then
dbf(r',t)= > dbf(7]
1<i<n

= Z dbf(r;,t) (because t < dj for j > k)
1<i<k

= Z dbf(ri,t) (because 7, = 7; for i < k)
1<i<k

< dbf(r,1)

<t (because 7 satisfies Condition (11)).

Case 2: if d}, <t < d.

> dbf(r,

1<i<n

- = (5] +1)

Z e; (because d; + p} >t for any 7)
1<i<k

= Z e; =d), <t

1<i<k

dbf(r' 1) =

Case 3: if d;, <t < dj, + pj,. Then

dbf (), t) = (V;{l;J +1> - ex

=ey, (because dj, < dp <t <dj) + p))

(15)

where the last equality is due to dy, <t < d, +pk =di + pi.
For any i # k, dbf(7],t) = dbf(7;,t) since 7/ = 7.
As a result, dbf(7',t) = dbf(7,t) < t because T satisfies
Condition (11).
Case 4: if t > dj + p}.. Because

dj, < dy, and p), + dj, = dy. + p,

by Lemma 4, we have

t—d t—d
ko< 2Tk

P, Pk

Then

dbf(r',t)

= > dbf(7]

1<i<n

= dbf(r],t) + q pkd/J +1>

< p dk) €k
k

< dbf(r],t) +
i#k
= dbf(ri,t) + dbf(ri,t) (since 7/ = 7; for i # k)
i#k

=dbf(r,t) <t (since 7 satisfies Condition (11)).

Altogether, 7" satisfies Condition (11), so it is a feasible
solution to M P;.
Finally, we show that

dbf* (7. dy) _ dbf* (' dy)
d, — d,

When k& < n, we have d/, = d,, so it suffices to show

dbf* (7, dn) < dbf* (7’ ,dil)

By definition of 7/, for any ¢ # k, dbf*(m,
dbf*(7/,d},). Furthermore, note three facts:
1) pk +dk = dj + Pk;
2) d}, < dy;
3) d, < dj + px due to Conditions (12).
By Lemma 4, these facts mean
_ AT
d—dy _ &~ d;
Dk Dy
which implies dbf*(1y,dy,) < dbf* (7, d),).
As a result, dbf*(7,d,) < dbf*(r',d.,).
When k = n, we have d], < d,,. For any i < n,

dbf*(7i,dn) € <1+dn_di)
dn

d,) =

)

_% Di
; i —di
:]% (1+p -)
; i — di
<}% (1+pd%)
:Z (1 + d;}; dé) (because 7, = ;)
_dbf(ri,dy)

dy,

where the inequality is due to d/, < d,, and p; —d; > 0 (since
T is constrained-deadline). In addition,
dbf* (T, dn) en - e, _ dbf*(r),d;,)

dn T d, d, d,

dbf* (1,dn) - dbf*(7.d},)
- = 7

n

Therefore, we also get , as desired. H

We will impose further constraint on M P,, without chang-
ing the optimum value. As presented in the math programming
M P35, the constraint is that all the e;’s are equal.

sup %:d"), (MP;) (23)
subject to dbf(r,t) <t, Vt>0 (24)
di+p;>d,, 1<i<n-—-1, (25)

di=e;+di—, 1<i<n, (26)

ei=dp/n, 1<i<n, (27)

neZv e, di,p; €QF, 1<i<n. (28)

Lemma 6: M P, and M P; have the same optimum value.
Proof: Let 7 = {1, = (e;,d;,p;) : 1 < i < n} be an
arbitrary feasible solution to M P;. Due to Condition (20), we
can choose § € QT such that
e
ke 2 %
()25
is an integer for any 1 <i <n.Letn’ =Y, k().
For any 1 <[< n/, define task 7/ = (e}, d;,p;) as below,
where 1 <i <nand1l < j < k(i) are such that [= m(i, j) £

j+zl§h<ik(h):
e; =6,

dy=d;_1+ (di —di—1) = di—1 + j9,

k(i)
P =pi+di —dj.

