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In information theory, entropy is a measure of randomness or uncertainty in the system. It is crucial in the theory
of entanglement (e.g. Schumacher 1996) or quantum communication (Ohya and Volovich 2003), (Ozawa and Yuen
1993), (Holevo 1998). Other applications include quantum algorithms, quantum cryptography, or statistical physics
as discussed in (Ohya and Watanabe 2010). Von Neumann entropy is a natural generalization of the classical
Shannon entropy. Surprisingly, von Neumann entropy was introduced by von Neumann, (1932), almost 20 years
before Shannon entropy was in (Shannon 1948). Several entropy measures are discussed in this article: von
Neumann entropy, Rényi entropy, Tsallis entropy, Min entropy, Max entropy, and Unified entropy.

Shannon explained the name 'entropy’ in (McIrvine and Tribus 1971):

My greatest concern was what to call it. I thought of calling it information,' but the word was overly used, so I
decided to call it 'uncertainty.' When I discussed it with John von Neumann, he had a better idea. Von Neumann
told me, 'You should call it entropy, for two reasons. In the first place your uncertainty function has been used in
statistical mechanics under that name, so it already has a name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will always have the advantage.'
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The following notations will be used throughout this article. Let H be a d-dimensional complex Hilbert space. A
tensor product of two or more Hilbert spaces will be denoted by subscripts, e.g. Hap = H4 ® Hp.

A system A is defined by the Hilbert space Hjy .

A matrix (operator) M on a Hilbert space H is Hermitian (or self adjoint) if it is its own conjugate transpose, i.e.
M=M*"=M".

A matrix M is positive semidefinite, M > 0, if for every nonzero vector x, the value of x*Mx is non negative,
where x* denotes the conjugate transpose of the vector x.

A matrix M is positive, M > 0, if for every nonzero vector x, the value of x*Mx is strictly positive, where x* denotes
the conjugate transpose of the vector x.

A density matrix p on a Hilbert space H is a Hermitian, positive semidefinite matrix of trace one. Density matrices
describe quantum physical systems in either mixed or pure states. A quantum system is said to be in a pure state, if
its density matrix is a rank-one projector. In other cases, a system is in a mixed state. Let D(}) denote a space of
density matrices on H, and let L(H) denote the set of all linear operators on H.

The trace of a matrix M is the sum of its eigenvalues or equivalently, it is the sum of its diagonal entries.

Let Myp be a linear operator on a tensor product Hilbert space H, ® Hp. The partial trace of M,z over space A is
the trace of the matrix over space H,, and is denoted by Mg := Tra(My4p ). Similarly, over space B is the trace of the
matrix M,p over space Hp, and is denoted by My := Trg(Map)-

A purification of a density operator p, on Hilbert space H, is a pure state pp, on a reference system R and the
original system A, such that tracing out the reference system gives the original density operator p,, i.e. Trrpgs = pa-
See (Araki and Lieb 1970) or (Wilde 2013) for its existence.

Let H and M’ be Hilbert spaces. An isometry U is a linear map H to H’ such that U'U = I;;, where U is a map
from H’ and H denoting the adjoint operator of U.

A linear map M from L(H,) to L(H}p) is said to be completely positive if for any reference system R of any finite
size, the map (idg ® M) is a positive map.

A quantum channel is a completely positive trace preserving map. A unital quantum channel is a quantum
channel NV such that N'(I3) = Ip.

A trace norm of an operator M € L(H, H’) is defined as
M|, = Trv/M™™M .
The trace distance between two operators Mland M’ on L(H, H’) is given by

1
) \M—-M .

A positive operator valued measure (POVM) is a set {M; }; of operators that satisfy non-negativity and
completeness. Meaning that

for all j, M; > 0, and ZM] =1.
J

Properties of quantum entropy
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Denote S(p) the entropy value of a density matrix p € D(H). Several quantum entropies are defined and described
below. For each of them, the following properties are discussed:

» Non negativity: For density operator p, the entropy S(p) is non-negative. Meaning
Sip) >0.
+» Minimum value: The minimum value of

Sp) =0
if and only if p is a pure state.

« Maximum value: The entropy is bounded from above, and a density operator p achieves that bound whenever
it is maximally mixed, i.e. p = }7 I, where d is the dimension of a Hilbert space H.

