
Communication Efficient Parallel Algorithms for

Optimization on Manifolds

Bayan Saparbayeva
Department of Applied and

Computational Mathematics and Statistics
Univeristy of Notre Dame

Notre Dame, Indiana 46556, USA
bsaparba@nd.edu

Michael Minyi Zhang
Department of Computer Science

Princeton University
Princeton, New Jersey 08540, USA
mz8@cs.princeton.edu

Lizhen Lin
Department of Applied and

Computational Mathematics and Statistics
Univeristy of Notre Dame

Notre Dame, Indiana 46556, USA
lizhen.lin@nd.edu

Abstract

The last decade has witnessed an explosion in the development of models, theory
and computational algorithms for “big data” analysis. In particular, distributed
computing has served as a natural and dominating paradigm for statistical inference.
However, the existing literature on parallel inference almost exclusively focuses
on Euclidean data and parameters. While this assumption is valid for many ap-
plications, it is increasingly more common to encounter problems where the data
or the parameters lie on a non-Euclidean space, like a manifold for example. Our
work aims to fill a critical gap in the literature by generalizing parallel inference
algorithms to optimization on manifolds. We show that our proposed algorithm is
both communication efficient and carries theoretical convergence guarantees. In
addition, we demonstrate the performance of our algorithm to the estimation of
Fréchet means on simulated spherical data and the low-rank matrix completion
problem over Grassmann manifolds applied to the Netflix prize data set.

1 Introduction

A natural representation for many statistical and machine learning problems is to assume the parameter
of interest lies on a more general space than the Euclidean space. Typical examples of this situation
include diffusion matrices in large scale diffusion tensor imaging (DTI) which are 3×3 positive
definite matrices, now commonly used in neuroimaging for clinical trials [1]. In computer vision,
images are often preprocessed or reduced to a collection of subspaces [11, 27] or, a digital image
can also be represented by a set of k-landmarks, forming landmark based shapes [13]. One may also
encounter data that are stored as orthonormal frames [8], surfaces[15], curves[16], and networks [14].

In addition, parallel inference has become popular in overcoming the computational burden arising
from the storage, processing and computation of big data, resulting in a vast literature in statistics and
machine learning dedicated to this topic. The general scheme in the frequentist setting is to divide the
data into subsets, obtain estimates from each subset which are combined to form an ultimate estimate
for inference [9, 30, 17]. In the Bayesian setting, the subset posterior distributions are first obtained
in the dividing step, and these subset posterior measures or the MCMC samples from each subset
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posterior are then combined for final inference [20, 29, 28, 21, 25, 22]. Most of these methods are
“embarrassingly parallel” which often do not require communication across different machines or
subsets. Some communication efficient algorithms have also been proposed with prominent methods
including [12] and [26].

Despite tremendous advancement in parallel inference, previous work largely focuses only on
Euclidean data and parameter spaces. To better address challenges arising from inference of big
non-Euclidean data or data with non-Euclidean parameters, there is a crucial need for developing
valid and efficient inference methods including parallel or distributed inference and algorithms that
can appropriately incorporate the underlying geometric structure.

For a majority of applications, the parameter spaces fall into the general category of manifolds, whose
geometry is well-characterized. Although there is a recent literature on inference of manifold-valued
data including methods based on Fréchet means or model based methods [3, 4, 5, 2, 18] and even
scalable methods for certain models [23, 19, 24], there is still a vital lack of general parallel algorithms
on manifolds. We aim to fill this critical gap by introducing our parallel inference strategy. The
novelty of our paper is in the fact that is generalizable to a wide range of loss functions for manifold
optimization problems and that we can parallelize the algorithm by splitting the data across processors.
Furthermore, our theoretical development does not rely on previous results. In fact, generalizing
Theorem 1 to the manifold setting requires totally different machineries from that of previous work.

Notably, our parallel optimization algorithm has several key features:

(1) Our parallel algorithm efficiently exploits the geometric information of the data or parame-
ters.

(2) The algorithm minimizes expensive inter-processor communication.

(3) The algorithm has theoretical guarantees in approximating the true optimizer, characterized
in terms of convergence rates.

(4) The algorithm has outstanding practical performance in simulation studies and real data
examples.