Let 7/(i) = {m(” 1<]<k;()}forany1<z<n and
7/ = U 7/(i). Let df; = 0. Next we will prove that 7/ is a
feasible solution to M Ps.

First of all, for any 1 < i < n and 1 < 5 < k(i), let
I = m(i,5). We have d; < d; and p; = p; +d; — d} > p;.
Thus, 7’ is constrained-deadline because so is 7.

Since 7’ satisfies Conditions (25)-(28) by definition, now
investigate Condition (24). Arbitrarily fix ¢ > 0 and proceed
case by case.

Case 1: t < d,,. Let integer [> 0 be such that d; < ¢ <

dj, . Then
dbf(r',t)= Y dbf(7]
1<r<n/
Z dbf(r),t) (because t < dj)
1<r<l

-2 (5)

= Z e =dy <t

1<r<i
where the fourth equality holds due to the inequality p, >
t — d!. which in turn follows from three facts:

1) Forany 1 <i<mnand1<j<Ek(i), we have

p;n(i,j) =pi+d; — d;n(iJ) by definition;

2) From (18), p; + d; > d, holds Vi, 1 < i < n;
Case 2: ¢t > d.,. It suffices to prove that Vi,1 < i < n,
dbf(7'(i),t) < dbf(7i,t).
Suppose ¢ < d; + p;. We observe that
k(3)

Z dbf(r m(l)

k(i d

EQ ”””J“)é
=1 m(”)

=k(i)0 (because t < d; + p;

=e; (By definition of k(7))
=dbf(7;,t) (because d; <t < d; + p;)

dbf(r

7 ’
= (i gy T P)

Then consider ¢ > d; + p;. For any 1 < j < k(4), since
d > dm('L 7) and dl +pi = d;n(z,]) +P;n(w), Lemma 4 lmphes
!

b= iy L t—di

/ — ’

Pn(i.g) Pi

k(%) d
(o
(52

=dbf(i,t)

Altogether, Condition (24) is satisfied in both cases, so 7’
is a feasible solution to M Ps.
The rest of the proof is to show that

dvf*(r',d.,,) > dbf*(r,dy).

which further leads to

e s

Note that

d,, =d, <p1+d—dm”)+pm(”)andd <d;

m(i,j) =
forany 1 <i<n,1 <j<k(i). Lemma 4 implies that
! U
Do = dnigy _ d

n di
; > .
pm(i,j) Di
Then for any 1 <7 < n, we have
k(%) d ,— d ..
Z (n : m(%,5) +
=1 Pini.g)
d, —d;
(+ 1) e
Di
=dbf* (i, dy).
Therefore, dbf*(7’,d.,) > dbf*(7,d,). [|

dbf*('(i),d,) =

1>5

v

It is still hard to find a good upper bound of the optimum
value of M Ps, partly because Condition (24) is too strong and
Condition (25) is too weak. It has to be modified accordingly.

On the one hand, we relax (24) by replacing the function
dbf(-,-) with f(-,-): for any task 7; = (e;,d;,p;) and time
t>0,

st ={ gl

Note that f(7;,t) < dbf(7,t) always holds. The first argu-
ment of f can be naturally extended to any set 7 of tasks:

f(Tv t) = Z f(Ti7t)'

T, ET

if t <d; +p;
otherwise

On the other hand, instead of (25), we require that the set
of tasks 7 should be aligned, as defined below:

Definition 1: Given a task set 7 = {1; = (e;,d;,pi) :
1 < ¢ < n}, a permutation 7 over {1,2,--- ,n} is called
an aligning permutation of 7 if

dr(iy + Pr(i) = dn + d;

for any 1 < ¢ < n. 7 is said to be aligned if it has an aligning
permutation.