« Isometric invariance: If U : /{4 — Hp is an isometry, then
S(p) =S(UpUT).

» Additivity: Let H, and 3 be two Hilbert spaces. Suppose there are density operators p on H, and ¢ on Hp.
Then additivity of the entropy implies

S(p ® 0) = S(p) + S(o) .

» Subadditivity: Let p, 5 be a bipartite state on tensor product Hilbert space H4 ® Hp. Then subadditivity is
described as

S(ap) < S(py) + S(pp) -

+ Strong subadditivity (SSA): Let p, 34 be a density operator on the tensor product Hilbert space
Hs ® Hp @ Hc. Then

Sac) + Spe) = S(Papc) + Sc) -

» Concavity: Let {p;}; be density operators on Hilbert space H, for some finite collection of indices {j}. Let {p;};
be a probability distribution.i.e. 0 < p; < 1 and > iPi = 1. Then concavity of the entropy S(p) means that

NOEDIW AN
J

where p = ijjpj.

« Data processing inequality: Let p be a density operator on Hilbert space H. Let N : L(H4) — L(Hp)bea
unital quantum channel. Then

S(N(p)) = S(p) -

= Triangle inequality: If p,; is a density operator on the tensor product Hilbert space H4 @ Hp, then
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1SCoa) — S(pp)| < S(pap) -

+ Continuity: The entropy S(p) is continuous with respect to the trace norm. That is, if two density operators are
close with respect to the trace norm, then so are their entropies.

» Monotonicity: Given a family of entropies {Sx(p) },, where a is some index, the entropies are monotonic in

a € R.
von . . . .
Rényi Max- Min- Tsallis Unified (r,s)
Property Neumann
entropy entropy entopy entropy entropy
Entropy
N -
on . Yes Yes Yes Yes Yes Yes, (Hu and Ye
negativity 2006)
Yes, (H
Minimum Yes, (Wilde Yes, (Hu and s, (Hu Yes, (Hu and Ye
Yes Yes and Ye
value 2013) Ye 2006) 2006)
2006)
Yes,
. Yes,
Maximum (Dam and Yes, (Hu and Ye
Yes Yes Yes, (Audenaert
value Hayden 2006)
2007)
2002)
I i Yi H Y
.som?trlc Yes Yes Yes Yes Yes es, (Huand Ye
invariance 2006)
Yes, for
Yes, (Dam re0,1),s<0
e s Generally
Additivity Yes and Hayden Yes Yes o orr>1,s>0
2002) (Hu and Ye
2006)
Yes, f
Yes, (D No, (Dam | Yes, for ees,((())rl) <0
L Yes, Araki and | No, (Linden ©s, Lam and g>1 g » )8
Subadditivity . and Hayden orr>1,s>0
Lieb (1970) et. al. 2013) Hayden (Audenaert
2002) (Hu and Ye
2002) 2007)
2006)
Yes, (Strong Yes, forr - 1,
Subadditivity No, (Petz (Hu and Ye
Strong ) . Yes, .
. of Quantum No, (Linden Yes, Konig . and 2006), (Lieb
subadditivity . Konig et. . .
Entropy)(Lieb et. al. 2013) et. al. (2009) Virosztek and Ruskai
(SSA) . al. (2009)
and Ruskai 2015) 1973), else
1973) unknown
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Concavity Yes No, (Hu and No, (Dam No, (Dam | Yes, Yes, for
Ye 2006) and Hayden and (Furuichi re,1),s>0
2002) Hayden et. al. andrs < 1 (Hu
2002) 2007) and Ye 2006)
Yes, for Yes, for
Dat 1,2 Y 0,1 Yes, f 1
ata . Yes, (Lindblad a € (.2] Yes, (Datta N 1€ (,’ ) es, forr =24,
processing 1975) (Muller- 2000) (Datta (Furuichi orr#1,s >0,
inequality 75 Lennert et. 2009) et. al. orr#1,s=1
al. 2013) 2004)
No, Yes, for
. . . i Yes, forr > 1
Triangle Yes, (Araki No, (Linden Yes, by Weak | (Linden qge 0,1) and s > 7!
inequality and Lieb 1970) | et. al. 2013) subadditivity | et. al. (Audenaert (Raste;in 2(;11)
2013) 2007)
Yes, for Ye;, fgr 1
a € (0,1) 9=
Yes, (Audenaert | Yes, forr > 1
o (Audenaert No, (Wehrl
Continuity (Audenaert 2007) for 1991) Unknown | 2007) for and s > 1 (Hu
1 Y
2007) > 1 (Chen E]R> . and Ye 2006)
et. al. 2017) a8810
1995)
Yes, for
r>1,s > 0,or
.. ) Yes, fora > 1 | Not Not Yes, for r>1,s=1
Monotonicity | Not applicable . ) )
(Renyi 1961) | applicable applicable | ¢ > 1 (Hu and Ye
2006), else
unknown