Our paper is organized as follows: In Section 2 we introduce related work to the topic of parallel
inference. Next we present our proposed parallel optimization framework in Section 3 and present
theoretical convergence results for our parallel algorithm in Section 4. In Section 5, we consider a
simulation study of estimating the Fréchet means on the spheres and a real data example using the
Netflix prize data set. The paper ends with a conclusion and discussion of future work in Section 6.

2 Related work

In the typical “big data” scenario, it is usually the case that the entire data set cannot fit onto one
machine. Hence, parallel inference algorithms with provably good theoretic convergence properties
are crucial for this situation. In such a setting, we assume that we have N = mn identically distributed
observations {xi j : i = 1, . . . ,n, j = 1, . . . ,m}, which are i.i.d divided into m subsets X j = {xi j , i =
1, ...,n}, j = 1, . . . ,m and stored in m separate machines. While it is important to consider inference
problems when the data are not i.i.d. distributed across processors, we will only consider the i.i.d.
setting as a simplifying assumption for the theory.

For a loss function L : Θ×D → R, each machine j has access to a local loss function, L j (θ) =
1
n

∑n
i=1

L (θ, xi j ), where D is the data space. Then, the local loss functions are combined into a

global loss function LN (θ) = 1
m

∑m
j=1

L j (θ). For our intended optimization routine, we are actually

looking for the minimizer of an expected loss function L
∗(θ) = Ex∈DL (θ, x). In the parallel setting,

we cannot investigate L
∗ directly and we may only analyze it through LN . However, calculating

the total loss function directly and exactly requires excessive inter-processor communication, which
carries a huge computational burden as the number of processors increase. Thus, we must approximate

the true parameter θ∗ = argminθ∈ΘL
∗(θ) by an empirical risk minimizer θ̂ = argminθ∈ΘLN (θ).

In this work, we focus on generalizing a particular parallel inference framework, the Iterative Local
Estimation Algorithm (ILEA) [12], to manifolds. This algorithm optimizes an approximate, surrogate
loss function instead of the global loss function as a way to avoid processor communication. The
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idea of the surrogate function starts from the Taylor series expansion of LN

LN

(

θ̄+ t (θ− θ̄)
)

=LN (θ̄)+ t〈∇LN (θ̄),θ− θ̄〉+
∞
∑

s=2

t s

s!
∇s

LN (θ̄)(θ− θ̄)⊗s .

The global high-order derivatives ∇s
LN (θ̄) (s ≥ 2) are replaced by local high-order derivatives

∇s
L1(θ̄)(s ≥ 2) from the first machine

L̃ (θ) =LN (θ̄)+〈∇LN (θ̄),θ− θ̄〉+
∞
∑

s=2

1

s!
∇s

L1(θ̄)(θ− θ̄)⊗s .

So the approximation error is

L̃ (θ)−LN (θ) =
∞
∑

s=2

1

s!

(

∇s
L1(θ̄)−∇s

LN (θ̄)
)

(θ− θ̄)⊗s

= 1

2

〈

θ− θ̄,
(

∇2
L1(θ̄)−∇2

LN (θ̄)
)(

θ− θ̄
)

〉

+O
(

∥ θ− θ̄ ∥3
)

=O
( 1
p

n
∥ θ− θ̄ ∥2 + ∥ θ− θ̄ ∥3

)

.

The infinite sum
∑∞

s=2
1
s!
∇s

L1(θ̄)(θ−θ̄)⊗s in the L̃ (θ) can be replaced by L1(θ)−L1(θ̄)−〈∇L1(θ̄),θ−
θ̄〉

L̃ (θ) =L1(θ)−
(

L1(θ̄)−LN (θ̄)
)

−
〈

∇L1(θ̄)−∇LN (θ̄),θ− θ̄
〉

.

We can omit the additive constant
(

L1(θ̄)−LN (θ̄)
)

+〈∇L1(θ̄)−∇LN (θ̄), θ̄〉. Thus the surrogate loss

function L̃ (θ) is defined as

L̃ (θ) =L1(θ)−〈∇L1(θ̄)−∇LN (θ̄),θ〉.

Thus, the surrogate minimizer θ̃ = argminΘ L̃ approximates the empirical risk minimizer θ̂.

