On quantum quasi-relative entropy

Anna Vershynina

Department of Mathematics, Philip Guthrie Hoffman Hall, University of Houston, 3551 Cullen Blvd.,

Houston, TX 77204-3008, USA

January 21, 2019

Abstract

We consider a quantum quasi-relative entropy S’ff for an operator K and an operator
convex function f. We show how to obtain the error bounds for the monotonicity and joint
convexity inequalities from the recent results for the f-divergences (i.e. K = I). We also
provide an error term for a class of operator inequalities, that generalize operator strong
subadditivity inequality. We apply those results to demonstrate explicit bounds for the loga-
rithmic function, that leads to the quantum relative entropy, and the power function, which
gives, in particular, a Wigner-Yanase-Dyson skew information. In particular, we provide
the remainder terms for the strong subadditivity inequality, operator strong subadditivity
inequality, WYD-type inequalities, and the Cauchy-Schwartz inequality.
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1 Introduction

Quantum quasi-relative entropy was introduced by Petz [27, 28] as a quantum generalization of
a classical Csiszar’s f-divergence [10]. Tt is defined in the context of von Neumann algebras, but
we consider only the Hilbert space setup. Let H be a finite-dimensional Hilbert space, p and o
be two states (given by density operators), K be an operator on #H, and f : (0,00) — R be an
operator convex function. Then the quasi-relative entropy is defined as

SE(pllo) = Tr(p" 2K f(Ao,) (K p'?))

where A, , is a relative modular operator defined by Araki [1] that acts as a left and right multi-
plication
Asp(X)=LaR; (X)=AXB".

The modular operator can be applied straightforward when p is invertible. When p is not invertible,
we take the generalized inverse of p and denote it as p~! as well. The generalized inverse is defined
as follows: if > (p) denotes the spectrum of p, and Py denotes the spectral projection corresponding
to the eigenvalue ), then the generalized inverse p=! := Z)\EZ(p)\{O} AP,

Note that taking f(x) = —log(z) and K = I reduces quasi-relative entropy to the Umegaki
relative entropy [39],

S(pllo) = Tr(p[log p — log o)) .

We consider several properties of the relative entropy and their analogue in the case of a
quasi-relative entropy.

Monotonicity of relative entropy. The most essential property of the relative entropy is the
monotonicity inequality (or data processing inequality). It states that the quasi-relative entropy
cannot increase after the states pass through a noisy quantum channel (i.e. a completely-positive,
trace-preserving map) N:

S(pllo) =2 SN (p)IN (o)) -

This inequality was proved by Lindblad [23], building on the work of Lieb and Ruskai [20]. Due
to a Stinespring factorization [35], the monotonicity inequality under any quantum channel, is
equivalent to the monotonicity inequality under partial traces, which will be used throughout the



paper. Let H = H; ® Ho, and p and o be two states on H. We denote the partial trace over the
second system as p; := Trpi9, and others similarly. Then the monotonicity inequality states that

S(pllo) = S(p1llor) -

Petz [29, 30] provided a condition on states p and o, for which the monotonicity inequality in
saturated. He showed that for a given quantum channel N, two states p and o lead to equality
in the monotonicity relation if and only if the channel in noiseless for these states, i.e. the action
of the channel can be reversed. The reverse action is implemented by a certain recovery map Z,
now called a Petz’s recovery map, which can be written explicitly for a given channel.

These results motivated the question of stability of the recovery map: if the decrease of rela-
tive entropy after states pass through a quantum channel is small, how well can these states be
recovered? Work on this question started following a breakthrough result by Fawzi and Renner in
2015 [12]. They proved that if the strong subadditivity inequality (SSA) (which is equivalent to
the monotonicity inequality) is nearly saturated, then quantum Markov chain condition, known
to be necessary and sufficient for equality in SSA [13], is also nearly satisfied, and they gave a
precise quantitative version of this stability result.

Further refinements of the monotonicity relation occurred later in, for example, [3, 5, 6, 16,
36, 37, 45, 46]. Most of these results involve some sort of a recovery channel in the lower bound,
and even though it often derived from, or related to, the Petz recovery map, it is in no case the
Petz map itself. The quantities provided in those lower bounds are hard to compute.

Recently, Carlen and Vershynina [8] proved a sharp stability result for the monotonicity in-
equality in terms of the original Petz recovery map:

T\4 -2 4
S(pllo) = Spallon) = (5) 180l 2 1B01) = ol -

It is possible to obtain the lower bound in terms of recovery map Z,, but the constant changes.
This bound makes it very easy to see the relation between the saturation of the monotonicity
inequality and the perfect recovery of both states.

Monotonicity of quasi-relative entropy. The monotonicity inequality for a quasi-relative
entropy S]If also holds, but for operators K of the a certain form. As mentioned before, considering
quantum channels is equivalent to considering only a partial trace channel. For operators K =
K ® I we have

St (pllo) = SF (pillon) -

This statement was explicitly proved by Sharma [34], building on the work of Nielsen and Petz
[25]. The monotonicity can also be proved for operators K = K ® V', where V' is a unitary.

Sharma has also provided a condition on the equality, showing that the equality in the mono-
tonicity inequality holds if and only if, for all g € C,

To(K*o Kp, " — K*oPKp'=%) = 0.

Building on their previous work, Carlen and Vershynina [9] also recently showed that for f-
divergences (i.e. K = I), the following sharpening of the monotonicity inequality holds: for a



large class of functions f (that define a constant c¢), there is constant M depending only on the
smallest non-zero eigenvalue of p, ||o; ||, B, and f, such that

1

max{||Z,(01) — o1 , |%,(p1) — pli} < M(Ss(pllo) — S;(prllor))TTee .

Similar to their previous bound, it is very easy to see here that if the monotonicity is saturated,
Petz’s map recovers both states perfectly. The other way is easily derived.

In fact, Carlen and Vershynina showed that even a stronger bound holds: for all g € (0,1),
and conditions above, there is a constant (/) (that also depends on the function f) such that

o7 p2 = 0P p 1270l < M(Sy(pllo) — Sy (pallon))* ™.

This means that both: saturation of the monotonicity inequality and Petz’s recovery of both
states, is equivalent to the following condition:

forall BeC: olp,” =o’p? .

We build on Carlen and Vershynina [9] work to improve the monotonicity result for quasi-
relative entropies with an operator K = K ® V', where V' is unitary. We show that with the same
conditions as above,

loV K py®p'? = P K p* Pl < M(SF(pllo) — SF (pllon)) .
In particular, we obtain the bound in terms of the Petz’s recovery map
1
1%2,(K;o1 K1) — K*o K[|y < M(Sf (pllo) — S (pullor)) T

Moreover, we show that the equality in the monotonicity inequality holds if and only if, for all
peC,
Upr;5p1/2 _ UBKp1/2fﬁ .

Strong subadditivity inequality. For a tri-partite state papc on a Hilbert space H =
Ha ® Hp @ He, strong subadditivity inequality (SSA) states

0 < S(pap) + S(pBc) — S(pasc) — S(pB) -

This theorem was proved by Lieb and Ruskai [20], using Lieb’s theorem that was proved in
[18]. Note that this inequality is equivalent to the monotonicity inequality: having monotonicity
inequality, to obtain the SSA inequality, one takes p = papc and ¢ = pap ® pc and a trace
over the system H 4. Having SSA, one chooses papc to be block-diagonal, which implies that the
map p12 — Sp1 — S(p12) is convex. Following Lieb and Ruskai [20], this yields the monotonicity
inequality.

We apply previous results in [8], to obtain the sharpening of the SSA: for any g € (0,1),
there are some constants N (depending on the minimal eigenvalue of pspc,  and f) and «(f)
(depending on the function f) such that

N\ph @ pl paap™’? = bhip @ plp? PP < S(pag) + S(pse) — S(pasc) — S(ps) -



In particular we show that the equality in SSA holds if and only if Petz’s map % recovers the
reduced state perfectly:

R,(pB @ pc) = pap  pc -

Operator inequalities of the strong subadditivity type. In 2012 Kim [17] proved the
following operator version of the strong subadditivity inequality

0 < Trappapc|log papc —log pap — log ppc + log ps] .

