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Abstract

We consider a quantum quasi-relative entropy SKf for an operator K and an operator

convex function f . We show how to obtain the error bounds for the monotonicity and joint

convexity inequalities from the recent results for the f -divergences (i.e. K = I). We also

provide an error term for a class of operator inequalities, that generalize operator strong

subadditivity inequality. We apply those results to demonstrate explicit bounds for the loga-

rithmic function, that leads to the quantum relative entropy, and the power function, which

gives, in particular, a Wigner-Yanase-Dyson skew information. In particular, we provide

the remainder terms for the strong subadditivity inequality, operator strong subadditivity

inequality, WYD-type inequalities, and the Cauchy-Schwartz inequality.
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1 Introduction

Quantum quasi-relative entropy was introduced by Petz [27, 28] as a quantum generalization of

a classical Csiszár’s f -divergence [10]. It is defined in the context of von Neumann algebras, but

we consider only the Hilbert space setup. Let H be a finite-dimensional Hilbert space, ρ and σ

be two states (given by density operators), K be an operator on H, and f : (0,∞) → R be an

operator convex function. Then the quasi-relative entropy is defined as

SKf (ρ||σ) = Tr(ρ1/2K∗f(∆σ,ρ)(Kρ
1.2)) ,

where ∆σ,ρ is a relative modular operator defined by Araki [1] that acts as a left and right multi-

plication

∆A,B(X) = LAR
−1
B (X) = AXB−1 .

The modular operator can be applied straightforward when ρ is invertible. When ρ is not invertible,

we take the generalized inverse of ρ and denote it as ρ−1 as well. The generalized inverse is defined

as follows: if
∑

(ρ) denotes the spectrum of ρ, and Pλ denotes the spectral projection corresponding

to the eigenvalue λ, then the generalized inverse ρ−1 :=
∑

λ∈
∑

(ρ)\{0} λ
−1Pλ.

Note that taking f(x) = − log(x) and K = I reduces quasi-relative entropy to the Umegaki

relative entropy [39],

S(ρ‖σ) = Tr(ρ[log ρ− log σ]) .

We consider several properties of the relative entropy and their analogue in the case of a

quasi-relative entropy.

Monotonicity of relative entropy. The most essential property of the relative entropy is the

monotonicity inequality (or data processing inequality). It states that the quasi-relative entropy

cannot increase after the states pass through a noisy quantum channel (i.e. a completely-positive,

trace-preserving map) N :

S(ρ‖σ) ≥ S(N (ρ)‖N (σ)) .

This inequality was proved by Lindblad [23], building on the work of Lieb and Ruskai [20]. Due

to a Stinespring factorization [35], the monotonicity inequality under any quantum channel, is

equivalent to the monotonicity inequality under partial traces, which will be used throughout the
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paper. Let H = H1 ⊗H2, and ρ and σ be two states on H. We denote the partial trace over the

second system as ρ1 := Trρ12, and others similarly. Then the monotonicity inequality states that

S(ρ‖σ) ≥ S(ρ1‖σ1) .

Petz [29, 30] provided a condition on states ρ and σ, for which the monotonicity inequality in

saturated. He showed that for a given quantum channel N , two states ρ and σ lead to equality

in the monotonicity relation if and only if the channel in noiseless for these states, i.e. the action

of the channel can be reversed. The reverse action is implemented by a certain recovery map R,

now called a Petz’s recovery map, which can be written explicitly for a given channel.

These results motivated the question of stability of the recovery map: if the decrease of rela-

tive entropy after states pass through a quantum channel is small, how well can these states be

recovered? Work on this question started following a breakthrough result by Fawzi and Renner in

2015 [12]. They proved that if the strong subadditivity inequality (SSA) (which is equivalent to

the monotonicity inequality) is nearly saturated, then quantum Markov chain condition, known

to be necessary and sufficient for equality in SSA [13], is also nearly satisfied, and they gave a

precise quantitative version of this stability result.

Further refinements of the monotonicity relation occurred later in, for example, [3, 5, 6, 16,

36, 37, 45, 46]. Most of these results involve some sort of a recovery channel in the lower bound,

and even though it often derived from, or related to, the Petz recovery map, it is in no case the

Petz map itself. The quantities provided in those lower bounds are hard to compute.

Recently, Carlen and Vershynina [8] proved a sharp stability result for the monotonicity in-

equality in terms of the original Petz recovery map:

S(ρ||σ)− S(ρ1||σ1) ≥
(π

8

)4

‖∆σ,ρ‖−2‖Rρ(σ1)− σ‖41 .

It is possible to obtain the lower bound in terms of recovery map Rσ, but the constant changes.

This bound makes it very easy to see the relation between the saturation of the monotonicity

inequality and the perfect recovery of both states.

Monotonicity of quasi-relative entropy. The monotonicity inequality for a quasi-relative

entropy SKf also holds, but for operators K of the a certain form. As mentioned before, considering

quantum channels is equivalent to considering only a partial trace channel. For operators K =

K ⊗ I we have

SK⊗I
f (ρ||σ) ≥ SKf (ρ1‖σ1) .

This statement was explicitly proved by Sharma [34], building on the work of Nielsen and Petz

[25]. The monotonicity can also be proved for operators K = K ⊗ V , where V is a unitary.

Sharma has also provided a condition on the equality, showing that the equality in the mono-

tonicity inequality holds if and only if, for all β ∈ C,

Tr(K∗σ1Kρ
1−β
1 −K∗σβKρ1−β) = 0 .

Building on their previous work, Carlen and Vershynina [9] also recently showed that for f -

divergences (i.e. K = I), the following sharpening of the monotonicity inequality holds: for a
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large class of functions f (that define a constant c), there is constant M depending only on the

smallest non-zero eigenvalue of ρ, ‖σ−1
1 ‖, β, and f , such that

max{‖Rρ(σ1)− σ‖1 , ‖Rσ(ρ1)− ρ‖1} ≤M(Sf (ρ||σ)− Sf (ρ1‖σ1))
1
4

1
1+c .

Similar to their previous bound, it is very easy to see here that if the monotonicity is saturated,

Petz’s map recovers both states perfectly. The other way is easily derived.

In fact, Carlen and Vershynina showed that even a stronger bound holds: for all β ∈ (0, 1),

and conditions above, there is a constant α(β) (that also depends on the function f) such that

‖σβ1 ρ−β1 ρ1/2 − σβρ1/2−β‖2 ≤M(Sf (ρ||σ)− Sf (ρ1‖σ1))α(β) .

This means that both: saturation of the monotonicity inequality and Petz’s recovery of both

states, is equivalent to the following condition:

for all β ∈ C : σβ1 ρ
−β
1 = σβρ−β .

We build on Carlen and Vershynina [9] work to improve the monotonicity result for quasi-

relative entropies with an operator K = K ⊗ V , where V is unitary. We show that with the same

conditions as above,

‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 ≤M(SKf (ρ||σ)− SKf (ρ1‖σ1))α(β) .

In particular, we obtain the bound in terms of the Petz’s recovery map

‖Rρ(K
∗
1σ1K1)−K∗σK‖1 ≤M(SKf (ρ||σ)− SK1

f (ρ1‖σ1))
1

4(1+c) .

Moreover, we show that the equality in the monotonicity inequality holds if and only if, for all

β ∈ C,

σβ1Kρ
−β
1 ρ1/2 = σβKρ1/2−β .

Strong subadditivity inequality. For a tri-partite state ρABC on a Hilbert space H =

HA ⊗HB ⊗HC , strong subadditivity inequality (SSA) states

0 ≤ S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) .

This theorem was proved by Lieb and Ruskai [20], using Lieb’s theorem that was proved in

[18]. Note that this inequality is equivalent to the monotonicity inequality: having monotonicity

inequality, to obtain the SSA inequality, one takes ρ = ρABC and σ = ρAB ⊗ ρC and a trace

over the system HA. Having SSA, one chooses ρABC to be block-diagonal, which implies that the

map ρ12 → Sρ1 − S(ρ12) is convex. Following Lieb and Ruskai [20], this yields the monotonicity

inequality.

We apply previous results in [8], to obtain the sharpening of the SSA: for any β ∈ (0, 1),

there are some constants N (depending on the minimal eigenvalue of ρABC , β and f) and α(β)

(depending on the function f) such that

N‖ρβB ⊗ ρβC ρ
−β
BCρ

1/2 − ρβAB ⊗ ρβCρ
1/2−β‖1/α(β)2 ≤ S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) .
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In particular we show that the equality in SSA holds if and only if Petz’s map R recovers the

reduced state perfectly:

Rρ(ρB ⊗ ρC) = ρAB ⊗ ρC .

Operator inequalities of the strong subadditivity type. In 2012 Kim [17] proved the

following operator version of the strong subadditivity inequality

0 ≤ TrABρABC [log ρABC − log ρAB − log ρBC + log ρB] .

Note that this inequality leads to the strong subadditivity inequality after taking the trace over

system HC .

Building on this work, Ruskai [33] provided a class of operator inequalities: for an operator

monotone decreasing function f ,

0 ≤ TrAB
(

[f(LσAB
R−1
ρABC

)− f(LσBR
−1
ρBC

)]ρABC
)

. (1.1)

We provide the error term for these inequalities of the type: for a large class of operator convex

functions f , there are some constants N (depending on the minimal eigenvalue of ρABC , β and f)

and α(β) (depending on the function f) such that

N [TrAB(PABC(ρ, σ)P
∗
ABC(ρ, σ))]

1/α(β) ≤ TrAB
(

[f(LσAB
R−1
ρABC

)− f(LσBR
−1
ρBC

)]ρABC
)

,

where

PABC(ρ, σ) := σβBρ
−β
BCρ

1/2
ABC − σβABρ

1/2−β
ABC .

Note that the left-hand side of this inequality is the operator on HC , as is the right-hand side.

Therefore, this inequality holds between operators on HC .

Moreover, we show that the equality in (1.1) holds if and only if, for all β ∈ (0, 1)

σβBρ
−β
BC = σβABρ

−β
ABC ,

which is in turn equivalent to the recovery condition

RρABC
(σB) = σAB .