[12] show that the consequent surrogate minimizers have a provably good convergence rate to θ̂ given
the following regularity conditions:

1. The parameter space Θ is a compact and convex subset of R
d . Besides, θ∗ ∈ int(Θ) and

R = supθ∈Θ ∥ θ−θ∗ ∥> 0,

2. The Hessian matrix I (θ) =∇2
L

∗(θ) is invertible at θ∗, that is there exist constants (µ−,µ+)
such that

µ−Id ¹ I (θ∗) ¹µ+Id ,

3. For any δ> 0, there exists ε> 0, such that

inf P

{

inf
∥θ−θ∗∥≥δ

∣

∣L (θ)−L (θ∗)
∣

∣≥ ε
}

= 1,

4. For a ball around the true parameter U (ρ) = {θ :∥ θ−θ∗ ∥≤ ρ} there exist constants (G ,L)
and a function K (x) such that

E ∥ ∇L (θ) ∥16≤G16
E�∇2

L (θ)− I (θ)�≤ L16,

�L (θ, x)−L (θ′, x)�≤K (x) ∥ θ−θ′ ∥,

for all θ,θ′ ∈U (ρ).

which leads to the following theorem:

Theorem 1. Suppose that the standard regularity conditions hold and initial estimator θ̄ lies in the
neighborhood U (ρ) of θ∗. Then the minimizer θ̃ of the surrogate loss function L̃ (θ) satisfies

∥ θ̃− θ̂ ∥≤C2(∥ θ̄− θ̂ ∥ + ∥ θ̂−θ∗ ∥ +�∇2
L1(θ∗)−∇2

LN (θ∗)�) ∥ θ̄− θ̂ ∥,

with probability at least 1−C1mn−8, where the constants C1 and C2 are independent of (m,n, N ).
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3 Parallel optimizations on manifolds

Our work aims to generalize the typical gradient descent optimization framework to manifold
optimization. In particular, we will use the ILEA framework as our working example to generalize

parallel optimization algorithms. Instead of working with R
d , we have a d-dimensional manifold M .

We also consider a surrogate loss function L̃ j : Θ×Z →R, where Θ is a subset of the manifold M , that

approximates the global loss function LN . Here we choose to optimize L̃ j on the j th machine–that
is, on different iterations we optimize on different machine for efficient exploration unlike from
previous algorithm, where the surrogate function is always optimized on the first machine.

To generalize the idea of moving along a gradient on the manifold M , we use the retraction map,
which is not necessarily the exponential map that one would typically use in manifold gradient
descent, but shares several important properties with the exponential map. Namely, a retraction on M
is a smooth mapping R : T M → M with the following properties

1. Rθ(0θ) = R(θ,0θ) = θ, where Rθ is the restriction of R from T M to the point θ and the
tangent space TθM , 0θ denotes the zero vector on TθM ,

2. DRθ(0θ) = DR(θ,0θ) = idTθM , where idTθM denotes the identity mapping on TθM .

We also demand that

1. For any θ1,θ2 ∈ M , curves Rθ1
tR−1

θ1
θ2 and Rθ2

sR−1
θ2

θ1, where s, t ∈ [0,1], must coincide,

2. The triangle inequality holds, that is for any θ1,θ2,θ3 ∈ M , it is the case that dR(θ1,θ2) ≤
dR(θ2,θ3)+dR(θ3,θ1) where dR(θ1,θ2) is the length of the curve Rθ1

tR−1
θ1

θ2 for t ∈ [0,1].

Our construction starts with the Taylor’s formula for LN on the manifold M

LN (θ) =LN (θ̄)+〈∇LN (θ̄), logθ̄ θ〉+
∞
∑

s=2

1

s!
∇s

LN (θ̄)(logθ̄ θ)⊗s

Because we split the data across machines, evaluating the derivatives ∇s
LN (θ̄) requires excessive

processor communication. We want to reduce the amount of communication by replacing the global
high-order derivatives ∇s

LN (θ̄) (s ≥ 2) with the high-order local derivatives ∇s
L j (θ̄). This gives us

the following surrogate to LN

L̃ j (θ) =LN (θ̄)+〈∇LN (θ̄), logθ̄ θ〉+
∞
∑

s=2

1

s!
∇s

L j (θ̄)(logθ̄ θ)⊗s .

Then we have the following approximation error

L̃ j (θ)−LN (θ) = 1

2
〈logθ̄ θ, (∇2

L j (θ̄)−∇2
LN (θ̄)) logθ̄ θ〉+O

(

dg (θ̄,θ)3
)

=O
( 1
p

n
dg (θ̄,θ)2 +dg (θ̄,θ)3

)

.