Note that this inequality leads to the strong subadditivity inequality after taking the trace over
system Hc.

Building on this work, Ruskai [33] provided a class of operator inequalities: for an operator
monotone decreasing function f,

0 < Trap ([f(LosRype) = f(Loy Ryp)lpanc) - (1.1)

We provide the error term for these inequalities of the type: for a large class of operator convex
functions f, there are some constants N (depending on the minimal eigenvalue of pspc, 5 and f)
and «(f) (depending on the function f) such that

N[Tean(Pasc(p,0) Pipc(p, ONY"? < Trap (If (Lows By) = F(Loy B3l lpasc)

where

) —8 1/2 1/2-8
Papc(p,o) = ngngA/BC - UﬁBpA/BC .

Note that the left-hand side of this inequality is the operator on H¢, as is the right-hand side.
Therefore, this inequality holds between operators on Hc.
Moreover, we show that the equality in (1.1) holds if and only if, for all g € (0, 1)

8 -8 _ B B
OpPBc = 9aBPABC >

which is in turn equivalent to the recovery condition
‘%PABC (UB> =04AB -

Additionally, by taking f to be a power function, Ruskai [33] showed that (1.1) leads to

1 . .
0 < ———[-Trappapcois + Trppplon]
p(l _ p)[ ABCY AB BC B]

where p € (—1,2). We apply our results to show the operator strengthening of this inequality:

) o 1

p(1—p) [

N [Trap(Qupc(0as, pac)Qasc(0aB, paBc)] —Trappapcois + TTBP}B_(,?O-%} ;

where

g1 1/2-8

— 2
Qapc(0aB, papc) == P%CUB UA/B - pﬁBCOAB



Joint convexity of the relative entropy. It was noted by Lindblad [22] and Ulhmann [38],
the relative entropy is jointly convex, i.e., if p = > p;p; and o = 3, p;o; (with 3°;p; = 1 and
p; > 0), then

0< ij (pjlloy) — 5% (pllo) -

This inequality is also equivalent to the monotonicity inequality: having monotonicity inequal-
ity, one chooses both p and ¢ to be block-diagonal, which immediately leads to the joint convexity
(see Section 5). One the other hand, having the joint convexity inequality, Araki and Lieb [2, 19]
used a purification process to show that on the set of pure states (the extreme points of the set of
density matrices) the SSA holds with equality.

Joint convexity of the quasi-relative entropy. If was shown by Petz [26, 28] or [31,
Theorem 2| that the quasi relative entropy is jointly convex in p and o:

K K
0< Y piSF(psllo) — S (pllo).
J
Using our strengthening of the monotonicity inequality, we obtain the error term for the joint
convexity inequality: for a large class of operator convex functions f, and any 5 € (0, 1), there
are some constants M and «(f) (see above for the dependence), the following holds

a(B)
1/2 1/2—8
Zp/ lo? Kp=2p)* — o K pi* Pl < M (ijsf((pj!\aj) —Sf(pHU)> :
J
Moreover, we show that the equality in the joint convexity inequality holds if and only if, for all
jand all g €C,
B -8 _ B —B
o"Kp™" =0 Kp;

We apply these results to show the error term in the concavity inequality of the term Tr(K*o? K p*~P).
The concavity of this term was shown by Lieb [18] for powers of p and ¢ that sum up to a number
no greater than one.

Structure of the paper. In the next Section 2 we review known results for the operator
monotone functions, in particular its integral representation. In Section 3 we introduce the quan-
tum quasi-relative entropy and present few simples, but important facts about it. In Section 4
we review the previous strengthening of the monotonicity inequality for relative entropy and f-
divergences, and present the error term for the quasi-relative entropy, with the condition for the
equality. In Section 5 we apply the strengthening of the monotonicity inequality established in
the previous section to the joint convexity inequality and provide the condition for the equality
as well. In Section 6 we provide the error term for a class of operator inequalities established by
Ruskai [33] with the condition for equality. In Section 7 we apply all previous results to obtain
new inequalities for the relative entropy by taking the function f(z) = —log(z) and K = I.
In particular, we obtain the error terms for the joint convexity inequality, strong subadditivity
inequality, and the operator strong subadditivity inequalities. In Section 8 we apply previous
results to the power function. The quasi-relative entropy for the power functions gives a term



Tr(K*oPKp'~P), concavity of which leads to the concavity of the Wigner-Yanase-Dyson p-skew
information. In particular, we provide a Pinsker inequality for such a term, and the error terms
for the joint concavity and the operator version of WYD inequalities. At the end, we apply these
results to show the error term for the operator Cauchy-Schwartz inequality.

2 Operator monotone functions

2.1 Definition. A function f : (a,b) — R is operator monotone if for any pair of self-adjoint
operators A and B on some Hilbert space that have spectrum in (a, b), the operator

f(A) = f(B) =0

is positive semidefinite whenever A — B > 0 is positive semidefinite. We say that f is operator
monotone decreasing on (a,b) in case — f is operator monotone.

2.2 Definition. A function f is operator concave on the positive operators, when for all positive
semidefinite operators A and B, and all X in (0, 1),

F(1= NA+AB)) = (1= A\JF(A) = Af(B) = 0
is positive semidefinite. A function f is operator convex when — f is operator concave.

2.3 Theorem (Bhatia '97 ). [4, Theorem V.2.5] Every continuous function f mapping [0,00)
into itself is operator monotone if and only if it is operator concave.

2.4 Definition. A Pick function is a function f that is analytic on the upper half plane and has
a positive imaginary part. The set of Pick functions on (a,b) is denoted as Pqp).

2.5 Theorem (Lowner '34). [4, Theorem V.4.7] A function f on (a,b) is operator monotone if
and only if f is a restriction of a pick function f € Py to (a,b).

According to [11, Chapter I, Theorem I] every operator monotone decreasing function f (i.e.
—f € Po,00)) has a canonical integral representation

(@) = az+h— /Ooo ( ! t )d,uf(t) , (2.1)

t+r 241

<1
where a < 0, b € R and p is a positive measure on (0,00) such that / mduf(t) < 0.
0

Conversely, every such function is operator monotone decreasing.
The following formulas [11, Chapter II, p. 24] determine a, b and u corresponding to f.
a = lim M and b= Re(f(7)) . (2.2)
yfoo 1Y
Define the monotone increasing function p(z) := pu({z})+ p((—o0, z)), then according to [11,
Chapter II, Lemma 2] we have that

1

(o) = o) =lim — [ 1 f(—a + ig)da (2.3)



2.6 Definition. A operator monotone function f is reqular in case the measure i in the canonical
integral representation of f is absolutely continuous with respect to Lebesgue measure, and for
each S,T > 0, there is a finite constant Cg}T such that

dt < CLpdpu(t) (2.4)

on the interval [1/S,T]. An operator monotone decreasing function is regular if and only if —f is
regular.

2.7 Example. Let f(z) = —log(z). It is operator monotone decreasing. Then
b= Re(log(i)) =0,

and
a= liTm log(iy)/(iy) = liTm(logy +im/2)/(iy) =0 .
yToo yloo

It is clear from (2.3) that

1
du(z) = - I;JIB Im log(—x + iy)dz = dz .

Then the integral representation (2.1) gives the following formula for the logarithmic function

</ 1 t
—1 = — dt . 2.
0Bt %: (t+1: t2+1) (2:5)

2.8 Example. Let f(z) = aP, where p € R. Then by [4, Theorem V.2.10] the function f is

1. operator monotone if and only if p € [0, 1];
2. operator convex if and only if p € [—1,0] U [1, 2];

Consider the power function f(z) = —a? for p € (0,1). It is operator monotone decreasing. Then
a= zl/lTrglo fliy)/(iy) =0, and b= cos(pr/2) .
For x > 0, lim,o Im f(—z + iy) = 2P sin(pm) so that
du(x) = 7 sin(pm)zPde .

This yields the representation

—a? = —cos(pr/2) + Si“ff”) /O h tp( ! ! )dt. (2.6)

t+x 2+1




3 Quantum quasi-relative entropy

The notion of quantum quasi-relative entropy was introduced by Petz [27, 28] or [26, Chapter 7].
Let H be a finite-dimensional Hilbert space, and p and ¢ be states on ‘H (i.e. trace-one, positive
semi-definite operators). Note that notions and results in this paper can be formulated for von
Neumann algebras, as it was done in multiple references.