von Neumann entropy

One of the most studied and frequently used entropy functions is the von Neumann entropy, which is defined as
follows: For a density operator p € D(H) the von Neumann entropy is defined as follows

S(p) = =Tr(plogp) .

This entropy is a quantum generalization of the classical Shannon entropy. If {p; }; are the eigenvalues of a density
operator p, then the von Neumann entropy equals to the Shannon entropy of a random variable X, with probability
distribution {p; };, i.e.

S(p) = H(X,) = — ) p;logp; .

ey

The von Neumann entropy quantifies the amount of information present in a system, and the amount of correlations
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between quantum systems. Some of the striking differences between Shannon and von Neumann entropies arise
when looking at joint systems, conditional quantum entropy, etc. There are several families of entropies that
generalize the von Neumann entropy listed below.

Von Neumann entropy is directly related to the notion of source coding, which can be described as a process of
encoding and decoding information. The idea is to compress information to reduce costs of storage or transmission
of information. In classical information theory this is known as Shannon's source coding theorem, which is found in
(Shannon 1948). In 1995 Schumacher proved a quantum analogue to Shannon's source coding theorem, which
compresses a quantum information source to a rate which is exactly the von Neumann entropy. See (Schumacher,
1995), or chapter 18 in the book by Wilde (2013), for details.

Some of the properties of von Neumann entropy discussed below are either proved or left as exercises in (Wilde
2013). If there is no reference in that section see this book for more details.

Non negativity

The von Neumann entropy, is non negative. This follows directly from (1),as 0 < p; < 1.
Minimum value

From (1) the von Neumann entropy is zero if and only if p is a pure state.

Maximum value

The von Neumann entropy is upper bounded by
S(p) <logd.

Equality is achieved if and only if p is maximally mixed state.
Isometric invariance

IfU : H4y — Hpis an isometry, then

S(p)=SWUpU").
Additivity
The von Neumann entropy is additive, i.e.

Sp ® o) = S(p) + S(o) .

Subadditivity

Araki and Lieb (1970) showed that the von Neumann entropy is subadditive. That is, given a bipartite state p,, the
following holds

S(pap) < S(pa) + S(pp) -

Strong Subadditivity of Quantum Entropy

Lieb and Ruskai (1973) proved strong subadditivity of the von Neumann entropy. For a given tri-partite state p, 5.,
the following inequality holds:

S(pac) + Spe) = S(Papc) + Spc) -

Concavity
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The von Neumann entropy is concave. Let p; be some density operators on H, for some finite collection {;j}, and let
{p;} be a probability distribution. i.e. 0 < p; < 1 and 2]. p; = 1. Then concavity of the von Neumann entropy is
given by

S(p) > ) pSpy) .
J

where p = ijjpj.
Data processing inequality

Lindblad (1975) shows the data processing inequality for the von Neumann entropy. Let N : £L(H4) — L(Hpz)bea
unital quantum channel. Then

S(N'(p)) = S(p) .

Triangle inequality

Araki and Lieb (1970) proved that for a bipartite state p 5 the following holds
1S(p4) — S(pp)| < S(pap) -

Continuity

Fannes (1973) proved the following continuity inequality: for any density matricies p and o such that
T:=1|p-ol, <4, then

|S(p) — S(o)| < 2T logd — 2T log(2T) .
And for larger T, the following holds

IS(p) — S(6)| < 2T logd + 1/(eIn2) .

