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The following notations will be used throughout this article. Let  be a -dimensional complex Hilbert space. A
tensor product of two or more Hilbert spaces will be denoted by subscripts, e.g. .

A system  is defined by the Hilbert space .

A matrix (operator)  on a Hilbert space  is Hermitian (or self adjoint) if it is its own conjugate transpose, i.e. 
.

A matrix  is positive semidefinite, , if for every nonzero vector , the value of  is non negative,
where  denotes the conjugate transpose of the vector .

A matrix  is positive, , if for every nonzero vector , the value of  is strictly positive, where  denotes
the conjugate transpose of the vector .

A density matrix  on a Hilbert space  is a Hermitian, positive semidefinite matrix of trace one. Density matrices
describe quantum physical systems in either mixed or pure states. A quantum system is said to be in a pure state, if
its density matrix is a rank-one projector. In other cases, a system is in a mixed state. Let  denote a space of
density matrices on , and let  denote the set of all linear operators on .

The trace of a matrix  is the sum of its eigenvalues or equivalently, it is the sum of its diagonal entries.

Let  be a linear operator on a tensor product Hilbert space . The partial trace of  over space  is
the trace of the matrix over space , and is denoted by . Similarly, over space  is the trace of the
matrix  over space , and is denoted by .

A purification of a density operator  on Hilbert space  is a pure state  on a reference system  and the
original system , such that tracing out the reference system gives the original density operator , i.e. .
See (Araki and Lieb 1970) or (Wilde 2013) for its existence.

Let  and  be Hilbert spaces. An isometry  is a linear map  to  such that  where  is a map
from  and  denoting the adjoint operator of .

A linear map  from  to  is said to be completely positive if for any reference system  of any finite
size, the map  is a positive map.

A quantum channel is a completely positive trace preserving map. A unital quantum channel is a quantum
channel  such that .

A trace norm of an operator  is defined as

The trace distance between two operators  and  on  is given by

A positive operator valued measure (POVM) is a set  of operators that satisfy non-negativity and
completeness. Meaning that

Properties of quantum entropy
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Concavity Yes No, (Hu and
Ye 2006)

No, (Dam
and Hayden
2002)

No, (Dam
and
Hayden
2002)

Yes,
(Furuichi
et. al.
2007)

Yes, for 

and  (Hu
and Ye 2006)

Data
processing
inequality

Yes, (Lindblad
1975)

Yes, for 

(Muller-
Lennert et.
al. 2013)

Yes, (Datta
2009)

Yes,
(Datta
2009)

Yes, for 

(Furuichi
et. al.
2004)

Yes, for ,
or  ,
or , 

Triangle
inequality

Yes, (Araki
and Lieb 1970)

No, (Linden
et. al. 2013)

Yes, by Weak
subadditivity

No,
(Linden
et. al.
2013)

Yes, for 

(Audenaert
2007)

Yes, for 
and ,
(Rastegin 2011)

Continuity
Yes,
(Audenaert
2007)

Yes, for 

(Audenaert
2007) for 

 (Chen
et. al. 2017)

No, (Wehrl
1991)

Unknown

Yes, for 

(Audenaert
2007) for 

(Raggio
1995)

Yes, for 
and  (Hu
and Ye 2006)

Monotonicity Not applicable
Yes, for 
(Renyi 1961)

Not
applicable

Not
applicable

Yes, for 

Yes, for 
, or

(Hu and Ye
2006), else
unknown

von Neumann entropy

One of the most studied and frequently used entropy functions is the von Neumann entropy, which is defined as
follows: For a density operator  the von Neumann entropy is defined as follows

This entropy is a quantum generalization of the classical Shannon entropy. If  are the eigenvalues of a density
operator , then the von Neumann entropy equals to the Shannon entropy of a random variable  with probability
distribution , i.e. 

The von Neumann entropy quantifies the amount of information present in a system, and the amount of correlations
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http://www.scholarpedia.org/article/Entropy#Shannon_entropy
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between quantum systems. Some of the striking differences between Shannon and von Neumann entropies arise
when looking at joint systems, conditional quantum entropy, etc. There are several families of entropies that
generalize the von Neumann entropy listed below.

Von Neumann entropy is directly related to the notion of source coding, which can be described as a process of
encoding and decoding information. The idea is to compress information to reduce costs of storage or transmission
of information. In classical information theory this is known as Shannon's source coding theorem, which is found in
(Shannon 1948). In 1995 Schumacher proved a quantum analogue to Shannon's source coding theorem, which
compresses a quantum information source to a rate which is exactly the von Neumann entropy. See (Schumacher,
1995), or chapter 18 in the book by Wilde (2013), for details.

Some of the properties of von Neumann entropy discussed below are either proved or left as exercises in (Wilde
2013). If there is no reference in that section see this book for more details.