3.1 Definition. For an operator monotonically decreasing function f (which implies that f is
also operator convex), such that f(1) = 0, states p and o, and a bounded operator K on H, the
quasi-relative entropy is defined as

St (pllo) = Tr(y/PK" f(Aa)) K\/p),
where the modular operator, introduced by Araki [1],
Aup(X)=LaR5'(X) = AXB™
is a product of left and right multiplication operators, L4(X) = AX and Rp(X) = XB.

There is a straightforward way to calculate the quasi-relative entropy from the spectral decom-
position of states [41]. Let p and o have the following spectral decomposition

p—ZA [5) (s U—mebk (0]
Then the quasi-relative entropy is calculated as follows
i) =3 F(5) 1ot o (3.1)

3.2 Example. 1. For K = I, the quasi-relative entropy

Si(pllo) = Te(p"2 f(Aep)p'?),
is sometimes referred to as an f-divergence.

2. For —1 < p < 1 define a function

fo(x) = {mu —a?) p#0
—logx p=0

Note that from Example 2.8 the function is convex. The quasi-relative entropy for this
function

St (pllo) = Jp(K, p, o) == Tr(Vo K" g,(A,,) K\/0)
is the function .J, defined by Jencova and Ruskai in [15], here for 0 < p < 2 the function g,
is defined as
@) p#L
xlogx p=1

gpl(x) = xfrp(z7") = {
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3. In the above example, if p = 0 (i.e. f(z) = —logz) and K = I, we obtain the Umegaki
relative entropy [39]

St (pllo) = Ji(I, p,0) = S(p|lo) = Tr(plog p — plog o).
4. In example 2, the quasi-relative entropy can be calculated to be

Sg(pHa) = Tr(K*pK — K*o?Kp'™P) .

p(1—p)

This expression has the term Tr(K*o? K p' ™), concavity of which was proved by Lieb in [18]
with more general powers.

5. In the above example, taking ¢ = p and K* = K, results in

1

mTr[Kapp][K7pl_p] >0.

St (pllp) = —

Up to a constant, this is the Wigner-Yanase-Dyson p-skew information [43, 44], for p € (0, 1).

Now we state a few simple properties of quasi-relative entropy, some of which have been noted
before.

3.3 Proposition. The quasi-relative entropy scales as follows: for any constant c,
Sf (cpllca) = eSF (pllo) -
Proof. This following directly from the formula (3.1). O

3.4 Proposition. For a unitary U, and states p and o
SY(pllo) = SHUAU*||0) = SHpllU*aU).
Proof. 1f p and o have the following spectral decomposition
p=Y Nl (W], o= Ble) (¢4,
J J
then by [41]

ﬁA
FBep) =D f (A_D A6 (651w (b
7.k

Therefore, the quasi-relative entropy can be written as

7(ollo) = 31 (52) /RO 1) (6 UV o o) 32
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On the other hand, using the spectral decomposition of p and the fact that U is unitary, we obtain

SHUDUlo) = Te(UBU" F (A (U BU")) (33)

-y (f—) (U VAU 163) (65| UN/BUT 1) {4 U) (3.4

=507 () TEU I (0 U VB ) () 35)

= 57 (pllo). (3.6)

Similarly, SY (pl|o) = St(p||U*cU). O

3.5 Proposition. For a unitary U, and states p and o the quasi-relative entropy is non-negative
U
Sy (pllo) = 0.

Proof. Form the previous proposition it is evident that it is enough to consider U = [. Fix a basis
{l7) (4|}, of the Hilbert space H the states act on, and consider the map

O(w) = (ilwli) i) Gl

J

It is a Schwarz map, so from the monotonicity of the quasi-relative entropy (4.8), which we will
discuss in Section 4.1, we have

Si(pllo) = S5(2(p)]|(0)).

The last expression is the classical quasi-relative entropy, which is non-negative. O

3.6 Proposition. For a unitary U, and states p and o
S}](pHU) =0 if and only if p=U"oU.

Proof. According to Proposition 3.4, it is enough to consider U = I.
Then, one way: if p = o, then Sy(p, o) = 0 by definition, since f(1) = 0.
The other way: from the proof of last proposition,

0= Si(pllo) > SHP(p)[|(0)).
Therefore, for any basis {|j)};, ®(p) = ®(o), which implies that p = 0. O
A famous bound relating quantum relative entropy and trace distance between two quantum

states, called Pinsker inequality. The similar inequality holds for the quasi-relative entropy as
well, as was shown by Hiai and Mosonyi [14] for U = I.

3.7 Proposition. For an operator convez function f on (0,00) with f(1) =0, a unitary U, and
states p and o, the following holds

f//(l)
2

lp — U*aUll} < ¥ (pllo) -
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It’s worthwhile to point out that any inequality that holds in the classical case for probability
distributions, also holds in the quantum case between density operators. Let us show how to
obtain quantum inequality from the classical one. This relation can be found in many quantum
information books, e.g. [42], for relative entropies, i.e. when f(z) = —log(z). For a general
function f the proof is similar.

3.8 Lemma. If the following inequality holds for all probability distributions p and q:

SEplla) = F(llp — qllv),

for some function F', then for all states p and o the following holds as well

Si(pllo) = F(llp = ally) -

Proof. For an operator p — o consider its Jordan-Hahn decomposition
p—0= P — Q7

where P, ) > 0. Define a projector onto the image of P as I = Il;,p). Then, a measurement
with operators {II, I — IT} is a projective measurement. It holds that the trace distance between
states p and o equals to the L' distance between probability distributions

lp = ol = Te(P) + Tr(Q) = 2Te(P) = 2[Tr(Il(p — 0))| = [p = all,

where p = {Tr(Ilp), 1 — Tr(Ilp)}, ¢ = {Tr(Ilo), 1 — Tr(Ilo) } are probability ensembles.
For above II, define a quantum-to-classical channel as follows

P (w) = Tr(Ilw) |0) (0] + (1 — Tr(Ilw)) |1) (1].

Then from the monotonicity inequality for the quasi-relative entropy, and for above p and ¢, the
quantum quasi-relative entropy is lower bounded by the classical quasi-relative entropy

Si(pllo)= Sp(@(p)llp(o)) = ijf(pj‘lqj) = 57 (plla)-

Therefore, any inequality that holds between classical f-divergence and the L' distance, also holds
in the quantum case between quantum f-divergence and trace distance between two states. [

4 Monotonicity inequality

In this section we assume a bipartite Hilbert space H = H; ® H,. Two states p and o act on
this Hilbert space. Denote p; := Trep and similarly, oy = Tryo. Here we build on results in [9]
to provide a strengthening of the monotonicity inequality for quasi-relative entropies for a large
class of operators K.
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4.1 Review

For a regular relative entropy, i.e. S(p||o) = Tr[p(log p—1log )], Lindblad proved [22] the following
monotonicity inequality

4.1 Theorem (Monotonicity of relative entropy).
S(plle) = S(pillor) = 0. (4.1)

Lindblad showed that the monotonicity inequality (4.1) is equivalent to the joint convexity
of the relative entropy (p,o) — S(p||o), see Proposition 5.1, and this in turn is an immediate
consequence of Lieb’s Concavity Theorem [18], which was proved by Lieb and Ruskai [20], who
showed it to be equivalent to the Strong Subadditivity (SSA) of the von Neumann entropy, see
Theorem 6.1.

Note that the monotonicity inequality also holds for CPTP (completely-positive trace-preserving)
maps, not just a partial trace. This fact was proved by Lindblad [23] by using Stinesping’s Dialtion
Theorem [35] that relates general CPTP maps to a partial trace. Therefore, we will focus only on
partial traces, not general CPTP maps.

Petz has proved [29, 30] that for a relative entropy there is an equality in the monotonicity
inequality (4.1) if and only if both states p and o can be recovered perfectly. The recovery map
X, is known as Petz recovery map and is defined as Z, : B(H1) = B(H = H1 ® Ha2)

Ry(v) = p 2y Prypr V2 (4.2)

There has been several results that provide a lower bound in (4.8) other than zero [12, 16,
45, 46], but the lower bounds provided there involve quantities that are hard to compute, e.g.
rotated and twirled Petz recovery maps. For another fidelity type bound not explicitly involving
the recovery map, see [7, Theorem 2.2].