We will show that the optimum value of M Ps; does not
decrease after the modification. Specifically, define a new
math programming, where the tasks are not required to be
constrained-deadline:

sup %Z”’l"), (MP;) (29)
subject to flrt) <t, Vi>0 (30)
T is aligned, (31)

di=e;+d;i1, 1<i1<n, (32

e;=dp/n, 1<i<mn, (33)

neZt e, d,p;eQf, 1<i<n. (34)

Lemma 7: The optimum value of M Ps is not more than
that of M P;.
Proof: Arbitrarily choose a feasible solution 7 = {7; =
(ei,diyp;) : 1 <i<n}to MPs. Let m be a permutation over
{1,2,--- ,n} such that

dr1) + Pr(1) < dr(2) + Pr2) < oo S dr(n) + Pr(n)- (35)

U

(. p}) where

For any 1 < i < n, construct a task 7/ = (e}, d

6; = ei,dg = di7p; =d, + dﬂ-—l(i) — d;

Let 7/ = {7/ :1<i<n}.

We will show that 7 is a feasible solution to M Pj. Since
Conditions (31)-(34) are satisfied by definition, it suffices to
investigate Condition (30). Let’s first derive an inequality as
tool.

For any 1 <i <, let j = 7~ 1(i), and we have
d; + p;

>dbf(r,d; + p;)

= > dbf(rey.di+pi) + Y dbf(Teqy. di +p;)

(since T satisfies Condition (24))

1<I<j j<i<n
> Z 2eqq) + Z 0
1<I<j j<i<n
2jd,, — 7)dn,
_2jdn (n—J)
n n
=d, +d; (due to Conditions (26) and (27)),

where the second inequality is because
d; + pi = dr(j) + Pr(y) = dr@) +Pr) forany I < j

and d; + p; > dy, > dr () for any [.
Hence, we have

di +pi > dn + dﬂ'*l(i) = d; +p; (36)

by definition of 7’.
Now we continue to prove 7’ satisfies Condition (30). For
an arbitrary ¢ > 0, this can be done case by case.

Case 1: t < d,, + d;. Then for any 1 < i < n,

d; +pi
ng +p’i =d, + dw—l(i) by (36)
>d,+dy >t

This, together with the definition of 7/, implies that
f(r't) = dbf (7', t) = dbf(r,t).
Because 7 satisfies Condition (24), we have f(7/,t) <t.

Case 2: t > d, + d;. Choose the biggest 1 < ¢ < n such
that d,, + d; < t. Then for any ;7 > 1,

p;(j)-&-d' :dn+dj>t>dn2dl

() () -
Thus
(')
=Y gt + Do fig)D
1<;<i i<j<n
— / /
=D 2T D
1<5<i i<j<n
—d, +d; <t

Altogether, Condition (30) is also satisfied.

Furthermore, for any 1 < ¢ < n, by (36) and d; = d}, we
have p, < p;. This, together with e, = e;,d, = d; for any
1 <4 < n, implies dbf*(7',d})) > dbf*(7,d,). As a result,

dbf* (rydn) _ by (',)
dp, - d, ’
The lemma thus holds. |

We present a technical lemma before going on.
Lemma 8: For any x1, 22, -+ ,%, € RT such that

we have

Note that
> vieul (330)
=1 =1
n X
3 m
> i
>n2 ; . Vzdx
s 1 2 5
=n? | adr=-n?
0 3
Therefore,

|
Lemma 9: The optimum value of M P, is at most %4.
Proof: Arbitrarily choose a feasible solution 7 = {; =
(ei,di,pi) : 1 <i<n}to MPy. Let § = “=. By Conditions
(32) and (33),
eizéanddi:ié

for any 1 <7 < n.
Let 7 be an aligning permutation of 7. Then we have

pr(z‘) = Z(dn +d; — dn(y) = nd,, = n?6,
i=1 i=1

Pr(i)

which implies > | 2 = n?. By Lemma 8,

i—1 Pr(i)
Hence,
zn: dj +pj—dn _ i: dr(i) + Pr(i) — dn
=1 pj i—1 Pr(4)

(since T is aligned)

i—1 Pr(i)

) 4dn
= Z 9

i—1 Pr(i)

As a result,

dbf*(r,dy) = dbf*(7;,dn)

Jj=1
n
<ops— sy A
=P
4n 14
<2nd — —06 = —d,
=0T 0Ty
The lemma holds.]