Additionally, by taking f to be a power function, Ruskai [33] showed that (1.1) leads to

0 ≤ 1

p(1− p)
[−TrABρ

1−p
ABCσ

p
AB + TrBρ

1−p
BC σ

p
B] ,

where p ∈ (−1, 2). We apply our results to show the operator strengthening of this inequality:

N [TrAB(Q
∗
ABC(σAB, ρABC)QABC(σAB, ρABC)]

1/α(β) ≤ 1

p(1− p)

[

−TrABρ
1−p
ABCσ

p
AB + TrBρ

1−p
BC σ

p
B

]

,

where

QABC(σAB, ρABC) := ρβBCσ
−β
B σ

1/2
AB − ρβABCσ

1/2−β
AB .
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Joint convexity of the relative entropy. It was noted by Lindblad [22] and Ulhmann [38],

the relative entropy is jointly convex, i.e., if ρ =
∑

j pjρj and σ =
∑

j pjσj (with
∑

j pj = 1 and

pj ≥ 0), then

0 ≤
∑

j

pjS
K(ρj‖σj)− SK(ρ‖σ) .

This inequality is also equivalent to the monotonicity inequality: having monotonicity inequal-

ity, one chooses both ρ and σ to be block-diagonal, which immediately leads to the joint convexity

(see Section 5). One the other hand, having the joint convexity inequality, Araki and Lieb [2, 19]

used a purification process to show that on the set of pure states (the extreme points of the set of

density matrices) the SSA holds with equality.

Joint convexity of the quasi-relative entropy. If was shown by Petz [26, 28] or [31,

Theorem 2] that the quasi relative entropy is jointly convex in ρ and σ:

0 ≤
∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ).

Using our strengthening of the monotonicity inequality, we obtain the error term for the joint

convexity inequality: for a large class of operator convex functions f , and any β ∈ (0, 1), there

are some constants M and α(β) (see above for the dependence), the following holds

∑

j

p
1/2
j ‖σβKρ−βρ1/2j − σβjKρ

1/2−β
j ‖2 ≤M

(

∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ)

)α(β)

.

Moreover, we show that the equality in the joint convexity inequality holds if and only if, for all

j and all β ∈ C,

σβKρ−β = σβjKρ
−β
j .

We apply these results to show the error term in the concavity inequality of the term Tr(K∗σpKρ1−p).

The concavity of this term was shown by Lieb [18] for powers of ρ and σ that sum up to a number

no greater than one.

Structure of the paper. In the next Section 2 we review known results for the operator

monotone functions, in particular its integral representation. In Section 3 we introduce the quan-

tum quasi-relative entropy and present few simples, but important facts about it. In Section 4

we review the previous strengthening of the monotonicity inequality for relative entropy and f -

divergences, and present the error term for the quasi-relative entropy, with the condition for the

equality. In Section 5 we apply the strengthening of the monotonicity inequality established in

the previous section to the joint convexity inequality and provide the condition for the equality

as well. In Section 6 we provide the error term for a class of operator inequalities established by

Ruskai [33] with the condition for equality. In Section 7 we apply all previous results to obtain

new inequalities for the relative entropy by taking the function f(x) = − log(x) and K = I.

In particular, we obtain the error terms for the joint convexity inequality, strong subadditivity

inequality, and the operator strong subadditivity inequalities. In Section 8 we apply previous

results to the power function. The quasi-relative entropy for the power functions gives a term
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Tr(K∗σpKρ1−p), concavity of which leads to the concavity of the Wigner-Yanase-Dyson p-skew

information. In particular, we provide a Pinsker inequality for such a term, and the error terms

for the joint concavity and the operator version of WYD inequalities. At the end, we apply these

results to show the error term for the operator Cauchy-Schwartz inequality.

2 Operator monotone functions

2.1 Definition. A function f : (a, b) → R is operator monotone if for any pair of self-adjoint

operators A and B on some Hilbert space that have spectrum in (a, b), the operator

f(A)− f(B) ≥ 0

is positive semidefinite whenever A − B ≥ 0 is positive semidefinite. We say that f is operator

monotone decreasing on (a, b) in case −f is operator monotone.

2.2 Definition. A function f is operator concave on the positive operators, when for all positive

semidefinite operators A and B, and all λ in (0, 1),

f((1− λ)A+ λB))− (1− λ)f(A)− λf(B) ≥ 0

is positive semidefinite. A function f is operator convex when −f is operator concave.

2.3 Theorem (Bhatia ’97 ). [4, Theorem V.2.5] Every continuous function f mapping [0,∞)

into itself is operator monotone if and only if it is operator concave.

2.4 Definition. A Pick function is a function f that is analytic on the upper half plane and has

a positive imaginary part. The set of Pick functions on (a, b) is denoted as P(a,b).

2.5 Theorem (Löwner ’34). [4, Theorem V.4.7] A function f on (a, b) is operator monotone if

and only if f is a restriction of a pick function f ∈ P(a,b) to (a, b).

According to [11, Chapter II, Theorem I] every operator monotone decreasing function f (i.e.

−f ∈ P(0,∞)) has a canonical integral representation

f(x) = ax+b−
∫ ∞

0

(

1

t+ x
− t

t2 + 1

)

dµf (t) , (2.1)

where a ≤ 0, b ∈ R and µ is a positive measure on (0,∞) such that

∫ ∞

0

1

t2 + 1
dµf (t) <∞.

Conversely, every such function is operator monotone decreasing.

The following formulas [11, Chapter II, p. 24] determine a, b and µ corresponding to f .

a = lim
y↑∞

f(iy)

iy
and b = Re (f(i)) . (2.2)

Define the monotone increasing function µ(x) := 1
2
µ({x})+µ((−∞, x)), then according to [11,

Chapter II, Lemma 2] we have that

µ(x1)− µ(x0) = lim
y↓0

1

π

∫ x1

x0

Im f(−x+ iy)dx . (2.3)
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2.6 Definition. A operator monotone function f is regular in case the measure µ in the canonical

integral representation of f is absolutely continuous with respect to Lebesgue measure, and for

each S, T > 0, there is a finite constant Cf
S,T such that

dt ≤ Cf
S,Tdµ(t) (2.4)

on the interval [1/S, T ]. An operator monotone decreasing function is regular if and only if −f is

regular.

2.7 Example. Let f(x) = − log(x). It is operator monotone decreasing. Then

b = Re (log(i)) = 0 ,

and

a = lim
y↑∞

log(iy)/(iy) = lim
y↑∞

(log y + iπ/2)/(iy) = 0 .

It is clear from (2.3) that

dµ(x) =
1

π
lim
y↓0

Im log(−x+ iy)dx = dx .

Then the integral representation (2.1) gives the following formula for the logarithmic function

− log x =

∫ ∞

0

(

1

t+ x
− t

t2 + 1

)

dt . (2.5)

2.8 Example. Let f(x) = xp, where p ∈ R. Then by [4, Theorem V.2.10] the function f is

1. operator monotone if and only if p ∈ [0, 1];

2. operator convex if and only if p ∈ [−1, 0] ∪ [1, 2];

Consider the power function f(x) = −xp for p ∈ (0, 1). It is operator monotone decreasing. Then

a = lim
y↑∞

f(iy)/(iy) = 0 , and b = cos(pπ/2) .

For x > 0, limy↓0 Im f(−x+ iy) = xp sin(pπ) so that

dµ(x) = π−1 sin(pπ)xpdx .

This yields the representation

−xp = −cos(pπ/2) +
sin(pπ)

π

∫ ∞

0

tp
(

1

t+ x
− t

t2 + 1

)

dt . (2.6)
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3 Quantum quasi-relative entropy

The notion of quantum quasi-relative entropy was introduced by Petz [27, 28] or [26, Chapter 7].

Let H be a finite-dimensional Hilbert space, and ρ and σ be states on H (i.e. trace-one, positive

semi-definite operators). Note that notions and results in this paper can be formulated for von

Neumann algebras, as it was done in multiple references.

3.1 Definition. For an operator monotonically decreasing function f (which implies that f is

also operator convex), such that f(1) = 0, states ρ and σ, and a bounded operator K on H, the

quasi-relative entropy is defined as

SKf (ρ||σ) = Tr(
√
ρK∗f(∆σ,ρ)K

√
ρ),

where the modular operator, introduced by Araki [1],

∆A,B(X) = LAR
−1
B (X) = AXB−1

is a product of left and right multiplication operators, LA(X) = AX and RB(X) = XB.

There is a straightforward way to calculate the quasi-relative entropy from the spectral decom-

position of states [41]. Let ρ and σ have the following spectral decomposition

ρ =
∑

j

λj |ψj〉 〈ψj| , σ =
∑

k

µk |φk〉 〈φk| .

Then the quasi-relative entropy is calculated as follows

SKf (ρ||σ) =
∑

j,k

λjf

(

µk
λj

)

| 〈φk|K |ψj〉 |2. (3.1)

3.2 Example. 1. For K = I, the quasi-relative entropy

Sf (ρ||σ) = Tr(ρ1/2f(∆σ,ρ)ρ
1/2),

is sometimes referred to as an f -divergence.

2. For −1 ≤ p < 1 define a function

fp(x) :=

{

1
p(1−p)

(1− xp) p 6= 0

− log x p = 0
.

Note that from Example 2.8 the function is convex. The quasi-relative entropy for this

function

SK
∗

f1−p
(ρ||σ) = Jp(K, ρ, σ) := Tr(

√
σK∗gp(∆ρ,σ)K

√
σ)

is the function Jp defined by Jencova and Ruskai in [15], here for 0 < p ≤ 2 the function gp
is defined as

gp(x) := xf1−p(x
−1) =

{

1
p(1−p)

(x− xp) p 6= 1

x log x p = 1
.
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3. In the above example, if p = 0 (i.e. f(x) = − log x) and K = I, we obtain the Umegaki

relative entropy [39]

SIf0(ρ||σ) = J1(I, ρ, σ) = S(ρ||σ) = Tr(ρ log ρ− ρ log σ).

4. In example 2, the quasi-relative entropy can be calculated to be

SKfp(ρ||σ) =
1

p(1− p)
Tr(K∗ρK −K∗σpKρ1−p) .

This expression has the term Tr(K∗σpKρ1−p), concavity of which was proved by Lieb in [18]

with more general powers.