Audenaert (2007) proved the following sharper bound for continuity of the von Neumann entropy with respect to a
trace norm. The inequality is called Fannes-Audenaert inequality. For all states p and o with 7" := ;— lp —oll;»
define H(T) = —Tlog T — (1 — T)log(1 — T) to be the Shannon (classical) entropy of a random variable with a
binary probability distribution {7, 1 — T'}. Then

1S(p) — S(0)| < Tlog(d — 1) + H(T) .

Error Bounds for SSA

Carlen and Lieb (2012) provided the following strengthening of the strong subadditivity inequality: for all tripartite
states p,pcs

S(pac) —S(pc) + S(pge) — S(Papc) 2 2maX{S(PA) — S(pag), S(pg) — S(pap), O} .

Rényi entropy

For a density matrix p € D(H), the quantum Rényi entropy is defined as follows:
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Sa@) =

: log Tr(p%), a € (0,H U (1, ).
-

This is a quantum version of a classical Rényi entropy which was introduced in (Renyi, 1961). If {p,}; are the
eigenvalues of p, then the quantum Rényi entropy reduces to a Rényi entropy of a random variable X, with
probability distribution {p, }|

1
&@=m®mr;;m42w>. 2

As in the classical case, von Neumann entropy is a limiting case of the Rényi entropy, as
lim Sq(p) = S(p) ,
a—1

which is discussed and proven in (Muller-Lennert et. al., 2013). Other special cases are discussed below, when a
tends to zero and infinity.

Rényi entropy is widely used in information theory, for example, in restricting error probabilities in classification
problems (Csiszar, 1995), entanglement-assisted local operations and classical communications conversion (Cui et.
al., 2012), strong converse problem in quantum hypothesis testing (Mosonyi, Ogawa, 2015), and strong converse
problem for the classical capacity of a quantum channel (Wilde et. al., 2014).

Non negativity
From (2), the Rényi entropy is non-negative.
Minimum Value

The Rényi entropy equals zero if and only if p is a pure state. Hu and Ye (2006) explain that this follows from the fact
that Tr(p*) < 1 with equality if and only if p is a pure state.

Maximum value

Dam and Hayden (2002) explain the Rényi entropy is upper bounded by
Sa(p) < logd .

Equality is achieved if and only if p is a maximally mixed state.
Isometric invariance

From definition, if U : H4 — Hp is an isometry, then

Sa(p) = SulUp U”),
foralla € (0,1)U (1, ).
Additivity
From definition, the Rényi entropy is additive
Salp ® 6) = Salp) + Salo) ,

foralla € (0,1) U (1, ).
Subadditivity/Strong subadditivity

The Rényi entropy is not subadditive or strong subadditive, which was shown by Linden et. al. (2013).
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Weak subadditivity

According to Dam and Hayden (2002) a weaker version of subadditivity holds:

Sa(py) — So(pp) < Sa(pap) < Salpy) + So(pp),

where So(p) is defined in the Max entropy section.
Concavity

Hu and Ye (2006) showed that the Rényi entropy is not concave. However, it is Shur concave: if p > o, then

Sa(p) < Salo) ,

foralla € (0,1) U (1, ). Here, p > ¢ means that the spectrum of operator p majorizes spectrum of ¢. If & has
eigenvalues y; > y, > --- > y,|and p has eigenvalues 4 > A, > -+ > 4,, then

REDNS
-

forall 1 <j < r.See (Dam, Hayden, 2002) for details.
Data processing inequality
Muller-Lennert et. al. (2013) proved the for any a € (1,2] and any N : £L(H4) — L(H3) unital quantum channel,
then the following data processing inequality holds
Sae(N(p)) = Sulp) .

Triangle inequality

The Rényi entropy does not satisfy the triangle inequality, which was proved by Linden et. al. (2013).

Continuity

Audenaert (2007) showed the natural generalization of the sharp continuity of the von Neumann entropy with
respect to the trace norm, which holds for a € (0, 1). For all d-dimensional states p and o, such that their trace
distance is given by T := % lp — o]|,, Audenaert showed that for0 < a < 1

|S(1(p) - S(I(G)I < 1 ! log [(1 — T)“ +(d - 1)1—(1Ta] '

—-Qa

For o > 1, Chen et. al. (2017) show the following continuity bound

a—1

d
[Sa(p) = Sal@)] < T [1 = (1 = 1) = (@ = D'™"T].