Non negativity

The von Neumann entropy, is non negative. This follows directly from (1), as .

Minimum value

From (1) the von Neumann entropy is zero if and only if  is a pure state.

Maximum value

The von Neumann entropy is upper bounded by

Equality is achieved if and only if  is maximally mixed state.

Isometric invariance

If  is an isometry, then

Additivity

The von Neumann entropy is additive, i.e.

Subadditivity

Araki and Lieb (1970) showed that the von Neumann entropy is subadditive. That is, given a bipartite state , the
following holds

Strong Subadditivity of Quantum Entropy

Lieb and Ruskai (1973) proved strong subadditivity of the von Neumann entropy. For a given tri-partite state ,
the following inequality holds:
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The von Neumann entropy is concave. Let  be some density operators on , for some finite collection , and let 
 be a probability distribution. i.e.  and . Then concavity of the von Neumann entropy is

given by

where .

Data processing inequality

Lindblad (1975) shows the data processing inequality for the von Neumann entropy. Let  be a
unital quantum channel. Then

Triangle inequality

Araki and Lieb (1970) proved that for a bipartite state  the following holds

Continuity

Fannes (1973) proved the following continuity inequality: for any density matricies  and  such that 
, then

And for larger , the following holds

Audenaert (2007) proved the following sharper bound for continuity of the von Neumann entropy with respect to a
trace norm. The inequality is called Fannes­Audenaert inequality. For all states  and  with ,
define  to be the Shannon (classical) entropy of a random variable with a
binary probability distribution . Then

Error Bounds for SSA
Carlen and Lieb (2012) provided the following strengthening of the strong subadditivity inequality: for all tripartite
states ,

Rényi entropy

For a density matrix , the quantum Rényi entropy is defined as follows:
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This is a quantum version of a classical Rényi entropy which was introduced in (Renyi, 1961). If  are the
eigenvalues of , then the quantum Rényi entropy reduces to a Rényi entropy of a random variable  with
probability distribution  

As in the classical case, von Neumann entropy is a limiting case of the Rényi entropy, as

which is discussed and proven in (Muller-Lennert et. al., 2013). Other special cases are discussed below, when 
tends to zero and infinity.

Rényi entropy is widely used in information theory, for example, in restricting error probabilities in classification
problems (Csiszar, 1995), entanglement-assisted local operations and classical communications conversion (Cui et.
al., 2012), strong converse problem in quantum hypothesis testing (Mosonyi, Ogawa, 2015), and strong converse
problem for the classical capacity of a quantum channel (Wilde et. al., 2014).

Non negativity

From (2), the Rényi entropy is non-negative.

Minimum Value

The Rényi entropy equals zero if and only if  is a pure state. Hu and Ye (2006) explain that this follows from the fact
that Tr  with equality if and only if  is a pure state.

Maximum value

Dam and Hayden (2002) explain the Rényi entropy is upper bounded by

Equality is achieved if and only if  is a maximally mixed state.

Isometric invariance

From definition, if  is an isometry, then

for all .

Additivity

From definition, the Rényi entropy is additive

for all .

Subadditivity/Strong subadditivity

The Rényi entropy is not subadditive or strong subadditive, which was shown by Linden et. al. (2013).
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Weak subadditivity
According to Dam and Hayden (2002) a weaker version of subadditivity holds:

where  is defined in the Max entropy section.

Concavity

Hu and Ye (2006) showed that the Rényi entropy is not concave. However, it is Shur concave: if , then

for all  Here,  means that the spectrum of operator  majorizes spectrum of . If  has
eigenvalues  and  has eigenvalues , then

for all . See (Dam, Hayden, 2002) for details.

Data processing inequality

Muller-Lennert et. al. (2013) proved the for any  and any  unital quantum channel,
then the following data processing inequality holds

Triangle inequality

The Rényi entropy does not satisfy the triangle inequality, which was proved by Linden et. al. (2013).

Continuity

Audenaert (2007) showed the natural generalization of the sharp continuity of the von Neumann entropy with
respect to the trace norm, which holds for  For all -dimensional states  and , such that their trace
distance is given by , Audenaert showed that for 

For , Chen et. al. (2017) show the following continuity bound

Datta and Hanson (2017) also show uniform continuity bound for the Rényi entropy as follows: For  and
any density operators  and  such that  then for 
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Monotonicity

Muller-Lennert et. al. (2013) proved that the Rényi entropies are monotonically decreasing in , whenever , i.e.

Max entropy (Hartley entropy)

The Max (Hartley) entropy is defined as a limit of Rényi entropies

Following Muller-Lennert et. al. (2013), set a convention throughout that .