5. In the above example, taking σ = ρ and K∗ = K, results in

SKfp(ρ||ρ) = − 1

2p(1− p)
Tr[K, ρp][K, ρ1−p] ≥ 0 .

Up to a constant, this is the Wigner-Yanase-Dyson p-skew information [43, 44], for p ∈ (0, 1).

Now we state a few simple properties of quasi-relative entropy, some of which have been noted

before.

3.3 Proposition. The quasi-relative entropy scales as follows: for any constant c,

SKf (cρ‖cσ) = cSKf (ρ‖σ) .

Proof. This following directly from the formula (3.1).

3.4 Proposition. For a unitary U , and states ρ and σ

SUf (ρ||σ) = SIf (UρU
∗||σ) = SIf (ρ||U∗σU).

Proof. If ρ and σ have the following spectral decomposition

ρ =
∑

j

λj |ψj〉 〈ψj| , σ =
∑

j

βj |φj〉 〈φj| ,

then by [41]

f(∆σ,ρ) =
∑

j,k

f

(

βj
λk

)

∆|φj〉〈φj |,|ψk〉〈ψk|.

Therefore, the quasi-relative entropy can be written as

SUf (ρ||σ) =
∑

j,k

f

(

βj
λk

)

Tr(
√
ρU∗ |φj〉 〈φj|U

√
ρ |ψk〉 〈ψk|). (3.2)
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On the other hand, using the spectral decomposition of ρ and the fact that U is unitary, we obtain

SIf (UρU
∗||σ) = Tr(U

√
ρU∗f(∆σ,UρU∗)(U

√
ρU∗)) (3.3)

=
∑

j,k

f

(

βj
λk

)

Tr(U
√
ρU∗ |φj〉 〈φj|U

√
ρU∗U |ψk〉 〈ψk|U∗) (3.4)

=
∑

j,k

f

(

βj
λk

)

Tr(
√
ρU∗ |φj〉 〈φj|U

√
ρ |ψk〉 〈ψk|) (3.5)

= SUf (ρ||σ). (3.6)

Similarly, SUf (ρ||σ) = SIf (ρ||U∗σU).

3.5 Proposition. For a unitary U , and states ρ and σ the quasi-relative entropy is non-negative

SUf (ρ||σ) ≥ 0.

Proof. Form the previous proposition it is evident that it is enough to consider U = I. Fix a basis

{|j〉 〈j|}j of the Hilbert space H the states act on, and consider the map

Φ(ω) =
∑

j

〈j|ω |j〉 |j〉 〈j| .

It is a Schwarz map, so from the monotonicity of the quasi-relative entropy (4.8), which we will

discuss in Section 4.1, we have

SIf (ρ||σ) ≥ SIf (Φ(ρ)||Φ(σ)).
The last expression is the classical quasi-relative entropy, which is non-negative.

3.6 Proposition. For a unitary U , and states ρ and σ

SUf (ρ||σ) = 0 if and only if ρ = U∗σU.

Proof. According to Proposition 3.4, it is enough to consider U = I.

Then, one way: if ρ = σ, then Sf (ρ, σ) = 0 by definition, since f(1) = 0.

The other way: from the proof of last proposition,

0 = SIf (ρ||σ) ≥ SIf (Φ(ρ)||Φ(σ)).

Therefore, for any basis {|j〉}j, Φ(ρ) = Φ(σ), which implies that ρ = σ.

A famous bound relating quantum relative entropy and trace distance between two quantum

states, called Pinsker inequality. The similar inequality holds for the quasi-relative entropy as

well, as was shown by Hiai and Mosonyi [14] for U = I.

3.7 Proposition. For an operator convex function f on (0,∞) with f(1) = 0, a unitary U , and

states ρ and σ, the following holds

f ′′(1)

2
‖ρ− U∗σU‖21 ≤ SUf (ρ‖σ) .
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It’s worthwhile to point out that any inequality that holds in the classical case for probability

distributions, also holds in the quantum case between density operators. Let us show how to

obtain quantum inequality from the classical one. This relation can be found in many quantum

information books, e.g. [42], for relative entropies, i.e. when f(x) = − log(x). For a general

function f the proof is similar.

3.8 Lemma. If the following inequality holds for all probability distributions p and q:

Sclf (p‖q) ≥ F (‖p− q‖1),

for some function F , then for all states ρ and σ the following holds as well

Sf (ρ‖σ) ≥ F (‖ρ− σ‖1) .

Proof. For an operator ρ− σ consider its Jordan-Hahn decomposition

ρ− σ = P −Q,

where P,Q > 0. Define a projector onto the image of P as Π = Πim(P ). Then, a measurement

with operators {Π, I − Π} is a projective measurement. It holds that the trace distance between

states ρ and σ equals to the L1 distance between probability distributions

‖ρ− σ‖1 = Tr(P ) + Tr(Q) = 2Tr(P ) = 2|Tr(Π(ρ− σ))| = ‖p− q‖1,

where p = {Tr(Πρ), 1− Tr(Πρ)}, q = {Tr(Πσ), 1− Tr(Πσ)} are probability ensembles.

For above Π, define a quantum-to-classical channel as follows

Φ(ω) = Tr(Πω) |0〉 〈0|+ (1− Tr(Πω)) |1〉 〈1| .

Then from the monotonicity inequality for the quasi-relative entropy, and for above p and q, the

quantum quasi-relative entropy is lower bounded by the classical quasi-relative entropy

Sf (ρ‖σ)≥ Sf (Φ(ρ)‖ρ(σ)) =
∑

j

pjf(p
−1
j qj) = Sclf (p‖q).

Therefore, any inequality that holds between classical f -divergence and the L1 distance, also holds

in the quantum case between quantum f -divergence and trace distance between two states.

4 Monotonicity inequality

In this section we assume a bipartite Hilbert space H = H1 ⊗ H2. Two states ρ and σ act on

this Hilbert space. Denote ρ1 := Tr2ρ and similarly, σ1 = Tr2σ. Here we build on results in [9]

to provide a strengthening of the monotonicity inequality for quasi-relative entropies for a large

class of operators K.
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4.1 Review

For a regular relative entropy, i.e. S(ρ‖σ) = Tr[ρ(log ρ− log σ)], Lindblad proved [22] the following

monotonicity inequality

4.1 Theorem (Monotonicity of relative entropy).

S(ρ||σ)− S(ρ1||σ1) ≥ 0. (4.1)

Lindblad showed that the monotonicity inequality (4.1) is equivalent to the joint convexity

of the relative entropy (ρ, σ) 7→ S(ρ||σ), see Proposition 5.1, and this in turn is an immediate

consequence of Lieb’s Concavity Theorem [18], which was proved by Lieb and Ruskai [20], who

showed it to be equivalent to the Strong Subadditivity (SSA) of the von Neumann entropy, see

Theorem 6.1.

Note that the monotonicity inequality also holds for CPTP (completely-positive trace-preserving)

maps, not just a partial trace. This fact was proved by Lindblad [23] by using Stinesping’s Dialtion

Theorem [35] that relates general CPTP maps to a partial trace. Therefore, we will focus only on

partial traces, not general CPTP maps.

Petz has proved [29, 30] that for a relative entropy there is an equality in the monotonicity

inequality (4.1) if and only if both states ρ and σ can be recovered perfectly. The recovery map

Rρ is known as Petz recovery map and is defined as Rρ : B(H1) → B(H = H1 ⊗H2)

Rρ(γ) = ρ1/2ρ
−1/2
1 γρ

−1/2
1 ρ1/2 . (4.2)

There has been several results that provide a lower bound in (4.8) other than zero [12, 16,

45, 46], but the lower bounds provided there involve quantities that are hard to compute, e.g.

rotated and twirled Petz recovery maps. For another fidelity type bound not explicitly involving

the recovery map, see [7, Theorem 2.2].

In 2017, Carlen and Vershynina [8] provided the following sharpening of the monotonicity

inequality

S(ρ||σ)− S(ρ1||σ1) ≥
(π

4

)4

‖∆σ,ρ‖−2‖σ1/2
1 ρ

−1/2
1 ρ1/2 − σ1/2‖42 , (4.3)

with ‖ · ‖2 denoting the Hilbert-Schmidt norm

‖A‖2 := Tr(A∗A). (4.4)

As a corollary they provided a bound that explicitly involves Petz’s recovery map:

S(ρ||σ)− S(ρ1||σ1) ≥
(π

8

)4

‖∆σ,ρ‖−2‖Rρ(σ1)− σ‖41 , (4.5)

and

S(ρ||σ)− S(ρ1||σ1) ≥
(π

8

)4

‖∆σ,ρ‖−2‖ρ1‖−2‖σ−1
1 ‖−2‖Rσ(ρ1)− ρ‖41 , (4.6)

with ‖ · ‖1 denoting the trace norm

‖A‖1 := Tr|A|. (4.7)
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This is the first time when the original Petz recovery map R appeared in the lower bound of the

monotonicity or equivalent inequality.

For quasi-relative entropies SKf the monotonicity inequality holds for operators K such that

K = K1 ⊗ V2 for a unitary V . This was explicitly proved by Sharma [34], building on the work of

Nielsen and Petz [25].

4.2 Theorem (Monotonicity of quasi-relative entropy, Sharma ’14). For every operator convex

function f and operator K = K1 ⊗ V , where V is a unitary, we have

SKf (ρ||σ)− SK1
f (ρ1||σ1) ≥ 0. (4.8)

In Section 4.3 we will recall the proof of this theorem, as we rely on it later.

In [9] Carlen and Vershynina, generalized their previous result (4.3) for f -divergences for regular

functions f , see Definition 2.6. In results below, assume that T > 0, β ∈ (0, 1), and

(1) for β ≤ 1/2, define TL(β) := T and TR(β) := T β/(1−β);

(2) for β ≥ 1/2, define TL(β) := T (1−β)/β and TR(β) := T .

Moreover, define Cf
T,β to be the least positive constant such that dt ≤ Cf

T,β dµf (t) for t ∈
[TL(β)

−1, TR(β)], noting that Cf
T,β > 0 since f is regular.