We replace
∑∞

s=2
1
s!
∇s

L j (θ̄)(logθ̄ θ)⊗s with L j (θ)−L j (θ̄)−
〈

∇L j (θ̄), logθ̄ θ
〉

:

L̃ j (θ) =LN (θ̄)+〈∇LN (θ̄), logθ̄ θ〉+L j (θ)−L j (θ̄)−〈∇L j (θ̄), logθ̄ θ〉
=L j (θ)+ (LN (θ̄)−L j (θ̄))+〈∇LN (θ̄)−∇L j (θ̄), logθ̄ θ〉.

Since we are not interested in the value of L̃ j but in its minimizer, we omit the additive constant

(LN (θ̄)−L j (θ̄)) and redefine L̃ j as L̃ j (θ) := L j (θ)− 〈∇L j (θ̄)−∇LN (θ̄), logθ̄ θ〉. Then we can
generalize the exponential map expθ̄ and the inverse exponential map logθ̄ to the retraction map Rθ̄

and the inverse retraction map R
−1

θ̄
, which is also called the lifting, and redefine L̃ j

L̃ j (θ) :=L j (θ)−〈∇L j (θ̄)−∇LN (θ̄),R−1

θ̄
θ〉.

Therefore we have the following generalization of the Iterative Local Estimation Algorithm (ILEA)
for the manifold M :
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Algorithm 1: ILEA for Manifolds

Initialize θ0 = θ̄;
for s = 0,1, . . . ,T −1 do

Transmit the current iterate θs to local machines {M j }m
j=1

;

for j = 1, . . . ,m do
Compute the local gradient ∇L j (θs ) at machine M j ;
Transmit the local gradient ∇L j (θs ) to machine Ms ;

Calculate the global gradient ∇LN (θs ) = 1
m

∑m
j=1

∇L j (θs )) in Machine Ms ;

Form the surrogate function L̃s (θ) =Ls (θ)−〈R−1
θs

θ,∇Ls (θs )−∇LN (θs )〉;
Update θs+1 ∈ argminL̃s ;

Return θT

4 Convergence rates of the algorithm

To establish some theoretical convergence rates on our algorithm, we consequently have to impose
some regularity conditions on the parameter space Θ, the loss function L and the population
risk L

∗. We must establish these conditions specifically for manifolds instead of simply using
the regularity conditions placed on Euclidean spaces. For example, in the manifold the Hessians
∇2

L (θ, x),∇2
L (θ′, x) are defined in different tangent spaces meaning there cannot be any linear

expressions of the second-order derivatives.

In the manifold for any ξ ∈ Tθ′M we can define the vector field as ξ(θ) = D(R−1
θ

θ′)ξ. We can also
take the covariant derivative of ξ(θ) along the retraction Rθ′ tRθ′θ :

∇
D
(

R−1
θ′ (Rθ′ tRθ′θ)

)−1
R

−1
θ′ θ

ξ(Rθ′ tRθ′θ) =

∇
D
(

R−1
θ′ (Rθ′ tRθ′θ)

)−1
R

−1
θ′ θ

D
(

R
−1
Rθ′ tRθ′θ

θ′
)

ξ=∇D(t ,θ,θ′)ξ. (1)

The expression (1) defines the linear map ∇D(t ,θ,θ′) from Tθ′M to TRθ′ tRθ′θM and want to impose
some conditions to this map. Finally, we impose the following regularity conditions on the parameter
space Θ, the loss function L and the population risk L

∗.

1. The parameter space Θ is a compact and R-convex subset of M , which means that for any
θ1,θ2 ∈Θ curves Rθ1

tRθ1
θ2 and expθ1

t logθ1
θ2 must be within Θ for any θ1,θ2 ∈ M and

also demand that there exists L′ ∈R such that

dR(θ1,θ2) ≤ L′dg (θ1,θ2),

where dg (θ1,θ2) is the geodesic distance,

2. The matrix I (θ) =∇2
L

∗(θ) is invertible at θ∗ : ∃ constants µ−,µ+ ∈R such that

µ−idθ∗ ¹ I (θ∗) ¹µ+idθ∗ ,

3. For any δ> 0, there exists ε> 0 such that

inf P

{

inf
dg (θ∗,θ)≥δ

∣

∣L (θ)−L (θ∗)
∣

∣≥ ε
}

= 1,

4. There exist constants (G ,L) and a function K (x) such that for all θ,θ′ ∈U and t ∈ [0,1]

E ∥ ∇L (θ,D) ∥16≤G16, E

�

�∇2
L (θ,D)− I (θ)