In 2017, Carlen and Vershynina [8] provided the following sharpening of the monotonicity
inequality )

S(pllo) = S(pallon) = () 18l 2llor o202 = 02 (4.3)

with || - ||2 denoting the Hilbert-Schmidt norm
|All2 := Tr(A*A). (4.4)

As a corollary they provided a bound that explicitly involves Petz’s recovery map:

m\4 _
S(pllo) = Sprllon) = (5) 180l 2 1%000) = ol (4.5)
and a4
S(ollo) = S(prllon) > () 180l lorll 2107 7211520 (1) = I} (4.6)
with || - ||; denoting the trace norm

Al == Tr[A]. (4.7)
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This is the first time when the original Petz recovery map # appeared in the lower bound of the
monotonicity or equivalent inequality.

For quasi-relative entropies Sff the monotonicity inequality holds for operators K such that
K = K; ® V; for a unitary V. This was explicitly proved by Sharma [34], building on the work of
Nielsen and Petz [25].

4.2 Theorem (Monotonicity of quasi-relative entropy, Sharma ’14). For every operator convex
function [ and operator K = K1 ® V', where V' is a unitary, we have

Sf (pllo) = S5 (pallon) = 0. (4.8)

In Section 4.3 we will recall the proof of this theorem, as we rely on it later.

In [9] Carlen and Vershynina, generalized their previous result (4.3) for f-divergences for regular
functions f, see Definition 2.6. In results below, assume that 7' > 0, 8 € (0, 1), and
(1) for B < 1/2, define T;,(B) := T and Tx(B) := T%/1=9);
(2) for B> 1/2, define Ty(3) := TU=A/% and Tr(B) :=T.
Moreover, define C% 5 to be the least positive constant such that dt < C’% gdpg(t) for t €
[T.(8)~', Tr(B)], noting that C’{ﬁﬂ > 0 since f is regular.

In [9] it is proved that under the above conditions for a regular operator monotone decreasing
function f the following holds

i LM (4.9)
LAy 1 . %
< 25+ e} e (e) " (ssllo) - sl @10

where

16 when 5 < 1/2

o1(f) = {1—5 when g > 1/2. 04 a2(f) =

2+ 525 when 8 < 1/2
5] when > 1/2.

Optimizing in T for functions, for which C% 5 scales as a power of T°, it was straightforward
to prove [9, Corollary 4.4] that there is a constant M, depending only on the smallest non-zero
eigenvalue of p, 8, C' and ¢, such that

oY 17 p? = P p 2P|z < M(Sg(pllo) = Sp(pallon))* (4.11)

where

B(1-8)
ol - { T s
2 T+ = :
Moreover, taking § = 1/2, for a constant M depending only on the smallest non-zero eigenvalue
of p, oy ||, B, C and ¢, we have

1

max{||Z,(01) = o1 , 1Zo(p1) = plli} < M(Ss(pllo) = Sy(pr]lon))i7e . (4.12)
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From this expression it is evident that the monotonicity inequality is saturated for a broad class
of operator monotone decreasing functions f, if and only if the Petz recovery map recovers both
states p and o perfectly well.

4.2 Monotonicity inequality
We generalize the result in [9] to include quasi-relative entropies with a large class of operators K.

4.3 Definition. For an operator monotone decreasing function f assume that 7> 0, 8 € (0, 1),
and

(1) for B < 1/2, define Ty, (B) := T and T(B3) := T#/(1=9);

(2) for B > 1/2, define T (B) := T=A/8 and Tr(B) := T.

Moreover, define C’:J;ﬁ to be the least positive constant such that dt < C{“,B dug(t) for t €
[T.(8)~1, Tr(B)], noting that C’% 5 > 0since f is regular. We will call such functions C’{;’B—r@gular.

4.4 Theorem. Let H = Hy, ® Ha, and let an operator K be such that K = K; ® V5, where V
1s a unitary operator. Let f be a C%’ﬁ-regular function. Then for any states p,o on H and any

Be€(0,1)

™

Rl Ko = PP, (4.13)
K| A, 1 i 1/2
< 2 (B0 Dol o v ()™ (5 Gllo) - s aulon) . (10

where

6] when B < 1/2

o1(f) = {1—5 when 3 > 1/2. and (f) =

# + 2(16—25) when B < 1/2
6] when 3 > 1/2.

The proof of this theorem is given in Section 4.3. Note that if K = I we arrive precisely at the
statement in [9], i.e. (4.9). Similarly, in order to optimize in 7" one would need more information
about the function f. For instance, when C% grows like a power of T', the optimization is very
straightforward. Using [9, Lemma 4.3], we obtain the following corollary:

4.5 Corollary. Let 5 € (0,1) and f be a C’%/B—regular function. Let K = Ky ® Vo with a unitary
V. Suppose that C%,,B < CT?* for some c,C > 0. Then there is an explicitly computable constant
M depending only on the smallest non-zero eigenvalue of p, B, ||K||, C and ¢, such that,

ot K pi P pt* = 0P K p' >y < M(SF (pllo) — SF (pr]|on))* @ (4.15)

where

B(1—B)
%1115 when > 1/2.

In particular, for 5 =1/2,

_ 1
oy 2K py 2 pM? — o' 2K |y < M(SE (pllor) — S5 (piloy)) T (4.16)
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Moreover, for § = 1/2 we can relate the expression Haiprl_l/Qpl/Q — 012K]||, with the one
involving Petz recovery map:

4.6 Corollary. Let f be a C%I/Q—Tegular function. Suppose that 0%1/2 < CT* for some c,C >
0. Then there is an explicitly computable constant M depending only on the smallest non-zero
eigenvalue of p, [|K||, C and c, such that,

12, (K oK) — Ko K|l < M(SF (pllo) = S5 (pallon)) 7059 (4.17)

Proof. In Lemma 2.2 in [8] take
X = ol e

and
Y =o'?K.

Since V' is unitary, K*o1 K = Ky01K; ® I. Therefore, we have that
_ 1 . .
lot*Kpy P2p1? = 0 PK 2 2 |1 Zp(K o ) — K*o K|,
where Z, is a Petz recovery map. O

Note that if K is invertible, we may interchange the roles of p and o:

4.7 Corollary. Let an invertible operator K be such that K = K; ® V', where V' is a unitary
operator. Let f be a C{,’l/z-regular function. Suppose that C{“,lﬂ < CT?* for some c,C > 0. Then
there is an explicitly computable constant M depending only on the smallest non-zero eigenvalue
of p, ||K||, C and ¢, such that,

Sl 2K K 7 (K7 k) K = pll < MOSE (pllo) = S (nllon) 755
(4.18)
Proof. Recalling L4 being a left multiplication operation,
Lp}/2LK,1LU;1/2(Ui/2Kp;1/2pl/2 _ 01/2[() = pl/? — p}/2K’101*1/201/2K 7
and hence

10" = o Koy 2o PRl < NIL el L 1 Lo oy Kopy 20" = 0Ky . (4.19)

Since ||Lp1/2|] = Hp1||1/2, ||LU_1/2H = Haf1||1/2, and || Lg-1|| = HK‘1|| we may combine (4.19) with
1 1
Theorem 4.4 to obtain

N e e R e (o e 4 P (4:20)
1 1/2 4
T2 () (SE(pllo) = S (oullon) ' + = (1Al +IKT) . (421)
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which is the analog of Theorem 4.4 with a drfferent constant on the right, but the roles of p and
o interchanged there. Note that since V' in unitary, K is invertible if and only if K; is. Moreover,
(KH) ' p Kt = (Kfl)_l ;1K' ® I. Then using Lemma 2.2 in [8] once more, we obtain

L 1 . 1y —1 _
04 = 2Kt o 2K = S (K7) ™ ki) K = gl

4.3 Proof

We are inspired by the proof of (4.9) in [9]. And for completeness sake we provide all statements
here as well. First, we recall Sharma’s proof [34] of the monotonicity of the quasi relative entropies
Sff for operator convex f and K = K; ® I, and modify it accordingly for K = K ® V, where V'
is unitary.