In [9] it is proved that under the above conditions for a regular operator monotone decreasing

function f the following holds

π

sin βπ
‖σβ1 ρ−β1 ρ1/2 − σβρ1/2−β‖2 (4.9)

≤ 2

(

1

β
+

‖∆σ,ρ‖
1− β

)

1

T α1(β)
+ T α2(β)

(

Cf
T,β

)1/2

(Sf (ρ||σ)− Sf (ρ1‖σ1))1/2 . (4.10)

where

α1(β) =

{

β when β ≤ 1/2

1− β when β ≥ 1/2.
and α2(β) =

{

1−β
2

+ β2

2(1−β)
when β ≤ 1/2

β when β ≥ 1/2.

Optimizing in T for functions, for which Cf
T,β scales as a power of T c, it was straightforward

to prove [9, Corollary 4.4] that there is a constant M , depending only on the smallest non-zero

eigenvalue of ρ, β, C and c, such that

‖σβ1 ρ−β1 ρ1/2 − σβρ1/2−β‖2 ≤M(Sf (ρ||σ)− Sf (ρ1‖σ1))α(β) , (4.11)

where

α(β) =

{

β(1−β)
1+2c(1−β)

when β ≤ 1/2
1
2
1−β
1+c

when β ≥ 1/2.

Moreover, taking β = 1/2, for a constant M depending only on the smallest non-zero eigenvalue

of ρ, ‖σ−1
1 ‖, β, C and c, we have

max{‖Rρ(σ1)− σ‖1 , ‖Rσ(ρ1)− ρ‖1} ≤M(Sf (ρ||σ)− Sf (ρ1‖σ1))
1
4

1
1+c . (4.12)
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From this expression it is evident that the monotonicity inequality is saturated for a broad class

of operator monotone decreasing functions f , if and only if the Petz recovery map recovers both

states ρ and σ perfectly well.

4.2 Monotonicity inequality

We generalize the result in [9] to include quasi-relative entropies with a large class of operators K.

4.3 Definition. For an operator monotone decreasing function f assume that T > 0, β ∈ (0, 1),

and

(1) for β ≤ 1/2, define TL(β) := T and TR(β) := T β/(1−β);

(2) for β ≥ 1/2, define TL(β) := T (1−β)/β and TR(β) := T .

Moreover, define Cf
T,β to be the least positive constant such that dt ≤ Cf

T,β dµf (t) for t ∈
[TL(β)

−1, TR(β)], noting that Cf
T,β > 0 since f is regular. We will call such functions Cf

T,β-regular.

4.4 Theorem. Let H = H1 ⊗ H2, and let an operator K be such that K = K1 ⊗ V2, where V

is a unitary operator. Let f be a Cf
T,β-regular function. Then for any states ρ, σ on H and any

β ∈ (0, 1)

π

sin βπ
‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 (4.13)

≤ 2

(‖K‖
β

+
‖∆σ,ρ‖
1− β

)

1

T α1(β)
+ T α2(β)

(

Cf
T,β

)1/2

(SKf (ρ||σ)− SK1
f (ρ1‖σ1))1/2 . (4.14)

where

α1(β) =

{

β when β ≤ 1/2

1− β when β ≥ 1/2.
and α2(β) =

{

1−β
2

+ β2

2(1−β)
when β ≤ 1/2

β when β ≥ 1/2.

The proof of this theorem is given in Section 4.3. Note that if K = I we arrive precisely at the

statement in [9], i.e. (4.9). Similarly, in order to optimize in T one would need more information

about the function f . For instance, when Cf
T grows like a power of T , the optimization is very

straightforward. Using [9, Lemma 4.3], we obtain the following corollary:

4.5 Corollary. Let β ∈ (0, 1) and f be a Cf
T,β-regular function. Let K = K1 ⊗ V2 with a unitary

V . Suppose that Cf
T,β ≤ C T 2c for some c, C > 0. Then there is an explicitly computable constant

M depending only on the smallest non-zero eigenvalue of ρ, β, ‖K‖, C and c, such that,

‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 ≤M(SKf (ρ||σ)− SK1
f (ρ1‖σ1))α(β) , (4.15)

where

α(β) =

{

β(1−β)
1+2c(1−β)

when β ≤ 1/2
1
2
1−β
1+c

when β ≥ 1/2.

In particular, for β = 1/2,

‖σ1/2
1 Kρ

−1/2
1 ρ1/2 − σ1/2K‖2 ≤M(SKf (ρ||σ)− SK1

f (ρ1‖σ1))
1

4(1+c) . (4.16)
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Moreover, for β = 1/2 we can relate the expression ‖σ1/2
1 Kρ

−1/2
1 ρ1/2 − σ1/2K‖2 with the one

involving Petz recovery map:

4.6 Corollary. Let f be a Cf
T,1/2-regular function. Suppose that Cf

T,1/2 ≤ C T 2c for some c, C >

0. Then there is an explicitly computable constant M depending only on the smallest non-zero

eigenvalue of ρ, ‖K‖, C and c, such that,

‖Rρ(K
∗
1σ1K1)−K∗σK‖1 ≤M(SKf (ρ||σ)− SK1

f (ρ1‖σ1))
1

4(1+c) . (4.17)

Proof. In Lemma 2.2 in [8] take

X = σ
1/2
1 Kρ

−1/2
1 ρ1/2

and

Y = σ1/2K.

Since V is unitary, K∗σ1K = K1σ1K1 ⊗ I. Therefore, we have that

‖σ1/2
1 Kρ

−1/2
1 ρ1/2 − σ1/2K‖2 ≥

1

2
‖Rρ(K

∗
1σ1K1)−K∗σK‖1,

where Rρ is a Petz recovery map.

Note that if K is invertible, we may interchange the roles of ρ and σ:

4.7 Corollary. Let an invertible operator K be such that K = K1 ⊗ V , where V is a unitary

operator. Let f be a Cf
T,1/2-regular function. Suppose that Cf

T,1/2 ≤ C T 2c for some c, C > 0. Then

there is an explicitly computable constant M depending only on the smallest non-zero eigenvalue

of ρ, ‖K‖, C and c, such that,

1

2
‖ρ1‖−1/2‖K−1‖−1‖K∗

Rσ

(

(

K−1
1

)−1
ρ1K

−1
1

)

K − ρ‖1 ≤M(SKf (ρ||σ)− SK1
f (ρ1‖σ1))

1
4(1+c) .

(4.18)

Proof. Recalling LA being a left multiplication operation,

L
ρ
1/2
1
LK−1Lσ−1/2

1
(σ

1/2
1 Kρ

−1/2
1 ρ1/2 − σ1/2K) = ρ1/2 − ρ

1/2
1 K−1σ

−1/2
1 σ1/2K ,

and hence

‖ρ1/2 − ρ
1/2
1 K−1σ

−1/2
1 σ1/2K‖2 ≤ ‖L

ρ
1/2
1

‖‖LK−1‖‖L
σ
−1/2
1

‖‖σ1/2
1 Kρ

−1/2
1 ρ1/2 − σ1/2K‖2 . (4.19)

Since ‖L
ρ
1/2
1

‖ = ‖ρ1‖1/2, ‖Lσ−1/2
1

‖ = ‖σ−1
1 ‖1/2, and ‖LK−1‖ = ‖K−1‖ we may combine (4.19) with

Theorem 4.4 to obtain

‖ρ1‖−1/2‖K−1‖−1‖σ−1
1 ‖1/2‖ρ1/2 − ρ

1/2
1 K−1σ

−1/2
1 σ1/2K‖2 ≤ (4.20)

1

π
T 1/2

(

Cf
T

)1/2

(SKf (ρ||σ)− SK1
f (ρ1||σ1))1/2 +

4

πT 1/2
(‖∆σ,ρ‖+ ‖K‖) . (4.21)
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which is the analog of Theorem 4.4 with a drfferent constant on the right, but the roles of ρ and

σ interchanged there. Note that since V in unitary, K is invertible if and only if K1 is. Moreover,

(K−1)
−1
ρ1K

−1 =
(

K−1
1

)−1
ρ1K

−1
1 ⊗ I. Then using Lemma 2.2 in [8] once more, we obtain

‖ρ1/2 − ρ
1/2
1 K−1σ

−1/2
1 σ1/2K‖2 ≥

1

2
‖K∗

Rσ

(

(

K−1
1

)−1
ρ1K

−1
1

)

K − ρ‖1.

4.3 Proof

We are inspired by the proof of (4.9) in [9]. And for completeness sake we provide all statements

here as well. First, we recall Sharma’s proof [34] of the monotonicity of the quasi relative entropies

SKf for operator convex f and K = K1 ⊗ I2, and modify it accordingly for K = K ⊗ V , where V

is unitary.

Proof of Theorem 4.2 (Sharma ’14). Define the operator U mapping on H = H1 ⊗H2 by

U(X) = (X1 ⊗ V )ρ
−1/2
1 ρ1/2 . (4.22)

The adjoint operator on H is given by

U∗(Y ) = Tr2(Y ρ
1/2(I1 ⊗ V ∗))ρ

−1/2
1 (4.23)

for all Y on H.

Then note that U is an isometry on B(H1)

〈U(X1), U(Y1)〉 = Tr
(

ρ1/2ρ
1/2
1 (X∗

1 ⊗ V ∗)(Y1 ⊗ V )ρ
−1/2
1 ρ1/2

)

(4.24)

= Tr
(

ρ
(

ρ
−1/2
1 X∗

1Y
∗
1 ρ

−1/2
1 ⊗ V ∗V

))

(4.25)

= Tr
(

ρ
1/2
1 X∗

1Y
∗
1 ρ

−1/2
1

)

(4.26)

= 〈X1, Y1〉 . (4.27)

Now observe that for all X1 on H1,

U∗∆σ,ρU(X1) = Tr2

(

σ(X1ρ
−1/2
1 ⊗ V )ρ1/2ρ−1ρ1/2(I ⊗ V ∗)ρ

−1/2
1

)

(4.28)

= Tr(σ(X1ρ
−1
1 ⊗ V V ∗)) (4.29)

= σ1X1ρ
−1
1 (4.30)

= ∆σ1,ρ1(X1). (4.31)

By the operator Jensen inequality

f (U∗∆σ,ρU) ≤ U∗f(∆σ,ρ)U . (4.32)
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Combining (4.31) and (4.32), and using the fact that

U(K1ρ
1/2
1 ) = Kρ1/2, (4.33)

we obtain

SK1
f (ρ1||σ1) = 〈K1ρ

1/2
1 , f(∆σ1,ρ1)

(

K1ρ
1/2
1

)

〉

≤
〈

U
(

K1ρ
1/2
1

)

, f(∆σ,ρ)U
(

K1ρ
1/2
1

)〉

=
〈

Kρ1/2, f(∆σ,ρ)Kρ
1/2
〉

= SKf (ρ||σ) .