—-Qa

Datta and Hanson (2017) also show uniform continuity bound for the Rényi entropy as follows: For ¢ € (0, 1] and
any density operators p and ¢ such that 7 < e then for a € (0, 1),

) — Sutoy] < 4 (L@ log(A = + @ =DIe) e <l -y
a a S logd ‘ 2 - % .
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Monotonicity

Muller-Lennert et. al. (2013) proved that the Rényi entropies are monotonically decreasing in a, whenever a > 1, i.e.

forl <a; < az, Sq (P) = Sa,(p) .

Max entropy (Hartley entropy)

The Max (Hartley) entropy is defined as a limit of Rényi entropies
So(p) = lirré So(p) = logrank(p) .

Following Muller-Lennert et. al. (2013), set a convention throughout that log(0) = 0.

Konig et. al. (2009) describe and prove that the measure of security or secrecy of a system X relative to system Blis
quantified by the Max entropy, where X is a classical system and B is a quantum system. In addition, this notion
generalizes naturally between two quantum systems, where the security or secrecy of one quantum system relative to
another quantum system is also described by the Max entropy between the two systems. Modern day cryptography,
electronic voting, or other securities and secrecies of a 2-party communication use a notion of bit commitment,
which is described in (Buhrman et. al., 2006).

Non negativity

By definition and convention, So(p) is non negative.

Minimum Value

From definition, the Max entropy is zero if and only if rank(p) = 1, which happens if and only if p is a pure state.
Maximum value

Dam and Hayden (2002) provided an upper bound of the Max entropy
So(p) < logd,

where d is the dimension of the associated Hilbert space. Equality is achieved if and only if the density operator p is a
full rank operator.

Isometric invariance

IfU : Hy — Hpis an isometry, then
So(p) = So(Up UT).

Additivity
The Max entropy is additive, i.e.

So(p ® 6) = So(p) + So(o) .
This follows from the fact that rank(p ® o) = rank(p) rank(s).
Subadditivity
Dam and Hayden (2002) proved that the Max entropy is subadditive, i.e.

So(Pap) < So(py) + Solpp) -
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Strong subadditivity

As mentioned by Linden et. al. (2013) max-entropy does not satisfy the strong subadditivity inequality, but
according to Konig et. al. (2009) it satisfies a version of it.

In (Konig et. al., 2009), conditional max entropy is defined as

Smax(Palpg) = —=Smin(p4lpe)
where p , 5~ is a purification of p, ; and Sy (p,4lp) is explained in (3). Then, Konig et. al. (2009) show the
following inequality

Smax(PalPpe) < Smax(palpg) »
which is thought of as generalizing the strong subadditivity of the von Neumann entropy.

Concavity

Hu and Ye (2006) showed that the Max entropy is not concave. However, it is Shur concave: if p > o, then

So(p) < So(o) .

Here, p > o means that the spectrum of operator p majorizes spectrum of ol. If ¢ has eigenvalues y; >y, > -+ > 7,

and p has eigenvalues Ay > A, > --- > 4,, then

r r

24z

j=1 j=1
forall 1 <j < r. See (Dam, Hayden, 2002) for details.
Data processing inequality

The Max entropy satisfies the data process inequality. For a unital quantum channel N : £L(H4) — L(Hp), the
following holds

So(N(p)) 2 So(p) -
See (Datta, 2009) for more details.
Triangle inequality
Since the Max entropy satisfies subadditivity, it follows that it also satisfies the triangle inequality:

|S0(,0A) - SO(PB)l < So(pap) -

This is shown by taking ¢ = 0 in the Weak subadditivity inequality.
Continuity

Max entropy is not continuous on D(H), since the rank of a matrix is not continuous, see (Wehrl, 1991) or (Muller-
Lennert et. al., 2013) for more details.

Min entropy

The Min entropy is defined as a limit of Rényi entropies
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Seop) = lim Sa(p) = —logllpll .

where || - || denotes an operator norm.