Konig et. al. (2009) describe and prove that the measure of security or secrecy of a system  relative to system  is
quantified by the Max entropy, where  is a classical system and  is a quantum system. In addition, this notion
generalizes naturally between two quantum systems, where the security or secrecy of one quantum system relative to
another quantum system is also described by the Max entropy between the two systems. Modern day cryptography,
electronic voting, or other securities and secrecies of a 2-party communication use a notion of bit commitment,
which is described in (Buhrman et. al., 2006).

Non negativity

By definition and convention,  is non negative.

Minimum Value

From definition, the Max entropy is zero if and only if , which happens if and only if  is a pure state.

Maximum value

Dam and Hayden (2002) provided an upper bound of the Max entropy

where  is the dimension of the associated Hilbert space. Equality is achieved if and only if the density operator  is a
full rank operator.

Isometric invariance

If  is an isometry, then

Additivity

The Max entropy is additive, i.e.

This follows from the fact that .

Subadditivity

Dam and Hayden (2002) proved that the Max entropy is subadditive, i.e.
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Strong subadditivity

As mentioned by Linden et. al. (2013) max-entropy does not satisfy the strong subadditivity inequality, but
according to Konig et. al. (2009) it satisfies a version of it.

In (Konig et. al., 2009), conditional max entropy is defined as

where  is a purification of  and  is explained in (3). Then, Konig et. al. (2009) show the
following inequality

which is thought of as generalizing the strong subadditivity of the von Neumann entropy.

Concavity

Hu and Ye (2006) showed that the Max entropy is not concave. However, it is Shur concave: if , then

Here,  means that the spectrum of operator  majorizes spectrum of . If  has eigenvalues 
and  has eigenvalues , then

for all . See (Dam, Hayden, 2002) for details.

Data processing inequality

The Max entropy satisfies the data process inequality. For a unital quantum channel , the
following holds

See (Datta, 2009) for more details.

Triangle inequality

Since the Max entropy satisfies subadditivity, it follows that it also satisfies the triangle inequality:

This is shown by taking  in the Weak subadditivity inequality.

Continuity

Max entropy is not continuous on , since the rank of a matrix is not continuous, see (Wehrl, 1991) or (Muller-
Lennert et. al., 2013) for more details.

Min entropy

The Min entropy is defined as a limit of Rényi entropies
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where  denotes an operator norm.

Typically, entropy has operational meaning in storage or transmission of data and information between systems. In
contrast, Konig et. al. (2009) prove that the Min entropy of classicacl information is interpreted as a guessing
probability. That is the probability of guessing classical values of a system  correctly using some optimal strategy.
This strategy is described by positive operator valued measure (POVM). This explanation extends to guessing
probabilities between two quantum systems.

Non negativity

Since  the Min entropy is non-negative.

Minimum Value

From definition, the Min entropy is zero if and only if , which happens if and only if  is a pure state.

Maximum value

Dam and Hayden (2002) explain the Min entropy is upper bounded by

Equality is achieved if and only if  is a maximally mixed state.

Isometric invariance

If  is an isometry, then

This is because 

Additivity

The Min entropy is additive

This follows from the fact that .

Subadditivity

Dam and Hayden (2002) explain that the Min entropy is not subadditive.

Strong subadditivity

Let  and  be two Hilbert spaces. In (Konig et. al., 2009), conditional min entropy is defined as follows: 

where  is a density operator on , and where

Konig et. al. (2009) later explain the following inequality
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This inequality is considered as the min entropy equivalence of the strong subadditivity of von Neumann strong
subadditivity.

Weak subadditivity
According to Dam and Hayden (2002), a weaker version of subadditivity holds: for a bipartite density state  the
following holds

where  is defined in the Max entropy section.

Concavity

Hu and Ye (2006) showed that the Min entropy is not concave. However, it is Shur concave: if , then

Here,  means that the spectrum of operator  majorizes spectrum of . If  has eigenvalues 
and  has eigenvalues , then

for all . See (Dam, Hayden, 2002) for details.

Data processing inequality

The Min entropy satisfies the data process inequality: for a unital quantum channel , the
following holds

See (Datta, 2009) for more information.

Triangle inequality

The Min entropy does not satisfy the triangle inequality, which is explained in (Linden et. al., 2013).

Continuity

The authors are unaware of any result that either proves or disproves continuity of the Min entropy with respect to
the trace norm.