This proves the monotonicity theorem for the quasi relative entropy SKf for every operator convex

function f and operator K = K1 ⊗ V for any unitary V .

We will use [8, Lemma 2.1], the statement of which is the following:

4.8 Lemma (Carlen, Vershynina ’17). Let U be a partial isometry embedding a Hilbert space K
into a Hilbert space H. Let B be an invertible positive operator on K, A be an invertible positive

operator on H, and suppose that U∗AU = B. Then for all v ∈ K,

〈v, U∗A−1Uv〉 = 〈v, B−1v〉+ 〈w,Aw〉 , (4.34)

where

w := UB−1v − A−1Uv . (4.35)

Proof of Theorem 4.4. For an operator monotone decreasing function f , according to the integral

representation (2.1) the quasi-relative entropy SKf can we written as

SKf (ρ‖σ) = −aTr(K∗σK)− bTr(KρK∗) +

∫ ∞

0

(

SK(t)(ρ||σ)−
t

t2 + 1
Tr(K∗Kρ)

)

dµf (t) ,

for a ≥ 0 and b ∈ R. Here

SK(t)(ρ||σ) = Tr(
√
ρK∗(t1+∆σ,ρ)

−1K
√
ρ).

Because Tr((K1 ⊗ V )A(K1 ⊗ V )∗) = Tr(K1A1K1), it is clear that the difference between relative

entropies can be written in terms of the S(t)-family,

SKf (ρ‖σ)− SK1
f (ρ1‖σ1) =

∫ ∞

0

(

SK(t)(ρ||σ)− SK1

(t) (ρ1||σ1)
)

dµf (t) . (4.36)

We apply Lemma 4.8 with A := (t1 + ∆σ,ρ), B = (t1 + ∆σ1,ρ1) and v := K1ρ
1/2
1 , and with

U defined as above. The lemma’s condition, U∗AU = B, follows from (4.31) and the fact that

U∗U(X1) = X1 for any X1 on H1.
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Therefore, applying Lemma 4.8 with (4.33),

SK(t)(ρ||σ)− SK1

(t) (ρ1||σ1) = 〈Kρ1/2, (t1+∆σ,ρ)
−1Kρ1/2〉 − 〈K1ρ

1/2
1 , (t1+∆σ1,ρ1)

−1K1ρ
1/2
1 〉

= 〈wt, (t1+∆σ,ρ)wt〉 ≥ t‖wt‖2, (4.37)

where,

wt := U(t1+∆σ1,ρ1)
−1(K1ρ

1/2
1 )− (t1+∆σ,ρ)

−1Kρ1/2 . (4.38)

Notice that by definition of U (4.22) and (4.33)

−wt = U [t−11− (t1+∆σ1,ρ1)
−1](K1ρ

1/2
1 )− [t−11− (t1+∆σ,ρ)

−1]Kρ1/2 .

Since U is an isometry on B(H1),

‖wt‖ ≤ ‖[t−11− (t1+∆σ1,ρ1)
−1](K1ρ

1/2
1 )‖+ ‖[t−11− (t1+∆σ,ρ)

−1]Kρ1/2‖ .

Since the the modular operator is non-negative, 0 ≤ t−11 − (t1 + ∆σ1,ρ1)
−1 ≤ t−11, with the

analogous estimate valid with ∆σ,ρ in place of ∆σ1,ρ1 , Therefore,

‖wt‖ ≤ 2t−1‖K‖ . (4.39)

Now using the integral representation of the power function (recall that β ∈ (0, 1))

Xβ =
sin βπ

π

∫ ∞

0

tβ
(

1

t
1− 1

t+X

)

dt,

and (4.33) once more, we conclude that

U(∆σ1,ρ1)
β(K1ρ

1/2
1 )− (∆σ,ρ)

βKρ1/2 = −sin βπ

π

∫ ∞

0

tβwtdt . (4.40)

On the other hand,

U(∆σ1,ρ1)
β(K1ρ

1/2
1 )− (∆σ,ρ)

βKρ1/2 = U(σβ1K1ρ
1/2−β
1 )− σβKρ1/2−β

= σβ1Kρ
−β
1 ρ1/2 − σβKρ1/2−β .

Combining the last two equalities, and taking the Hilbert space norm associated with H, for

any TL, TR > 0,

‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 =
sin βπ

π

∥

∥

∥

∥

∫ ∞

0

tβwtdt

∥

∥

∥

∥

2

≤ sin βπ

π

∫ 1/TL

0

tβ‖wt‖2dt+
sin βπ

π

∫ TR

1/TL

tβ‖wt‖2dt+
sin βπ

π

∥

∥

∥

∥

∫ ∞

TR

tβwtdt

∥

∥

∥

∥

2

. (4.41)

Let us look at these three terms separately. The first term can be bounded using (4.39):

∫ 1/TL

0

tβ‖wt‖2dt ≤ 2

∫ 1/TL

0

tβ−1dt =
2

β

‖K‖
T βL

. (4.42)
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The third term in (4.41) can be bounded the following way: For any positive operator X > 0,

tβ
(

1

t
1− 1

t+X

)

≤ tβ
(

1

t
− 1

t+ ‖X‖

)

1 =
tβ−1‖X‖
(t+ ‖X‖)1,

and hence
∫ ∞

T

tβ
(

1

t
1− 1

t+X

)

dt ≤ ‖X‖β
(
∫ ∞

T/‖X‖

tβ−1

1 + t
dt

)

1 ≤ ‖X‖
(1− β)T 1−β

1 .

Since spectra of σ1 and ρ1 lie in the convex hulls of the spectra of σ and ρ respectively, it follows

that ‖∆σ1,ρ1‖ ≤ ‖∆σ,ρ‖. Therefore, recalling the definition of wt, we obtain

∥

∥

∥

∥

∫ ∞

TR

tβwtdt

∥

∥

∥

∥

2

≤ 2‖∆σ,ρ‖
(1− β)T 1−β

R

. (4.43)

The second term can be bounded using Cauchy-Schwartz inequality and the fact that f is

regular, i.e. there is a constant Cf
TL,TR

such that dt ≤ Cf
TL,TR

dµf (t) for t ∈ [1/TL, TR].

Case 1: β ≤ 1/2.

(
∫ TR

1/TL

tβ‖wt‖2dt
)2

≤ TR

∫ TR

1/TL

t2β‖wt‖22dt

≤ TRT
1−2β
L

∫ TR

1/TL

t‖wt‖22dt

≤ TRT
1−2β
L

∫ TR

1/TL

S(t)(ρ||σ)− S(t)(ρ1‖σ1)dt

≤ TRT
1−2β
L Cf

TL,TR

∫ TR

1/TL

S(t)(ρ||σ)− S(t)(ρ1‖σ1)dµf (t)

≤ TRT
1−2β
L Cf

TL,TR
(Sf (ρ||σ)− Sf (ρ1‖σ1)) . (4.44)

Therefore, combining (4.41), (4.42), (4.43), and (4.44) we have

π

sin βπ
‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 ≤ 2‖K‖

βT βL
+

2‖∆σ,ρ‖
(1− β)T 1−β

R

+T
1/2
R T

1/2−β
L

(

Cf
TL,TR

)1/2

(Sf (ρ||σ)− Sf (ρ1‖σ1))1/2 .

Taking TL := T and TR := T β/(1−β) we obtain

π

sin βπ
‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2

≤ 2

(‖K‖
β

+
‖∆σ,ρ‖
1− β

)

1

T β
+ T

1−β
2

+ β2

2(1−β)

(

Cf
T,β

)1/2

(Sf (ρ||σ)− Sf (ρ1‖σ1))1/2 .
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Case 2: β > 1/2.

(
∫ TR

1/TL

tβ‖wt‖2dt
)2

≤ TR

∫ TR

1/TL

t2β‖wt‖22dt

≤ T 2β
R

∫ TR

1/TL

t‖wt‖22dt

≤ T 2β
R

∫ TR

1/TL

(S(t)(ρ||σ)− S(t)(ρ1‖σ1))dt

≤ T 2β
R Cf

TL,TR

∫ T

1/TL

(S(t)(ρ||σ)− S(t)(ρ1‖σ1))dµf (t)

≤ T 2β
R Cf

TL,TR
(Sf (ρ||σ)− Sf (ρ1‖σ1)) . (4.45)

Therefore, combining (4.41), (4.42), (4.43), and (4.45) we have

π

sin βπ
‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2 ≤ 2‖K‖

βT βL
+

2‖∆σ,ρ‖
(1− β)T 1−β

R

+T βR

(

Cf
T,β

)1/2

(Sf (ρ||σ)− Sf (ρ1‖σ1))1/2 .

Taking TL := T (1−β)/β and TR := T we obtain

π

sin βπ
‖σβ1Kρ−β1 ρ1/2 − σβKρ1/2−β‖2

≤ 2

(‖K‖
β

+
‖∆σ,ρ‖
1− β

)

1

T 1−β
+ T β

(

Cf
T,β

)1/2

(Sf (ρ||σ)− Sf (ρ1‖σ1))1/2 .

4.4 Condition for equality

Corollary 4.5 and the proof of Theorem 4.4 give a condition on the equality in the monotonicity

inequality.