We are ready to present one of the main results of this paper,
which claims that the quantity p is at most 1.5556.

dbf* (r,d)
d

Theorem 1: < 19—4 for any set 7 of constrained-

deadline tasks such that dbf(7,t) <t for all ¢ > 0, where d
is the maximum relative deadline of the tasks in 7.
Proof: 1t follows from Lemmas 3, 5, 6, 7, and 9. |

IV. PARTITIONED SCHEDULING ON MULTIPROCESSORS

This section is devoted to partitioning sporadic tasks on mul-
tiprocessors, where the tasks are assumed to have constrained
deadlines. We adopt the algorithm of Deadline-Monotonic
Partitioning in [1]. It is presented in Algorithm 1 to make
this paper self-contained, where e; and d; stand for worst-case
execution time and relative deadline of task 7;, respectively.

Algorithm 1 Deadline-Monotonic Partitioning

Input: sporadic tasks 7 = {7y,...,7,} to be partitioned on

m identical unit-capacity processors;
> The tasks are indexed non-decreasingly according to

their relative deadlines. For any 1 < k < m, let 7(k) denote
the set of tasks assigned to the kth processor.

1: 7(k) < 0, forany 1 < k < m;

2: fori=1ton do

3: if there exists k such that e; + dbf*(7(k),d;) < d;

then

4: Choose the smallest such k;
5: 7(k) < 7(k) U{r};

6: else

7: return FAIL

8: end if

9: end for

10: return feasible assignment 7(1),7(2),...,7(m)

Basically, Algorithm 1 assigns tasks sequentially in the
order of non-decreasing relative deadlines. Suppose 7(k) is
the set of tasks at processor k after the first ¢ — 1 tasks has
been assigned. Then task 7; is assigned to the first processor

(say, processor No. k) that can safely serve the task, namely
ei +dbf*(r(k),d;) < d;.
Remember that we have upper-bounded
dbf*(r,d)
p = Sup a4

T

(37

where 7 ranges over constrained-deadline sporadic task sets
that are feasible on uniprocessors, and d is the largest relative
deadline in 7.

The following lemma is from references [1] and [2], so the
proof is omitted.

Lemma 10: The speedup factor of Algorithm 1is 14 p —
1/m, where m is the number of processors.

It is time to present the other main result of this paper.

Theorem 2: The speedup factor of Algorithm 1 is at most

2.5556 — 1/m.
Proof: The theorem immediately follows from Theorem
1 and Lemma 10.]

V. CONCLUSION AND FUTURE WORK

In this paper, we improve the upper bound of the speedup
factor of partitioned-EDF from 2.6322 — 1/m to 2.5556 —
1/m for constrained-deadline sporadic tasks on m identical
processors, narrowing the gap between the upper and the
lower bounds from 0.1322 to 0.0556. This is an immediate
corollary of our improvement of the upper bound of p =
sup, dbf*(r,d)/d from 1.6322 to 1.5556.

Technically, our improvements root at a novel discretization
that transforms the tasks into regular form without decreasing
p. The discretization essentially restricts attentions to the tasks
with fixed execution times and deadlines. Only the period
parameter remains flexible to some extent—ranging over the
set {1,2,---,2n}, where n is the number of tasks to be
scheduled. With such transformation, the estimation of p is
reduced to a much simpler optimization problem. We believe
that this knack may be applied to other problems or scenarios.

However, we have not yet proved that our transformation
is lossless. This means that the discretization might strictly
enlarge p. The good news is that the incurred loss, if not zero
at all, is guaranteed to be no more than 0.0556.

As to future directions, we conjecture that Theorems 1 and
2 remain true if the constrained-deadline condition is removed.
We also conjecture that a 1.5 upper bound for p can be derived
with our method, thus closing the gap between the upper and
the lower bounds. If this is the case, the speedup factor of
partitioned-EDF becomes also fully determined, at least in the
case of constrained deadlines.