Proof of Theorem 4.2 (Sharma ’14). Define the operator U mapping on H = H; ® Hs by
UX) = (X, @V)p, 2p2 . (4.22)
The adjoint operator on H is given by
U(Y) = Tra(Y p (I, @ V*))py 2 (4.23)

for all Y on H.
Then note that U is an isometry on B(H;)

U(X0),UM)) =T (0202 (X5 @ V) (Vi @ V)p; 20 ?) (4:24)
— Ty (p <p;1/2XfY1*p;1/2 ® v*v)) (4.25)
() 20
= (X,,Y7) . (4.27)
Now observe that for all X; on H;,
U A U(X1) = Tra (0(Xop, 2 @ V) 207 0 2 (1 V) py 2 (4.28)
= Tr(o(Xip;' @ VVH)) (4.29)
= o X1p; " (4.30)
= Ay, (X)) (4.31)

By the operator Jensen inequality

FU*B,,U) < U F(A,,)U . (4.32)
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Combining (4.31) and (4.32), and using the fact that
U(Kipy?) = Kp'/?, (4.33)
we obtain
SEpilloy) = (Kip”, f(Doy ) (Klp%ﬁ))

<U (Klp}ﬂ) 7f(A0,p)U (K1P}/2>>
= (Ep'? f(Ae ) Kp"?) = SF(pllo) .

IN

This proves the monotonicity theorem for the quasi relative entropy Sff for every operator convex
function f and operator K = K; ® V for any unitary V. [

We will use [8, Lemma 2.1], the statement of which is the following:

4.8 Lemma (Carlen, Vershynina '17). Let U be a partial isometry embedding a Hilbert space K
into a Hilbert space H. Let B be an invertible positive operator on KC, A be an invertible positive
operator on H, and suppose that U*AU = B. Then for allv € IC,

(v, U*A7'Uv) = (v, B"') + (w, Aw) , (4.34)

where
w:=UB"—A"Uv . (4.35)

Proof of Theorem 4.4. For an operator monotone decreasing function f, according to the integral
representation (2.1) the quasi-relative entropy Sff can we written as

* * > t
SF(pllo) = —aTr(K*oK) — bTr(KpK™) +/0 (S(Kt)(pHa) “ B

LT ) ),

for a > 0 and b € R. Here

S (pllo) = Te(yBE* (11 + As,) K \/7).

Because Tr((K; @ V)A(K; @ V)*) = Tr(K1 A1 K,), it is clear that the difference between relative
entropies can be written in terms of the S()-family,

Sf (olle) = 55 (pulon) = [ (St5(ollo) = S5 nllow)) g0 (4:36)

We apply Lemma 4.8 with A := ({1 + A,,), B = (t1+ A,,,,) and v = Kipy/?, and with
U defined as above. The lemma’s condition, U*AU = B, follows from (4.31) and the fact that
U*U(X;) = X; for any X on H;.
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Therefore, applying Lemma 4.8 with (4.33),

SEllo) = Si (pillon) = (Kp? (11 + A, ) Kp! %) = (Kipy, (11 + A, ) Kapy?)
= (wy, (1 + Agp)wr) > t|wy)?, (4.37)

where,
wy := U(t1 + Am,m)_l(Klp}/z) — (11 + Av,p)_lel/z : (4.38)

Notice that by definition of U (4.22) and (4.33)
—w, = U — (114 Ay ) (Kipy) — [ — (11 + A, ,) K pY?
Since U is an isometry on B(H,),
] < 1[0 = (61 4+ Aoy )T TE )+ 11711 = (11 + A,) K P

Since the the modular operator is non-negative, 0 < t7'1 — (t1 + A,, ,,)~" < t7'1, with the
analogous estimate valid with A, , in place of A,, ,,, Therefore,

el < 267 K| (4.39)

Now using the integral representation of the power function (recall that 5 € (0,1))

Xﬁ:sinﬁﬂ/"otﬁ 11_; a,
7T 0 t t+ X

and (4.33) once more, we conclude that

sin Bw [°
U(Boy )P (K1pY2) — (AP K pH? = — ST / twdi (4.40)
0

™

On the other hand,

2 2— _
U(Do, ) (Kip®) = (B0p) Kp'? = Ulo{Kipy*™) = 0" Kp! />~
= alﬁKp1 p1/2 JBKp1/2_ﬁ.

Combining the last two equalities, and taking the Hilbert space norm associated with H, for

any 17, Tr > 0,
/ tPw,dt
0 2

. 1/Ty, Tr
Sin SlIl sm
5”/ 81wy |t + 5”/ 8wy ||t + 5”
™ 0 /Ty,

_ sin B
loy K py P p'* — oK p >0y =

(4.41)

/ tBw,dt
Tr

Let us look at these three terms separately. The first term can be bounded using (4.39):

vn VI 2]
0 0 BTy

2
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The third term in (4.41) can be bounded the following way: For any positive operator X > 0,

| | 1 1 81 X ||
b1 — )<= —  J1=_—_2014
! (t t+X)—t (t t+uxn> EIk

*° 1 1 Rl E 1 X |
(21— ——)ar<|x|° / —dt)1<—1
/T <t t+X> <Xl ( rx) L+t T (1-p)1s

Since spectra of o; and p; lie in the convex hulls of the spectra of o and p respectively, it follows

and hence

that ||Ag, p. || < [|Aspll. Therefore, recalling the definition of w,, we obtain
2l

‘ /TR 2 (1 - B) TIEE ’

The second term can be bounded using Cauchy-Schwartz inequality and the fact that f is
regular, i.e. there is a constant C’jfﬂL,TR such that dt < C{ﬂLﬁTRde(t) for t € [1/T,Tg].
Case 1: < 1/2.

Tr 2 Tr
(/ tﬁuwtnzdt) < Ty / £26 |y 20t
1/TL /TL

TRTh 2/3/ RERT
1/Ty,

(4.43)

IN

IN

Tr
Tt [ Sololle) - Sl
1/Ty,

Tr
< Tty [ Slolle) = S lerllon)dns 0
< TRTE P O, g (S5(0llo) = Splprllon) (1.44)

Therefore, combining (4.41), (4.42), (4.43), and (4.44) we have

2K 92,
” 'pr B 1/2 Kp1/275||2 < “ 5“ H ,p|1|_B
sin pTy  (1=0)Ty

- 1/2
TP () (S1Gpllo) = Sylpllon))

Taking T}, := T and Tg := TP/(=5) we obtain

T _
H‘71KP1 Pl/2 —UﬁKpl/Q 'BHZ

sin S

1K) 1A BRTERINYA 2
= 2( 6] + 1—[)6 Tﬂ+T o 5) (CTB> (Sf(P||U)_Sf(P1||01))1/
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Case 2: > 1/2.

Tg 2
( / tﬁnwtngdt)
115,

IN

Tr
TR/ 28 a2t
1

/Tr

Tr
7 [t
1

/Tr

IN

IN

Tr

< TECh, | (Sololle) = Sl sty
< TE L, 1 (S1(oll0) = S(rllon) (4.45)

Therefore, combining (4.41), (4.42), (4.43), and (4.45) we have

20K 2[Aq,ll

BT (1=3)Ty "

1/2
+17 (Chs) " (Sy(pllo) = Sy(prllon)

™

SmBWIIUprIBp”2 — o’ Kp'*P, <

Taking T}, := TU=A)/8 and Tk := T we obtain

™ _ _
sin 571'”0-/?1(/)1 ﬂ/)l/Q UBK:OUQ ﬁH2
< 2( 3 + 1_p3 T1-8 1’ (C{“,/f) (Sy(pllo) Sf(ﬂlHCTl))l/z-

4.4 Condition for equality

Corollary 4.5 and the proof of Theorem 4.4 give a condition on the equality in the monotonicity
inequality.

4.9 Corollary. Let f be a reqular function. The equality in the monotonicity inequality
S (pllo) = S5 (pallon) = 0, (4.46)
holds if and only if for all B € C the following holds:
o Kpi? =0PKpP, (4.47)

Proof. 1f the equality in the monotonicity inequality holds, then (4.47) holds for all 5 € (0,1)
following the Corollary 4.5. Since for any positive matrix X, the map 8 — X% is an entire
analytic function, this identity holds for all g € C.