Typically, entropy has operational meaning in storage or transmission of data and information between systems. In
contrast, Konig et. al. (2009) prove that the Min entropy of classicacl information is interpreted as a guessing
probability. That is the probability of guessing classical values of a system X correctly using some optimal strategy.
This strategy is described by positive operator valued measure (POVM). This explanation extends to guessing
probabilities between two quantum systems.

Non negativity

Since ||p|| < 1 the Min entropy is non-negative.

Minimum Value

From definition, the Min entropy is zero if and only if ||p|| = 1, which happens if and only if p is a pure state.
Maximum value

Dam and Hayden (2002) explain the Min entropy is upper bounded by

Sw(p) < logd .

Equality is achieved if and only if p is a maximally mixed state.
Isometric invariance

IfU : Hy — Hpis an isometry, then

Seo(p) = Seo(Up UT) .

This is because |p|| = |UpU"|| .
Additivity
The Min entropy is additive

Seo(p ® 0) = Seo(p) + S(0) .
This follows from the fact that ||[p @ || = ||p]| l|lo|]-
Subadditivity
Dam and Hayden (2002) explain that the Min entropy is not subadditive.

Strong subadditivity

Let H4 and Hp be two Hilbert spaces. In (Konig et. al., 2009), conditional min entropy is defined as follows:

Smin(P4lpp) = —inf Do (pypllida ® oB) , 3)

B

where o3 is a density operator on Hp, and where

Do(t]|z") ;== inf{A € R: 7 < 2%} .

Konig et. al. (2009) later explain the following inequality

Smin@AlpBC) < Smin(pAlpB) .
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This inequality is considered as the min entropy equivalence of the strong subadditivity of von Neumann strong
subadditivity.

Weak subadditivity

According to Dam and Hayden (2002), a weaker version of subadditivity holds: for a bipartite density state p,5 the
following holds

Sao(Pa) = S0(pp) < Seo(Pap) < Swol(py) + So(pp)

where So(p) is defined in the Max entropy section.
Concavity

Hu and Ye (2006) showed that the Min entropy is not concave. However, it is Shur concave: if p > ¢, then

Seo(p) < Seo(0) ,

Here, p > ¢ means that the spectrum of operator p majorizes spectrum of ¢i. If 5 has eigenvalues y, >y, > --- >y,
and p has eigenvalues 1; > A, > --- > 4,, then

~
~

forall 1 <j < r.See (Dam, Hayden, 2002) for details.
Data processing inequality

The Min entropy satisfies the data process inequality: for a unital quantum channel N : £L(H4) — L(H3), the
following holds

Seo(N(p)) 2 Seo(p) -
See (Datta, 2009) for more information.
Triangle inequality
The Min entropy does not satisfy the triangle inequality, which is explained in (Linden et. al., 2013).
Continuity

The authors are unaware of any result that either proves or disproves continuity of the Min entropy with respect to
the trace norm.

Tsallis entropy
The quantum Tsallis entropy is defined as follows:
1
S,(p) = T (Tr(p?) = 1), g € (0,1H U (1, 00).

This is a quantum version of a classical Tsallis entropy, which was introduced by Tsallis (1988). If {p, }; are the
eigenvalues of p, then the quantum Tsallis entropy reduces to a Tsallis entropy of a random variable X, with
probability distribution {p; }|
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1
Sq(p) = Hy(X)) = Tq <2Piq - 1> . “4)

As in the classical case, the von Neumann entropy is a limiting case of the Tsallis entropy

S(p) = 1im S,(p) .
q—1

This family of entropies has many applications in entanglement and thermodynamics (Caruso, Tsallis, 2008),
nonextensive statistics (Nobre et. al., 2011), optical lattice theory (Berhamini et. al., 2006), particle charging (Aad et.
al., 2011), statistical mechanics (Gell-Mann et. al., 2005) or (Majhi, 2017), and many other fields of mathematics and
physics as in (Abe, Okamoto, 2001).

Non negativity

From (Hu, Ye, 2006), the Tsallis entropy is non-negative. i.e.
Sq(p) 2 0.

Minimum Value

The Tsallis entropy is zero if and only if the density operator is a pure state. Hu and Ye (2006) explain that this
follows from the fact that Tr(p?) < 1 with equality if and only if p is a pure state.