4.9 Corollary. Let f be a regular function. The equality in the monotonicity inequality

SKf (ρ||σ)− SK1
f (ρ1‖σ1) = 0, (4.46)

holds if and only if for all β ∈ C the following holds:

σβ1Kρ
−β
1 = σβKρ−β. (4.47)

Proof. If the equality in the monotonicity inequality holds, then (4.47) holds for all β ∈ (0, 1)

following the Corollary 4.5. Since for any positive matrix X, the map β → Xβ is an entire

analytic function, this identity holds for all β ∈ C.
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The other way, suppose (4.47) holds for all β ∈ C. Then from (4.41) in the proof of the

Theorem 4.4, we have that

U(∆σ1,ρ1)
β(K1ρ

1/2
1 )− (∆σ,ρ)

βKρ1/2 = 0 ,

for all β ∈ C. Let us use the following Taylor series expansion

1

t+ x
=

∞
∑

n=0

(−1)n

tn+1
xn .

Then, using the above two equalities, we obtain that for all t ≥ 0,

wt = U(t1+∆σ1,ρ1)
−1(K1ρ

1/2
1 )− (t1+∆σ,ρ)

−1Kρ1/2 = 0 .

From (4.37) this implies that SK(t)(ρ||σ) − SK1

(t) (ρ1||σ1) = 0, and therefore, the (4.46) is satisfied,

following the integral representation (4.36).

5 Joint convexity of the quasi-relative entropy

As it was shown by Petz [26, 28] or [31, Theorem 2], the quasi relative entropy is jointly convex

in ρ and σ. Here is another elegant proof of a joint convexity.

5.1 Proposition. For an operator monotone decreasing function f , and any operator K, quasi-

entropy SKf (ρ‖σ) is jointly convex in ρ, σ > 0. In other words, for ρ =
∑

j pjρj and σ =
∑

j pjσj,

0 ≤
∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ).

Moreover, the equality in the joint convexity holds if and only if

(∆σ,ρ + tI)−1(K) = (∆σj ,ρj + tI)−1(K), for all j and for all t > 0.

Proof. Using (2.1) representation of operator monotone decreasing function, we obtain

SKf (ρ‖σ) =− aTrK∗σK − bTrK∗Kρ+

∫ ∞

0

{

Tr
√
ρK∗ 1

∆σ,ρ + t
(K

√
ρ)− t

t2 + 1
TrK∗Kρ

}

dµf (t)

=− aTrK∗σK − bTrK∗Kρ+

∫ ∞

0

{

TrρK∗ 1

Lσ + tRρ

(Kρ)− t

t2 + 1
TrK∗Kρ

}

dµf (t)

=− aTrK∗σK − bTrK∗Kρ+

∫ ∞

0

{

TrρK∗ 1

∆σ,ρ + t
(K)− t

t2 + 1
TrK∗Kρ

}

dµf (t).

(5.1)

The joint convexity follows immediately from that of the map (Y,A,B) → TrY ∗ 1
LB+tRA

(Y ), which

was proved in [32].

Note that equality in the joint convexity holds if and only if it holds for the first term in the

integrand.
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The next theorem uses monotonicity inequality in Theorem 4.4 and provides a strengthening

of the convexity inequality.

5.2 Theorem. Let H = H1 ⊗H2, β ∈ (0, 1), K ∈ B(H). Let f be a Cf
T,β-regular function. Then

for states ρ =
∑

j pjρj and σ =
∑

j pjσj (with pj > 0 and
∑

j pj = 1), we have

π

sin βπ

∑

j

p
1/2
j ‖σβKρ−βρ1/2j − σβjKρ

1/2−β
j ‖2

≤ 2

(

‖K‖
β

+

∑

j p
−1
j ‖ρ−1

j ‖
1− β

)

1

T α1(β)
+ T α2(β)

(

Cf
T,β

)1/2
(

∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ)

)1/2

,(5.2)

where

α1(β) =

{

β when β ≤ 1/2

1− β when β ≥ 1/2.
and α2(β) =

{

1−β
2

+ β2

2(1−β)
when β ≤ 1/2

β when β ≥ 1/2.

Proof. Let us form the following quantum-classical states

ρ :=
∑

j

pjρj ⊗ |j〉 〈j|X ,

σ :=
∑

j

pjσj ⊗ |j〉 〈j|X .

Then ρ1 = ρ and σ1 = σ, i.e.

SKf (ρ1‖σ1) = SKf (ρ‖σ).
Let us use (5.1) for the expression of the quasi-relative entropy. There we see that all but

one term are linear in ρ and σ. For the term with the modular operator, note that for any

A =
∑

j Aj ⊗ |j〉 〈j|X we have

∆σ,ρ(A) =
∑

j

∆σj ,ρj(Aj)⊗ |j〉 〈j|X . (5.3)

Since K = K ⊗ IX , we may apply this to a term in (5.1), and obtain

TrρK∗ 1

∆σ,ρ + t
(K) =

∑

j

pjTr

{

ρK∗ 1

∆σj ,ρj + t
(K)

}

.

Therefore, from (5.1)

SKf (ρ‖σ) =
∑

j

pjS
K
f (ρj‖σj).

Note that

‖∆σ,ρ‖ ≤ ‖σ‖‖ρ−1‖ ≤ ‖ρ−1‖ ≤
∑

j

p−1
j ‖ρ−1

j ‖.



24

Applying Theorem 4.4 will give us the right-hand side of (5.2). The left-hand side results from

the following identity

σβ1Kρ
−β
1 ρ1/2 − σβKρ1/2−β =

∑

j

p
1/2
j

{

σβKρ−βρ
1/2
j − σβjKρ

1/2−β
j

}

⊗ |j〉 〈j|X .

Taking the Hilbert-Schmidt norm (4.7) on both sides will result in the correct left-hand side.

5.3 Corollary. Let β ∈ (0, 1) and f be a Cf
T,β-regular function. Suppose that Cf

T,β ≤ C T 2c for

some c, C > 0. Let ρ =
∑

j pjρj and σ =
∑

j pjσj (with pj > 0 and
∑

j pj = 1). Then there is an

explicitly computable constant M depending only on the smallest non-zero eigenvalues of {ρj}j,
‖K‖, {p−1

j }j, β, C and c, such that,

∑

j

p
1/2
j ‖σβKρ−βρ1/2j − σβjKρ

1/2−β
j ‖2 ≤M

(

∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ)

)α(β)

, (5.4)

where

α(β) =

{

β(1−β)
1+2c(1−β)

when β ≤ 1/2
1
2
1−β
1+c

when β ≥ 1/2.

In particular, for β = 1/2,

∑

j

p
1/2
j ‖σ1/2Kρ−1/2ρ

1/2
j − σ

1/2
j K‖2 ≤M

(

∑

j

pjS
K
f (ρj‖σj)− SKf (ρ‖σ)

)1/4(c+1)

. (5.5)

5.1 Condition for equality

From Corollary 4.9 and the proof of Theorem 5.2 we obtain the condition on the equality in the

joint convexity inequality.

5.4 Corollary. An equality in the joint convexity inequality

∑

j

pjS
K
f (ρj‖σj) = SKf (ρ‖σ),

holds if and only if, for all j and all β ∈ C

σβKρ−β = σβjKρ
−β
j .

6 Operator inequalities

In this section consider a tri-partite Hilbert space H = HA ⊗HB ⊗HC . Let ρ = ρABC be a state

on H. Then the strong subadditivity of quantum entropy is the following statement:
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6.1 Theorem (Lieb, Ruskai ’73). For ρABC a state on HABC, it holds that

0 ≤ S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) . (6.1)

This theorem was proved by Lien and Ruskai [20], using Lieb’s theorem that was proved in

[18]. The theorem in a von Neumann algebra setting was done by Narnhofer and Thirring in [24].

Let σ = σAB⊗ IC be a state on H. Let f be an operator monotone decreasing function. In [33]

Rusaki, building on the work of Kim [17], showed that the following operator on HC is positive

semi-definite

0 ≤ TrAB
(

[f(LσAB
R−1
ρABC

)− f(LσBR
−1
ρBC

)]ρABC
)

. (6.2)

In particular, taking σAB = ρAB, and f(x) = − log(x), reduces to an operator inequality of Kim’s

[17]

0 ≤ TrAB[log ρABC − log ρAB − log ρBC + log ρB]ρABC . (6.3)

We prove the following sharpening of (6.2) inequality.

6.2 Theorem. Let H = HA ⊗ HB ⊗ HC, β ∈ (0, 1) and ρ = ρABC, σ = σAB ⊗ IC. Let f be a

Cf
T,β-regular function. Suppose that Cf

T,β ≤ C T 2c for some c, C > 0. Then there is an explicitly

computable positive constant N depending only on the smallest non-zero eigenvalue of ρ, ‖K‖, β,
C and c, such that, the following operator inequality holds on HC

N [TrAB(PABC(ρ, σ)P
∗
ABC(ρ, σ))]

1/α(β) ≤ TrAB
(

[f(LσAB
R−1
ρABC

)− f(LσBR
−1
ρBC

)]ρABC
)

. (6.4)

where

PABC(ρ, σ) := σβBρ
−β
BCρ

1/2
ABC − σβABρ

1/2−β
ABC ,

and

α(β) =

{

β(1−β)
1+2c(1−β)

when β ≤ 1/2
1
2
1−β
1+c

when β ≥ 1/2.

The proof of this theorem is given in Section 6.1. Note that since the left-hand side of (6.4) is

positive semi-definite on HC , this theorem implies result in [33], i.e. (6.2).

In the proof of Theorem 6.2, if one takes ρABC = ρAB ⊗ IC and σABC (i.e. in (6.6)), we would

obtain

6.3 Theorem. Let H = HA ⊗ HB ⊗ HC, β ∈ (0, 1) and ρ = ρAB ⊗ IC, σABC be a state on H.

Let f be a Cf
T,β-regular function. Suppose that Cf

T,β ≤ C T 2c for some c, C > 0. Then there is an

explicitly computable positive constant N depending only on the smallest non-zero eigenvalue of ρ,

‖K‖, β, C and c, such that, the following operator inequality holds on HC

N [TrAB(Q
∗
ABC(ρAB, σABC)QABC(ρAB, σABC)]

1/α(β) ≤ TrAB
(

[f(LσABC
R−1
ρAB

)− f(LσBC
R−1
ρB
)]ρAB

)

,

where

QABC(ρAB, σABC) := σβBCρ
−β
B ρ

1/2
AB − σβABCρ

1/2−β
AB .
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Let us take the function f̃(x) = xf(1/x). By [4, Theorem V.2.9] this function is operator

monotone decreasing if and only if f is. Taking f̃ instead of f in Theorem 6.2 and 6.3 and

interchanging the roles of ρ and σ, leads to

6.4 Corollary. With the same conditions and notations as in Theorem 6.3, we have

N [TrAB(PABC(σ, ρ)P
∗
ABC(σ, ρ))]

1/α(β) ≤ TrAB
(

ρAB[f(L
−1
ρAB

RσABC
)− f(L−1

ρB
RσBC

)]
)

.