�

�

16 ≤ L16,

∥ ∇D(t ,θ,θ′)∗∇L (Rθ′ tRθ′θ, x) ∥≤K (x)dR(θ,θ′),
�

�

�

(

DR
−1
θ θ̂

)∗∇2
L (θ, x)

(

DR
−1

θ̂
θ
)−1 −

(

DR
−1
θ′ θ̂

)∗∇2
L (θ′, x)

(

DR
−1

θ̂
θ′

)−1
�

�

�≤K (x)dRθ̄
(θ,θ′),

�

�

�

(

DR
−1
θ θ̂

)∗∇2
L (θ, x)(DR

−1
θ θ̂

)

−
(

DR
−1
θ′ θ̂

)∗∇2
L (θ′, x)

(

DR
−1
θ′ θ̂

)

�

�

�≤K (x)dRθ̄
(θ,θ′),

where �� is a spectral norm of matrices, �A�= sup{∥ Ax ∥: x ∈R
n , ∥ x ∥= 1}. Moreover,

K satisfies EK ≤ K 16 for some constant K > 0.
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Given these conditions, we have the following theorem:

Theorem 2. If the standard regularity conditions holds, the initial estimator θ̄ lies in the neighborhood
U of θ∗ and

�

�

�

(

DR
−1
θ∗ θ̂

)∗(

∇2
L̃s (θ∗)− I (θ∗)

)(

DR
−1
θ∗ θ̂

)

�

�

�≤ ρµ−R−
4

,
�

�

�

(

DR
−1
θ θ̂

)∗∇2
L̃s (θ, x)(DR

−1
θ θ̂

)

−
(

DR
−1
θ′ θ̂

)∗∇2
L̃s (θ′, x)

(

DR
−1
θ′ θ̂

)

�

�

�≤K (x)dRθ̄
(θ,θ′),

where R− = 1
�

�

�

(

(DR
−1
θ∗ θ̂)∗(DR

−1
θ∗ θ̂)

)−1
�

�

�

, then any minimizer θ̃ of the surrogate loss function L̃s (θ)

satisfies

dR(θ̃, θ̂) ≤C2

(

1+dR(θ̄, θ̂)+dR(θ∗, θ̂)+

C3

�

�

�

(

DR
−1
θ∗ θ̂

)∗(

∇2
Ls (θ∗)−∇2

LN (θ∗)
)(

DR
−1

θ̂
θ∗

)−1
�

�

�

)

dR(θ̄, θ̂),

with probability at least 1−C1mn−8, where constants C1,C2 and C3 are independent of (m,n, N ).

5 Simulation study and data analysis

To examine the quality of our parallel algorithm we first apply it to the estimation of Fréchet means
on spheres, which has closed form expressions for the estimation of the extrinsic mean (true empirical
minimizer). In addition, we apply our algorithm to Netflix movie-ranking data set as an example
of optimization over Grassmannian manifolds in the low-rank matrix completion problem. In the
following results, we demonstrate the utility of our algorithm both for high dimensional manifold-
valued data (Section 5.1) and Euclidean space data with non-Euclidean parameters (Section 5.2).
We wrote the code for our implementations in Python and carried out the parallelization of the code
through MPI1[7].

5.1 Estimation of Fréchet means on manifolds

We first consider the estimation problem of Fréchet means [10] on manifolds. In particular, the
manifold under consideration is the sphere in which we wish to estimate both the extrinsic and
intrinsic mean [3]. Let M be a general manifold and ρ be a distance on M which can be an intrinsic
distance, by employing a Riemannian structure of M , or an extrinsic distance, via some embedding J

onto some Euclidean space. Also, let x1, . . . , xN be sample of point on the hypersphere Sd , the sample
Fréchet mean of x1, . . . , xn is defined as

θ̂ = arg min
θ∈M=Sd

N
∑

i=1

ρ2(θ, xi ), (2)

where ρ is some distance on the sphere.