22
The other way, suppose (4.47) holds for all § € C. Then from (4.41) in the proof of the
Theorem 4.4, we have that
V(B ) (Kipi) = (Do) Kpt2 =0
for all g € C. Let us use the following Taylor series expansion

1 — (=1
t+a 2 ¢+l

n=0

n

z" .

Then, using the above two equalities, we obtain that for all ¢ > 0,
we = U+ Agy ) (Kipt?) = (114 A, ) T Kp? =0 .

From (4.37) this implies that S(Kt) (pllo) — S{f)l(leal) = 0, and therefore, the (4.46) is satisfied,
following the integral representation (4.36).
0

5 Joint convexity of the quasi-relative entropy

As it was shown by Petz [26, 28] or [31, Theorem 2], the quasi relative entropy is jointly convex
in p and o. Here is another elegant proof of a joint convexity.

5.1 Proposition. For an operator monotone decreasing function f, and any operator K, quasi-
entropy Sff(pHa) is jointly convex in p,o > 0. In other words, for p = Zj p;p; and o = Zj Pi0j,

0<> p;Sf(psllos) — SF(pllo).
J
Moreover, the equality in the joint convexity holds if and only if

(Agp+tI) N (K) = (A, p, +tI)"H(K), for all j and for all t > 0.

Proof. Using (2.1) representation of operator monotone decreasing function, we obtain

o 1 t
K _ * * * *
Si(pllo) = —aTrK o K — bTrK Kp+/0 {Tr\/ﬁK Amp—l-t(K\/ﬁ) — t2+1TrK Kp} dps(t)
> 1
=—adltK'c K — bTTK*K TrpK*—(Kp) — TeK*Kppdus(t
aTrK"o r p+/0 {rp Lg+tRp( e p} iy (t)
o t
=—adltK'c K — Tt K*K TrpK* K) — TeK*Kp pdus(t).
oK VK Ky [ { ok 5 (00) = e TR K gt
(5.1)
The joint convexity follows immediately from that of the map (Y, A, B) — TrY*ﬁ(Y), which

was proved in [32].
Note that equality in the joint convexity holds if and only if it holds for the first term in the
integrand. [
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The next theorem uses monotonicity inequality in Theorem 4.4 and provides a strengthening
of the convexity inequality.

5.2 Theorem. Let H =H, ® Ho, B € (0,1), K € B(H). Let f be a C’%/B-Tegular function. Then
for states p =73 pjp; and o = 3. p;jo; (with p; >0 and ), p; =1), we have

1 1/2 1/2—
Zp/HUﬁKp Poi* = o] Kpi* s

sin Bﬂ

1/2

K 1 1
< 2<” 4, Zfﬂ_“ﬁpﬂ ”) Lo (c,)"” (ijsf (pjloy) — Sﬂpna)) (52)

where

B 6] when B < 1/2 B =8 55 when B < 1/2
0‘1(5)_{1—5 when § > 1/2. " 0‘2(6)_{ i 52(1 7 when B> 1/2.

Proof. Let us form the following quantum-classical states

pi=>_pip; @) (lx .

J

= pio; @ 17) (ly -

J

Sl

Then p; = p and 01 = 0, i.e.
S (pil[ar) = S5 (pllo).
Let us use (5.1) for the expression of the quasi-relative entropy. There we see that all but
one term are linear in p and o. For the term with the modular operator, note that for any

A=Y, 4,9 j) {jlx we have

Eﬁ Z Aa] pj ® |j> <J|X (53)

Since K = K ® Ix, we may apply this to a term in (5.1), and obtain

1 1
TrpoK* K)= T K'—(K) ;.
KK = T {or =00

Therefore, from (5.1)
Sf (pllo) ijsf (pillos).

Note that

12a5ll < I llllp™ I < 1l27H1 < D05 ey -
J
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Applying Theorem 4.4 will give us the right-hand side of (5.2). The left-hand side results from
the following identity

— —— (B — — — 1/2 — 1/2 1/2— . .
5 K7, P - Kpt P = p {JﬁKp P0)/? — oK p) ﬁ}®|]><J’X'
J

Taking the Hilbert-Schmidt norm (4.7) on both sides will result in the correct left-hand side. [

5.3 Corollary. Let § € (0,1) and f be a C’{ﬁﬁ—regular function. Suppose that C’{ﬁﬁ < CT?* for
some ¢,C > 0. Let p=73_;pjp; and o =3 _;pjo; (with p; >0 and >_;p; =1). Then there is an
explicitly computable constant M depending only on the smallest non-zero eigenvalues of {p;};,

K1, {pj_l}j7 B, C" and ¢, such that,

a(B)
> # MoK 0} — 07K Pl < M (ijSff (pillo) = SF <pllo>) 6
J

J
where

B(1-8
a(B) = {m when B < 1/2

11-8
317 when B > 1/2.

In particular, for f =1/2,

1/4(c+1)
2 — 1
St 1/2,0}/2—0/2K\|2§M(ijS?(pjlloj)—Sf@HO)) - 69)
j |

J

5.1 Condition for equality

From Corollary 4.9 and the proof of Theorem 5.2 we obtain the condition on the equality in the
joint convexity inequality.

5.4 Corollary. An equality in the joint convezity inequality
> piSE(pillos) = SF(pllo),
J

holds if and only if, for all j and all 5 € C

oPKpP = oprj*B .

6 Operator inequalities

In this section consider a tri-partite Hilbert space H = H4 ® Hp ® He. Let p = pape be a state
on H. Then the strong subadditivity of quantum entropy is the following statement:
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6.1 Theorem (Lieb, Ruskai '73). For papc a state on Hapc, it holds that

0 < S(pag) + S(psc) = S(pasc) = S(ps) - (6.1)

This theorem was proved by Lien and Ruskai [20], using Lieb’s theorem that was proved in
[18]. The theorem in a von Neumann algebra setting was done by Narnhofer and Thirring in [24].

Let 0 = 045 ® I be a state on H. Let f be an operator monotone decreasing function. In [33]
Rusaki, building on the work of Kim [17], showed that the following operator on H¢ is positive
semi-definite

0 S TI'AB ([f(LO'ABR;Ach) - f(LUBR;Bilc)]pABC) . (62)

In particular, taking oap = pap, and f(x) = —log(x), reduces to an operator inequality of Kim’s
[17]

0 < Trag[log pasc — log pap — log ppc + log pslpasc - (6.3)

We prove the following sharpening of (6.2) inequality.

6.2 Theorem. Let H = Ha @ Hp @ He, 5 € (0,1) and p = papc, 0 = 0ap @ Io. Let f be a
C’%/B—regular function. Suppose that C':];’ﬁ < CT? for some c,C > 0. Then there is an explicitly
computable positive constant N depending only on the smallest non-zero eigenvalue of p, ||K||, 5,
C and c, such that, the following operator inequality holds on Hc

N[TrAB(PABC(p> U)PZBC’<:07 U))]l/a(ﬁ) < Trap ([f(LUABR;Ach) - f(LUBR;BlCHPABC) . (64)

where

B —B 1/2 B 1/2—p
Papc(p, o) = OBPBcPABC — 9ABPABC

and

1-8
%1+C when 3 > 1/2.

p(1-8
a(B) = {m when B < 1/2

The proof of this theorem is given in Section 6.1. Note that since the left-hand side of (6.4) is
positive semi-definite on H¢, this theorem implies result in [33], i.e. (6.2).