ACKNOWLEDGMENT

The authors would like to thank Prof. Sanjoy Baruah from
Washington University at St. Louis and Prof. Yungang Bao
from Institute of Computing Technology, CAS for the fruitful
discussions. This work is partially supported by the National
Key Research and Development Program of China (Grant

No. 2016YFB1000200), the National Natural Science Foun-
dation of China (11101065, 61420106013), National Science
Foundation (of the US, CNS-1837472 and CNS-1850851),
State Key Laboratory of Computer Architecture Open Fund
(CARCH3410).

REFERENCES

[1] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” in Real-Time Systems Symposium, 2005. RTSS
2005. 26th IEEE International. 1EEE, 2005, pp. 321-329.

[2] J.-J. Chen and S. Chakraborty, “Resource augmentation bounds for ap-
proximate demand bound functions,” in Real-Time Systems Symposium
(RTSS), 2011 IEEE 32nd. 1EEE, 2011, pp. 272-281.

[3] F. Eisenbrand and T. Rothvof, “Edf-schedulability of synchronous
periodic task systems is conp-hard,” in Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 2010,
pp. 1029-1034.

[4] A. K.-L. Mok, “Fundamental design problems of distributed systems
for the hard-real-time environment,” Ph.D. dissertation, Massachusetts
Institute of Technology, 1983.

[5] J.-J. Chen, G. von der Briiggen, W.-H. Huang, and R. I. Davis, “On
the Pitfalls of Resource Augmentation Factors and Utilization Bounds
in Real-Time Scheduling,” in 29th Euromicro Conference on Real-
Time Systems (ECRTS 2017), ser. Leibniz International Proceedings in
Informatics (LIPIcs), 2017, pp. 9:1-9:25.

[6] Z. Guo, “Regarding the optimality of speedup bounds of mixed-
criticality schedulability tests,” Mixed Criticality on Multicore/Manycore
Platforms (Dagstuhl Seminar Reports), vol. 17131, 2017.

[7] K. Agrawal and S. Baruah, “Intractability issues in mixed-criticality
scheduling,” in the 30th Euromicro Conference on Real-Time Systems
(ECRTS’18), 2018, to appear.

[8] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance,” J. ACM, vol. 47, no. 4, pp. 617-643, 2000.

[9] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical

scheduling via resource augmentation,” Algorithmica, vol. 32, no. 2, pp.

163-200, 2002.

K. Albers and F. Slomka, “An event stream driven approximation for

the analysis of real-time systems,” in Real-Time Systems, 2004. ECRTS

2004. Proceedings. 16th Euromicro Conference on. 1EEE, 2004, pp.

187-195.

S. K. Baruah and J. Goossens, “The EDF scheduling of sporadic

task systems on uniform multiprocessors,” in Proceedings of the 29th

IEEE Real-Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30

November - 3 December 2008, 2008, pp. 367-374.

R. R. Devillers and J. Goossens, “Liu and layland’s schedulability test

revisited,” Inf. Process. Lett., vol. 73, no. 5-6, pp. 157-161, 2000.

R. I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, S. Punnekkat, and

J. Chen, “Exact speedup factors and sub-optimality for non-preemptive

scheduling,” Real-Time Systems, vol. 54, no. 1, pp. 208-246, 2018.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-

bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129-154, 2005.

E. Bini, “The quadratic utilization upper bound for arbitrary deadline

real-time tasks,” IEEE Trans. Computers, vol. 64, no. 2, pp. 593-599,

2015.

J. Theis and G. Fohler, “Transformation of sporadic tasks for off-

line scheduling with utilization and response time trade-offs,” in /9th

International Conference on Real-Time and Network Systems, RTNS 11,

Nantes, France, September 29-30, 2011. Proceedings, 2011, pp. 119—

128.

S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling

hard-real-time sporadic tasks on one processor,” in Real-Time Systems

Symposium, 1990. Proceedings., 11th. 1EEE, 1990, pp. 182-190.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