The extrinsic distance, for our spherical example, is defined to be ρ(x, y) = ‖J (x)− J (y)‖ = ‖x − y‖
with ‖ ·‖ as the Euclidean distance and the embedding map J (x) = x ∈R

d+1 as the identity map. We

call θ̂ the extrinsic Fréchet mean on the sphere. We choose this example in our simulation, as we
know the true global optimizer which is given by x̄/‖x̄‖ where x̄ is the standard sample mean of
x1, . . . , xN in Euclidean distance. The intrinsic Fréchet mean, on the other hand, is defined to be where
the distance ρ is the geodesic distance (or the arc length). In this case we compare the estimator
obtained from the parallel algorithm with the optimizer obtained from a gradient descent algorithm
along the sphere applied to the entire data set. Despite that the spherical case may be an “easy” setting
as it has a Betti number of zero, we chose this example so that we have ground truth to compare our
results with and we, in fact, perform favorably even when the dimensionality of the data is high even
as we increase the number of processors.

For this example, we simulate one million observations from a 100-dimensional von Mises distribution
projected onto the unit sphere with mean sampled randomly from N (0, I ) and a precision of 2. For

1Our code is available at https://github.com/michaelzhang01/parallel_manifold_opt
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where W is r -by-N matrix. Each user k has the loss function L (U ,k) = 1
2
|ck ◦ (U wk (U )−Xk )|2 ,

where ◦ is the Hadamard product, (wk )i =Wi k , and

(ck )i =
{

1, if (i ,k) ∈Ω

λ, if (i ,k) ∉Ω
, (Xk )i =

{

Xi k , if (i ,k) ∈Ω

0, if (i ,k) ∉Ω,

wk (U ) =
(

U T diag(ck ◦ ck )U
)−1

U T
(

ck ◦ ck ◦Xk

)

.

Which results in the following gradient

∇L (U ,k) =
(

ck ◦ ck ◦ (U wk (U )−Xk )
)

wk (U )T = diag(ck ◦ ck )(U wk (U )−Xk )wk (U )T .

We can assume that N = pq, then for each local machine M j , j = 1, ..., p, we have the local function

L j (U ) = 1
q

∑ j q

k=( j−1)q+1
L (U ,k). So the global function is

LN (U ) = 1

p

p
∑

j=1

L j (U ) = 1

pq

pq
∑

k=1

L (U ,k) = 1

N
L(U ).

For iterations s = 0,1, ...,P − 1 we have ∇L j (Us ) = ∑ j q

k=( j−1)q+1
∇L (Us ,k). Therefore the global

gradient is ∇LN (Us ) = 1
p

∑p

j=1
∇L j (Us ). Instead of the logarithm map we will use the inverse

retraction map

R−1
[U ]

: Gr(m,r ) → T[U ]Gr(m,r )

[V ] 7→ V −U (U T U )−1U T V.

Which gives us the following surrogate function

L̃s (V ) =Ls (V )−〈V −Us (U T
s Us )−1U T

s V ,∇Ls (Us )−∇LN (Us )〉
=Ls (V )−〈V ,∇Ls (Us )−∇LN (Us )〉.

and its gradient

∇L̃s (V ) =∇Ls (V )− (Im −V (V T V )−1V T )(∇Ls (Us )−∇LN (Us )).

To optimize with respect to our loss function, we have to find Us+1 = argminL̃s . To do this, we
move according to the steepest descent by taking step size λ0 in the direction ∇L̃s (Us ) by taking the
retraction, Us+1 = R[Us ]

(

λ0∇L̃s (Us )
)

.2

For our example we set the matrix rank to r = 10 and the regularization parameter to λ = 0.1 and
divided the data randomly across 4 processors. Figure 3 shows that we can perform distributed
manifold gradient descent in this complicated problem and we can reach convergence fairly quickly
(after about 1000 seconds).

6 Conclusion

We propose in this paper a communication efficient parallel algorithm for general optimization
problems on manifolds which is applicable to many different manifold spaces and loss functions.
Moreover, our proposed algorithm can explore the geometry of the underlying space efficiently and
perform well in simulation studies and practical examples all while having theoretical convergence
guarantees.

In the age of “big data”, the need for distributable inference algorithms is crucial as we cannot reliably
expect entire datasets to sit on a single processor anymore. Despite this, much of the previous work
in parallel inference has only focused on data and parameters in Euclidean space. Realistically, much
of the data that we are interested in is better modeled by manifolds and thus we need fast inference
algorithms that are provably suitable for situations beyond the Euclidean setting. In future work, we
aim to extend the situations under which parallel inference algorithms are generalizable to manifolds
and demonstrate more critical problems (in neuroscience or computer vision, for example) in which
parallel inference is a crucial solution.

2We select the step size parameter according to the modified Armijo algorithm seen in [6].
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