In the proof of Theorem 6.2, if one takes papc = pap ® Ic and oapc (i.e. in (6.6)), we would
obtain

6.3 Theorem. Let H = Ha @ Hp @ He, B € (0,1) and p = pap ® I, capc be a state on H.
Let f be a C’%ﬂ—regular function. Suppose that C’{ﬂ’ﬁ < C'T* for some ¢,C > 0. Then there is an
explicitly computable positive constant N depending only on the smallest non-zero eigenvalue of p,
K|, 8, C and c, such that, the following operator inequality holds on He

N[Trap(QYpc(pas, 0apc)Qasc(pag, capc) P < Trap ([f(LaABcR;jQ - f(LchR;Bl)]PAB) :

where

o -8 1/2 1/2—-8
QABC’(pABa UABC) = aﬁcpgﬁpA/B - UﬁBcPA/B .
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Let us take the function f(z) = zf(1/x). By [4, Theorem V.2.9] this function is operator
monotone decreasing if and only if f is. Taking f instead of f in Theorem 6.2 and 6.3 and
interchanging the roles of p and o, leads to

6.4 Corollary. With the same conditions and notations as in Theorem 6.3, we have

N[Trap(Papc(o. p)Pipe(o, p))]V*? < Teap (panlf (L, )y Roanc) = F(LyyRosc)]) -

6.5 Corollary. With the same conditions and notations as in Theorem 6.2, we have

N([Trap(Q%pc(0aB, pasc)Qasc(dap, papc)]/*® < Trap (pABC[f(Lp_AlBCRUAB) - f(L;;CRaB)]) :

6.1 Proof

Proof of Theorem 6.2. We are inspired by the proof of Ruskai [33], which we provide in our case
in all detail for the completeness sake.

In the monotonicity inequality Corollary 4.5, let us consider p = papc, 0 = gapc, H1 = Hpc,
Ho :=Ha, and Kapc = 4 ® Kpc . Then (4.11) is equivalent to

1/2—/3”;/04(5) < SJ{(BC

- 1/2
NllopeKpcpperine — ohncKpopine (pasclloasc) — S5 (psellose) - (6.5)

Let us consider the difference on right-hand side in the above inequality.

D Z:S;(BC(PABCHUABC) — S,{(BC@BCHUBC)

= TrABC(p,l%l/B%CKng(AUABCyPABC)(KBCpi}/EC)) - TrABC(pgéKECf<AUBC7PBC)(KBCPIB/CQ‘))
= TrABC(KECf(AUABC,pABc)(KBCPABC>> - TrABC(Kgcf(AUBC,PBC)(KBCpBC» (6'6>

In the first equality we used the definition of the quasi-relative entropy and the fact that there
is no dependence on A in the second term. In the second equality we used the definition of the
modular operator Ay p = LAR;.

Consider a special case when c4pc = oap ® Io. Then

D = Trape(Kpof(Aoippise)(Kpopapc)) — Trape(Kpof(Dop pse) (Kpopse)) - (6.7)
Choose Kpe = Ip ® K¢. Then K = 45 ® K¢ commutes with capc = 04 ® Ic. Therefore,

D= TrABC(KE'KCf(AUAB“OABC)(pABC)) - TrABC(KéKCf<AUB»PBC)(ch)) :

Furthermore, take K¢ = |¢) (¢|- to be a projector onto a vector |¢). Then

D= <¢|C Tras (f(AUABypABC)<pABC> - f(AUB,PBC)(pBC)) ‘¢>C : (6'8>

Bringing this expression back into (6.5), we obtain

N0 16) (6le ppep{2e — 0 10) (0o p L2 1V E) <
(Bl Tras ([f (Doaponse) — FDopose)(pase)) [0)e - (6.9)
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Denoting

. B —B 1/2 8 1/2-8
Papc(p,o) = OpPBcPABC — 9ABPABC

we calculate the norm on the left-hand side by definition (4.7)

o 16) (Dle pperine — s |8) (0lo piac 2 = 1 16) (8l [ohpperine — ohppiac lla (6.10)
= Trapc(|¢) (¢|c Pasc(p, o) Pigc(p, o)) (6.11)
= (0l¢ [Tran(Pasc(p, 0) Pigelp, o)) |6)e - (6.12)

Therefore, we have for all |¢),

(0l [Trap(Papo(p, @) Pipc(p, )l 0)0 < (blo Tras ([f(Aouspanc) = [(Boppne)l(PaBo)) [9)o -

Since the above inequality holds for all |¢). in H¢, we have the following operator inequality

N[Tra(Papc(p, o) Pipe(p, o)V < Trap ([f(Loas R, o) — [(Lop R, ) (panc)) -

6.2 Condition for equality

From the proof above it is evident that in Theorems 6.2 and 6.3 and Corollaries 6.4 and 6.5 the
right-hand side is zero if and only if for all g € (0,1), Papc(p,0) = 0 or Qapc(p,0) = 0. Let us
take an example

6.6 Proposition. Let H = Ha Q@ Hp @ He, 5 € (0,1) and p = papc, 0 = oap @ Ic. Let f be a
C’%’ g-reqular function. The equality

TrAB(I:f<LUABR;jBC)pABC) = TrB(f(LUBR;Blc)]pBC) (613>

holds if and only if
oo = b ppabe,  forall B e (0,1) . (6.14)

Moreover, (6.13) is equivalent to the Petz’s recovery condition

4

PABC (JB) = 0AB - (6.15)

Proof. From Theorem 6.2, it is clear that if (6.13) is satisfied, the following holds
0 = TrAB(PABCPZBC)~

Then for all |¢) in He,
0 = Tr(PapcPipe |#) o (9le) -

The operator inside trace is positive semi-definite, since it can written as A*A for A = |¢) (¢|o Pasc-
Therefore, the operator itself is zero, i.e. for all |¢),

0=|¢)c (o Pasc -
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Since this holds for all |¢)., the operator Papc is zero, leading to the required (6.14). Taking
B =1/2, equality (6.14) leads to (6.15).

On the other side, if (6.14) is satisfied, it means that in particular, Petz’s recovery map recovers
both ppc and op perfectly, i.e. (6.15) holds. Therefore, by the equivalence of the recovery of both
states and the saturation of the monotonicity inequality, we have that D in (6.6) is zero, i.e. (6.13)
is satisfied. [

7 Logarithmic function

Let us take f(x) = —log(z) and K = I. We may explicitly calculate the power a(f). From
Example 2.7 we have that du(z) = da. Therefore, in Corollary 5.3 and Theorem 6.2 the constants
are: ¢c=0,C =1, and
B(1— ) when §<1/2
a(p) = :
(1—73)/2 when 3> 1/2.

Moreover, from [9, Corollary 5.1]

m(1-28+262)8 ﬁ 8 *% _1-28425% 1-284252 —2
N = ( sin B ) (HfjH + mD) 2B2 B(1-B) (W) when 5 < 1/2 7
(Wfigllﬁ_f)) o (%HKH +D> " om = ‘*ﬁ 2 when 5 > 1/2.

where D = ijglllpgl\] in Corollary 7.1 below, D = ||A, eppc.panc|l i Corollary 7.2, and
D = ||A,,|| in Corollary 7.3.

Taking K = [ in Corollary 5.3, we obtain the following sharpening of the joint convexity of
quantum relative entropy.

7.1 Corollary (Joint convexity). Let p =3 p;p; and o = 3 ;p;o; (withp; >0 and 3, p; =1).
With a(B) and N defined above, we have

1/a(8)
N (Zp}mllaﬁp Ppy? - afp§/2_ﬁHz> <> 2iS(pilloy) = S(pllo) - (7.1)
J J

In particular, for f =1/2,

4
1/2 —1/2 1/2 1/2
<Zp Pl 2020} — o ||2) <> 0iS(pllos) = S(pllo) - (7.2)
J
From the last inequality, we have that if the joint convexity is saturated, i.e.
> piS(pjlloy) = S(pllo),
J

then for all j and all 8 € (0,1)

o’ P =alp’
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From the sharpening of the monotonicity inequality, Corollary 4.6, or the previous result (4.11),
we obtain the sharpening of the strong subadditivity when taking ocapc = pap ® pc and tracing
out system A.

7.2 Corollary (Strong subadditivity). For p := papc a state on Hape and B € (0,1), it holds
that

Nog @ pf pgen™ — big @ pp* 21y “? < S(pas) + S(pse) — S(panc) — S(ps) -

In particular, for B = 1/2 the excplicit bound involving Petz’s recovery map holds

m\4, g
(5) 17717212008 © ) = pan @ polt < S(pas) + S(ose) = S(pasc) = S(pa) -

Moreover, it is clear that the equality in the strong subadditivity inequality holds if and only if
Petz’s map %, recovers state pap @ pc perfectly.