Maximum value

Audenaert (2007) proved that the Tsallis entropy is bounded by

Sy(0) < —— (@' -1).

This bound is achieved when the density operator is maximally mixed.
Isometric invariance

Isometric invariance of Tsallis entropy is proven in (Furuichi et. al., 2007). If U : H4 — Hpglis an isometry, then
Sq(p) = SyUp UT) .

Additivity

Straightforward from definition, the Tsallis entropy satisfies
Sq(p ® 6) = S4(p) + Sq(0) + (1 —q)Sq(p) S4(0) , (%)

forall g € (0, 1) U (1, o0). Hence, the Tsallis entropy is additive if and only if (1 — ¢)S,(p)S,(6) = 0, i.e. either p or
o is a pure state.

Subadditivity

From (5), it follows that the Tsallis entropy is not subadditive for ¢ < 1. Audenaert (2007) showed that the Tsallis
entropy is subadditive for g > 1

Sq(Pap) < Sq(pa) + Sq(pp) -

www.scholarpedia.org/article/Quantum_entropies 14/22



4/1/2019 Quantum entropies - Scholarpedia
Strong subadditivity

Petz and Virosztek (2015) proved that the only strongly subadditive Tsallis entropy is the von Neumann entropy, i.e.
qg—1.

Concavity

Hu and Ye (2006) prove the concavity of the quantum Tsallis entropy. Let {p;}; be density operators on Hilbert
space H, for some finite collection of indices {j}, and let {p;}; be a probability distribution. i.e. 0 < p; < I and

ijj = 1, then

Sq(ﬂ) > ijsq(pj) R
J

where p = ijjpj'
Data processing inequality
For g € (0, 1), it is proven in (Furuichi et. al., 2007) the following data processing inequality:

For any p density operator on Hilbert space H, and for any N : £(H_4) — L(Hp) unital quantum channel,
S(N(p) = S(p) .

Triangle inequality

According to Audenaert (2007) the triangle inequality holds for the Tsallis entropy when g € (0, 1)

1Sg(pa) = Sq(P)| < Sq(pap) -

This is shown by using the subadditivity property of the Tsallis entropy for g € (0, 1), a purification argument, and
by using the fact that marginal entropies of pure states are the same, which is shown in generality in (Hu, Ye, 2006)
or for the von Neumann entropy in Araki and Lieb (1970).

Continuity

Raggio (1995) first showed continuity of the Tsallis entropy with respect to the trace norm. For g > 1,

1S4(0) = Sq(0)| < (g — D7 'llp = ol ,
where p and ¢ are density operators on finite dimensional Hilbert space.

Audenaert (2007) showed the natural generalization of the sharp continuity of the von Neumann entropy with
respect to the trace norm, which holds for ¢ € (0, 1). For all d-dimensional states p and ¢ , such that their trace
distance is given by T := % llp = ol|;, then

[S4(p) = S4(0)| < %_q (=T =1+@-1)"7T7) .

Datta and Hanson (2017) also show uniform continuity bound for the Tsallis entropy as follows: For ¢ € (0, 1] and
any density operators p and ¢ such that 7 < e then for g € (0, 1) U (1, o0),

Q- (U—ef +@d—-D"e? =1) e<1-

|Sq(P) - Sq(o')| < { (dl—q - (1 - q)—l e>1-

Ll
d
i
d
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Monotonicity

Tsallis entropy S qT (p) can be viewed as a function of Rényi entropy S 5 (p):
T()) — R
ST(p) = Fy(SX(p)) .
where

F,(0=(1=g) '[! —1].

Function F; (x) is a monotonically increasing function with respect to x, and a monotonically decreasing with respect

to g > 1. Since the Rényi entropy is monotonically decreasing, for all ¢ > 1, Tsallis entropy is monotonically
decreasing as well

for1 < q, < qy, Squ(p) < Squ(p).