6.5 Corollary. With the same conditions and notations as in Theorem 6.2, we have

N [TrAB(Q
∗
ABC(σAB, ρABC)QABC(σAB, ρABC)]

1/α(β) ≤ TrAB
(

ρABC [f(L
−1
ρABC

RσAB
)− f(L−1

ρBC
RσB)]

)

.

6.1 Proof

Proof of Theorem 6.2. We are inspired by the proof of Ruskai [33], which we provide in our case

in all detail for the completeness sake.

In the monotonicity inequality Corollary 4.5, let us consider ρ = ρABC , σ = σABC , H1 = HBC ,

H2 := HA, and KABC = IA ⊗KBC . Then (4.11) is equivalent to

N‖σβBCKBCρ
−β
BCρ

1/2
ABC − σβABCKBCρ

1/2−β
ABC ‖1/α(β)2 ≤ SKBC

f (ρABC ||σABC)− SKBC
f (ρBC‖σBC) . (6.5)

Let us consider the difference on right-hand side in the above inequality.

D :=SKBC
f (ρABC ||σABC)− SKBC

f (ρBC‖σBC)
= TrABC(ρ

1/2
ABCK

∗
BCf(∆σABC ,ρABC

)(KBCρ
1/2
ABC))− TrABC(ρ

1/2
BCK

∗
BCf(∆σBC ,ρBC

)(KBCρ
1/2
BC))

= TrABC(K
∗
BCf(∆σABC ,ρABC

)(KBCρABC))− TrABC(K
∗
BCf(∆σBC ,ρBC

)(KBCρBC)) (6.6)

In the first equality we used the definition of the quasi-relative entropy and the fact that there

is no dependence on A in the second term. In the second equality we used the definition of the

modular operator ∆A,B = LAR
−1
B .

Consider a special case when σABC = σAB ⊗ IC . Then

D = TrABC(K
∗
BCf(∆σAB ,ρABC

)(KBCρABC))− TrABC(K
∗
BCf(∆σB ,ρBC

)(KBCρBC)) . (6.7)

Choose KBC = IB ⊗KC . Then K = IAB ⊗KC commutes with σABC = σAB ⊗ IC . Therefore,

D = TrABC(K
∗
CKCf(∆σAB ,ρABC

)(ρABC))− TrABC(K
∗
CKCf(∆σB ,ρBC

)(ρBC)) .

Furthermore, take KC = |φ〉 〈φ|C to be a projector onto a vector |φ〉. Then

D = 〈φ|C TrAB (f(∆σAB ,ρABC
)(ρABC)− f(∆σB ,ρBC

)(ρBC)) |φ〉C . (6.8)

Bringing this expression back into (6.5), we obtain

N‖σβB |φ〉 〈φ|C ρ−βBCρ
1/2
ABC − σβAB |φ〉 〈φ|C ρ

1/2−β
ABC ‖1/α(β)2 ≤

〈φ|C TrAB ([f(∆σAB ,ρABC
)− f(∆σB ,ρBC

)](ρABC)) |φ〉C . (6.9)
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Denoting

PABC(ρ, σ) := σβBρ
−β
BCρ

1/2
ABC − σβABρ

1/2−β
ABC ,

we calculate the norm on the left-hand side by definition (4.7)

‖σβB |φ〉 〈φ|C ρ−βBCρ
1/2
ABC − σβAB |φ〉 〈φ|C ρ

1/2−β
ABC ‖2 = ‖ |φ〉 〈φ|C [σβBρ

−β
BCρ

1/2
ABC − σβABρ

1/2−β
ABC ]‖2 (6.10)

= TrABC(|φ〉 〈φ|C PABC(ρ, σ)P ∗
ABC(ρ, σ)) (6.11)

= 〈φ|C [TrAB(PABC(ρ, σ)P
∗
ABC(ρ, σ))] |φ〉C . (6.12)

Therefore, we have for all |φ〉C
〈φ|C [TrAB(PABC(ρ, σ)P

∗
ABC(ρ, σ))] |φ〉C ≤ 〈φ|C TrAB ([f(∆σAB ,ρABC

)− f(∆σB ,ρBC
)](ρABC)) |φ〉C .

Since the above inequality holds for all |φ〉C in HC , we have the following operator inequality

N [TrAB(PABC(ρ, σ)P
∗
ABC(ρ, σ))]

1/α(β) ≤ TrAB
(

[f(LσAB
R−1
ρABC

)− f(LσBR
−1
ρBC

)](ρABC)
)

.

6.2 Condition for equality

From the proof above it is evident that in Theorems 6.2 and 6.3 and Corollaries 6.4 and 6.5 the

right-hand side is zero if and only if for all β ∈ (0, 1), PABC(ρ, σ) = 0 or QABC(ρ, σ) = 0. Let us

take an example

6.6 Proposition. Let H = HA ⊗HB ⊗HC, β ∈ (0, 1) and ρ = ρABC, σ = σAB ⊗ IC. Let f be a

Cf
T,β-regular function. The equality

TrAB([f(LσAB
R−1
ρABC

)ρABC) = TrB(f(LσBR
−1
ρBC

)]ρBC) (6.13)

holds if and only if

σβBρ
−β
BC = σβABρ

−β
ABC , for all β ∈ (0, 1) . (6.14)

Moreover, (6.13) is equivalent to the Petz’s recovery condition

RρABC
(σB) = σAB . (6.15)

Proof. From Theorem 6.2, it is clear that if (6.13) is satisfied, the following holds

0 = TrAB(PABCP
∗
ABC).

Then for all |φ〉C in HC ,

0 = Tr(PABCP
∗
ABC |φ〉C 〈φ|C) .

The operator inside trace is positive semi-definite, since it can written asA∗A forA = |φ〉C 〈φ|C PABC .
Therefore, the operator itself is zero, i.e. for all |φ〉C

0 = |φ〉C 〈φ|C PABC .
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Since this holds for all |φ〉C , the operator PABC is zero, leading to the required (6.14). Taking

β = 1/2, equality (6.14) leads to (6.15).

On the other side, if (6.14) is satisfied, it means that in particular, Petz’s recovery map recovers

both ρBC and σB perfectly, i.e. (6.15) holds. Therefore, by the equivalence of the recovery of both

states and the saturation of the monotonicity inequality, we have that D in (6.6) is zero, i.e. (6.13)

is satisfied.

7 Logarithmic function

Let us take f(x) = − log(x) and K = I. We may explicitly calculate the power α(β). From

Example 2.7 we have that dµ(x) = dx. Therefore, in Corollary 5.3 and Theorem 6.2 the constants

are: c = 0, C = 1, and

α(β) =

{

β(1− β) when β ≤ 1/2

(1− β)/2 when β ≥ 1/2.
.

Moreover, from [9, Corollary 5.1]

N =











(

π(1−2β+2β2)β
sinβπ

)
1

β(1−β)
(

‖K‖+ β
1−β

D
)− 1−2β+2β2

β(1−β)
2−

1−2β+2β2

β(1−β)

(

1−2β+2β2

2(1−β)

)−2

when β ≤ 1/2
(

πβ(1−β)
sinβπ

)
2

1−β
(

1−β
β
‖K‖+D

)− 2β
1−β

2−
2β
1−β β−2 when β ≥ 1/2.

,

where D =
∑

j p
−1
j ‖ρ−1

j ‖ in Corollary 7.1 below, D = ‖∆ρA⊗ρBC ,ρABC
‖ in Corollary 7.2, and

D = ‖∆σ,ρ‖ in Corollary 7.3.

Taking K = I in Corollary 5.3, we obtain the following sharpening of the joint convexity of

quantum relative entropy.

7.1 Corollary (Joint convexity). Let ρ =
∑

j pjρj and σ =
∑

j pjσj (with pj > 0 and
∑

j pj = 1).

With α(β) and N defined above, we have

N

(

∑

j

p
1/2
j ‖σβρ−βρ1/2j − σβj ρ

1/2−β
j ‖2

)1/α(β)

≤
∑

j

pjS(ρj‖σj)− S(ρ‖σ) . (7.1)

In particular, for β = 1/2,

N

(

∑

j

p
1/2
j ‖σ1/2ρ−1/2ρ

1/2
j − σ

1/2
j ‖2

)4

≤
∑

j

pjS(ρj‖σj)− S(ρ‖σ) . (7.2)

From the last inequality, we have that if the joint convexity is saturated, i.e.
∑

j

pjS(ρj‖σj) = S(ρ‖σ),

then for all j and all β ∈ (0, 1)

σβρ−β = σβj ρ
−β
j .
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From the sharpening of the monotonicity inequality, Corollary 4.6, or the previous result (4.11),

we obtain the sharpening of the strong subadditivity when taking σABC = ρAB ⊗ ρC and tracing

out system A.

7.2 Corollary (Strong subadditivity). For ρ := ρABC a state on HABC and β ∈ (0, 1), it holds

that

N‖ρβB ⊗ ρβC ρ
−β
BCρ

1/2 − ρβAB ⊗ ρβCρ
1/2−β‖1/α(β)2 ≤ S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) .

In particular, for β = 1/2 the excplicit bound involving Petz’s recovery map holds

(π

8

)4

‖ρ−1‖−2‖Rρ(ρB ⊗ ρC)− ρAB ⊗ ρC‖41 ≤ S(ρAB) + S(ρBC)− S(ρABC)− S(ρB) .

Moreover, it is clear that the equality in the strong subadditivity inequality holds if and only if

Petz’s map Rρ recovers state ρAB ⊗ ρC perfectly.

7.3 Corollary (Operator strong-subadditivity). Let H = HA ⊗ HB ⊗ HC and β ∈ (0, 1). Let

ρABC be a state on H, and σABC = σAB ⊗ IC with σAB being a state on HA⊗HB. With α(β) and

N defined above, the following results hold.