7.3 Corollary (Operator strong-subadditivity). Let H = Ha @ Hp @ He and 5 € (0,1). Let
papc be a state on H, and capc = 0ap ® Ic with o being a state on Ha @ Hp. With o(5) and
N defined above, the following results hold.

1. Theorem 6.2 leads to
N [Trap(P(pac, 0ap)P*(pasc, 0ap))]Y*? < Trapllog papc—log oap—log ppc+log oplpasc -
2. When Hpg is one-dimensional, this becomes
N [Tra(P*(pac,04) P(pac,aa))]*? < Tralog pac —logoa —log pclpac -
Note that P(pac,a4) = po’ piae — oapie -
3. And when o4 = iIA 15 a mazximally mized state,

N [Tra(P(pac, o4)P*(pac, 0.4)]V*@ < Tra[(log pac)pac — (1og po)pe] + log(da)pe

‘ —B 1/2 1/2—
with P(pac,0a) = pCﬁpA/C - épA/C ’.

4. Taking oap = pap n part 1, we obtain

N [Trap(P(pasc, pas)P*(pasc, pas))]*?) < Trapllog pape — log pap — log pse + log pslpasc

(7.3)

where

_ 1/2 1/2—
P(paBc, pap) = pBBpngA/BC - pinA/BCB
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5. In particular, taking Hp to be one-dimensional in the last inequality,

N [Tra(P(pa, pac)P*(pa; pac))] P < Tralog pac — log pa —log pelpac (7.4)

where

— 1/2 1/2—
P(pac,pa) = pd’pie — vhoie ™ .

6. Theorem 6.3 leads to

N [Trap(Q*(0aB, pac)Q(a, pasc))]*? < Trappap|—log papc+log o ap+log ppo—logop] .
(7.5)

7. When Hp is one-dimensional in the last inequality, we obtain
N [Tra(Q* (04, pac)Q(0a, pac)|V*? < Trapa[—log pac +logoa] + log pe .
8. Taking pap = oap in part 6, we obtain a stronger version of Kim’s inequality (6.3)
N [Trag(Q*(pag, panc)Q(pag, panc))]/*P) < Trappap|—log papc+log pap+log ppc—log pg) .
9. When Hpg is one-dimensional in the last inequality, we obtain

N [Tra(Q*(pa, pac)Q(pa, pac))V*P < Trapa[—log pac + log pa] +log pc .

8 Wigner-Yanase-Dyson-type inequalities

For p € (—1,2) and p # 0,1 let us take the function

1 D
fo() = p(l——p)(l — ),

which is operator convex. The quasi-relative entropy for this function is

Sg(pHa) = Tr(KpK* — K*o?Kp'™P) .

1
p(1=p)
From Proposition 3.7 we obtain the lower bound on the quasi-relative entropy in terms of the
trace distance.

8.1 Corollary (Pinsker inequality). For a unitary U, p € (—1,2) and p # 0,1 and states p and

o, we have
1

* — 1 *
m[l—Tr(U o?Up' )| 2 Sllp = UreUllt .
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Note that in the above inequality, as well in all below ones, it is important to leave the factor
1/p(1 — p) in place, as it changed sign at p = 0, 1.
For the power function f» we may explicitly calculate the power a (). Then from Example 2.8

sin(pm) ; #? dx, for p € (0,1). Therefore, in Corollary 6.5, we have

we have duf(z) = g

C_{ p/2 when 3 < 1/2
(1 p)/(28) when 5 >1/2.

and therefore,

a(B) = B(1—

26+p(1-p)
Moreover, from [9, Corollary 5.2] for § < 1/2, the constant N is defined as

s(-p
1+§)( ;3) when § <1/2
) - when > 1/2.

p(1— /3)+1 26+28% _ p(1-p)+1-28+25>

= (1Kl + 1= IIAapH) w2 (8.1)

sin(pm) (wﬁ(p(l —B)+1-25+ 2ﬁ2)> e (p(l —B)+1-28+ 262) -2
T (14 p(1 — 3))sin 7 2(1— ) ’

and for 5 > 1/2,
s o
_ - _28%+p(1-p)
Nz(jrww+mw@ S (8:2)

28+p(1

.www(ﬂl—m@m+ma—ﬁ»)ﬂww“(%ﬂ+M1—m)”
7w\ (26 +p(1— B))sinpr 2 -

Recall, from part 5 of Example 3.2, we have that the quasi-relative entropy is the Wigner-
Yanase-Dyson p-skew information I,(p, K) for K* = K, i.e.

1 1
2p(1—p)Tr[K’pp][K’p )= p(1—p)

St (pllp) = - L(p, K) .
It was conjectured by Wigner and Yanase in [44] that p-skew information I,(p, K) is concave as a
function of a density matrix p for a fixed p € (0,1). A more general expression

St (pllo) = Tr(KpK* — K*o?Kp'™?),

1
p(l=p)
shows that the concavity of WYD information follows from the joint concavity of the term
Tr(K*oPKp'™P), since the first term in the above expression is linear in p. The concavity of
this term was shown by Lieb [18] for powers of p and o that sum up to a number no greater than
one.

Using Corollary 5.3, we have the following strengthening of the joint concavity.
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8.2 Corollary (Joint concavity of WYD information). Let p € (—1,2) and p # 0,1, and p =
>_;pipj and o =3 i pjo; (with p; >0 and 3", p; =1). With a(B) and M defined above, we have

1/a(B)
, 1
N (Zp;/ZHaﬁKp'Bp;/Q — apr;/Q ﬁ]|2> < =7 (TrK*aprlp — ijTrK*oﬁ-?Kpjl-p> (8.3)

J J

In particular, for = 1/2,

4
1
N (Z py Pl K pT 2 pl — a;/QKHz) < 7 <TrK*apr1_p -3 pjTrK*aprj.—p> .
J J

(8.4)

From Theorem 6.3 we might obtain some interesting sharpening of the operator version of
Wigner-Yanase-Dyson inequalities. In [33] Ruskai showed that taking f, in the operator version
of SSA, with papc and o4 leads to

1 - 1
0< ———[~Trappamohp+Trppplohl .
p(l _ p)[ ABCY AB BC B]

From Corollary 6.5 we obtain the error term for the above difference:

8.3 Corollary (Operator version of WYD inequality). Let H = Ha @ Hp @ He, 5 € (0,1),
p € (—1,2), p# 0,1 and p = papc, 0 = odap ® Ic. For constants defined above, the following
operator inequality holds

N [Trap(Qpc(0as, pasc)Qasc(oas, papc)]/*? < ) [_TI'ABP,IL\_BPCO'ZB + TI"BIO}_—?_C?O-%} :

p(l—p
(8.5)

where

) —8 _1/2 38 1/2-8
Qapc(0aB, papc) = PBBCUB UA/B - PABCUA/B .

In particular, when Hp is one-dimensional, we have

1/a(8) <

N [Tra(Qac(oa, pac)Qac (04, pac)] S o=y

) [~Teapslol +pc”"] -

8.1 Cauchy-Schwartz inequality
In particular, taking p = 2 in f,, defined above, gives the following right-hand side in Corollary 8.3
Tean(0ipPanc — 98Ppc) = Trap(0anpapcoan) — Trp(opppeos) -
In [21] Lieb and Ruskai showed the positivity of the following operator
TraXicQaeXac > XeQo' Xe,

for any X 4 and positive semi-definite () 4c with ker Qac C ker X~
From Corollary 8.3 we obtain the following sharpening of the Cauchy-Schwarz inequality:
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8.4 Corollary. Let papc and 0 = oa5® 1c be two states on the Hilbert space H = HAQHpR@Hc.
Let g € (0,1). Then

N [Trap(Q%5e(0as, pac)Qapc(oan, papc)]/*? < Trap(oappipcoas) — Tre(0Bppeos) |

-8 _1/2 1/2—
where, recall, Qapc(oap, papc) = ,O%CO'BBO'A/B - piBCUA/B v

Moreover, the equality

Trap(capipcoas) = Trp(opppeos)

holds if and only if

pBBagg = pﬁBaggC, for all B € (0,1) .

In particular, for B = 1/2, it is equivalent to the Petz’s recovery condition
Ao (PBC) = PABC -

The reasoning for the equality condition if is similar to the one in Proposition 6.6.
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