Unified entropy

The von Neumann entropy is a limiting case of the Rényi entropy and Tsallis entropy. The Unified entropies,

introduced by Hu and Ye (2006), is a family of entropies that includes these three types of entropies as particular or

limiting cases. For a given density operator p, the Unified entropy is defined as

1 s
Si(p) = ——— |(Tr(p")) — 1],
1) = gy [(Trle)) = 1]
with parametersr > 0,7 # 1, ands # 0.
The Unified entropy is then related to von Neumann, Rényi, and Tsallis entropies:

Sl(p) is a Tsallis entropy,

lim S7(p) converges to a von Neumann entropy,
r—1

lin& S’ (p) = S(p) converges to a Rényi entropy.

Non negativity

Hu and Ye (2006) prove the quantum unified entropy is non-negative. i.e. for all parameters
r>0,r#1, ands # 0,

Si(p) >0,

where p is any density operator.

Minimum Value

For all parameters r > 0,7 # 1, and s # 0 a density operator p is pure if and only if S¥(p) = 0, (Hu, Ye, 2006).

Maximum value

Hu and Ye (2006) show that for finite dimension d, the Unified entropy is bounded in the following way:
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s (I-r)s _
S50 < G 1d 1],

where r # 1, and s # 0 . Equality holds in the inequality if and only if p is an equidistribution of order rank p.

Isometric invariance

IfU : H4y — Hpis an isometry, then for all parameters » > 0,7 # 1, and s # 0,
Si(p) = S}Up UT).

This is because the Trace operation is invariant under isometries.

Additivity

The following results are proven in (Hu, Ye, 2006). Suppose p and ¢ are density operators, and p ® ¢ is a product
state. Then forany r > 0,r # 1, and s # 0,

S3(p ® 0) = Si(p) + S:(0) + (1 = Ns S{(P)Si(o) . (©)

Whenever0 <r < 1,s <0Qorr>1,s >0, then
$3(p ® ) < S}(p) + 5:(0) . (7)

Wheneverr > 1,s <Qor0 < r < 1,s > 0, then

Sp ® ) > S}(p) + 53(0) . @®)

Inequalities (7) and (8) become equalities if and only if either of the states p or ¢ is a pure state.
Subadditivity

From (7), it follows that the Unified quantum entropy is subadditive whenever r > 1,s < QorO0 < r < 1,5 > 0, i.e.

Si(pAB) < Sf(pA) + S;’g(pB) ’

where p, 5 is a density operator on Hilbert space Hap.
Strong subadditivity

Unified entropy is strongly subadditive in the limiting case resulting in the von Neumann entropy, as explained
above. Strong subadditivity of the Unified entropy is unknown for other parameters.

Concavity

Let0 <r < 1,5 >0, and rs < 1. Then the Unified entropy under these parameters is concave, i.e. let {p;}; be
density operators on Hilbert space H, for some finite collection of indices {j}, and let {p;}; be a probability
distribution. (0 < p; < 1 and ), jP; = 1) Then

$5(0) > ). pSip)) .
J
where p = ZJ. p;p;- This is proven by Hu and Ye (2006).

Error bound for convex combinations
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Hu and Ye (2006) prove the following result: Let { P }; be density operators on Hilbert space H, such that 1 <j < n,
and let {p;}; be a probability distribution. (0 < p; < 1 and D iDj = 1) For parameters r, s > 1, then

D PSSO + Fip1.pas - 5,) 2 550) 2 ) piSi(p))
J J
where p = 3. pjp; and F(py, py, ..., py) = (1 = D) @ +p5 + - +pif = D).

Data processing inequality

Data processing inequality is known only for the von Neumann, Rényi, and Tsallis entropies. Authors are not aware
of any results for other parameters.

Triangle inequality

For r > 1 and s > r~!, Rastegin (2011) proves the triangle inequality for Unified entropies:

1S7(0a) — S7(0B)| < S7(Pas) »
where p,p is a density operator on Hilbert space Hyp.

Continuity

Hu and Ye (2006) prove Lipschitz continuity for the Unified quantum entropy, which is stronger than continuity:
For parametersr > 1 and s > 1,

1
s _ QS < - —
15:(0) = Sy < S5 e = alls

)

where ||p — o||; denotes the trace distance between density operators p and o .

Monotonicity

For s = 1 the Unified entropy is the Tsallis entropy, which is monotonic for » > 1, as explained above. The limiting
case of the Rényi entropy is also monotonic for r > 1, as explained above. For other parameters, authors are not
aware of any results.
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