1. Theorem 6.2 leads to

N [TrAB(P (ρABC , σAB)P
∗(ρABC , σAB))]

1/α(β) ≤ TrAB[log ρABC−log σAB−log ρBC+log σB]ρABC .

2. When HB is one-dimensional, this becomes

N [TrA(P
∗(ρAC , σA)P (ρAC , σA))]

1/α(β) ≤ TrA[log ρAC − log σA − log ρC ]ρAC .

Note that P (ρAC , σA) = ρ−βC ρ
1/2
AC − σβAρ

1/2−β
AC .

3. And when σA = 1
dA
IA is a maximally mixed state,

N [TrA(P (ρAC , σA)P
∗(ρAC , σA))]

1/α(β) ≤ TrA[(log ρAC)ρAC − (log ρC)ρC ] + log(dA)ρC ,

with P (ρAC , σA) = ρ−βC ρ
1/2
AC − 1

dβA
ρ
1/2−β
AC .

4. Taking σAB = ρAB in part 1, we obtain

N [TrAB(P (ρABC , ρAB)P
∗(ρABC , ρAB))]

1/α(β) ≤ TrAB[log ρABC − log ρAB − log ρBC + log ρB]ρABC ,

(7.3)

where

P (ρABC , ρAB) = ρβBρ
−β
BCρ

1/2
ABC − ρβABρ

1/2−β
ABC .
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5. In particular, taking HB to be one-dimensional in the last inequality,

N [TrA(P (ρA, ρAC)P
∗(ρA, ρAC))]

1/α(β) ≤ TrA[log ρAC − log ρA − log ρC ]ρAC , (7.4)

where

P (ρAC , ρA) = ρ−βC ρ
1/2
AC − ρβAρ

1/2−β
AC .

6. Theorem 6.3 leads to

N [TrAB(Q
∗(σAB, ρABC)Q(σAB, ρABC))]

1/α(β) ≤ TrABρAB[− log ρABC+log σAB+log ρBC−log σB] .

(7.5)

7. When HB is one-dimensional in the last inequality, we obtain

N [TrA(Q
∗(σA, ρAC)Q(σA, ρAC))]

1/α(β) ≤ TrAρA[− log ρAC + log σA] + log ρC .

8. Taking ρAB = σAB in part 6, we obtain a stronger version of Kim’s inequality (6.3)

N [TrAB(Q
∗(ρAB, ρABC)Q(ρAB, ρABC))]

1/α(β) ≤ TrABρAB[− log ρABC+log ρAB+log ρBC−log ρB] .

9. When HB is one-dimensional in the last inequality, we obtain

N [TrA(Q
∗(ρA, ρAC)Q(ρA, ρAC))]

1/α(β) ≤ TrAρA[− log ρAC + log ρA] + log ρC .

8 Wigner-Yanase-Dyson-type inequalities

For p ∈ (−1, 2) and p 6= 0, 1 let us take the function

fp(x) :=
1

p(1− p)
(1− xp),

which is operator convex. The quasi-relative entropy for this function is

SKfp(ρ||σ) =
1

p(1− p)
Tr(KρK∗ −K∗σpKρ1−p) .

From Proposition 3.7 we obtain the lower bound on the quasi-relative entropy in terms of the

trace distance.

8.1 Corollary (Pinsker inequality). For a unitary U , p ∈ (−1, 2) and p 6= 0, 1 and states ρ and

σ, we have
1

p(1− p)
[1− Tr(U∗σpUρ1−p)] ≥ 1

2
‖ρ− U∗σU‖21 .
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Note that in the above inequality, as well in all below ones, it is important to leave the factor

1/p(1− p) in place, as it changed sign at p = 0, 1.

For the power function fp we may explicitly calculate the power α(β). Then from Example 2.8

we have dµf (x) =
sin(pπ)
p(1−p)

xp dx, for p ∈ (0, 1). Therefore, in Corollary 6.5, we have

c =

{

p/2 when β ≤ 1/2

p(1− β)/(2β) when β ≥ 1/2.
,

and therefore,

α(β) =

{

β(1−β)
1+p(1−β)

when β ≤ 1/2
β(1−β)

2β+p(1−β)
when β ≥ 1/2.

Moreover, from [9, Corollary 5.2] for β ≤ 1/2, the constant N is defined as

N = (‖K‖+ β

1− β
‖∆σ,ρ‖)−

p(1−β)+1−2β+2β2

β(1−β) 2−
p(1−β)+1−2β+2β2

β(1−β) (8.1)

·sin(pπ)
π

(

πβ(p(1− β) + 1− 2β + 2β2)

(1 + p(1− β)) sin βπ

)

1+p(1−β)
β(1−β)

(

p(1− β) + 1− 2β + 2β2

2(1− β)

)−2

,

and for β ≥ 1/2,

N =

(

1− β

β
‖K‖+ ‖∆σ,ρ‖

)−
2β2+p(1−β)

β(1−β)

2−
2β2+p(1−β)

β(1−β) (8.2)

·sin pπ
π

(

π(1− β)(2β2 + p(1− β))

(2β + p(1− β)) sin βπ

)

2β+p(1−β)
β(1−β)

(

2β2 + p(1− β)

2β

)−2

.

Recall, from part 5 of Example 3.2, we have that the quasi-relative entropy is the Wigner-

Yanase-Dyson p-skew information Ip(ρ,K) for K∗ = K, i.e.

SKfp(ρ||ρ) = − 1

2p(1− p)
Tr[K, ρp][K, ρ1−p] = − 1

p(1− p)
Ip(ρ,K) .

It was conjectured by Wigner and Yanase in [44] that p-skew information Ip(ρ,K) is concave as a

function of a density matrix ρ for a fixed p ∈ (0, 1). A more general expression

SKfp(ρ||σ) =
1

p(1− p)
Tr(KρK∗ −K∗σpKρ1−p),

shows that the concavity of WYD information follows from the joint concavity of the term

Tr(K∗σpKρ1−p), since the first term in the above expression is linear in ρ. The concavity of

this term was shown by Lieb [18] for powers of ρ and σ that sum up to a number no greater than

one.

Using Corollary 5.3, we have the following strengthening of the joint concavity.
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8.2 Corollary (Joint concavity of WYD information). Let p ∈ (−1, 2) and p 6= 0, 1, and ρ =
∑

j pjρj and σ =
∑

j pjσj (with pj > 0 and
∑

j pj = 1). With α(β) and M defined above, we have

N

(

∑

j

p
1/2
j ‖σβKρ−βρ1/2j − σβjKρ

1/2−β
j ‖2

)1/α(β)

≤ 1

p(1− p)

(

TrK∗σpKρ1−p −
∑

j

pjTrK
∗σpjKρ

1−p
j

)

.(8.3)

In particular, for β = 1/2,

N

(

∑

j

p
1/2
j ‖σ1/2Kρ−1/2ρ

1/2
j − σ

1/2
j K‖2

)4

≤ 1

p(1− p)

(

TrK∗σpKρ1−p −
∑

j

pjTrK
∗σpjKρ

1−p
j

)

.

(8.4)

From Theorem 6.3 we might obtain some interesting sharpening of the operator version of

Wigner-Yanase-Dyson inequalities. In [33] Ruskai showed that taking fp in the operator version

of SSA, with ρABC and σAB leads to

0 ≤ 1

p(1− p)
[−TrABρ

1−p
ABCσ

p
AB + TrBρ

1−p
BC σ

p
B] .

From Corollary 6.5 we obtain the error term for the above difference:

8.3 Corollary (Operator version of WYD inequality). Let H = HA ⊗ HB ⊗ HC, β ∈ (0, 1),

p ∈ (−1, 2), p 6= 0, 1 and ρ = ρABC, σ = σAB ⊗ IC. For constants defined above, the following

operator inequality holds

N [TrAB(Q
∗
ABC(σAB, ρABC)QABC(σAB, ρABC)]

1/α(β) ≤ 1

p(1− p)

[

−TrABρ
1−p
ABCσ

p
AB + TrBρ

1−p
BC σ

p
B

]

,

(8.5)

where

QABC(σAB, ρABC) := ρβBCσ
−β
B σ

1/2
AB − ρβABCσ

1/2−β
AB .

In particular, when HB is one-dimensional, we have

N [TrA(Q
∗
AC(σA, ρAC)QAC(σA, ρAC)]

1/α(β) ≤ 1

p(1− p)

[

−TrAρ
1−p
AC σ

p
A + ρ1−pC

]

.

8.1 Cauchy-Schwartz inequality

In particular, taking p = 2 in fp defined above, gives the following right-hand side in Corollary 8.3

TrAB(σ
2
ABρ

−1
ABC − σ2

Bρ
−1
BC) = TrAB(σABρ

−1
ABCσAB)− TrB(σBρ

−1
BCσB) .

In [21] Lieb and Ruskai showed the positivity of the following operator

TrAX
∗
ACQ

−1
ACXAC ≥ X∗

CQ
−1
C XC ,

for any XAC and positive semi-definite QAC with kerQAC ⊆ kerX∗
AC .

From Corollary 8.3 we obtain the following sharpening of the Cauchy-Schwarz inequality:
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8.4 Corollary. Let ρABC and σ = σAB⊗IC be two states on the Hilbert space H = HA⊗HB⊗HC.

Let β ∈ (0, 1). Then

N [TrAB(Q
∗
ABC(σAB, ρABC)QABC(σAB, ρABC)]

1/α(β) ≤ TrAB(σABρ
−1
ABCσAB)− TrB(σBρ

−1
BCσB) ,

where, recall, QABC(σAB, ρABC) := ρβBCσ
−β
B σ

1/2
AB − ρβABCσ

1/2−β
AB .

Moreover, the equality

TrAB(σABρ
−1
ABCσAB) = TrB(σBρ

−1
BCσB)

holds if and only if

ρβBσ
−β
BC = ρβABσ

−β
ABC , for all β ∈ (0, 1) .

In particular, for β = 1/2, it is equivalent to the Petz’s recovery condition

RσAB
(ρBC) = ρABC .

The reasoning for the equality condition if is similar to the one in Proposition 6.6.
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