Tsallis entropy

The quantum Tsallis entropy is defined as follows:

This is a quantum version of a classical Tsallis entropy, which was introduced by Tsallis (1988). If  are the
eigenvalues of , then the quantum Tsallis entropy reduces to a Tsallis entropy of a random variable  with
probability distribution  
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As in the classical case, the von Neumann entropy is a limiting case of the Tsallis entropy

This family of entropies has many applications in entanglement and thermodynamics (Caruso, Tsallis, 2008),
nonextensive statistics (Nobre et. al., 2011), optical lattice theory (Berhamini et. al., 2006), particle charging (Aad et.
al., 2011), statistical mechanics (Gell-Mann et. al., 2005) or (Majhi, 2017), and many other fields of mathematics and
physics as in (Abe, Okamoto, 2001).

Non negativity

From (Hu, Ye, 2006), the Tsallis entropy is non-negative. i.e.

Minimum Value

The Tsallis entropy is zero if and only if the density operator is a pure state. Hu and Ye (2006) explain that this
follows from the fact that Tr  with equality if and only if  is a pure state.

Maximum value

Audenaert (2007) proved that the Tsallis entropy is bounded by

This bound is achieved when the density operator is maximally mixed.

Isometric invariance

Isometric invariance of Tsallis entropy is proven in (Furuichi et. al., 2007). If  is an isometry, then

Additivity

Straightforward from definition, the Tsallis entropy satisfies 

for all . Hence, the Tsallis entropy is additive if and only if  i.e. either  or 
 is a pure state.

Subadditivity

From (5), it follows that the Tsallis entropy is not subadditive for . Audenaert (2007) showed that the Tsallis
entropy is subadditive for 
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Strong subadditivity

Petz and Virosztek (2015) proved that the only strongly subadditive Tsallis entropy is the von Neumann entropy, i.e. 

Concavity

Hu and Ye (2006) prove the concavity of the quantum Tsallis entropy. Let  be density operators on Hilbert
space , for some finite collection of indices , and let  be a probability distribution. i.e.  and 

, then

where .

Data processing inequality

For , it is proven in (Furuichi et. al., 2007) the following data processing inequality:

For any  density operator on Hilbert space , and for any  unital quantum channel,

Triangle inequality

According to Audenaert (2007) the triangle inequality holds for the Tsallis entropy when 

This is shown by using the subadditivity property of the Tsallis entropy for , a purification argument, and
by using the fact that marginal entropies of pure states are the same, which is shown in generality in (Hu, Ye, 2006)
or for the von Neumann entropy in Araki and Lieb (1970).

Continuity

Raggio (1995) first showed continuity of the Tsallis entropy with respect to the trace norm. For ,

where  and  are density operators on finite dimensional Hilbert space.

Audenaert (2007) showed the natural generalization of the sharp continuity of the von Neumann entropy with
respect to the trace norm, which holds for  For all -dimensional states  and  such that their trace
distance is given by , then

Datta and Hanson (2017) also show uniform continuity bound for the Tsallis entropy as follows: For  and
any density operators  and  such that  then for 
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Monotonicity

Tsallis entropy  can be viewed as a function of Rényi entropy :

where

Function  is a monotonically increasing function with respect to , and a monotonically decreasing with respect
to . Since the Rényi entropy is monotonically decreasing, for all , Tsallis entropy is monotonically
decreasing as well

Unified entropy

The von Neumann entropy is a limiting case of the Rényi entropy and Tsallis entropy. The Unified entropies,
introduced by Hu and Ye (2006), is a family of entropies that includes these three types of entropies as particular or
limiting cases. For a given density operator , the Unified entropy is defined as

with parameters 

The Unified entropy is then related to von Neumann, Rényi, and Tsallis entropies:

Non negativity

Hu and Ye (2006) prove the quantum unified entropy is non-negative. i.e. for all parameters 
,

where  is any density operator.

Minimum Value

For all parameters  a density operator  is pure if and only if , (Hu, Ye, 2006).

Maximum value

Hu and Ye (2006) show that for finite dimension , the Unified entropy is bounded in the following way:
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where  Equality holds in the inequality if and only if  is an equidistribution of order rank .

Isometric invariance

If  is an isometry, then for all parameters 

This is because the Trace operation is invariant under isometries.

Additivity

The following results are proven in (Hu, Ye, 2006). Suppose  and  are density operators, and  is a product
state. Then for any  

When ever  then

Whenever , then

Inequalities (7) and (8) become equalities if and only if either of the states  or  is a pure state.

Subadditivity

From (7), it follows that the Unified quantum entropy is subadditive whenever , i.e.

where  is a density operator on Hilbert space .

Strong subadditivity

Unified entropy is strongly subadditive in the limiting case resulting in the von Neumann entropy, as explained
above. Strong subadditivity of the Unified entropy is unknown for other parameters.

Concavity

Let . Then the Unified entropy under these parameters is concave, i.e. let  be
density operators on Hilbert space , for some finite collection of indices , and let  be a probability
distribution. (  and ) Then

where . This is proven by Hu and Ye (2006).

Error bound for convex combinations
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